1.2子集、全集、补集
1.2子集,全集,补集
一、问题情境 一、问题情境 我们共同观察下面几组集合 一、问题情境 我们共同观察下面几组集合 (1)A={1,2,3},B={1,2,3,4,5} 我们共同观察下面几组集合 (1)A={1,2,3},B={1,2,3,4,5} (2)A={x|x>3},B={x|3x-6>0} (1)A={1,2,3},B={1,2,3,4,5} (2)A={x|x>3},B={x|3x-6>0} ⑶A={x|x 为直角三角形},B={x|x 为三角形} (2)A={x|x>3},B={x|3x-6>0} ⑶A={x|x 为直角三角形},B={x|x 为三角形}
例 4.已知全集 U = {x | x 为不大于 5 的自然数}, A = {0,1}, B = {x | xA 且 x < 1},C = {x | x – 1A,且 xU}, 求∁UA, ∁U B,∁UC.
例 5 已知集全 U = {1,2,3,4,5},A = {1,2},{3} B ∁U A, 求出所有满足条件的集合 B.
⑶A={x|x 为直角三角形},B={x|x 为三角形}
二、数学建构 1.子集 如果集合 A 的任意一个元素都是集合 B 的元 素(若 aA 则 aB),那么集合 A 称为集合 B 的 子集,记为 AB(或 BA),读作“集合 A 包含于集 合 B”或“集合 B 包含集合 A”.
说明: ⑴AA (任何一个集合是它本身的子集) 说明: ⑴AA (任何一个集合是它本身的子集) 说明: ⑴AA (任何一个集合是它本身的子集) ⑵规定A(空集是任何集合的子集). ⑵规定A(空集是任何集合的子集). ⑵规定A(空集是任何集合的子集). ⑶若 AB,且 BA 则 A ==B. ⑶若 AB,且 BA 则 A B. ⑶若 AB,且 BA 则 A = B.
1.2-子集、全集、补集讲义教学
1.2 子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A”.(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A 是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a 的值为-1,2.2.真子集 (1)定义:如果A B ,并且A≠B ,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例:{1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C . ③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B AA ≠B A B.④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ”“ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }.其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合评点中.2.写出集合A ={p ,q ,r ,s }的所有子集.根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉.解:集合A 的子集分为5类,即 (1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m 个,真子集有(2m -1)个,非空真子集有(2m -2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.从子集、真子集的概念以及空集的特点入手,逐一进行判断.解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集. 求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A .(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A .4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ .评点 评点根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}.(1)解答此题应首先根据子集与真子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n } ,则A 的个数为2n -m .若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m -1. 若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m -2. 要点二 补集、全集[重点] 1.补集设A S ,由S 中不属于A 的所有 元素组成的集合称为S 的子集A 的补集, 记作 S A(读作“A 在S 中的补集”),即S A={ x | x ∈S ,且x A}.C S A 可用图1-2-2.2.全集. (1)定义:如果集合S 包含我们所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U .(2)举例:例如,在实数范围内讨论集合时,R 便可看做一个全集U ,在自然数范围内讨论集合时,N 便可看做一个全集U .3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R 看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个评点子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A 在全集U 中的补集的方法:从全集U 中去掉所有属于A 的元素,剩下的元素组成的集合即为A 在U 中的补集.如已知U= a ,b ,c ,d ,e ,f ,A= b ,f ,求C U A .该题中显然A U ,从U 中除去子集A 的元素b 、f ,乘下的a 、c 、d 、e 组成的集合即为 U A= a ,c ,d ,e .求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R ,A= x x > 3 ,求 U A .用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题 例2不等式组⎩⎪⎨⎪⎧2x -1>0,3x -6≤0 的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<x x ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1).C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A . 在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍.6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}.(1)判断A 、B 的关系;(2)求C U B 、C U C ,并判断其关系.1212评 点根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A .若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B . 若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A .要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论.解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a 的取值范围:(1)B A ;(2)A B .紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.评点 评点 (2)(1)(2)因为A B,B是A的子集,如图1-2-6(2),故a≥5.9.已知M={x|x=a2+1,a∈N*},P={y|y=b2-6b+10,b∈N},判断集合M与P之间的关系.解法一:集合P中,y=b2-6b+10=(b-3)2+1当b=4,5,6,…时,与集合M中a=1,2,3,…时的值相同,而当b=3时,y=1∈P,1 M,∴M P.解法二:对任意的x0∈M,有x0=a2 0+1=(a0+3)2-6(a0+3)+10∈P(∵a0∈N*,∴a0+3∈N),∴M P,又b=3时,y=1,∴1∈P.而1<1+ a2+1=(a0∈N*),∴1 M,从而M P.10.已知全集U,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合B.求集合B,需根据题意先求全集U,由于集合A及C用Venn图来表示所给集合,将A及C U A填入即可得U解:借助Veen图,如图1-2-7.由题意知U={1,2,3,4,5,6,7,8,9}.∵C U B={1,4,6,8,9}∴B={2,3,5,7}.求本题中的全集,用Veen较直观,本题的求解实际上应用了补集的性质C U (C U B)=B.E 教材问题探究1.教材第8页“思考”对于集合A、B,如果A B,同时B A,那么A=B.这是因为由A B可知,集合A的元素都是集合B的元素,又由B A知,集合B的元素也都是集合A的元素,这就是说,集合A和集合B的元素是完全相同的,因而说集合A与集合B是相等的.当A=B时,集合A中的每一个元素都在集合B中,集合B中的元素也都在集合A 中,即A B与B A同时成立.综上所述,A B与B A同时成立的等价条件是A=B.例判断下列两个集合的关系:(1)A={x |(x-1)(x+1)= 0},B={x | x2=1};(2)C={x |x=2n,n∈Z },D={x | x=2(n-1),n∈Z }.解:∵(1)A={-1,1},B={-1,1},∴A=B.评点(2)易知集合C 为偶数,∵n ∈Z ,n -1∈Z ,∴集合D 也为偶数集,∴C=D .2.教材第9页“思考”在(1)(2)(3)中除有A S ,B S 外,不难看出在S 中属于A 的所有元素均不属于B ,即x i∈S ,x i∈A ,但x iB ,在S 中属于B 的所有元素均不属于A ,即x i∈S ,xi ∈A ,但x iA ,也就是说,A 、B 两个集合没有公共元素,且它们的元素合在一起,恰好是集合S 的全部元素.探究学习1.教材第8页“?”集合{a 1,a 2,a 3,a 4}的子集有: ,{a 1},{a 2},{a 3},{a 4},{a 1,a 2},{a 2,a 3},{a 3,a 4},{a 1,a 4},{a 1,a 3},{a 2,a 4},{a 1,a 2,a 3},{a 1,a 2,a 4},{a 2,a 3,a 4},{a 1,a 3,a 4},{a1,a 2,a 3,a 4}.拓展:集合{a 1,a 2,a 3,a 4}有多少个真子集?有多少个非空真子集?由上可知,集合{a 1,a 2,a 3,a 4}有15个真子集,有14个非空真子集.一个集合含有n 个元素,则它的所有自己有2n 个,真子集有(2n -1)个(去掉集合本身),非空真子集有(2n -2)个(去掉集合本身及空集).典型例题解析例1 设A={x | ( x 2-16)( x 2+5x +4) = 0},写出集合A 的子集,并指出其中哪些是它的真子集?要确定集合A 的子集、真子集,首先必须清楚集合A 中的元素,由于集合A 中的元素是方程( x 2-16)( x 2+5x +4) = 0的根,所以要先解该方程.解:将方程( x 2-16)( x 2+5x +4) = 0变形,得( x -4)( x +1)( x +4)2=0,则可得方程的根为x =-4 或x =-1或x =4.故集合A={-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4, 4},{-1,4},{-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4} 写出一个集合的所有子集,首先要注意两个特殊的子集— 和自身;其次,依次按含评点有一个元素的子集,含有两个元素的子集,含有三个元素的子集等一一写处,就可避免重复和遗漏现象的发生.例2 设全集U={1,4,a 2+4a -2},A={| 3a -2 |,4},C U A={3},求实数a 的值.∵C U A={3},∴3∈U ,且3 A ,由补集的定义知A={1,4}. 解:∵C U A={3},说明3∈U ,且3 A ,∴a 2+4a -2=3,∴a =-5或a =1. ①当a =1时,| 3a -2 |=1≠3,此时A={1,4},满足题意. ②当a =-5时,| 3a -2 |=17,此时A={17,4} U ,不满足题意. ∴a 的值为1.例3 已知{1,2} M {1,2,3,4,5},则这样的集合M 有 8 .根据题目给出的条件可知,集合M 中至少含有元素1、2,至多含有元素1、2、3、4、5,故可按M 中所含元素的个数分类写出集合M ,解析:(1)当M 中含有两个元素时,M 为{1,2};(2)当M 中含有三个元素时,M 可能为{1,2,3},{1,2,4},{1,2,5}; (3)当M 中含有两个元素时,M 可能为{1,2,3,4},{1,2,3,5},{1,2,4,5}; (4)当M 中含有两个元素时,M 为{1,2,3,4,5};所有满足条件的M 为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.首先根据子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有例4 已知集合A={x |- 2 ≤ x ≤ 5},B={x | m +1≤ x ≤ 2m -1},若B A ,求实数m 的取 值范围.对B 要进行讨论,分B 为空集和非空集合两种情况.解:(1)若B ≠ ,则由B A (如图1-2-5),得 ⎩⎪⎨⎪⎧m +1≤ 2m -1,m +1≥ -2,2m -1≤ 5,解的2 ≤ m ≤ 3. (2)若B= ,则m +1>2m -1,m <2,此时B A 也成立. 由(1)和(2),得m ≤ 3,所以实数m 的取值范围是{ m | m ≤ 3}.在处理含有参数的子集问题市场借助数轴,数形结合,理清条件,使关系明朗,易于求解.例5 已知集合A={x | 1 ≤ a x ≤ 2},B={x | | x | < 1},求满足A B 的实数a 的取 值范围.对参数进行讨论,写出集合A 、B ,使其满足,求a 的值. 解:(1)当a = 0时,A= ,满足A B .(2)当a > 0时,{}21A=.B=11,A B xx x x a a ⎧⎫⊂<<-<<=⎨⎬⎩⎭又.∴11 2.21a a a⎧≥-⎪⎪∴∴≥⎨⎪≤⎪⎩ (3)当a < 0时,{}2121A= B=11 2.1 1.axx x x a a a a⎧≥-⎪⎧⎫⎪<<-<<⊆∴∴≤-⎨⎬⎨⎭⎩⎪≤⎪⎩,,又,A B.综上所述,a = 0,或a ≥2,或a ≤-2.根据子集的定义,把形如A B 的问题转化为不等式组问题,使问题得以解决.在解决 问题的过程中,应首先考虑A= 的情况.在建立不等式的过程中,借助数轴,是解决本题 重要一环,若不等式中含有参数,一般需对参数进行讨论,进而正确解出不等式.例6 已知全集S = { 1,3,x 3 + 3 x2 + 2 x },集合A = {1,| 2 x - 1 | },如果C S A ={0},那么这样的实数x 是否存在?若存在,求出x ;若不存在,请说明理由.由C S A ={0}可知0∈S ,但0 A ,所以x 3 + 3 x2 + 2 x = 0,且| 2 x - 1 | =3,从中求出x 即可.评点 评点解法一:∵S = { 1,3,x 3 + 3 x2 + 2 x },A = {1,| 2 x - 1 | },C S A ={0},∴0∈S ,但0 A ,∴32320 1.213x x x x x ++=⎧⎪=-⎨⎪-=⎩,解的 , 综上知,实数x 存在,且x =-1.由C S A ={0}可知0∈S ,但0 A ,由0∈S 可求x ,然后结合0 A 来验证是否有A S 及是否符合集合中元素的互异性,从而得出结论.解法二:∵C S A ={0},∴0∈S ,但0 A ,∴ x 3 + 3 x2 + 2 x = 0,即x (x +1)(x +3)=0,∴x =0或x =-1或x =-2.当x =0时,| 2 x - 1 | =1,A 中已有元素1,故不符合互异性,舍去; 当x =-1时,| 2 x - 1 | =3,而3∈S ,符合题意; 当x =-2时,| 2 x - 1 | =5,而5 S ,舍去.例7 已知A={ x | x <-1或x > 5 },B={ x ∈R | a<x <a + 4 },若AB ,求实数a 的取值范围.注意到B≠ ,将A 在数轴上保释出来,再将B 在数轴上表示出来,使得A B ,即可得a 的取值范围.解:如图-2-6,∵A B ,∴a + 4 ≤-1或a ≥5,∴a ≤-5或a ≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,方法一 数形结合思想 评点例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符合B A .解:集合A={3,5},当a =0时,B= ,满足B A .∴a =0符合题意. 当a ≠0时,B≠ ,1.x a = ∵B A ,∴综上,a 的值为0或13或15 . 当B A 时,B 中含有参数,而A 是一个确定的非空集合,要特别注意B= 的情况, 考点点击:高考中对子集、真子集、补集以及集合相等的概念考察较多,但难度不大,命题多为填空题.例1 (2010·重庆高考)设,若,则实数.{}{}{}2 U U=0123.A=U 0A=12x x mx ∈+=,,,,若,,ð }{} U 0A=12 mx =,若,,ð则实数m = -3 .解析:{}{}2 U A=12A=030 30 3.x mx m ∴∴+-∴=-,,,,,是方程的根,ð例2 (2010·天津高考)设集合{}{}A=1R B=2R A Bx x a x x x b x -<∈->∈⊆,,,,若, }2R A B x >∈⊆,,若,则实数a ,b 满足 3 a b -≥ .解析:{}{}A=11B=22x a x a x x b x b -<<+>+<-,或,由A B ⊆得12a b +-≤或12a b +-≥,即3a b -≥或3a b --≤,即 3.a b -≥ 例3 (2007·北京高考)记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q .(1)若a =3,求P ;(2)若Q P ,求整数a 的取值范围.方法二 分类讨论思想评点解:{}3(1)0P=13.1x x x x -<-<<+由得 {}{}(2)Q=11,02x x x x -≤=≤≤{}0P=1.Q P 2a x x a a >-<<⊆>由,得又,所以,即a 的取值范围是( 2,+ ∞). 学考相联判断两个集合之间的关系是集合中的重要题型,且是高考热点之一.下面举两例介绍几种常用的方法,帮助你开拓思想.1.对比集合的元素例1 {}{}*A =N8B =2N05,x x x x k k k ∈≤=∈<<已知,,,且那么集合A 与B 的关系为( B A ).解析:因为A={1,2,3,4,5,6,7,8},B={2,4,6,8},集合B 中的元素2,4, 6,8都是集合A 中的元素,而集合A 中的元素1,3,5,7不是集合B 中的元素,所以 B A .2.数形结合比较范围例2 已知{}{}2A=y y=26R B=475x x x x x --∈->,,,那么集合A 与B 的关系为( B A ) .解析:对于二次函数{}{}2A=y y=26R B=475x x x x x --∈->,,,,{}4(6)47A=y y 7.4y ⨯---==-∴≥最小,又{}B=3x x >,由图1-2-7知,B A . 3.利用传递性判断例3 已知集合11A B B=Z C=Z 4284k k x x k x x k ⎧⎫⎧⎫⊆=+∈=+∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,,那么集合A 与C 的关系为( A C ).解析:将B 、C 变形得242B=Z C=Z 88k k x x k x x k ⎧+⎫⎧+⎫=∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,可知B C .又A B C ,即A C .例4 已知集合(){}{}22A=4640B=0 6x x m x m -++=,,,若A B ,求实数m 的取值范围.解:{}{}{}{}A B B=0 6 A=A=0A=6A=0 6.⊆∴∅,,,或或或, (1)当A= 时,Δ=(4m +6)2-4×4m 2<0,解得m <- 34 .(2)当A={0}时,由根与系数的关系得20+0=46004m m +⎧⎨⎩⨯=,,此方程组无解.(3)当A={6}时,由根与系数的关系得26+6=46664m m +⎧⎨⎩⨯=,,此方程组无解.(4)当A={0,6}时,由根与系数的关系得20+6=4606=4m m +⎧⎨⎩⨯,,解得m =0.综上知实数m 的取值范围为m <-34或m =0解决子集问题时,往往易溢漏“ ”和它“本身” ,所以杂解决有关子集的问题时,一定要考虑到两个特殊的子集:“ ”和它“本身” ,并注意单独验证它们是否符合题意.。
1.2子集、全集、补集
4、子集、真子集的一些简单性质: 、子集、真子集的一些简单性质: (1) A⊆A ) ⊆ ⊆ (2) A⊆B, B⊆C ⇒ A⊆C ) ⊆ , ⊆ (3) A ) B, B , C⇒A C
例1
(1)写出集合{a,b}的所有子集; (2)写出集合{a,b,c}的所有子集; (3)写出集合{a}的所有子集; (4)写出∅的所有子集. 请归纳出规律来!
若对任意x∊ , 若对任意 ∊A,有x ∊B,则 A⊆B , ⊆
若A不是B的子集,则记作:A⊈B(或B ⊉A)
注:图示法表示集合间的包含关系 图示法表示集合间的包含关系
A⊆B的图形语言: ⊆ 的图形语言 的图形语言:
用平面上封闭的 曲线的内部表示 集合这个图形叫 文氏图(韦恩图)
A B
2:集合相等 :
一、子集
1、子集的概念 、 一般地,对于两个集合A 一般地,对于两个集合A和B,如果集合A中任意一 如果集合A 个元素都是B中的元素,就说集合A包含于集合B 个元素都是B中的元素,就说集合A包含于集合B, 或集合B包含集合A 或集合B包含集合A, 记作:A⊆B(或B⊇A)。 记作: 读作: 包含于B 读作:A包含于B(或B包含A) 包含A 数学语言表示形式:
个元素, 中增加一个元素, 例 2、集合 A 中有 m 个元素,若 A 中增加一个元素, 则它子集的个数将增加 个
同时满足:( ) 2 3 4 5 ;(2 a ∈ M, 则 例 3、同时满足:( 1 M ⊆ {1,,,,} ) 6 - a ∈ M 的非空集合 M 有( A.16 个 B.15 个 ) D.6 个 C.7 个
总结:元素个数与集合子集个数的关系: 总结:元素个数与集合子集个数的关系
集合 集合元素的个数 集合子集个数 0 1 1 2 3 4 … n个元素 个元素 2 4 8 16 … 2n
1.2 子集、全集、补集(练习)(解析版)
1.2 子集、全集、补集【基础练习】1. 已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则( )A .AB ⊆B .C B ⊆ C .D C ⊆ D .A D ⊆ 【答案】B【解析】因为菱形是平行四边形的特殊情形,所以D A ⊆,矩形与正方形是平行四边形的特殊情形,所以B A ⊆ C A ⊆,正方形是矩形,所以C B ⊆.故选B .2.集合2{|440}x x x -+=的子集个数为( )A .4B .2C .1D .0【答案】B【解析】由题意,求得{}2{|440}2x x x -+==,即可求解集合子集的个数,得到答案. 3.满足{}{}1123A ⊆⊆,,的集合A 的个数是( ) A .2B .3C .4D .8 【答案】C【解析】由条件{}1A ⊆⊆{1,2,3},根据集合的子集的概念与运算,即可求解.4.设集合{}12M x x =-≤<,{}0N x x k =-≤,若M N ,则k 的取值范围是( ) A .k 2≤ B .k ≥-1 C .1k >- D .2k ≥【答案】D【解析】由M N ⊆,则说明集合M 是集合N 的子集,即集合M 中任意元素都是集合N 中的元素,即2k ≥即可.5(多选题)已知集合(){},0,0,,M x y x y xy x y =+<>∈R ,(){},0,0,,N x y x y x y =<<∈R ,那么( ) A .M N ⊆B .M N ⊇C .M ND .M N【答案】ABC【解析】若0x <,0y <,则0x y +<,0xy >,故N M ⊆.若0x y +<,0xy >,则x 与y 同号且为负,即0x <,0y <,故M N ⊆,所以M N ,故选ABC.6.已知集合{}0,1,2A =,则集合A 的真子集共有 个.【答案】7【解析】集合含有3个元素,则子集个数为328=,真子集有7个 7.集合{|24},{|2}A x x B x x a =<<=<<,若A B ⊆,则实数a 的取值范围是________.【答案】[)4,+∞【解析】因为{|24},{|2}A x x B x x a =<<=<<,若A B ⊆,所以4a ≥,故a 的取值范围是[)4,+∞.8.若集合{2,3}A =,{1,2,3,4}B =,则满足A M B 的集合M 的个数是________.【答案】2 【解析】集合{2,3}A =,{1,2,3,4}B =,且A M B ,∴{1,2,3}M =或{2,3,4}M =,∴满足条件的集合M 的个数是2.9.已知{0,1,2,3},{0,2,4,5},,A B C A C B ==⊆⊆,写出符合条件的所有集合C .【答案】,{0},{2},{0,2}∅10.已知集合{}34A x x =-≤≤,{}211B x m x m =-<<+,且B A ⊆,求实数m 的取值范围.【答案】{|1}m m ≥-【解析】∵B A ⊆,∵当B =∅时,211m m -≥+,即2m ≥, 当B ≠∅时,213142m m m -≥-⎧⎪+≤⎨⎪<⎩,解得12m -≤<,综上所述,m 的取值范围是{|1}m m ≥-.【能力提升】11.设a ,b ∈R ,若集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则20202020a b +=_______.【答案】2 【解析】由{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭易知0a ≠,1a ≠ 由两个集合相等定义可知若10b a b =⎧⎨+=⎩,得1a =-,经验证,符合题意; 若01b a a b +=⎧=⎪⎨⎪⎩,由于0a ≠,则方程组无解综上可知,1a =-,1b =,故2020202020202020(1)12ab +=-+=.故答案为2 12.已知集合{}{}012a b c =,,,,,且下列三个关系:∵2a ≠;∵2b =;∵0c ≠有且只有一个正确,则10010a b c ++等于__________.【答案】201【解析】已知集合{a ,b ,c }={1,2,3},且下列三个关系:∵a ≠3;∵b =3;∵c ≠1有且只有一个正确, 若∵正确,则c =1,a =2,b =2不成立,若∵正确,则b =3,c =1,a =3不成立,若∵正确,则a =3,b =1,c =2,即有100a +10b +c =312.故答案为312.。
1.2 子集、全集、补集
2.全集与补集 全集与补集
设S是一个集合, A是S的一个子集(即A ⊆ S ), 由S中所有不属于A的元素组成的集合, 叫做 S中子集A的补集(或余集), 记作Cs A, 即
CS A = {x x ∈ S , 且x ∉ A}.
用图形表示为: 用图形表示为 S CSA A
例如,如果 例如 如果S={1,2,3,4,5,6}, A={1,3,5}, 那么 如果 CSA= {2,4,6}
规定:空集是任何集合的子集 规定 空集是任何集合的子集. 空集是任何集合的子集 即对于任何一个集合A 有 即对于任何一个集合 ,有 对于两个集合A与 如果集合 如果集合A的任何一个元 对于两个集合 与B,如果集合 的任何一个元 素都是集合B的元素 同时集合B的任何一个 的元素,同时集合 素都是集合 的元素 同时集合 的任何一个 的元素,就说集合 等于集合 元素都是集合 A的元素 就说集合 等于集合 的元素 就说集合A等于 B,记作 = B. 记作A 记作 (1)对于任何一个集合 , A⊆ A 对于任何一个集合A 对于任何一个集合 . 任何一个集合是它本身的子集. 即任何一个集合是它本身的子集 (2)对于集合A, B, 如果A ⊆ B,同时B ⊆ A,
如果集合S含有我们所要研究的各个集合的 如果集合 含有我们所要研究的各个集合的 全部元素,这个集合就可以看作一个全集,全集 这个集合就可以看作一个全集 全部元素 这个集合就可以看作一个全集 全集 通常用U表示 表示. 通常用 表示 例如,在实数范围内讨论问题时 可以把实数集 例如 在实数范围内讨论问题时,可以把实数集 在实数范围内讨论问题时 R看作全集 那么 有理数集 的补集 UQ是 看作全集U,那么 有理数集Q的补集 看作全集 那么,有理数集 的补集C 是 全体无理数的集合. 全体无理数的集合
1.2 子集、全集、补集ppt课件
栏 目 链 接
分析:主要考查两集合之间的关系的判断能力. 解析:A={(x,y)|y=x-1(x≠-1)}. 即集合A的元素是直线y=x-1上去掉了点(-1,-2)后剩余的 所有点,而集合B的元素是直线y=x-1(x∈R)图象上所有的点,显 然有A⊆B,而集合A≠B,故有A B,即A是B的真子集.
栏 目 链 (3)补集的几个特殊性质:A∪∁SA=S,∁SS=∅,∁S∅=S,∁S(∁SA) 接
90° 的菱形};当S={矩形}时,∁SA={邻边不相等的矩形}.
=A.
三、重要结论 (1)空集是任何集合的子集. (2)空集是任何非空集合的真子集. (3)任何一个集合都是它自身的子集.
栏 目 链 接
栏 目 链 接
5.若A是全集U的子集,由U中不属于A的元素构成的集 合 , 叫 做 A 在 U 中 的 补 集 , 记作 ∁ UA ,即 ∁ UA = {x|x∈U , 且 x∉A}. {1,3} 例1:若U={1,2,3,4,5},A={2,4,5},则∁UA=_________.
栏 目链 接
栏 目 链 接
(1)当a=0时,若A⊆B,此种情况不存在.
2>-1, a 2 当a<0时,若A⊆B,则 1 -a≤2
⇒a<-4.
栏 目 链 接
-1≥-1, a 2 当a>0时,若A⊆B,则 2 a≤2
⇒a≥2.
综上可知:此时a的取值范围是{a|a<-4或a≥2}.
(2)当a=0时,显然B⊆A.
1.如果集合 A中的每一个元素都是集合 B中的元素,那
么集合A叫做集合B的子集,记作A⊆B或B⊇A.
例 如 : A = {0,1,2} , B = {0,1,2,3} , 则 A 、 B 的 关 系 是
1.2 子集、全集、补集
1.2 子集、全集、补集▲双基梳理+自主探究一、双基梳理1.子集的概念(1)子集:如果集合A中的__________元素都是集合B中的元素,那么集合A称为集合B的子集,记作A_____B(或B_____A);读作“集合A包含于B”或“集合B包含A”。
任何一个集合都是他本身的__________.(2)真子集:如果集合A⊆B,并且_______,我们称集合A是集合B的真子集,记作_______或_________.读作“集合A真包含于集合B”或“集合B真包含集合A”。
A ⊆B包含两层含义:_______,_______;2.全集和补集(1) 全集:如果集合S包含我们所要研究的各个集合,那么S就可以看做为一个全集,全集通常记作U。
(2)补集:设A S⊆,由S中____________________元素组成的集合称为S的子集A的补集,记作_________,其定义式为:_______________,用Venn图表示为:3.空集:对于空集,我们规定A∅⊆,即空集是任何集合的_________.二、自主探究1.能否把“A B⊆”理解成“A是B中部分元素组成的集合”?2.如何区分符号,,∈⊆?3.{}{}0,0,,∅∅的区别与联系.4.怎样用子集的定义理解集合相等的概念?▲师生互动+典例精析类型一:子集个数问题【例1】已知{,}a b A⊆{,,,,}a b c d e,写出所有满足条件的A.【变式训练】1.求满足条件{x|x2+1=0}M⊆{x|x2-1=0}的集合M的个数。
类型二:集合的包含关系【例2】设集合2{|40}A x x x=+=,22{|2(1)10,}B x x a x a a R=+++-=∈,若B A⊆,求实数a的取值范围.12【变式训练】2.已知集合2{|230}A x x x =--=,{|10}B x ax =-=,若BA ,求实数a 的值为 .类型三:集合的相等【例3】已知集合A={2x,2,y 2},B={2,x,y },且A=B ,求x,y 的值。
高中数学知识点精讲精析 子集.全集.补集
1.2 子集.全集.补集1.子集的定义:如果集合A 的任一个元素都在集合B 中 则称集合A 为集合B 的子集,记作:A B特别的: 2.真子集的定义:如果A B 并且,则称集合A 为集合B 的真子集.解读:(1)空集是任何集合的子集. 任何一个集合是它本身的子集.空集是任何非空集合的真子集.谈起子集,特别要注意的是空集,记住空集是任何集合的子集,而不是任何集合的真子集,如空集就不是空集的真子集,故空集是任何非空集合的真子集.(2)元素与集合的关系是属于与不属于的关系,用符号""""∉∈表示;集合与集合之间的关系是包含,真包含,相等的关系.3.补集的定义:设A 为S 的子集,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记作:={x ∣x ∈S 且x A},如果集合S 包含我们所要研究的各个集合,就把S 称为全集.[例1].下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有( )A .0个B .1个C .2个D .3个解析:空集合不含任何元素,与{0}不同,故(1)错;空集市本身的子集;(3)(4)是正确的.故选C.[例2] 已知集合且B A ,求a 的值. 解析:由已知,得:A ={-3,2}, 若BA ,则B =Φ,或{-3},或{2}.若B =Φ,即方程ax +1=0无解,得a =0. 若B ={-3}, 即方程ax +1=0的解是x = -3, 得a = .若 B ={2}, 即方程ax +1=0的解是x = 2, 得a = .综上所述,可知a 的值为a =0或a =,或a = .⊆B A ⊇或A AA ⊆∅⊆⊆B A ≠AC S ∉},01|{},06|{2=+==-+=ax x B x x x A 3121-3121-。
第1章-1.2-子集、全集、补集高中数学必修第一册苏教版
537
424
= {⋯ , , ,1, , , ,⋯ },易知集合A中任一元素均为B中的元素,但B中的有些元素不在
集合A中,故 ⫋ .
2
1
4
(特征法) 集合A中的元素为 = + =
=
4
1
+
2
=
+2
4
2+1
(
4
∈ ),集合B中的元素为
∈ ,而2 + 1 ∈ 为奇数, + 2 ∈ 为整数,故 ⫋ .
知识点4 有限集合的子集、真子集个数
例4-10 (2024·广东省深圳中学月考)若集合满足 ⫋ {1,2},则的个数为( B
A.2
B.3
C.4
D.5
【解析】集合满足 ⫋ {1,2},集合{1,2}的元素个数为2,则的个数为
22 − 1 = 3.
)
例4-11 (2024·河南模拟)已知集合 = { ∈ | − 2 < < 3},则集合的所有非空真
第1章 集合
1.2 子集、全集、补集
教材帮丨必备知识解读
知识点1 子集、真子集
例1-1 能正确表示集合 = { ∈ |0 ≤ ≤ 2}和集合 = { ∈ | 2 − = 0}关系的
Venn图为( B
A.
)
B.
C.
D.
பைடு நூலகம்
【解析】由2 − = 0得 = 1或 = 0,所以 = {0,1},故 ⫋ .结合选项可知,B正确.
【解析】因为 2 − 5 + 6 = 0的两根为2,3,故A正确;
因为⌀ 是任何集合的子集,故B正确;
1.2 子集、全集、补集
首页
上一页
下一页
末页
结束
[解] (1)用列举法表示集合B={1},故B A. (2)集合A的代表元素是数,集合B的代表元素是实数 对,故A与B之间无包含关系.
(3)∵Q 中n∈Z,∴n-1∈Z,Q 与P都表示偶数集,
∴P=Q . (4)等边三角形是三边相等的三角形,故A B. (5)集合B={x|x<5},用数轴表示集合A,B如图所示, 由图可发现A B.
(2)由题意可以确定集合M必含有元素1,2,且含有元素3,4,5中 的至少一个,因此依据集合M的元素个数分类如下:
含有3个元素:{1,2,3},{1,2,4},{1,2,5}; 含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5}; 含有5个元素:{1,2,3,4,5}. 故满足题意的集合M共有7个. [答案] (1)B (2)7
补集
符号 表示
∁SA=
{x|x∈S,且x∉A}
图形
表示
[点睛] A在S中的补集是建立在A⊆S的基础上的.
首页
上一页
下一页
末页
结束
3.全集 如果集合S包含我们 所要研究的各个集合 ,这时S 可以看做一个全集,全集通常记作 U .
首页
上一页
下一页
末页
结束
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
子集 集合B的元素(若a∈A,则a∈
B⊇A
B),那么集合A称为集合B的子集
真子 如果A⊆B ,并且 A≠B ,那么集 A B 或
集 合A称为集合B的真子集
BA
首页
上一页
下一页
末页
结束
[点睛] (1)子集定义中的“任意一个”也可以理解 为“所有”.
1.2子集、全集、补集 学案(含答案)
1.2子集、全集、补集学案(含答案)1.2子集.全集.补集学习目标1.理解子集.真子集.全集.补集的概念.2.能用符号和Venn图.数轴表达集合间的关系.3.掌握列举有限集的所有子集的方法,给定全集,会求补集知识点一子集定义如果集合A的任意一个元素都是集合B的元素若aA,则aB,那么集合A称为集合B的子集记法AB或BA读法集合A包含于集合B或集合B包含集合A图示性质1任何一个集合是它本身的子集,即AA;2对于集合A,B,C,若AB且BC,则AC;3若AB且BA,则AB;4规定A知识点二真子集定义如果AB,并且AB,那么集合A称为集合B的真子集记法AB 或BA读法集合A真包含于集合B或集合B真包含集合A图示性质1对于集合A,B,C,若AB且BC,则AC;2对于集合A,B,若AB 且AB,则AB;3若A,则A知识点三全集.补集1全集如果集合S 包含我们所要研究的各个集合,那么这时S可以看做一个全集,全集通常记作U.2补集定义文字语言设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集符号语言SAx|xS,且xA 图形语言性质1AS,SAS;2SSAA;3SS,SS题型一有限集合子集真子集的确定例11写出集合a,b,c,d的所有子集解,a,b,c,d,a,b,a,c,a,d,b,c,b,d,c,d,a,b,c,a,b,d,a,c,d,b,c,d,a,b,c,d反思感悟当元素个数为n时,有如下结论含有n个元素的集合有2n个子集;含有n个元素的集合有2n1个真子集;含有n个元素的集合有2n1个非空子集;含有n 个元素的集合有2n2个非空真子集跟踪训练11集合Ax|0x3,xN 的真子集的个数是A16B8C7D4答案C解析易知集合A0,1,2,含有3个元素,所以A的真子集的个数为2317.例12满足条件1,2,3M1,2,3,4,5,6的集合M的个数是A8B7C6D5答案C解析集合M中一定含有元素1,2,3,但同时M1,2,3且是1,2,3,4,5,6的真子集,所以集合M为1,2,3,4,1,2,3,5,1,2,3,6,1,2,3,4,5,1,2,3,4,6,1,2,3,5,6,共6个,故选C.反思感悟对于有限集A,B,C,设集合A中含有n个元素,集合B中含有m个元素n,mN*,且mn若BCA,则C的个数为2nm;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm2.跟踪训练12适合条件1A1,2,3,4,5的集合A的个数是________答案15解析这样的集合A有1,1,2,1,3,1,4,1,5,1,2,3,1,2,4,1,2,5,1,3,4,1,3,5,1,4,5,1,2,3,4,1,2,3,5,1,2,4,5,1,3,4,5共15个题型二集合间关系的判断例2判断下列各组中集合之间的关系1Ax|x是12的约数,Bx|x是36的约数2Ax|x是平行四边形,Bx|x是菱形,Cx|x是四边形;Dx|x 是正方形3M,N.4Ax|1x4,Bx|x5解1因为若x是12的约数,则必定是36的约数,反之不成立,所以AB.2由图形的特点可画出Venn图如图所示,从而DBAC.3对于集合M,其组成元素是,分子部分表示所有的整数;而对于集合N,其组成元素是n,分子部分表示所有的奇数由真子集的概念知,NM.4由数轴易知A中元素都属于B,B中至少有一个元素如2A,故有AB.反思感悟判断集合A,B之间是否有包含关系的步骤先明确集合A,B中的元素,再分析集合A,B中的元素间的关系当集合A 中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B且B中至少有一个元素不属于集合A时,AB;当集合A中的元素都属于集合B,并且集合B中的元素都属于集合A时,有AB.跟踪训练2设集合A0,1,集合Bx|x2或x3,则A与B的关系为________答案AB或AB解析02,0B.又12,1B,又AB,AB或AB题型三补集的求法例31设Ux|x是小于9的正整数,A1,2,3,B3,4,5,6,求UA,UB.解根据题意可知,U1,2,3,4,5,6,7,8,所以UA4,5,6,7,8,UB1,2,7,82若全集UxR|2x2,AxR|2x0,则UA________.答案x|0x2解析UxR|2x2,AxR|2x0,UAx|0x2反思感悟求集合的补集,需关注两处一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图有限集.数轴数集.坐标系点集来求解跟踪训练31设集合U1,2,3,4,5,集合A1,2,则UA________.答案3,4,52已知集合UR,Ax|x2x20,则UA________.答案x|x2x203已知全集Ux,y|xR,yR,集合Ax,y|xy0,则UA________.答案x,y|xy0题型四由集合间关系求参数值或范围例4已知集合Ax|2x5,Bx|m1x2m1,若BA,求实数m的取值范围解1当B时,如图所示或解这两个不等式组,得2m3.2当B时,由m12m1,得m2.综上可得,m的取值范围是m3.引申探究1若本例条件“Ax|2x5”改为“Ax|2x5”,其他条件不变,求m的取值范围解1当B时,由m12m1,得m2.2当B时,如图所示解得即2m3,综上可得,m的取值范围是m3.2若本例条件“BA”改为“AB”,其他条件不变,求m的取值范围解当AB时,如图所示,此时B.即m不存在即不存在实数m使AB.反思感悟1利用集合的关系求参数问题利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合含参数,另一个为静集合具体的,解答时常借助数轴来建立变量间的关系,需特别注意端点问题空集是任何集合的子集,因此在解ABB的含参数的问题时,要注意讨论A和A两种情况,前者常被忽视,造成思考问题不全面2数学素养的建立通过本例尝试建立数形结合的思想意识,以及在动态变化中学会用分类讨论的思想解决问题跟踪训练4已知集合Ax|x4或x5,Bx|a1xa3,aR,若BA,则a的取值范围为________答案a|a8或a3解析利用数轴法表示BA,如图所示,则a35或a14,解得a8或a3.1对子集.真子集有关概念的理解1集合A中的任何一个元素都是集合B中的元素,即由xA,能推出xB,这是判断AB的常用方法2不能简单地把“AB”理解成“A是B中部分元素组成的集合”,因为若A时,则A中不含任何元素;若AB,则A中含有B 中的所有元素3在真子集的定义中,AB首先要满足AB,其次至少有一个xB,但xA.2集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集集合的子集.真子集个数的规律为含n个元素的集合有2n个子集,有2n1个真子集,有2n2个非空真子集写集合的子集时,空集和集合本身易漏掉3补集是相对于全集而言的,有限集求补集一般借助Venn图,连续的数集求补集常用数轴,求时注意端点取舍4在由集合间关系求参数值或范围时1由于空集是任何集合的子集,又是任何非空集合的真子集,所以在遇到“AB”或“AB且B”时,一定要注意讨论A 和A两种情况,A的情况易被忽略,应引起足够重视2在求集合中参数的取值范围时,要特别注意该参数在取值范围的边界能否取等号,否则会导致解题结果错误正确的做法是把端点值代入原式,看是否符合题目要求.1若A1,下列关系错误的是ABAACADA 考点空集的定义.性质及运算题点空集的性质答案D2已知集合A1,0,1,则含有元素0的A的子集的个数为A2B4C6D8答案B解析根据题意,含有元素0的A的子集为0,0,1,0,1,1,0,1,共4个3设集合U1,2,3,4,5,6,M1,2,4,则UM________.答案3,5,64若Ax|xa,Bx|x6,且AB,则实数a的取值范围是________答案a|a65已知集合Ax|1x2,Bx|2a3xa2,且AB,求实数a的取值范围考点子集及其运算题点根据子集关系求参数的取值范围解1当2a3a2,即a1时,BA,符合题意2当a1时,要使AB,需满足这样的实数a不存在综上,实数a的取值范围是a|a1.。
1.2.2子集、全集、补集————全集、补集
1.2.2 子集、全集、补集——全集、补集教学目标教学知识点1、 了解全集的意义.2、 理解补集的概念.教学重点补集的概念.教学难点补集的有关运算.教学方法通过引入实例,对实例的分析,发现寻找其一般结果,归纳基普遍规律. 教学过程一、 复习回顾1、 集合的子集、真子集如何寻求?其个数分别是多少?2、 两个集合相等应满足的条件是什么?3、 关于空集:二、 新课讲授事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系. 回答下列问题例:A={班上所有参加足球队同学}B={班上没有参加足球队同学} S={全班同学}那么S 、A 、B 三集合关系如何? 集合B 就是集合S 中除去集合A 之后余 下来的集合.即图中阴影部分.1、 补集一般地,设S 是一个集合,A 是S 的一个子集(即A ⊆S ),由S 中所有不属于A 元素组成的集合,叫做S 中集合A 的补集(或余集).记作C S A ,即C S A={x | }2、 全集如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,记作U.注意:(1)φU C = ;(2)φU C = ;(3)U C U = ;(4)=)(A C C U U ;解决某些数学问题时,就要以把实数集看作是全集U ,那么有理数集Q 的补集C U Q 就是全体无理数的集合.举例如下,请同学们思考其结果.(1)若S={2,3,4},A={4,3},则C S A=_________.(2)若S={三角形},A={锐角三角形},则C S A=_________.(3)若S={1,2,4,8},A=φ,则C S A=_________.(4)若U={1,3,a 2+2 a +1},A={1,3},则C u A={0},则a =_______.(5)已知全集为实数R ,M={x|x+3>0},则M C R 为( )A. {x|x>-3}B. {x|x ≥-3}C. {x|x<-3}D. {x|x ≤-3}(6)A={x| 0.5<x ≤2},则C u A=_________.三、 课堂练习:课本P 9,4; P 10,3,4四、合作探究:1、设U = {x|x ≤10且x ∈N}, A = {x|x ∈U,x 为质数},B = {x|x ∈U,x 为奇数},求C U A , C U B2、设S 为全集,集合M S 集合N M,则下列关系正确的是( )A 、C S M ⊇ C S NB 、M ⊆C S NC 、C S M ⊆ C S ND 、M ⊇ C S N3、设全集U=R ,A={x| x>3 },B={x | 2x+a<0 },B C R A,求实数a 的取值范围.五、教学后记:。
高一数学教案1.2子集、全集、补集
1.2子集、全集、补集教学目的:通过本小节的学习,使学生达到以下要求: (1)了解集合的包含、相等关系的意义; (2)理解子集、真子集的概念; (3)理解补集的概念;(4)了解全集的意义.教学重点与难点:本小节的重点是子集、补集的概念,难点是弄清元素与子集、属于与包含之间的区别。
教学过程:第一课时一提出问题:现在开始研究集合与集合之间的关系.存在着两种关系:“包含”与“相等”两种关系. 二“包含”关系—子集1. 实例: a={1,2,3}b={1,2,3,4,5} 引导观察. 结论: 对于两个集合a和b,如果集合a的任何一个元素都是集合b的元素,则说:集合a包含于集合b,或集合b包含集合a,记作aíb (或bêa)也说: 集合a是集合b的子集.2. 反之: 集合a不包含于集合b,或集合b不包含集合a,记作a?b (或b?a) 注意: í也可写成ì;ê也可写成é;í也可写成ì;ê也可写成é。
3. 规定: 空集是任何集合的子集. φía 三“相等”关系1. 实例:设a={x|x2-1=0} b={-1,1} “元素相同”结论:对于两个集合a与b,如果集合a 的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即: a=b2. ①任何一个集合是它本身的子集。
aía②真子集:如果aíb ,且a1 b那就说集合a是集合b的真子集,记作③空集是任何非空集合的真子集。
④如果 aíb, bíc ,那么 aíc 证明:设x是a的任一元素,则 x?a aíb, x?b 又 bíc x?c 从而 aíc 同样;如果 aíb, bíc ,那么 aíc⑤如果aíb 同时 bía 那么a=b 四例题:例一写出集合{a,b}的所有子集,并指出其中哪些是它的真子集.例二解不等式x-3>2,并把结果用集合表示出来. 练习 p9 例三已知,问集合m与集合p之间的关系是怎样的?例四已知集合m满足五小结:子集、真子集的概念,等集的概念及其符号几个性质: aíaaíb, bíc taícaíb bíat a=b 作业:p10 习题1.2 1,2,3。
1.2 子集、全集、补集
1.2 子集、全集、补集第一课时一、教学目标1.理解子集、真子集的概念及其符号“”“⊂”的含义.2.了解空集、全集的意义,理解补集的概念。
3.了解集合间的包含、相等关系的意义。
4.会判断两集间的“包含”“相等”或“互补”的关系,并用符号及图形(韦恩图或数轴)准确地表示出来,培养数形结合的能力.5.能写出已知集合的所有子集或真子集.培养观察与逻辑划分能力.6.通过阐明子集、全集、补集分别现实生活中“部分”“全体”“剩余”概念在数学中反映,引导学生感悟任何抽象的数学概念都来源于真实的客观世界,为他们今后确立科学的世界观奠定基础.二、教学重点、难点1.重点:子集、补集的概念与性质.解决方法:具体集合关系与抽象概念和图形表示相结合.2.难点:弄清“元素”与“子集”“从属关系”与“包含关系”的区别并正确使用相关的表示符号.三、教与学过程设计(一)设置情境师:前两节课我们已经学习了许多关于集合的知识,如:集合与元素的定义,集合中元素的特点、集合的分类、集合的表示方法等,显然这些知识仅局限于某个集合自身,从这节课起,我们将跳出某个集合的“小圈子”,把讨论的重点转到两个或几个集合的关系上来。
(二)引入新课1.子集的定义与性质我们在讨论集合中元素的无序性时,已知道{}321,,与{}123,,是同一个集合,也就是说{}{}123321,,,,=,显然两个集合之间是存在着“相等”关系的。
同学们还能举出一些集合相等的实例吗?生:{}{}938,7,6,5,4<<∈=x N x 。
{}{}Z ,14Z ,12∈±==∈+=m m y y n n x x 。
……师:如果我们引申到一般情况,即有A 、B 两个集合是相等的,同学们能否从元素的角度描述出集合B A =的含义呢?生:(举手回答)如果集合A 与B 中的元素完全相同,那么这两个集合相等。
(由教师板书)师:完全正确。
显然,当集合B A =时,用图示法表示A 、B 两集的关系的话,示意A 、B 两集的“封闭曲线”是完全重合的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② S=R , A={x|x≤ 0 , x∈R} , B={x|x>0 , x∈R}
③ S={x|x为地球人} , A={x|x为中国 人} ,
B={x|x为外国人}
建构数学
3.补集:设 A S
,由S中不属于A的所有元素
建构数学
1.子集: 如果集合A的任意一个元素都是集合B的元素, 那么称集合A为集合B的子集。
数学应用 例.写出集合{a , b}的所有子集。
建构数学
真子集: 如果 A B ,且 A B , 那么称集合A为集合B的 真子集 。
数学应用
例2.下列各组的三个集合中, 哪两个集合 之间具有包含关系?
组成的集合称为S的子集A的
记为
,即 CS A
补集 ,
.
4.全集:如果集合S包含我们所要研究的各个集合, 那么集合S可以看做一个 全集 。
数学应用
例3.不等式组
2x 1 0 3x 6 0
的解集为A , U=R , 试求A , 及 CU A
, 并把它们分别表示数轴上.
数学应用
例4.已知全集
U 2,3,a2 2a 3 , A 2a 1,2,CU A 5,
求实数a的值.
小结
课题:子集、全集、补集
教学目标
1.了解集合之间包含关系的意义. 2. 能识别给定集合的子集 3.了解全集、空集的意义,理解补集 的概念.
情境引入
观察下列各组集合:
(1) A 1,1, B 1,0,1,2 ; (2)A=N,B=R; (3)A={x|x为北京人}, B={x|x为中国人}. 问:集合A与B之间具有有怎样的关系? 如何用语言来描述这种关系?