传感器原理设计与应用重点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~
第一章:传感器概论
1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。
2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。
3、传感器的分类
按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。
按构成原理分类:
结构型:依靠机械结构参数变化来实现变换。
物性型:利用材料本身的物理性质来实现变换。
按输入量的不同分类——>温度、压力、位移、流量、速度等传感器
按变换工作原理分类:
电路参数型:电阻型、电容型、电感型传感器
按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器
4、传感器技术的发展动向:
教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器
老师表述:微型化、集成化、廉价。
第二章:传感器的一般特性
1、静态特性
检测系统的四种典型静态特性
线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。
灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。
即S N=输入量的变化/输出量的变化=dy/dx
迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。
(产生的原因:传感器机械部分存在的不可避免的缺陷。)
重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。
精确度.
测量范围和量程.
零漂和温漂.
2、动态特性:(传感器对激励(输入)的响应(输出)特性)
动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差
动态测试中的两个重要特征:时间响应、频率响应
第三章:传感器中的弹性敏感元件
1、什么叫敏感材料
对电、光、声、力、热、磁、气体分布等待测量的微小变化而表现出性能明显改变的功能材料。
半导体材料最主要的特点是对温度、光、电、磁、各种气体及压力等外界因素具有敏感特性,是制造磁敏、热敏、光敏、力敏、离子敏等传感器件的主要材料。 2、引言:
(1)变形:物体在外力作用下,改变原来的尺寸和形状的现象。 (2)刚度:弹性敏感元件在外力的作用下抵抗变形的能力 (3)弹性元件:具有弹性变形特性的物体。
弹性敏感元件作用:把力、力矩或压力变换成相应的应变或位移;然后由各种转换元件,将被测力、力矩或压力转换成电量。
3、弹性敏感元件的基本特性:
(1)弹性特性:作用在弹性敏感元件上的外力与其引起的相应变形(应变、位移或转角)之间的关系。可由刚度或灵敏度来表示。
(2)刚度:弹性敏感元件在外力作用下抵抗变形的能力。dx dF x F k x =
⎪⎭⎫ ⎝⎛∆∆=→∆0lim
(3)灵敏度是刚度的倒数
(4)弹性滞后:弹性元件在弹性变形范围内,弹性特性的加载曲线与卸载曲线不重合的现象。
(5)弹性后效:弹性敏感元件所加载荷改变后,不时立即完成相应的变形,而是在一定时间间隔中逐渐完成变形的现象。
(6)应力:反映物体一点处受力程度的力学量
(7)应变:用以描述一点处变形的程度的力学量是该点的应变 (8)弹性模量=线性应力/线性应变
第四章:电阻应变式传感器
1、电阻应变片的种类(P63~P65)
丝式应变片:(1)回线式应变片 (2)短接式应变片 箔式应变片 薄膜应变片 半导体应变片
2、应变效益:金属导体或半导体在受到外力作用时,会产生相应的应变(拉伸或压缩),其电阻也将随之发生变化。
通过弹性敏感元件转换作用,将位移、力、力矩、加速度、压力等参数转换为应变因此可以将应变片由测量应变扩展到测量上述参数,从而形成各种电阻应变式传感器。
第五章:电容式传感器
1、电容式传感器工作原理:由绝缘介质分开的两个平行金属板组成的平板电容器,当忽略边缘效应影响时,其电容量与真空介电常数、极板间介质的相对介电常数、极板的有效面积A以及两极板间的距离d 有关:
d
A
C r εε0=
若被测量的变化使式中d 、A、 三个参量中任意一个发生变化时,都会引起电容量的变化,因此可分为三种:
变间隙式、 变面积式、
变介电常数式。
第六章:电感式传感器
(目测老师上课时没讲,之后视情况补充)
第七章:压电式传感器
1、概念:压电式传感器是以具有压电效应的压电器件为核心组成的传感器,已被广泛应用于超声,通信,宇航,雷达和引爆等领域。
2、(1)正压电效应(压电效应):
在电介质的一定方向上施加机械力而产生电的极化,导致两个相对表面(极化面)上出现符号相反的束缚电荷Q ,且其电位移D 与外应力张量T 成正比: D=dT (d —压电常数矩阵 即压电系数)
当外力消失,又恢复不带电原状;当外力消失,电荷极性随之而变。 (2)逆压电效应(电致伸缩):
施加电场时,应变S 与外电场强度E 成正比:S= dE (d —逆压电常数矩阵 即压电系数)
即能量类型转换:
压电元件
电能量机械量
教材表述:
x 轴平行于正六面体的棱线,称为电轴; y 轴垂直于正六面体的棱面,称为机械轴; z 轴表示其纵向轴,称为光轴。
压电效应:这些物质(压电材料)在沿一定的方向受到压力或拉力作用而发生形变时,其表面上会产生电荷;
若将外力去掉时他们又回到不带电的状态,这种现象就称为压电效应。在每一切片中,当沿电轴方向加作用力F 时,则在于电轴垂直的平面上产生电荷Q 。
逆压电效应:在片状压电材料的两个电极面上,如果加以交流电压,那么压电片能产生机械振动,即压电片在电极方向上有伸缩的现象压电材料的这种现象称为“电致伸缩效应”,也叫“逆压电效应”。
3、相关传感器:压电式加速度传感器、压电式力传感器、压电式压力传感器、测力传感器
第八章:磁电式传感器
1、概念:磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。有时也称作电动式或感应式传感器。根据电磁感应定律,当N 匝线圈在均恒磁场内运动时,设穿过线圈的磁通为Φ,则线圈内的感应电势e
与磁通变化率d Φ/dt 有如下关系:
dt d N
e φ
-= 2、霍尔传感器(ppt 上没有相关内容,大家自己补充)
第九章:热电式传感器
1、热电偶温度计(热电偶温度计是以热电效应为基础的测温仪表 ) (1)组成:
热电偶(敏感元件): 必须用两种不同的材料作热电极—>1 连接热电偶和测量仪表的导线(补偿导线及铜导线)—>2