新课标高一数学同步测试
推荐-新课标高一数学同步测试(1)—第一单元(集合) 精品
新课标高一数学同步测试(1)—第一单元(集合)班级__________姓名___________________学号______________一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .约等于2的数 C .接近于0的数 D .不等于0的偶数 2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .—1C .1或—1D .1或—1或0 3.设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( )A .MB . PC .QD .P M ⋃ 4.设U ={1,2,3,4} ,若B A ⋂={2},}4{)(=⋂B A C U ,}5,1{)()(=⋂B C A C U U ,则下列结论正确的是( ) A .A ∉3且B ∉3 B .A ∈3且B ∉3 C .A ∉3且B ∈3D .A ∈3且B ∈35.以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φ}0{,其中正确的个数是( )A .1B .2C .3D .46. 设U 为全集,Q P ,为非空集合,且PQU ,下面结论中不正..确.的是 ( )A .U Q P C U =⋃)(B .=⋂Q PC U )(φ C .Q Q P =⋃D .=⋂P Q C U )(φ 7.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x 8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .MN C .N M D .φ=⋂N M9.表示图形中的阴影部分( )A .)()(CBC A ⋃⋂⋃B .)()(C A B A ⋃⋂⋃ C .)()(C B B A ⋃⋂⋃D .C B A ⋂⋃)(10.已知集合A 、B 、C 为非空集合,M=A ∩C ,N=B ∩C ,P=M ∪N ,则( )A BCA .C ∩P=CB .C ∩P=P C .C ∩P=C ∪PD .C ∩P=φ 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.若集合}3|),{(}04202|),{(b x y y x y x y x y x +=⊂=+-=-+且,则_____=b . 12.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为 .13.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 . 14.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B = . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z}求证:(1)3∈A ;(2)偶数4k —2 (k ∈Z)不属于A.16.(12分)(1)P ={x |x 2-2x -3=0},S ={x |a x +2=0},S ⊆P ,求a 取值?(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m ?17.(12分)在1到100的自然数中有多少个能被2或3整除的数?18.(12分)已知方程02=++q px x 的两个不相等实根为βα,。
新课标高一数学同步测试—期末
新课标高一数学同步测试—期末新课标高一数学同步测试——期末一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.在斜二测画法中,与坐标轴不垂直的线段的长度在直观图中()A.变大B.变小C.可能不变D.一定改变2.垂直于同一条直线的两条直线的位置关系是()A.平行B.相交C.不在同一平面内D.A、B、C均有可能3.一个直角梯形的两底长分别为2和5,高为4,绕其较长的底旋转一周,所得的几何体的表面积为()A.π52B.π34C.π45 D.π374.直线y=kx+2与圆x2+y2+2x=0只在第二象限有公共点,则实数k的取值范围为()A .[43,1]B .[43,1)C .[43,+∞)D .(-∞,1)5.已知球面上的四点P 、A 、B 、C ,PA 、PB 、PC 的长分别为3、4、5,且这三条线段两两垂直,则这个球的表面积为( ) A .202π B .252πC .50πD .200π6.一个二面角的两个面与另一个二面角的两个面分别垂直, 则这两个二面角 ( )A .互补B .互余C .互补或互余D .不确定7.如右图所示,在正方体ABCD —A 1B 1C 1D1的侧面AB 1内有一动点P ,动点P 到直线A 1B 1与直线BC 的距离相等,则动点P 所在曲线的形状为( )8.对于一个长方体,都存在一点:(1)这点到长方体各顶点距离相等(2)这点到长方体各条棱距离相等(3)这点到长方体各面距离相等。
以上三个结论正确的是()A.(1)(2)B.(2)C.(1)D.(1)(3)9.直线1+=xy ax=+的交点的个数为y与直线1()A.0个B.1个C.2个D.随a值变化而变化10.在酒泉卫星发射场某试验区,用四根垂直于地面的立柱支撑着一个平行四边形的太阳能电池板,可测得其中三根立柱AA、1BB、1CC的长度分别为m10、m15、m30,1则立柱DD的长度是()1A.m30B.m25C.m20D.m15第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.将边长为m4的正方形钢板适当剪裁,再焊接成一个密闭的正四棱柱水箱,并要求这个水箱的全面积等于该正方形钢板的面积(要求剪裁的块数尽可能少,不计焊接缝的面积),则该水箱的容积为 . 12.过点P (3,6)且被圆2225xy +=截得的弦长为8的直线方程为 .13.光线由点(-1,4)射出,遇直线2x +3y -6=0被反射,已知反射光线过点(3 ,1362),反射光线所在直线方程__________________.14.已知m 、l 是直线, αβ、是平面, 给出下列命题: ①若l 垂直于α内的两条相交直线, 则l ⊥α; ②若l 平行于α, 则l 平行α内所有直线; ③若m l l m ⊂⊂⊥⊥αβαβ,,,且则; ④若l l ⊂⊥⊥βααβ,且,则;⑤若m l m ⊂⊂αβαβ,,,且∥则∥l . 其中正确的命题的序号是 (注: 把你认为正确的命题的序号都填上).三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知两条直线l 1 = x + my + 6 = 0, l 2: (m-2)x + 3y + 2m = 0,问:当m 为何值时, l 1与l 2(i)相交; (ii)平行; (iii)重合.16.(12分)某房地产公司要在荒地ABCDE上划出一块长方形地面(不改变方位)建造一幢八层楼的公寓,问如何设计才能使公寓占地面积最大?并求出最大面积(精确到1m2).E 100m D60m 80mAB 70m C17.(12分)已知方程2224+-++-++=∈x y t x t y t t R2(3)2(14)1690()的图形是圆.(1)求t的取值范围;(2)求其中面积最大的圆的方程.18.(12分)自点P (-3,3)发出的光线l 经过x 轴反射,其反射光线所在直线正好与圆74422=+--+y x y x 相切,求入射光线l 所在直线的方程.19.(14分)四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=2a,(1)求证:PD⊥平面ABCD;(2)求证,直线PB与AC垂直;(3)求二面角A-PB-D的大小;(4)在这个四棱锥中放入一个球,求球的最大半径;(5)求四棱锥外接球的半径.20.(14分)设M是圆22680+--=上动点,O是原x y x y点,N是射线OM上点,若|OM|·|ON|=120,求N点的轨迹方程.高一新数学期末测试题参考答案一、CDABC DCCDB二、11.34m ;12.34150x y -+=和3x =;13.13x -26y +85=0;14.①④;三、 15.解: 若m = 0时,l 1: x = -6,l 2: 2x -3y = 0, 此时l 1与l 2相交;若313120=-==-≠m m mm m或有,由,由3623±==m mm 有; 故i)当mm m m 31231≠-≠-≠时,且, l 1与l 2相交; ii)当m = -1时, m m m-=≠21326,l 1与l 2平行;(iii)当m = 3时m m m-==21326, l 1与l 2重合.16.解:如图建立坐标系,在AB 上任取一点P ,分别向 CD 、DE 作垂线划得一长方形土地,则直线AB 的方程为12030=+y x设)3220,(xx P -,则长方形的面积为 3506000)5(32)]3220(80)[100(2++--=---=x x x S ∴当X =5时Smax ≈6017 17.解:解:(1)方程即167)41()3(2222++-=-++--t t t y t x16722++-=t t r >0 ∴71-<t <1 (2) ∵1672++-=t t r∴当t=73时, yE D)3,3(-P774max =r ,此时圆面积最大,所对应圆的方程是 222413167497x y -++=()()18.解:设入射光线l 所在的直线方程为)3(3+=-x k y ,反射光线所在直线的斜率为1k ,根据入射角等于反射角,得1k k -=,而点P (-3,3)关于x 轴的对称点1P (-3,-3),根据对称性,点1P 在反射光线所在直线上,故反射光线所在直线1l 的方程为:)3(3+-=-x k y 即033=+++k y kx ,又此直线与已知圆相切,所在圆心到直线1l 的距离等于半径r ,因为圆心为(2,2),半径为1,所以1133222=++++k kk 解得:3443-=-=k k或故入射光线l 所在的直线方程为:)3(433+-=-x y 或)3(343+-=-x y 即03340343=++=-+y x y x 或19.解:⑴分析:要证PD ⊥平面ABCD ,只需证PD垂直于平面ABCD内的两条相交线,而所给已知量都是数,故可考虑勾股定理的逆定理⑴证明:∵PD=a ,AD=a ,PA=2a,∴PD 2+DA 2=PA 2,同理∴∠PDA =90°.即PD ⊥DA ,PD ⊥DC ,∵AO ∩DC=D ,∴PD ⊥平面ABCD .⑵分析:从图形的特殊性,应先考虑PB 与AC 是否垂直,若不垂直然后再转化⑵解:连结BD ,∵ABCD 是正方形∴BD ⊥AC ∵PD ⊥平面ABCD∴PD ⊥AC ∵PD ∩BD=D∴AC ⊥平面PDB ∵PB ⊂平面PDB ∴AC ⊥PB ∴PB 与AC 所成的角为90°⑶分析:由于AC ⊥平面PBD ,所以用垂线法作出二面角的平面角⑶解:设AC ∩BD =0,过A 作AE ⊥PB 于E ,连接OE ∵AO⊥平面PBD ∴OE ⊥PB ∴∠AEO为二面角A -PB -D的平面角∵PD ⊥平面ABCD ,AD ⊥AB ∴PA ⊥AB在Rt △PDB中,PB PD BD a=+=223,在Rt △PAB中,∵AE PB AB PA S ⋅⋅=⋅=2121∴aaa a PBAB PA AE 3232=⋅=⋅=,AO AC a ==1222在Rt △AOE 中,sin ∠==AEO AO AE 32,∴∠AEO =60°∴二面角A -PB -D 的大小为60.⑷分析:当所放的球与四棱锥各面都相切时球的半径最大,即球心到各个面的距离均相等,联想到用体积法求解⑷解:设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连SA 、SB 、SC 、SD 、SP ,则把此四棱锥分为五个棱锥,设它们的高均为R3313131a aa a PD S V ABCD ABCD P =⋅⋅⋅=⋅⋅=◊- 222222212121a S a a a S S a a a S S ABCD PBC PAB PDC PAD ==⋅⋅===⋅⋅==◊∆∆∆∆∵V V V V V V a R S S S S S P ABCD S PDA S PDC S ABCD S PAB S PBCPAD PDC PAB PBC ABCD ------◊=++++=++++13133()∆∆∆∆131312122222322222a R a a a a a =++++()∴R a a 3221323()+= ∴R a a a=+=-=-22222122()∴球的最大半径为(122-a )⑸分析:四棱锥的外接球的球心到P 、A 、B 、C 、D 五的距离均为半径,只要找出球心的位置即可,在Rt △PDB 中,斜边PB 的中点为F ,则PF=FB=FD不要证明FA=FC=FP 即可⑸解:设PB 的中点为F ,∵在Rt △PDB 中:FP=FB=FD 在Rt △PAB中:FA=FP=FB ,在Rt △PBC中:FP=FB=FC∴FP=FB=FA=FC=FD ∴F 为四棱锥外接球的球心则FP 为外接球的半径 ∵FP=12PB ∴FP a =32∴四棱锥外接球的半径为32a评述:⑴本题主要考查棱锥的性质以及内切外接的相关知识点⑵“内切”和“外接”等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,例如本例中球内切于四棱锥中时,球与四棱锥的五个面相切,即球心到五个面的距离相等⑶求体积或运用体和解决问题时,经常使用等积变形,即把一个几何体割补成其它几个几何体的和或差 20.解:设M 、N 的坐标分别为11(,)x y 、(,)x y ,由题设||||120OM ON ⋅=,222211120x y x y ++= (*)当M 不在y 轴上时,10x ≠,0x ≠,于是有11yy x x = 设11y y x x ==k ,代入(*),化简得21||(1)120x x k +=因1x 与x 同号,于是12120(1)x k x =+,12120(1)ky k x=+ 代入22680x y x y +--=并化简,可得34600(0)x y x +-=≠当10x =时,18y =,点N (0,15)也在直线34600x y +-=上所以,点N 的轨迹方程为34600x y +-=.。
人教A版数学必修一新课标高一数学同步测试(5)—第一单元测试题.docx
新课标高一数学同步测试(5)—第一单元测试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.用描述法表示一元二次方程的全体,应是 ( )A .{x |ax 2+bx +c =0,a ,b ,c ∈R }B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0}C .{ax 2+bx +c =0|a ,b ,c ∈R }D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0}2.图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是( ) A .3 B .4 C .7 D .84.设P={质数},Q={偶数},则P ∩Q 等于( ) A .1 B .2 C .{2} D .N5.设函数x y 111+=的定义域为M ,值域为N ,那么( ) A .M={x |x ≠0},N={y |y ≠0}B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1}C .M={x |x ≠0},N={y |y ∈R }D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0}6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( )A .x =60tB .x =60t +50tC .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于 ( ) A .1B .3C .15D .30 8.函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数9.下列四个命题(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是 ( )A .1B .2C .3D .4 10.设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则 ( )A .f (a )>f (2a )B .f (a 2)<f (a)C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .12.函数f (x )的定义域为[a ,b ],且b >-a >0,则F (x )= f (x)-f (-x)的定义域是 .13.若函数 f (x )=(K-2)x 2+(K-1)x +3是偶函数,则f (x )的递减区间是 .14.已知x ∈[0,1],则函数y =x x --+12的值域是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知,全集U={x |-5≤x ≤3},A={x |-5≤x <-1},B={x |-1≤x <1},求C U A ,C U B ,(C U A)∩(C U B),(C U A)∪(C U B),C U (A ∩B),C U (A ∪B),并指出其中相关的集合.16.(12分)集合A={(x,y )022=+-+y mx x },集合B={(x,y )01=+-y x ,且02≤≤x },又A φ≠⋂B ,求实数m 的取值范围.17.(12分)已知f (x )=⎪⎩⎪⎨⎧+++-333322xx x x ),1()1,(+∞∈-∞∈x x ,求f [f (0)]的值. 18.(12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ),并写出它的定义域.19.(14分)已知f (x)是R 上的偶函数,且在(0,+ ∞)上单调递增,并且f (x)<0对一切R x ∈成立,试判断)(1x f -在(-∞,0)上的单调性,并证明你的结论.20.(14分)指出函数xx x f 1)(+=在(][)0,1,1,--∞-上的单调性,并证明之. 参考答案(5)一、DACCB DCBA D二、11.{211≤≤-k k }; 12.[a ,-a ]; 13.[0,+∞]; 14.[3,12-] ; 三、15. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};(C U A)∩(C U B)= {x |1≤x ≤3};(C U A)∪(C U B)= {x |-5≤x ≤3}=U ;C U (A ∩B)=U ;C U (A ∪B)= {x |1≤x ≤3}.相等集合有(C U A)∩(C U B)= C U (A ∪B);(C U A)∪(C U B)= C U (A ∩B).16. 解:由A ⋂B φ≠知方程组,,2001202y x y x y mx x 消去内有解在≤≤⎩⎨⎧=+-+-+得x 2+(m -1)x =0 在0≤x 2≤内有解, 04)1(2≥--=∆m 即m ≥3或m ≤-1. 若m ≥3,则x 1+x 2=1-m <0,x 1x 2=1,所以方程只有负根. 若m ≤-1,x 1+x 2=1-m >0,x 1x 2=1,所以方程有两正根,且两根均为1或两根一个大于1,一个小于1,即至少有一根在[0,2]内.因此{m ∞-<m ≤-1}.17.解: ∵ 0∈(-1,∞), ∴f (0)=32,又Θ32>1,∴ f (32)=(32)3+(32)-3=2+21=25,即f [f (0)]=25. 18.解:AB=2x , CD =πx ,于是AD=221x x π--, 因此,y =2x · 221x x π--+22x π, 即y =-lx x ++224π. 由⎪⎩⎪⎨⎧>-->022102x x x π,得0<x <,21+π 函数的定义域为(0,21+π). 19.解:设x 1<x 2<0, 则 - x 1 > - x 2 >0, ∴f (-x 1)>f (-x 2), ∵f (x )为偶函数, ∴f (x 1)>f (x 2) 又0)()()()()(1)(1)(x f 1(x) f 11221122>-=-=⎥⎦⎤⎢⎣⎡---x f x f x f x f x f x f (∵f (x 1)<0,f (x 2)<0)∴,)(x f 1)(x f 121->- ∴(x)f 1-是(∞,0)上的单调递减函数. 20.解:任取x 1,x 2∈(]1,-∞- 且x 1<x 2 2112112212121111)()(x x x x x x x x x x x f x f -=-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=--由x 1<x 2≤—1知x 1x 2>1, ∴01121>-x x , 即)()(12x f x f > ∴f(x)在(]1,-∞-上是增函数;当1≤x 1< x 2<0时,有0< x 1x 2<1,得01121<-x x ∴)()(21x f x f >∴f(x)在[)0,1-上是减函数.再利用奇偶性,给出),1(],1,0( 单调性,证明略.。
新课标新课标高中数学人教A版必修一:同步测试(7)—第二单元(对数函数)
高数学必修1同步测试—(对数函数)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.对数式b a a =--)5(log 2中,实数a 的取值范围是( )A .)5,(-∞B .(2,5)C .),2(+∞D . )5,3()3,2(2.如果lgx =lga +3lgb -5lgc ,那么( )A .x =a +3b -cB .cabx 53=C .53cab x = D .x =a +b 3-c 33.设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则( )A .M ∪N=RB .M=NC .M ⊇ND .M ⊆N4.若a >0,b >0,ab >1,a 21log =ln2,则log a b 与a 21log 的关系是( )A .log a b <a 21log B .log a b =a 21log C . log a b >a 21logD .log a b ≤a 21log5.若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( )A .⎪⎭⎫ ⎝⎛43,0B .⎪⎭⎫⎢⎣⎡43,0C .⎥⎦⎤⎢⎣⎡43,0D .⎪⎭⎫ ⎝⎛+∞-∞,43]0,(6.下列函数图象正确的是( )A B C D7.已知函数)(1)()(x f x f x g -=,其中log 2f (x )=2x ,x ∈R ,则g(x ) ( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数8.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数的(参考数据:1.14=1.46,1.15=1.61)A .10%B .16.4%C .16.8%D .20%9.如果y=log a 2-1x 在(0,+∞)内是减函数,则a 的取值范围是( )A .|a |>1B .|a |<2C .a 2-<D .21<<a10.下列关系式中,成立的是( )A .10log 514log 3103>⎪⎭⎫ ⎝⎛> B .4log 5110log 3031>⎪⎭⎫ ⎝⎛> C .03135110log 4log ⎪⎭⎫⎝⎛>> D .0331514log 10log ⎪⎭⎫⎝⎛>>二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数)2(log 221x y -=的定义域是 ,值域是 .12.方程log 2(2x +1)log 2(2x +1+2)=2的解为 .13.将函数xy 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为 .14.函数y=)124(log 221-+x x 的单调递增区间是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知函数)(log )1(log 11log )(222x p x x x x f -+-+-+=. (1)求函数f (x )的定义域;(2)求函数f (x )的值域.16.(12分)设x ,y ,z ∈R +,且3x =4y =6z . (1)求证:yx z 2111=-; (2)比较3x ,4y ,6z 的大小.17.(12分)设函数)1lg()(2++=x x x f .(1)确定函数f (x )的定义域; (2)判断函数f (x )的奇偶性;(3)证明函数f (x )在其定义域上是单调增函数; (4)求函数f(x)的反函数.18.现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg 20.301==).19.(14分)如图,A ,B ,C 为函数x y 21log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1).(1)设∆ABC 的面积为S 求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值.20.(14分)已求函数)1,0)((log 2≠>-=a a x x y a 的单调区间.高数学必修1同步测试—(对数函数)参考答案(7)一、DCCAB BDBDA 二、11.(][)2,112 --,[)+∞,0; 12.0; 13.1)1(log 2--=x y ; 14. )2,(--∞;三、15. 解:(1)函数的定义域为(1,p ).(2)当p >3时,f (x )的值域为(-∞,2log 2(p +1)-2);当1<p≤3时,f (x )的值域为(-∞,1+log2(p +1)).16. 解:(1)设3x =4y =6z=t . ∵x >0,y >0,z >0,∴t >1,lg t >0,6lg lg ,4lg lg ,3lg lg log 3tz t y t t x==== ∴yt t t t x z21lg 24lg lg 2lg lg 3lg lg 6lg 11===-=-. (2)3x <4y <6z . 17.解: (1)由⎪⎩⎪⎨⎧≥+>++010122x x x 得x ∈R ,定义域为R. (2)是奇函数. (3)设x 1,x 2∈R ,且x 1<x 2,则11lg)()(22221121++++=-x x x x x f x f . 令12++=x x t ,则)1()1(22221121++-++=-x x x x t t .=)11()(222121+-++-x x x x =11))(()(2221212121++++-+-x x x x x x x x=1111)((222121222121++++++++-x x x x x x x x∵x 1-x 2<0,01121>++x x ,01222>++x x ,0112221>+++x x ,∴t 1-t 2<0,∴0<t 1<t 2,∴1021<<t t , ∴f (x 1)-f (x 2)<lg1=0,即f (x 1)<f (x 2),∴ 函数f(x)在R 上是单调增函数. (4)反函数为xx y 1021102⋅-=(x ∈R). 18.解:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数, 1小时后,细胞总数为1131001002100222⨯+⨯⨯=⨯; 2小时后,细胞总数为13139100100210022224⨯⨯+⨯⨯⨯=⨯;3小时后,细胞总数为191927100100210024248⨯⨯+⨯⨯⨯=⨯; 4小时后,细胞总数为127127811001002100282816⨯⨯+⨯⨯⨯=⨯; 可见,细胞总数y 与时间x (小时)之间的函数关系为 31002xy ⎛⎫=⨯ ⎪⎝⎭,x N *∈由103100102x⎛⎫⨯> ⎪⎝⎭,得83102x⎛⎫> ⎪⎝⎭,两边取以10为底的对数,得3lg 82x >,∴8lg 3lg 2x>-, ∵8845.45lg3lg 20.4770.301=≈--, ∴45.45x >. 答:经过46小时,细胞总数超过1010个.19.解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1,则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C .)441(log )2(4log232231tt t t t ++=++= (2)因为v =t t42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1<u ≤59;S ⎥⎦⎤⎝⎛=59,1log 3在u 上是增函数,所以复合函数S=f (t ) [)+∞++=,1)441(log 23在t t 上是减函数(3)由(2)知t =1时,S 有最大值,最大值是f (1)5log 259log 33-== 20.解:由2x x ->0得0<x<1,所以函数)(log 2x x y a -=的定义域是(0,1) 因为0<2x x -=4141)21(2≤+--x ,所以,当0<a <1时,41log )(log 2aa x x ≥- 函数)(log 2x x y a -=的值域为⎪⎭⎫⎢⎣⎡+∞,41log a ;当a >1时,41log )(log 2aa x x ≤- 函数)(log 2x x y a -=的值域为⎥⎦⎤ ⎝⎛∞-41log ,a当0<a <1时,函数)(log 2x x y a -=在⎥⎦⎤ ⎝⎛21,0上是减函数,在⎪⎭⎫⎢⎣⎡1,21上是增函数;当a >1时,函数)(log 2x x y a -=在⎥⎦⎤ ⎝⎛21,0上是增函数,在⎪⎭⎫⎢⎣⎡1,21上是减函数.。
人教A版数学必修一年新课标高一数学同步测试(5)—第二单元(指数函数).docx
高中数学学习材料马鸣风萧萧*整理制作新课标高一数学同步测试(5)—第二单元(指数函数)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列各式中成立的一项( )A .7177)(m n mn =B .31243)3(-=- C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .251+B .251+- C .251± D .215±6.当a ≠0时,函数y ax b =+和y b ax=的图象只可能是 ( )7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是( )A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.已知函数f (x )的定义域是(1,2),则函数)2(xf 的定义域是 . 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.计算⎪⎪⎭⎫ ⎝⎛-÷++-33233233421428a b b ab a ba a = . 14.已知-1<a <0,则三个数331,,3a a a由小到大的顺序是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)求函数y xx =--1511的定义域.16.(12分)若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .17.(12分)已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值.18.(12分)(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|3X-1|=k 无解?有一解?有两解?19.(14分)有一个湖泊受污染,其湖水的容量为V 立方米,每天流入湖的水量等于流出湖的水量. 现假设下雨和蒸发平衡,且污染物和湖水均匀混合.用)0(])0([)(≥-+=-p e rp g r p t g tv r,表示某一时刻一立方米湖水中所含污染物的克数(我们称其湖水污染质量分数),)0(g 表示湖水污染初始质量分数.(1)当湖水污染质量分数为常数时,求湖水污染初始质量分数; (2)分析rpg <)0(时,湖水的污染程度如何.20.(14分)已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数.参考答案(6)一、DCDDD AAD D A二、11.(0,1); 12.(2,-2); 13.32a ; 14.a a a 3331<< ;三、15. 解:要使函数有意义必须:x xx x x -≠-≠⎧⎨⎪⎩⎪⇒≠≠⎧⎨⎩101010∴定义域为:{}x x R x x ∈≠≠且01,16. 解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r >c r . 17.解:)1(122>-+=a a a y x x , 换元为)1(122a t at t y <<-+=,对称轴为1-=t .当1>a ,a t =,即x =1时取最大值,略解得 a =3 (a = -5舍去)18.解: (1)常数m =1 (2)当k <0时,直线y =k 与函数|13|-=x y 的图象无交点,即方程无解;当k =0或k ≥1时, 直线y =k 与函数|13|-=xy 的图象有唯一的交点,所以方程有一解; 当0<k <1时, 直线y =k 与函数|13|-=x y 的图象有两个不同交点,所以方程有两解。
人教A版数学必修一新课标高一数学同步测试(5)—第一单元测试题.docx
高中数学学习材料马鸣风萧萧*整理制作新课标高一数学同步测试(5)—第一单元测试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.用描述法表示一元二次方程的全体,应是 ( )A .{x |ax 2+bx +c =0,a ,b ,c ∈R }B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0}C .{ax 2+bx +c =0|a ,b ,c ∈R }D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于( ) A .1 B .2 C .{2} D .N 5.设函数xy 111+=的定义域为M ,值域为N ,那么( )A .M={x |x ≠0},N={y |y ≠0}B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1}C .M={x |x ≠0},N={y |y ∈R }D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0}6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50tC .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t7.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于 ( )A .1B .3C .15D .308.函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 9.下列四个命题(1)f(x)=x x -+-12有意义; (2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是( )A .1B .2C .3D .4 10.设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则( )A .f (a )>f (2a )B .f (a 2)<f (a)C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .12.函数f (x )的定义域为[a ,b ],且b >-a >0,则F (x )= f (x)-f (-x)的定义域是 .13.若函数 f (x )=(K-2)x 2+(K-1)x +3是偶函数,则f (x )的递减区间是 . 14.已知x ∈[0,1],则函数y =x x --+12的值域是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知,全集U={x |-5≤x ≤3},A={x |-5≤x <-1},B={x |-1≤x <1},求C U A , C U B ,(C U A)∩(C U B),(C U A)∪(C U B),C U (A ∩B),C U (A ∪B),并指出其中相关的集合.16.(12分)集合A={(x,y )022=+-+y mx x },集合B={(x,y )01=+-y x ,且02≤≤x },又A φ≠⋂B ,求实数m 的取值范围.17.(12分)已知f (x )=⎪⎩⎪⎨⎧+++-333322xx x x ),1()1,(+∞∈-∞∈x x ,求f [f (0)]的值.18.(12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ), 并写出它的定义域. 19.(14分)已知f (x)是R 上的偶函数,且在(0,+ ∞)上单调递增,并且f (x)<0对一切R x ∈成立,试判断)(1x f -在(-∞,0)上的单调性,并证明你的结论.20.(14分)指出函数xx x f 1)(+=在(][)0,1,1,--∞-上的单调性,并证明之.参考答案(5)一、DACCB DCBA D 二、11.{211≤≤-k k}; 12.[a ,-a ]; 13.[0,+∞]; 14.[3,12-] ; 三、15. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};(C U A)∩(C U B)= {x |1≤x ≤3};(C U A)∪(C U B)= {x |-5≤x ≤3}=U ; C U (A ∩B)=U ;C U (A ∪B)= {x |1≤x ≤3}.相等集合有(C U A)∩(C U B)= C U (A ∪B);(C U A)∪(C U B)= C U (A ∩B).16. 解:由A ⋂B φ≠知方程组,,2001202y x y x y mx x 消去内有解在≤≤⎩⎨⎧=+-+-+得x 2+(m -1)x =0 在0≤x 2≤内有解, 04)1(2≥--=∆m 即m ≥3或m ≤-1.若m ≥3,则x 1+x 2=1-m <0,x 1x 2=1,所以方程只有负根.若m ≤-1,x 1+x 2=1-m >0,x 1x 2=1,所以方程有两正根,且两根均为1或两根一个大于1,一个小于1,即至少有一根在[0,2]内.因此{m ∞-<m ≤-1}.17.解: ∵ 0∈(-1,∞), ∴f (0)=32,又 32>1,∴ f (32)=(32)3+(32)-3=2+21=25,即f [f (0)]=25. 18.解:AB=2x , CD =πx ,于是AD=221x x π--, 因此,y =2x · 221x x π--+22x π, 即y =-lx x ++224π.由⎪⎩⎪⎨⎧>-->022102x x x π,得0<x <,21+π 函数的定义域为(0,21+π).19.解:设x 1<x 2<0, 则 - x 1 > - x 2 >0, ∴f (-x 1)>f (-x 2), ∵f (x )为偶函数, ∴f (x 1)>f (x 2)又0)()()()()(1)(1)(x f 1(x) f 11221122>-=-=⎥⎦⎤⎢⎣⎡---x f x f x f x f x f x f(∵f (x 1)<0,f (x 2)<0)∴,)(x f 1)(x f 121->-∴(x)f 1-是(∞,0)上的单调递减函数. 20.解:任取x 1,x 2∈(]1,-∞- 且x 1<x 22112112212121111)()(x x x x x x x x x x x f x f -=-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=--由x 1<x 2≤—1知x 1x 2>1, ∴01121>-x x , 即)()(12x f x f >∴f(x)在(]1,-∞-上是增函数;当1≤x 1< x 2<0时,有0< x 1x 2<1,得01121<-x x ∴)()(21x f x f >∴f(x)在[)0,1-上是减函数. 再利用奇偶性,给出),1(],1,0(+∞单调性,证明略.。
人教A版数学必修一新课标高一同步测试(10)—第二章测试.doc
高中数学学习材料马鸣风萧萧*整理制作新课标高一数学同步测试(10)—第二章测试一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.已知p >q >1,0<a <1,则下列各式中正确的是 ( )A .qpa a >B .aa qp >C .q pa a--> D .a a q p -->2.已知c x b ax x f ++=)((a ,b ,c 是常数)的反函数352)(1-+=-x x x f ,则 ( )A .a =3,b =5,c =-2B .a =3,b =-2,c =5C .a =2,b =3,c =5D .a =2,b =-5,c =33.函数x y a log =当x >2 时恒有y >1,则a 的取值范围是( )A .1221≠≤≤a a 且 B .02121≤<≤<a a 或 C .21≤<a D .2101≤<≥a a 或4.函数f(x )的图象与函数g (x )=(21)x 的图象关于直线y =x 对称,则f (2x -x 2)的单调减区间为( ) A .(-∞,1) B .[1,+∞]C .(0,1)D .[1,2] 5.函数y =11+-x x ,x ∈(0,1)的值域是( )A .[ -1,0)B .(-1,0]C .(-1,0)D .[-1,0]6. 设g (x )为R 上不恒等于0的奇函数,)(111)(x g b a x f x⎪⎭⎫⎝⎛+-=(a >0且a ≠1)为偶函数,则常数b 的值为( )A .2B .1C .21 D .与a 有关的值7.设f (x )=a x ,g (x )=x 31,h (x )=log a x ,a 满足log a (1-a 2)>0,那么当x >1时必有 ( )A .h (x )<g (x )<f (x )B .h (x )<f (x )<g (x )C .f(x )<g (x )<h (x )D .f (x )<h (x )<g (x ) 8.函数xx x a y --=22(a >0)的定义域是( )A .[-a ,a ]B .[-a ,0]∪(0,a )C .(0,a )D .[-a ,0]9.lgx +lgy =2lg (x -2y ),则yx2log 的值的集合是( )A .{1}B .{2}C .{1,0}D .{2,0} 10.函数x xx y +=的图象是( )二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.按以下法则建立函数f (x ):对于任何实数x ,函数f (x )的值都是3-x 与x 2-4x +3中的最大者,则函数f (x )的最小值等于 . 12.设函数c bx x x x f ++=)(,给出四个命题: ①0=c 时,有)()(x f x f -=-成立;②c b ,0=﹥0时,方程0)(=x f ,只有一个实数根; ③)(x f y =的图象关于点(0,c )对称; ④方程0)(=x f ,至多有两个实数根.上述四个命题中所有正确的命题序号是 。
人教版数学高一-新课标高一数学同步测试(9)—必修1测试
新课标高一数学同步测试(10)——期中测试一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.满足条件{0,1}∪A={0,1}的所有集合A 的个数是( )A .1个B . 2个C . 3个D .4个 2.下列四个命题中,设U 为全集,则不正确的命题是( ) A .若A ∩B =φ,则(C U A)∪(C U B)=U B .若A ∩B =φ,则A =B =φC .若A ∪B =U ,则(C U A)∩(C U B)=φD .若A ∪B =φ,则A =B =φ3.函数f (x )=⎪⎩⎪⎨⎧≤≤-+≤≤-)02(6)30(222x x x x x x 的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是 ( ) 5.函数y=x 2-3x (x <1)的反函数是( ) A .y =4923++x (x >-49) B .y =4923+-x (x >-49) C .y =4923++x (x >-2) D .y =4923+-x (x >-2) 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50tC .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t7.函数f (x )=log a 1+x ,在(-1,0)上有f (x )>0,那么( )A .f (x )(- ∞,0)上是增函数B .f (x )在(-∞,0)上是减函数C .f (x )在(-∞,-1)上是增函数D .f (x )在(-∞,-1)上是减函数8.某工厂去年12月份的产值是去年1月份产值的m 倍,则该厂去年产值的月平均增长率d d 0 t 0 tO A .d d 0 t 0 tO B .d d 0 t 0 tO C .d d 0t 0 tO D .为( )A.11m B.12m C.1m 12-D.1m 11-9.设f (x )=lg(10x+1)+ax 是偶函数,g (x )=xx b24-是奇函数,那么a +b 的值为( )A . 1B .-1C .-21D .2110(注:本地话费以分钟为单位计费,长途话费以6秒钟为单位计费)若某人每月拨打本地电话时间是长途电话时间的5倍,且每月通话时间(分钟)的范围在区间(60,70)内,则选择较为省钱的网络为 ( )A.甲B.乙C.甲乙均一样D.分情况确定 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.用集合分别表示下列各图中的阴影部分:(1) (2) (3) (4) 12.已知定义在R 上的奇函数f (x ),当x >0时,1||)(2-+=x x x f ,那么x <0时,f (x )= . 13.若f (x )=21++x ax 在区间(-2,+∞)上是增函数,则a 的取值范围是 . 14.函数f (x ) =|2|log 3a x +的图象的对称轴方程为x =2,则常数a= . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)若集合M={a |a =x 2-y 2,x ,y ∈Z }.(1)整数8,9,10是否属于M ; (2)证明:一切奇数都属于M.16.(12分)设x 1,x 2是关于x 的一元二次方程x 2-2(m -1)x +m +1=0的两个实根,又y =x 21+x 22,求y =f (m )的解析式及此函数的定义域.17.(12分)设函数f (x )对任意x ,y R ∈,都有)()()(y f x f y x f +=+,且0>x 时,f (x)<0,f (1)=-2.⑴求证:f (x )是奇函数;⑵试问在33≤≤-x 时,f (x )是否有最值?如果有求出最值;如果没有,说出理由.18.(12分)设函数()212xx af x =+-(a 为实数)(1)当a =0时,若函数()y g x =的图象与()f x 的图象关于直线x =1对称,求函数()y g x =的解析式;(2)当a <0时,求关于x 的方程()f x =0在实数集R 上的解.19.(14分)某工厂今年1月、2月、3月生产某产品分别为1万件,1.2万件, 1.3万件,为了估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量y 与月份x 的关系,模拟函数可以选用二次函数或函数y =a ·b x +c (a ,b ,c 为常数。
人教A版数学必修一新课标高一同步测试(7)—第二单元(对数函数).doc
高中数学学习材料马鸣风萧萧*整理制作新课标高一数学同步测试(7)—第二单元(对数函数)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.对数式b a a =--)5(log 2中,实数a 的取值范围是( )A .)5,(-∞B .(2,5)C .),2(+∞D . )5,3()3,2( 2.如果lgx =lga +3lgb -5lgc ,那么( )A .x =a +3b -cB .cabx 53=C .53cab x = D .x =a +b 3-c 33.设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则( ) A .M ∪N=R B .M=N C .M ⊇N D .M ⊆N 4.若a >0,b >0,ab >1,a 21log =ln2,则log a b 与a 21log 的关系是( )A .log a b <a 21logB .log a b =a 21logC . log a b >a 21logD .log a b ≤a 21log5.若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( )A .⎪⎭⎫ ⎝⎛43,0B .⎪⎭⎫⎢⎣⎡43,0C .⎥⎦⎤⎢⎣⎡43,0D .⎪⎭⎫ ⎝⎛+∞-∞,43]0,( 6.下列函数图象正确的是( )A B C D7.已知函数)(1)()(x f x f x g -=,其中log 2f (x )=2x ,x ∈R ,则g(x ) ( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数8.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数的(参考数据:1.14=1.46,1.15=1.61)( ) A .10% B .16.4% C .16.8% D .20% 9.如果y=log 2a -1x 在(0,+∞)内是减函数,则a 的取值范围是( )A .|a |>1B .|a |<2C .a 2-<D .21<<a10.下列关系式中,成立的是( )A .10log 514log 3103>⎪⎭⎫⎝⎛>B . 4log 5110log 3031>⎪⎭⎫⎝⎛>C . 03135110log 4log ⎪⎭⎫⎝⎛>>D .0331514log 10log ⎪⎭⎫⎝⎛>>二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.函数)2(log 221x y -=的定义域是 ,值域是 .12.方程log 2(2x+1)log 2(2x +1+2)=2的解为 .13.将函数xy 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为 . 14.函数y=)124(log 221-+x x 的单调递增区间是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知函数)(log )1(log 11log )(222x p x x x x f -+-+-+=. (1)求函数f (x )的定义域;(2)求函数f (x )的值域.16.(12分)设x ,y ,z ∈R +,且3x =4y =6z .(1)求证:yx z 2111=-; (2)比较3x ,4y ,6z 的大小.17.(12分)设函数)1lg()(2++=x x x f .(1)确定函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)证明函数f (x )在其定义域上是单调增函数; (4)求函数f(x)的反函数.18.现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg 20.301==).19.(14分)如图,A ,B ,C 为函数x y 21log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设∆ABC 的面积为S 求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值.20.(14分)已求函数)1,0)((log 2≠>-=a a x x y a 的单调区间.参考答案(7)一、DCCAB BDBDA 二、11. (][)2,112 --, [)+∞,0; 12.0; 13.1)1(log 2--=x y ; 14. )2,(--∞;三、15. 解:(1)函数的定义域为(1,p ).(2)当p >3时,f (x )的值域为(-∞,2log 2(p +1)-2);当1<p ≤3时,f (x )的值域为(-∞,1+log2(p +1)).16. 解:(1)设3x=4y=6z=t . ∵x >0,y >0,z >0,∴t >1,lg t >0,6lg lg ,4lg lg ,3lg lg log 3tz t y t t x ==== ∴yttttxz21lg 24lg lg 2lg lg 3lg lg 6lg 11===-=-.(2)3x <4y <6z .17.解: (1)由⎪⎩⎪⎨⎧≥+>++010122x x x 得x ∈R ,定义域为R. (2)是奇函数. (3)设x 1,x 2∈R ,且x 1<x 2, 则11lg )()(22221121++++=-x x x x x f x f . 令12++=x x t,则)1()1(22221121++-++=-x x x x t t .=)11()(222121+-++-x x x x=11))(()(2221212121++++-+-x x x x x x x x=1111)((222121222121++++++++-x x x x x x x x∵x 1-x 2<0,01121>++x x ,01222>++x x ,0112221>+++x x ,∴t 1-t 2<0,∴0<t 1<t 2,∴1021<<t t , ∴f (x 1)-f (x 2)<lg1=0,即f (x 1)<f (x 2),∴ 函数f(x)在R 上是单调增函数. (4)反函数为xx y 1021102⋅-=(x ∈R). 18.解:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数, 1小时后,细胞总数为1131001002100222⨯+⨯⨯=⨯;2小时后,细胞总数为13139100100210022224⨯⨯+⨯⨯⨯=⨯;3小时后,细胞总数为191927100100210024248⨯⨯+⨯⨯⨯=⨯;4小时后,细胞总数为127127811001002100282816⨯⨯+⨯⨯⨯=⨯;可见,细胞总数y 与时间x (小时)之间的函数关系为:31002xy ⎛⎫=⨯ ⎪⎝⎭,x N *∈由103100102x⎛⎫⨯> ⎪⎝⎭,得83102x⎛⎫> ⎪⎝⎭,两边取以10为底的对数,得3lg 82x >,∴8lg 3lg 2x >-, ∵8845.45lg3lg 20.4770.301=≈--, ∴45.45x >.答:经过46小时,细胞总数超过1010个.19.解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1,则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C .)441(log )2(4log 232231t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5,[)∞++=.541在v v 上是减函数,且1<u ≤59; S ⎥⎦⎤⎝⎛=59,1log 3在u 上是增函数,所以复合函数S=f (t )[)+∞++=,1)441(log 23在tt 上是减函数 (3)由(2)知t =1时,S 有最大值,最大值是f (1) 5log 259log 33-==20.解:由2x x ->0得0<x<1,所以函数)(log 2x x y a -=的定义域是(0,1)因为0<2x x -=4141)21(2≤+--x ,所以,当0<a <1时,41log )(log 2aa x x ≥-函数)(log 2x x y a -=的值域为⎪⎭⎫⎢⎣⎡+∞,41log a ; 当a >1时,41log )(log 2aa x x ≤- 函数)(log 2x x y a -=的值域为⎥⎦⎤ ⎝⎛∞-41log,a当0<a <1时,函数)(log 2x x y a -=在⎥⎦⎤ ⎝⎛21,0上是减函数,在⎪⎭⎫⎢⎣⎡1,21上是增函数;当a >1时,函数)(log 2x x y a -=在⎥⎦⎤ ⎝⎛21,0上是增函数,在⎪⎭⎫⎢⎣⎡1,21上是减函数.。
人教A版数学必修一新课标高一同步测试(2)—第一单元(集合).doc
新课标高一数学同步测试(2)—第一单元(集合)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{ 2.下面关于集合的表示正确的个数是( )①}2,3{}3,2{≠;②}1|{}1|),{(=+==+y x y y x y x ; ③}1|{>x x =}1|{>y y ; ④}1|{}1|{=+==+y x y y x x ;A .0B .1C .2D .33.设全集},|),{(R y x y x U ∈=,}123|),{(=--=x y y x M ,}1|),{(+≠=x y y x N ,那么)(M C U ∩)(N C U =( )A .φB .{(2,3)}C .(2,3)D . }1|),{(+≠x y y x4.下列关系正确的是( )A .},|{32R x x y y ∈+=∈π B .)},{(b a =)},{(a bC .}1|),{(22=-y x y x }1)(|),{(222=-y x y xD .}02|{2=-∈x R x =φ5.已知集合A 中有10个元素,B 中有6个元素,全集U 有18个元素,≠⋂B A φ。
设集合)(B A C U ⋃有x 个元素,则x 的取值范围是( )A .83≤≤x ,且N x ∈B .82≤≤x ,且N x ∈C .128≤≤x ,且N x ∈D .1510≤≤x ,且N x ∈6.已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==,=P x x |{+=2p },61Z p ∈,则P N M ,,的关系 ( )A .N M =PB .M PN = C .MNPD .N PM7.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则( )A .B A U ⋃= B . B AC U U ⋃=)( C .)(B C A U U ⋃=D .)()(B C A C U U U ⋃=8.已知}5,53,2{2+-=a a M ,}3,106,1{2+-=a a N ,且}3,2{=⋂N M ,则a 的值( )A .1或2B .2或4C .2D .1 9.满足},{b a N M =⋃的集合N M ,共有 ( ) A .7组 B .8组 C .9组 D .10组 10.下列命题之中,U 为全集时,不正确的是( )A .若B A ⋂= φ,则U BC A C U U =⋃)()(B .若B A ⋂= φ,则A = φ或B = φC .若B A ⋃= U ,则=⋂)()(B C A C U U φD .若B A ⋃= φ,则==B A φ二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B . 12.设集合}3|{2x y y M -==,}12|{2-==x y y N ,则=⋂N M . 13.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .14.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)数集A 满足条件:若1,≠∈a A a ,则A a∈+11. ①若2A ∈,则在A 中还有两个元素是什么;②若A 为单元集,求出A 和a .16.(12分)设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①B A ⋂=B A ⋃,求a 的值;②φB A ⋂,且C A ⋂=φ,求a 的值;③B A ⋂=C A ⋂≠φ,求a 的值;17.(12分)设集合}32,3,2{2-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实数a 的值.18.(12分)已知全集}5,4,3,2,1{=U ,若U B A =⋃,≠⋂B A φ,}2,1{)(=⋂B C A U ,试写出满足条件的A 、B 集合.19.(14分)在某次数学竞赛中共有甲、乙、丙三题,共25人参加竞赛,每个同学至少选作一题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高一数学同步测试(3)—第一单元(函数及其表示)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填
在题后的括号内(每小题5分,共50分). 1.下列四种说法正确的一个是 ( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的数集B
C .函数是一种特殊的映射
D .映射是一种特殊的函数 2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( ) A .q p + B .q p 23+ C .q p 32+ D .2
3
q p + 3.下列各组函数中,表示同一函数的是
( )
A .x
x
y y =
=,1 B .1,112-=+⨯-=
x y x x y
C .33,x y x y ==
D . 2
)(|,|x y x y ==
4.已知函数2
3212
---=
x x x y 的定义域为
( )
A .]1,(-∞
B .]2,(-∞
C .]1,21
()21,(-
⋂--∞ D . ]1,2
1()21,(-
⋃--∞ 5.设⎪⎩
⎪⎨⎧<=>+=)0(,0)0(,)
0(,1)(x x x x x f π,则=-)]}1([{f f f
( )
A .1+π
B .0
C .π
D .1-
6.下列图中,画在同一坐标系中,函数bx ax y +=2
与)0,0(≠≠+=b a b ax y 函数的图象只
可能是 ( )
7.设函数x x x
f =+-)11(,则)(x f 的表达式为 ( )
A .x x -+11
B . 11-+x x
C .x
x +-11
D .
1
2+x x
8.已知二次函数)0()(2
>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为 ( ) A .正数 B .负数 C .0 D .符号与a 有关
9.已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 ( ) A .x b
c a
c y --=
B .x c
b a
c y --=
C .x a
c b
c y --=
D .x a
c c
b y --=
10.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为
( )
A .)2,1[-
B .]1,1[-
C .)2,2(-
D .)2,2[- 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.已知x x x f 2)12(2
-=+,则)3(f = . 12.若记号“*”表示的是2
*b
a b a +=
,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .
13.集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射. 14.从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满. 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)①.求函数|
1||1|1
3
-++-=
x x x y 的定义域;
②求函数x x y 21-+=的值域;
③求函数1
3
222
2+-+-=x x x x y 的值域.
16.(12分)在同一坐标系中绘制函数x x y 22+=,||22
x x y +=得图象.
17.(12分)已知函数x x f x x f x =+-+-)()1
1
()1(,其中1≠x ,求函数解析式.
18.(12分)设)(x f 是抛物线,并且当点),(y x 在抛物线图象上时,点)1,(2
+y x 在函数
)]([)(x f f x g =的图象上,求)(x g 的解析式.
19.(14分)动点P 从边长为1的正方形ABCD 的顶点出发顺次经过B 、C 、D 再回到A ;设x
表示P 点的行程,y 表示PA 的长,求y 关于x 的函数解析式.
20.(14分)
已知函数)(x f ,)(x g 同时满足:)()()()()(y f x f y g x g y x g +=-;1)1(-=-f ,
0)0(=f ,1)1(=f ,求)2(),1(),0(g g g 的值.
参考答案(3)
一、CBCDA BCABC
二、11.-1; 12.c b a c b a *+=+)()*(; 13.4; 14.*,)20
19(20N x y x ∈⨯= ;
三、15. 解:①.因为|1||1|
-++x x 的函数值一定大于0,且1-x 无论取什么数三次方根一定有意义,
故其值域为R ; ②.令t x =-21,0≥t
,)1(2
12t x -=,原式等于1)1(2
1)1(2122+--=+-t t t ,故1≤y 。
③.把原式化为以x 为未知数的方程03)2()2(2
=-+---y x y x y ,
当
2≠y 时,0)3)(2(4)2(2≥----=∆y y y ,得3
102≤<y ;
当
2=y 时,方程无解;所以函数的值域为]3
10,
2(. 16.题示:对于第一个函数可以依据初中学习的知识借助顶点坐标,开口方向,与坐标轴交点坐标可得;第二个
函数的图象,一种方法是将其化归成分段函数处理,另一种方法是该函数图象关于y 轴对称,先画好y 轴右
边的图象.
17.题示:分别取t x =和1
1
-+=
x x x
,可得 ⎪⎪⎩⎪⎪⎨
⎧
-+=-+--=--+-11)11()(1
2)()11()1(x x x x f t f t x x f x x f t ,联立求解可得结果. 18.解:令c
bx ax x f ++=2)()0(≠a ,也即c bx ax y ++=2.同时
1)(22+++c bx ax =)]([)(12x f f x g y ==+=c c bx ax b c bx ax a ++++++)()(2
22.
通过比较对应系数相等,可得1,0,1===c b a
,也即12+=x y ,22)(24++=x x x g 。
19.解:显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时,
PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式.
20.解:令
y x =得:)0()()(22g y g x f =+. 再令0=x ,即得1,0)0(=g . 若0)0(=g ,令
1==y x 时,得0)1(=f 不合题意,故1)0(=g ;)1()1()1()1()11()0(f f g g g g +=-=,即1
)1(12+=g ,所以
)1(=g ;那么
)1()0()1()0()10()1(=+=-=-f f g g g g ,
1)1()1()1()1()]1(1[)2(-=-+-=--=f f g g g g .。