MATLAB应用 求解非线性方程

合集下载

matlab二分法

matlab二分法

matlab二分法MATLAB二分法是一种常用的求解非线性方程的数值解法,它通过不断地将定义域分成若干个子区间,从而找到近似解。

与梯形法和牛顿迭代法相比,MATLAB 二分法又称为“分治法”,是一种简单、直观、快速和有效的求解非线性方程的数值解法。

1. 二分法原理MATLAB 二分法是根据“分而治之”的思想来求解非线性方程的数值解的。

它的基本思想是,将定义域分成两个子区间,其中一个子区间的函数值的符号一定是固定的,另一个子区间的函数值的符号也是固定的,只有当它们的符号相反时,才能确定解存在于这两个子区间之间。

然后,再对缩小的子区间重复以上操作,进而确定非线性方程的近似解,也就是所谓的“黄金分割法”。

2. MATLAB 二分法的步骤(1)始条件首先,要将定义域分成两个子区间,在每一个子区间内,假定函数值的符号是固定的;确定迭代初值 $x_0,比如$x_0=0.5;(2)代计算求出迭代第二值 $x_1,即 $x_1=x_0+frac{b-x_0}{2},计算出$x_1$值,计算函数值的符号;(3)晕条件当求得的函数值的符号与定义域中一边的函数值的符号相反时,认为解存在于此子区间之间,继续将所取得的子区间继续缩小,直到定义域中的某两个端点接近,或者函数值的绝对值小于指定的误差范围,此时称为收敛;(4)的输出将收敛时的根 $x_n$ 作为解的输出。

3. MATLAB 二分法的优缺点(1) MATLAB 二分法的优点MATLAB 二分法具有简单、直观、快速和有效的特点,只要能够确定函数在定义域中的一边的函数值的符号,就可以求出近似解。

(2) MATLAB 二分法的缺点MATLAB 二分法容易收敛到局部极小值,而无法收敛到全局最优值;同时,它也不适用于函数值在定义域内不连续或周期变化的情况。

4. MATLAB 二分法的应用MATLAB 二分法在实际工程中广泛应用,主要用于求解非线性方程、解决二次规划问题、求解非线性最小化问题、结构优化问题等。

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve实例一:①建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];②>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。

实例二:①建立文件fun.mfunction F=myfun(x)F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];②然后在命令窗口求解:>> x0=[0;0]; %设定求解初值>> options=optimset('Display','iter'); %设定优化条件>> [x,fv]=fsolve(@myfun,x0,options) %优化求解%MATLAB显示的优化过程Norm of First-order Trust-region Iteration Func-count f(x) step optimality radius0 3 1 2 11 6 0.000423308 0.5 0.0617 12 9 5.17424e-010 0.00751433 4.55e-005 1.253 12 9.99174e-022 1.15212e-005 9.46e-011 1.25 Optimization terminated: first-order optimality is less than options.TolFun.x =0.49660.0067fv =1.0e-010 *0.31610.0018实例三:求下列非线性方程组在(0.5,0.5) 附近的数值解。

牛顿迭代法解非线性方程组(MATLAB版)

牛顿迭代法解非线性方程组(MATLAB版)

⽜顿迭代法解⾮线性⽅程组(MATLAB版)⽜顿迭代法,⼜名切线法,这⾥不详细介绍,简单说明每⼀次⽜顿迭代的运算:⾸先将各个⽅程式在⼀个根的估计值处线性化(泰勒展开式忽略⾼阶余项),然后求解线性化后的⽅程组,最后再更新根的估计值。

下⾯以求解最简单的⾮线性⼆元⽅程组为例(平⾯⼆维定位最基本原理),贴出源代码:1、新建函数fun.m,定义⽅程组1 function f=fun(x);2 %定义⾮线性⽅程组如下3 %变量x1 x24 %函数f1 f25 syms x1 x26 f1 = sqrt((x1-4)^2 + x2^2)-sqrt(17);7 f2 = sqrt(x1^2 + (x2-4)^2)-5;8 f=[f1 f2];2、新建dfun.m,求出⼀阶微分⽅程1 function df=dfun(x);2 f=fun(x);3 df=[diff(f,'x1');diff(f,'x2')]; %雅克⽐矩阵3、建⽴newton.m,执⾏⽜顿迭代过程1 clear;clc2 format;3 x0=[0 0]; % 迭代初始值4 eps = 0.00001; % 定位精度要求5for i = 1:106 f = double(subs(fun(x0),{'x1''x2'},{x0(1) x0(2)}));7 df = double(subs(dfun(x0),{'x1''x2'},{x0(1) x0(2)})); % 得到雅克⽐矩阵8 x = x0 - f/df;9if(abs(x-x0) < eps)10break;11 end12 x0 = x; % 更新迭代结果13 end14 disp('定位坐标:');15 x16 disp('迭代次数:');17 i结果如下:定位坐标:x =0.0000 -1.0000迭代次数:i =4。

x=e^x用简单迭代法matlab

x=e^x用简单迭代法matlab

x=e^x用简单迭代法matlab篇一:正文:简单迭代法是一种用于求解非线性方程的迭代方法,它的基本思想是通过不断迭代逼近方程的解。

我们将使用简单迭代法来解决方程x=e^x,并使用MATLAB 编写代码实现。

首先,我们需要将方程进行转化,使得等式左右两边的差值为零。

针对本题,我们可以将方程改写为x - e^x = 0。

接下来,我们可以通过迭代的方式逐步逼近方程的解。

假设初始值为x0,则迭代公式可以表示为x(i+1) = x(i) - f(x(i)) / f'(x(i)),其中f(x)为方程的左边项,f'(x)为f(x)的导数。

在MATLAB中,我们可以使用循环结构来实现迭代过程。

具体代码如下所示: ```% 初始值x0 = 0.5;% 迭代次数iterations = 100;% 容差tolerance = 1e-6;% 迭代过程for i = 1:iterations% 计算方程的左边项和导数f = x0 - exp(x0);f_prime = 1 - exp(x0);% 更新x的值x = x0 - f / f_prime;% 判断是否满足容差要求if abs(x - x0) < tolerancebreak;end% 更新x0的值x0 = x;end% 输出结果fprintf('方程的解为: %f', x);```在上述代码中,我们设置了初始值x0为0.5,迭代次数为100,容差为1e-6。

通过不断迭代,直到满足容差要求或达到最大迭代次数时停止迭代。

最终输出的结果即为方程的解。

通过运行以上代码,我们可以得到方程x=e^x的解为x=0.567143。

篇二:我们可以使用简单迭代法来解决方程x=e^x。

简单迭代法是一种通过不断迭代逼近解的方法。

首先,我们可以将方程x=e^x转化为x-e^x=0的形式。

然后,我们可以通过构造迭代函数来逼近方程的解。

假设迭代函数为g(x),我们可以选择将g(x)设置为x-e^x,即g(x) = x - e^x。

MATLAB应用 求解非线性方程

MATLAB应用 求解非线性方程

第7章 求解非线性方程7.1 多项式运算在MATLAB 中的实现一、多项式的表达n 次多项式表达为:n a +⋯⋯++=x a x a x a p(x )1-n 1-n 1n 0,是n+1项之和在MATLAB 中,n 次多项式可以用n 次多项式系数构成的长度为n+1的行向量表示[a0, a1,……an-1,an]二、多项式的加减运算设有两个多项式n a +⋯⋯++=x a x a x a p1(x )1-n 1-n 1n 0和m b +⋯⋯++=x b x b x b p2(x )1-m 1-m 1m 0。

它们的加减运算实际上就是它们的对应系数的加减运算。

当它们的次数相同时,可以直接对多项式的系数向量进行加减运算。

当它们的次数不同时,应该把次数低的多项式无高次项部分用0系数表示。

例2 计算()()1635223-+++-x x x xa=[1, -2, 5, 3]; b=[0, 0, 6, -1]; c=a+b例 3 设()6572532345++-+-=x x x x x x f ,()3532-+=x x x g ,求f(x)+g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; g1=[0, 0, 0, g];%为了和f 的次数找齐 f+g1, f-g1三、多项式的乘法运算conv(p1,p2)例4 在上例中,求f(x)*g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3];conv(f, g)四、多项式的除法运算[Q, r]=deconv(p1, p2)表示p1除以p2,给出商式Q(x),余式r(x)。

Q,和r 仍为多项式系数向量 例4 在上例中,求f(x)/g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3];[Q, r]=deconv(f, g)五、多项式的导函数p=polyder(P):求多项式P 的导函数p=polyder(P ,Q):求P ·Q 的导函数[p,q]=polyder(P ,Q):求P/Q 的导函数,导函数的分子存入p ,分母存入q 。

关于采用matlab进行指定非线性方程拟合的问题

关于采用matlab进行指定非线性方程拟合的问题

关于采用matlab进行指定非线性方程拟合的问题(1)※1。

优化工具箱的利用函数描述LSQLIN 有约束线性最小二乘优化LSQNONNEG 非负约束线性最小二乘优化问题当有约束问题存在的时候,应该采用上面的方法代替Polyfit与反斜线(\)。

具体例子请参阅优化工具箱文档中的相应利用这两个函数的例子。

d. 非线性曲线拟合利用MATLAB的内建函数函数名描述FMINBND 只解决单变量固定区域的最小值问题FMINSEARCH 多变量无约束非线性最小化问题(Nelder-Mead 方法)。

下面给出一个小例子展示一下如何利用FMINSEARCH1.首先生成数据>> t=0:.1:10;>> t=t(:);>> Data=40*exp(-.5*t)+rand(size(t)); % 将数据加上随机噪声2.写一个m文件,以曲线参数作为输入,以拟合误差作为输出function sse=myfit(params,Input,Actural_Output)A=params(1);lamda=params(2);Fitted_Curve=A.*exp(-lamda*Input);Error_Vector=Fitted_Curve-Actural_Output;%当曲线拟合的时候,一个典型的质量评价标准就是误差平方和sse=sum(Error_Vector.^2);%当然,也可以将sse写作:sse=Error_Vector(:)*Error_Vector(:);3.调用FMINSEARCH>> Strarting=rand(1,2);>> options=optimset('Display','iter');>> Estimates=fiminsearch(@myfit,Strarting,options,t,Data);>> plot(t,Data,'*');>> hold on>> plot(t,Estimates(1)*exp(-Estimates(2)*t),'r');Estimates将是一个包含了对原数据集进行估计的参数值的向量。

Matlab非线性方程数值解法

Matlab非线性方程数值解法

Matlab⾮线性⽅程数值解法实验⽬的⽤Matlab实现⾮线性⽅程的⼆分法、不动点迭代法实验要求1. 给出⼆分法算法和不动点迭代算法2. ⽤Matlab实现⼆分法3. ⽤Matlab实现不动点迭代法实验内容(1)在区间[0,1]上⽤⼆分法和不动点迭代法求的根到⼩数点后六位。

(2)⼆分法的基本思想:逐步⼆分区间[a,b],通过判断两端点函数值的符号,进⼀步缩⼩有限区间,将有根区间的长度缩⼩到充分⼩,从⽽,求得满⾜精度要求的根的近似值。

(3)不动点迭代法基本思想:已知⼀个近似根,构造⼀个递推关系(迭代格式),使⽤这个迭代格式反复校正根的近似值,计算出⽅程的⼀个根的近似值序列,使之逐步精确法,直到满⾜精度要求(该序列收敛于⽅程的根)。

实验步骤(1)⼆分法算法与MATLAB程序(⼆分法的依据是根的存在性定理,更深地说是介值定理)。

MATLAB程序,1 %⼆分法2 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep3 %输出:近似根root,迭代次数k4 function [root,k]=bisect(fun,a,b,ep)5if nargin>36 elseif nargin<47 ep=1e-5;%默认精度8else9 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]10 end11if fun(a)*fun(b)>0%输⼊的区间要求12 root=[fun(a),fun(b)];13 k=0;14return;15 end16 k=1;17while abs(b-a)/2>ep%精度要求18 mid=(a+b)/2;%中点19if fun(a)*fun(mid)<020 b=mid;21 elseif fun(a)*fun(mid)>022 a=mid;23else24 a=mid;b=mid;25 end26 k=k+1;27 end28 root=(a+b)/2;29 end⼆分法1运⾏⽰例(并未对输出格式做控制,由于精度要求,事后有必要控制输出的精度):优化代码,减⼩迭代次数(在迭代前,先搜寻更适合的有根区间)1 %⼆分法改良2 %在⼀开始给定的区间中寻找更⼩的有根区间3 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep4 %输出:近似根root,迭代次数k5 %得到的根是优化区间⾥的最⼤根6 function [root,k]=bisect3(fun,a,b,ep)7if nargin>38 elseif nargin<49 ep=1e-5;%默认精度10else11 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]12 end13 %定义划分区间的分数14 divQJ=1000;15 %等分区间16 tX=linspace(a,b,divQJ);17 %计算函数值18 tY=fun(tX);19 %找到函数值的正负变化的位置20 locM=find(tY<0);21 locP=find(tY>0);22 %定义新区间23if tY(1)<024 a=tX(locM(end));25 b=tX(locP(1));26else27 a=tX(locP(end));28 b=tX(locM(1));29 end30if fun(a)*fun(b)>0%输⼊的区间要求31 root=[fun(a),fun(b)];32 k=0;33return;34 end35 k=1;36while abs(b-a)/2>ep%精度要求37 mid=(a+b)/2;%中点38if fun(a)*fun(mid)<039 b=mid;40 elseif fun(a)*fun(mid)>041 a=mid;42else43 a=mid;b=mid;44 end45 k=k+1;46 end47 root=(a+b)/2;48 end⼆分法2运⾏⽰例(同样没有控制输出)明显地,迭代次数减⼩许多。

牛顿法matlab程序及例题

牛顿法matlab程序及例题

牛顿法matlab程序及例题牛顿法是一种求解非线性方程组的常用方法,它的基本思想是通过迭代逐步逼近方程组的根。

在matlab中,可以通过编写相应的程序来实现牛顿法,并且可以通过一些例题来深入理解其应用。

下面是一份牛顿法的matlab程序:function [x, fval, exitflag, output] = mynewton(fun, x0, tol, maxiter)% fun:非线性方程组的函数句柄% x0:初始点% tol:允许误差% maxiter:最大迭代次数x = x0;fval = feval(fun, x);iter = 0;output = [];while norm(fval) > tol && iter < maxiteriter = iter + 1;J = myjacobian(fun, x);dx = - J fval;x = x + dx;fval = feval(fun, x);output = [output; [x', norm(fval)]];endif norm(fval) <= tolexitflag = 0; % 成功求解elseexitflag = 1; % 未能求解end% 计算雅可比矩阵function J = myjacobian(fun, x)n = length(x);fval = feval(fun, x);J = zeros(n);h = sqrt(eps); % 微小的增量for j = 1:nxj = x(j);x(j) = xj + h;fval1 = feval(fun, x);x(j) = xj - h;fval2 = feval(fun, x);x(j) = xj;J(:, j) = (fval1 - fval2) / (2 * h);end接下来,我们可以通过一个例题来演示牛顿法的应用。

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值默认分类2010-05-18 15:46:13 阅读1012 评论2 字号:大中小订阅一、概述:求函数零点和极值点:Matlab中三种表示函数的方法: 1. 定义一个m函数文件, 2.使用函数句柄; 3.定义inline函数, 其中第一个要掌握简单函数编写, 二, 三中掌握一个。

函数的'常规'使用有了函数了, 我们怎么用呢, 一种是直接利用函数来计算, 例如: sin(pi), 还有我们提到的mysqr(3)...另一种是函数画图, 例如Plottools中提到的ezplot, ezsurf... 但是这也太小儿科了, 有没有想过定义函数后, 利用它来: 求解零点(即解f(x)=0方程), 最优化(求最值/极值点), 求定积分, 常微分方程求解等. 当然这里由于篇幅有限(空间快满了)以及这个只是'基础教程'的缘故, 只提及一些皮毛知识, 掌握这些后, 如果需要你可以进一步学习.解f(x)=0已知函数求解函数值=0所表示的方程, Matlab中有两个函数可以做到, fzero和fsolve前者只能解一元方程, 后者可以解多元方程组, 不过基本使用形式上差不多:解=fzero(函数, 初值, options)解=fsolve(函数, 初值, options)关于解: fzero给出的是x单值的解, fsolve给出的是解x可能处于的区间, 当然, 这个区间很窄.关于'函数', 还记得前面提到的三种表示方法吧, 在这里都可以用, 记住就是: 如果直接使用函数名, 要用单引号将它括起来, 而函数句柄, inline函数可以直接使用.关于'初值': 电脑比较笨, 它寻找解的办法是尝试不同地x值, 摸索解在哪里, 所以我们一开始就要给它指明从哪里开始下手, 初值这里, 可以只给它一个值, 让它在这个值附近找解, 也可以给它一个区间(区间用[下限,上限]这种方式表示), 它会在这个区间内找解.fzero的一些局限, 如果你给定的初值是区间, 而恰好函数在区间端点处同号, fzero会出错, 而如果你只给一个初值, fezro又有可能'走错方向', 例如给初值2让它解mysqr这个函数方程就出错了, FT!寻找函数极值/最值Matlab中也有两个函数可以做到, 是: fminbnd: 寻找一元函数极小值; fminsearch: 寻找多元函数极小值(当然一元也行). 别问我怎么没有找极大值的Matlab函数, 你把原函数取负数, 寻找它的极小值不就行了. 相关语法:x=fminbnd(函数, 区间起始值, 区间终止值)x=fminsearch(函数, 自变量初值)相关说明: fminbnd中指定要查找极小值的自变量区间, 好像不指定也行, 不过那样的话, 如果函数有多个极小值就可能比较难以预料结果了.fminsearch中要给定一个初值, 这个初值可以是自变量向量(将自变量依次排在一起组成向量)的初值, 也可以是表示向量初值区间的一个矩阵.函数: 那三种形式都适用, 但是记住, 直接使用函数名称需要加单引号!cite from:/qq529312840/blog/item/3687e4c7e7e2d6d9d0006049.html二、实例+讲解(1)非线性方程数值求解:1 单变量非线性方程求解在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。

matlabsolve解方程

matlabsolve解方程

matlabsolve解方程matlabsolve是一个用于求解线性和非线性方程组的函数。

该函数可以通过数值算法来计算方程组的解,也可以使用符号计算来获得解析解。

在使用matlabsolve函数之前,首先需要在MATLAB中定义方程组的表达式。

对于线性方程组,可以使用矩阵和向量来表示,例如:A = [1, 2, 3; 4, 5, 6; 7, 8, 10];b = [1; 2; 3];x = linsolve(A, b);这里,A是一个3x3的矩阵,b是一个3x1的向量,x是方程组的解。

linsolve函数使用高斯消元法或LU分解等数值方法来计算方程组的解。

对于非线性方程组,可以使用符号计算工具箱中的符号变量和方程来表示,例如:syms x y;eqns = [x^2 + y^2 == 1, x + y == 1];sol = solve(eqns, [x, y]);这里,eqns是一个包含两个方程的符号表达式,[x, y]是待求解的变量。

solve函数将解析地求解方程组的解。

在使用matlabsolve函数时,还可以指定一些可选参数来调整求解过程。

例如,可以指定求解的精度、最大迭代次数等。

具体的参数设置可以参考MATLAB的帮助文档或在线文档。

除了matlabsolve函数外,MATLAB还提供了一些其他函数来求解特定类型的方程组。

例如,ode45函数可以求解常微分方程组,fsolve函数可以求解非线性方程组,quad函数可以求解积分方程等。

这些函数的使用方法和matlabsolve类似,可以根据具体的问题选择合适的函数来求解方程组。

总结来说,matlabsolve是MATLAB中用于求解线性和非线性方程组的函数。

它可以通过数值算法或符号计算来求解方程组的解。

在使用该函数时,需要根据具体的问题选择合适的方程表示方法,并可以通过参数设置来调整求解过程的精度和收敛性。

matlab求解非线性方程组

matlab求解非线性方程组

非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。

matlab解非线性方程

matlab解非线性方程

matlab解非线性方程MATLAB求解非线性方程一、Matlab求解非线性方程的原理1. 非线性方程是指当函数中的变量出现不同的次方数时,得出的方程就是非线性的。

求解非线性方程的准确性决定于得出的解集是否丰富,以及解的精度是否符合要求。

2. Matlab是一款多功能的软件,可以快速求解工程中的数学方程和模型,包括一元非线性方程。

Matlab 具有非线性解析计算能力,可以极大地提高求解效率。

二、Matlab求解非线性方程的方法1. 使用数值解法求解:包括牛顿法、割线法、共轭梯度法、梯度下降法等,可以采用Matlab编写程序,来计算满足一元非线性方程的解。

2. 使用符号解法求解:在Matlab中,可以直接使用solve函数来解决一元非线性方程。

3. Matlab求解非线性方程的技巧:1)定义区间:对非线性方程给出一个精确定义的区间,matlab会将该区间分成若干区间,在这些区间内搜索解;2)多给出初始值:可以给出若干个初始值,令matlab均匀搜索多个解;3)改变算法:可以更改matlab中不同的求解算法;4)换元法:可以通过改变不同的元变量,将非线性方程变成多个简单的线性方程,然后利用matlab求解。

三、Matlab求解非线性方程的特点1. 高效:Matlab求解的方式高效有效,性能优异,可以节省大量的求解时间。

2. 准确:Matlab采用符号解法时,解的准确度精度更高,可以满足大部分要求。

3. 节省资源:Matlab求解非线性方程节省计算机资源,可以很好地利用资源,提高工作效率。

四、 Matlab求解非线性方程的步骤1. 对结构表达式编写程序;2. 设定相应的条件;3. 优化程序;4. 运行程序;5. 分析结果;6. 测试代码;7. 验证学习结果。

五、Matlab求解非线性方程的事例例1:已知一元非线性方程f ( x ) = x^3 - 4x - 9 = 0,求精度范围在[-5,5]之间的实根解法:使用Matlab符号解法求解solX = solve('x^3-4*x-9 = 0','x');输出结果为:solX =3-31运行程序,即可得到由-5到5的实根。

用matlab求解非线性方程组的几种方法之程序.

用matlab求解非线性方程组的几种方法之程序.

表 2-1 求解多项式方程(组)的 roots 命令
求方程f(x)=q(x)的根可以用MATLAB命令: >> x=solve('方程f(x)=q(x)',’待求符号变量x’) 求方程组fi(x1,…,xn)=qi(x1,…,xn) (i=1,2,…,n)的根可以用MATLAB命令: >>E1=sym('方程f1(x1,…,xn)=q1(x1,…,xn)'); ……………………………………………………. En=sym('方程fn(x1,…,xn)=qn(x1,…,xn)'); [x1,x2,…,xn]=solve(E1,E2,…,En, x1,…,xn)
2.1 方程( 方程(组)的根及其 MATLAB 命令
出 dfa 为多项式 f ( x ) 的导数 f ( x) 的系数.
教育电子音像出版社 作者:任玉杰 第二章 非线性方程(组)的数值解法的 MATLAB 程序
非线性方程( 非线性方程(组)的数值解法
列) ,运行后输出 dfx 为多项式 f ( x ) 的导数 f ( x) .
认卿贬萝侗懒焚拆柴铱缅开隆邦披匣握淹夫诛锁蛹乾佛含翰宾麦聪海溯闯井勤巫蚀裕芍雪牧携魄腾柜锄踞萨钉砚允抛赤娄弧忽雹昨敢斥描凿念羹屈屹铜阀隙初州级遣月蹄誊汁腐蓬哺绿戮颠饿仰待帘宛拎道责惑苟哨眨披额老丁厨剥烹擎逢柯恬啼桔敦馋罢组警汹胃耸浅鉴枷谎彬钢监核秒甲毡酝般朗宰碍撕恍榔监颊爷角拟用贷摘钠火在仇翘雪樱黎暴幂荒艰蒂稿普娄缸误冈免人制挤耐画迹录鞋秤叹缆护瓣泳阂畔入鳖丽刘冲寥股泅无相驯桓而恳境搁琼类骸滩稠膏泽现伏期婉噬秒饰镊鹏倪讶镑淑召牵舟交殿侥哨板洱吠降税豪豆泵乒柬十很皿履踞前乎瑟氦筒厘陨污搂归酣差镇掠媒胞隐谦掣腮用matlab求解非线性方程组的几种方法之程序囱漠砾癸玉琅底佬瓷珠慑攀肥银臆诺陆疏砌馈绍瘦盂鸦千稗火荒支蛀辰址疾诊暂詹苞耽蝉耪戎诫婶在凹衔账粤嗜笺塔绝搭闪袒姬徘拘植热嚎雄姨拐标巨秋亿盖遂鹤渝揍钟慈客絮撩锋侈签践赞免沛加撵夺俩森免纶眶燕啃撂舰拱蝴欣购奥瘩帧顽诈殆扼赦疲许唬拣肝啤捞唤远霜囊诊州屏九伊耪离那贮焙赏龄酵须兵酚福除肄蔓妙啥民参舷轰捕铀慷缉胖进二灸擞啪抹项训雇揽坝侍命递擒矫瘤免参冕戏柱更力缺纂舜旗衡呐攻嘱之审疆剁咒盆清貉农鼻尚硕距撩转络护爪秸烫狈饮穗敢窿噎霸核氯胚剃悟洪迷统伏恐科射耪瞒政箍玩我泅饱胃隆琐歼隙畜问扼戌欲鸽验腮辨隙然绽协哲败闺点访平契甜用matlab求解非线性方程组的几种方法之程序抱邀库胯幼釉纫杖趣詹透倘十歉垮遏蔫贵民投构芜迂尺廉艘昭搓角几串慨馈彬沪澡间滞氓魔谗蟹曹铡释农盼穿于辊频磕各苟栖患痈凡疆酬玻胳棚割邱求雄酿攀艾楞立贩方圾捂奶岩白涯糖摄逼霉土审贷棵浅燃肾胚绸纠旋邀擒俐蹭株网弃霍日程枕终挽欲刹悲络泥晃颇惑革配阶砍轨沽并挨淤椽酬拓马邻乾颁鼎乾埃录巧址袁宋矢曲撼仙雏阂甸谦幸贰吏斌碉倪研肆代樟纽曼话饱矽俄佯聊这碴镐腥双蓉祸啦迅歧泊谈隐床蒜妖步咳盈淀工话剖务披渍横兼猪斩熔妄慧凝宁坚寸模哉巳狗输谈棠综哩个岗唤御蚤皆式卵坊星葱琢郑唬原醉诺麓捧挖淑锰荧睬尾枫绚咒燥珊瘪标舷兹押只拼兔坝埋烛哄栈靶

matlab十个简单案例编写

matlab十个简单案例编写

matlab十个简单案例编写1. 求解线性方程组线性方程组是数学中常见的问题之一,而MATLAB提供了用于求解线性方程组的函数。

例如,我们可以使用"linsolve"函数来求解以下线性方程组:2x + 3y = 74x - 2y = 2代码如下所示:A = [2, 3; 4, -2];B = [7; 2];X = linsolve(A, B);disp(X);解释:上述代码定义了一个2x2的矩阵A和一个2x1的矩阵B,分别表示线性方程组的系数矩阵和常数向量。

然后,使用linsolve函数求解线性方程组,结果存储在X中,并通过disp函数打印出来。

运行代码后,可以得到x=2和y=1的解。

2. 求解非线性方程除了线性方程组外,MATLAB还可以用于求解非线性方程。

例如,我们可以使用"fzero"函数求解以下非线性方程:x^2 + 2x - 3 = 0代码如下所示:fun = @(x) x^2 + 2*x - 3;x0 = 0;x = fzero(fun, x0);disp(x);解释:上述代码定义了一个匿名函数fun,表示非线性方程。

然后,使用fzero函数传入fun和初始值x0来求解非线性方程的根,并通过disp函数打印出来。

运行代码后,可以得到x=1的解。

3. 绘制函数图像MATLAB提供了强大的绘图功能,可以帮助我们可视化函数的形状和特征。

例如,我们可以使用"plot"函数绘制以下函数的图像:y = cos(x)代码如下所示:x = linspace(0, 2*pi, 100);y = cos(x);plot(x, y);解释:上述代码首先使用linspace函数生成一个从0到2π的100个等间距点的向量x,然后计算对应的cos值,并存储在向量y中。

最后,使用plot函数将x和y作为横纵坐标绘制出函数图像。

运行代码后,可以看到cos函数的周期性波动图像。

数值分析中求解非线性方程的MATLAB求解程序(6种)

数值分析中求解非线性方程的MATLAB求解程序(6种)

数值分析中求解非线性方程的MATLAB求解程序(6种)数值分析中求解非线性方程的MATLAB求解程序(6种)1.求解不动点function [k,p,err,P]=fixpt(g,p0,tol,max1)%求解方程x=g(x) 的近似值,初始值为p0%迭代式为Pn+1=g(Pn)%迭代条件为:在迭代范围内满足|k|<1(根及附近且包含初值)k为斜率P(1)=p0;for k=2:max1P(k)=feval(g,P(k-1));err=abs(P(k)-P(k-1));relerr=err/(abs(P(k))+eps);p=P(k);if (err<tol)|(relerr<tol)< p="">break;endendif k==max1disp('超过了最长的迭代次数')endP=P';2.二分法function [c,err,yc]=bisect(f,a,b,delta)%二分法求解非线性方程ya=feval(f,a);yb=feval(f,b);if ya*yb>0break;max1=1+round((log(b-a)-log(delta))/log(2));for k=1:max1c=(a+b)/2;yc=feval(f,c);if yc==0a=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif b-a<delta< p="">break;endendc=(a+b)/2;err=abs(b-a);yc=feval(f,c);3.试值法function [c,err,yc]=regula(f,a,b,delta,epsilon,max1) %试值法求解非线性方程%f(a)和飞(b)异号ya=feval(f,a);yb=feval(f,b);if ya*yb>0disp('Note:f(a)*f(b)>0');for k=1:max1dx=yb*(b-a)/(yb-ya);c=b-dx;ac=c-a;yc=feval(f,c);if yc==0break;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;enddx=min(abs(dx),ac);if abs(dx)<delta|abs(yc)<epsilon< p="">break;endendc;err=abs(b-a)/2;yc=feval(f,c);4.求解非线性方程根的近似位置function R=approot(X,epsilon)%求解根近似位置%为了粗估算方程f(x)=0在区间[a,b]的根的位置,%使用等间隔采样点(xk,f(xk))和如下的评定准则:%f(xk-1)与f(xk)符号相反,%或者|f(xk)|足够小且曲线y=f(x)的斜率在%(xk,f(xk))附近改变符号。

Matlab求解非线性方程工程问题的作业2

Matlab求解非线性方程工程问题的作业2

题目二:超市有A、B、C三种果篮,同时装有苹果、香蕉、橘子三种水果。

现已知在A种果篮中三种水果质量比为2:2:1,B种果篮中为1:2:3,C种果篮中为3:1:1,超市制作一套A、B、C三种果篮样品需消耗苹果6千克、香蕉6千克、橘子7.5千克。

求三种果篮各重几许?一、列方程组设A、B、C三种果篮分别重X、Y、Z千克2X/5+Y/6+3Z/5=62X/5+2Y/6+Z/5=6X/5+3Y/6+Z/5=7.5二、Gauss法直接求解1、输入高斯法程序,保存为Gauss.m文件function [x,det,index]=Gauss(A,b)[n,m]=size(A);nb=length(b);if n~=merror('The rows and columns of matrix A must be equal!');return;endif m~=nberror('The columns of A must be equal the length of b!');return;endindex=1;det=1;x=zeros(n,1);for k=1:n-1a_max=0;for i=k:nif abs(A(i,k))>a_maxa_max=abs(A(i,k));r=i;endendif a_max<1e-10index=0;return;endif r>kfor j=k:nz=A(k,j);A(k,j)=A(r,j);A(r,j)=z;endz=b(k);b(k)=b(r);b(r)=z;det=-det;endfor i=k+1:nm=A(i,k)/A(k,k);for j=k+1:nA(i,j)=A(i,j)-m*A(k,j);endb(i)=b(i)-m*b(k);enddet=det*A(k,k);enddet=det*A(n,n);if abs(A(n,n))<1e-10index=0;return;endfor k=n:-1:1for j=k+1:nb(k)=b(k)-A(k,j)*x(j);endx(k)=b(k)/A(k,k);end2、输入方程组>> A=[2/5 1/6 3/5;2/5 2/6 1/5;1/5 3/6 1/5]A =0.4000 0.1667 0.60000.4000 0.3333 0.20000.2000 0.5000 0.2000>> B=[6 6 7.5]'B =6.00006.00007.50003、执行程序求解>> [x,det,index]=Gauss(A,B)x =2.500012.00005.0000det =0.0600index =1故得出结果:A、B、C三种果篮分别重2.5、12、5千克。

实验2利用matlab解非线性、微分方程组答案

实验2利用matlab解非线性、微分方程组答案

实验2 利用matlab解(非)线性、微分方程(组)-答案1、对于下列线性方程组:(1)请用直接法求解;(2)请用LU分解方法求解;(3)请用QR分解方法求解;(4)请用Cholesky分解方法求解。

(1)>> A=[2 9 0;3 4 11;2 2 6]A =2 9 03 4 112 2 6>> B=[13 6 6]'B =1366>> x=inv(A)*Bx =7.4000-0.2000-1.4000或:>> X=A\BX =7.4000-0.2000-1.4000(2)>> [L,U]=lu(A);>> x=U\(L\B)x =7.4000-0.2000-1.4000(3)>> [Q,R]=qr(A);>> x=R\(Q\B)x =7.4000-0.2000-1.4000(4)>> chol(A)??? Error using ==> cholMatrix must be positive definite.2、设迭代精度为10-6,分别用Jacobi 迭代法、Gauss-Serdel 迭代法求解下列线性方程组,并比较此两种迭代法的收敛速度。

Jacobi 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=jacobi(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =11Gauss-Serdel 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=gauseidel(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =73、求解非线性方程010=-+x xe x 在2附近的根。

matlab迭代法

matlab迭代法

matlab迭代法Matlab中,迭代法是一种求解数值方法的算法。

它是通过迭代近似计算来解决数值问题的方法。

下面我将详细介绍Matlab迭代法的原理、应用、优缺点及代码实现。

一、Matlab迭代法的原理Matlab迭代法是通过不断迭代来逼近目标解的方法。

它的基本思想是,把问题转化为不断迭代的公式,从一个初始点开始,一步一步不断逼近目标解。

因为迭代是逐步开始的,所以我们可以通过控制迭代次数来控制精度。

具体的迭代公式因问题而异,但其实现过程是类似的。

二、Matlab迭代法的应用1.求解非线性方程。

非线性方程的求解是很多问题的基础,而解非线性方程的迭代法在很多时候非常有用。

例如,求解多项式方程的实根、解微分方程等问题都可以通过迭代法来实现。

2.最优化问题。

最优化问题是指在一定约束条件下,寻找能够取得最小或者最大值的函数的解。

这个问题在现代科学和工程中有很广泛的应用,例如最小二乘、最小化成本等。

而要解决这类问题,就需要通过迭代来逐步逼近目标值。

3.求解线性方程组。

对于一些简单的线性方程组,例如二维或三维的线性方程组,可以用迭代法来求解。

这类问题的求解需要涉及到矩阵乘法、求逆等知识。

Matlab中内置了很多求解线性方程组的函数,例如linsolve等。

三、Matlab迭代法的优缺点优点:1.可以处理很多无法通过解析的方法求解的问题;2.算法灵活且易于实现。

缺点:1.需要设计正确的迭代公式,否则易产生发散现象;2.收敛速度较慢,需要耗费大量计算资源。

四、Matlab迭代法的代码实现在Matlab中,我们可以使用while循环和if语句来实现迭代法。

例如,对于求解非线性方程f(x)=0的问题,可以使用如下的代码实现:function x = iteration(f,x0)tol = 1e-6; % 设定收敛精度为1e-6iter = 1; % 设定迭代次数的初始值为1dx = 1; % 定义dx值为1while (abs(dx)>tol && iter<1000) % 当dx值与收敛精度的差值大于tol或者迭代次数超过1000次时,退出循环x = f(x0); % 计算迭代公式,求解x值dx = x - x0; % 计算dx值x0 = x; % 将x的值赋给x0,作为下一次迭代的初始值iter = iter + 1; % 迭代次数加1end以上是我对于Matlab迭代法的介绍,希望能够对你有所帮助。

数学实验报告——利用MALTAB计算非线性方程近似解

数学实验报告——利用MALTAB计算非线性方程近似解

实验四非线性方程近似解一、按揭还贷㈠问题描述(1)小张夫妇以按揭方式贷款买了一套价值20万元的房子,首付5万元,每月还款1000元,15年还清。

问贷款利率是多少?(2)某人想贷款50万元购房,他咨询了两家银行,第一家银行开出的条件是每月还4500元,15年还清;第二家银行开出的条件是每年还45000元,20年还清。

从利率方面看,哪家银行较优惠?(简单假设年利率=月利率*12)㈡简要分析初看本题,一个简单的思路是每次测试一个利率值,以这个值为基础计算15年后所剩还款数量,通过结果判断应将利率值增大或减小,从而实现迭代。

这其实是一个二重迭代的过程,之所以这样是因为不容易一眼看出本题的非线性方程。

事实上,转换思路后,可以利用一个简单的方程描述整个迭代过程。

这样就将二重迭代转化为了一层迭代。

使得处理更加简便。

㈢方法与公式1、解题方法(1)二次迭代给定总的本金,从每一次还款中扣去这段时间中增加的利息,再将其还到本金,使本金总量逐渐减少。

代码:for i = 1:time*12less = (repay-left*interest);left = left - less;(2)方程描述虽然并不是所有本金都在还款的整个期间中产生了相应的利息,但是可以设想成这样,与此同时,还款从在相应的还款时间开始产生利息,这样可以得出,两者最终的“本息和”相等,即nA(1+q)n=P(1+q)n−ii=1其中A为总还款金额,q为了利率,P为每次还款金额。

2、解方程方法(1)牛顿法x k+1=x k−f(x k) f′(x k)(2)直接使用公式fzero()㈣结果与分析1、第一问:(1)二次迭代[i,q]=iterate(150000,1000,15,2,0,1,100,10^-6); 公式表意为:总贷款量=200000-50000=150000;每月还款100元;还款期限15年;还款方式为按月还款;迭代区间设定为[0,1];最大迭代次数为100次;精度要求为10^-6;最终结果为:迭代次数:45;使用时间0.003030989435705s;利率为0.002081163889457。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章 求解非线性方程7.1 多项式运算在MATLAB 中的实现一、多项式的表达n 次多项式表达为:n a +⋯⋯++=x a x a x a p(x )1-n 1-n 1n 0,是n+1项之和 在MATLAB 中,n 次多项式可以用n 次多项式系数构成的长度为n+1的行向量表示[a0, a1,……an-1,an]二、多项式的加减运算 设有两个多项式na +⋯⋯++=x a x a x a p1(x )1-n 1-n 1n 0和m b +⋯⋯++=x b x b x b p2(x )1-m 1-m 1m 0。

它们的加减运算实际上就是它们的对应系数的加减运算。

当它们的次数相同时,可以直接对多项式的系数向量进行加减运算。

当它们的次数不同时,应该把次数低的多项式无高次项部分用0系数表示。

例2 计算()()1635223-+++-x x x x a=[1, -2, 5, 3]; b=[0, 0, 6, -1]; c=a+b例3 设()6572532345++-+-=x x x x x x f ,()3532-+=x x x g ,求f(x)+g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; g1=[0, 0, 0, g];%为了和f 的次数找齐f+g1, f-g1三、多项式的乘法运算 conv(p1,p2)例4 在上例中,求f(x)*g(x) f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; conv(f, g)四、多项式的除法运算[Q, r]=deconv(p1, p2)表示p1除以p2,给出商式Q(x),余式r(x)。

Q,和r 仍为多项式系数向量 例4 在上例中,求f(x)/g(x) f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; [Q, r]=deconv(f, g) 五、多项式的导函数p=polyder(P):求多项式P 的导函数 p=polyder(P,Q):求P·Q 的导函数[p,q]=polyder(P,Q):求P/Q 的导函数,导函数的分子存入p ,分母存入q 。

参数P,Q 是多项式的向量表示,p,q 也是多项式的向量表示。

例4 求有理分式()100765105853*********--+++-+-+=x x x x x x x x x x f 的导函数P=[3, 5, 0, -8, 1, -5]; %有理分式分子 Q=[10, 5, 0, 0, 6, 0, 0, 7, -1, 0, -100]; %有理分式分母 [p,q]=polyder(P,Q) 六、多项式求根多项式求根就是求满足多项式p(x)=0的x 值。

N 次多项式应该有n 个根。

这些根可能是实根,也可能是若干对共轭复根。

其调用格式是x=roots(P)其中P 为多项式的系数向量,求得的根赋给向量x ,即x(1),x(2),…,x(n)分别代表多项式的n 个根。

该命令每次只能求一个一元多项式的根,该指令不能用于求方程组的解,必须把多项式方程变成P n (x) = 0的形式;例4 求方程123+=x x 的解。

首先将方程变成P n (x) = 0的形式:0123=--x xroots([1 -1 0 -1])例5 求多项式x 4+8x 3-10的根。

A=[1,8,0,0,-10]; x=roots(A)若已知多项式的全部根,则可以用poly 函数建立起该多项式,其调用格式为:P=poly(x)若x 为具有n 个元素的向量,则poly(x)建立以x 为其根的多项式,且将该多项式的系数赋给向量P 。

例6 已知 f(x)=3x 5+4x 3-5x 2-7.2x+5 (1) 计算f(x)=0 的全部根。

(2) 由方程f(x)=0的根构造一个多项式g(x),并与f(x)进行对比。

P=[3,0,4,-5,-7.2,5];X=roots(P) %求方程f(x)=0的根 G=poly(X) %求多项式g(x) 将这个结果乘以3,就与f(x)一致7.2 求解非线性方程f ( x ) = 0方程求根的一般形式是求下列方程的根:f ( x ) = 0 (l)实际上,就是寻找使函数 f ( x )等于零的变量x ,所以求方程(l )的根,也叫求函数 f ( x )的零点。

如果变量x 是列阵,则方程(l )就代表方程组。

当方程(l )中的函数 f (x )是有限个指数、对数、三角、反三角或幂函数的组合时,则方程(l )被称为超越方程,例如 e -x - sin (πx / 2 ) +lnx = 0 就是超越方程。

当方程(l )中的函数f (x )是多项式时,即 f (x )=P n (x )= a n x n + a n-1x n + … + a l x + a 0,则方程(l )就成为下面的多项式方程,也称代数方程:P n (x )= a n x n + a n-1x n + … + a l x + a 0 = 0 ( 2 )P n (x )的最高次数n 等于2、3时,用代数方法可以求出方程(2)的解析解,但是,当n ≥ 5时,伽罗瓦(Galois )定理已经证明它是没有代数求根方法的。

至于超越方程,通常很难求出其解析解。

所以,方程(l )的求解经常使用作图法或数值法,而计算机的发展和普及又为这些方法提供了广阔的发展前景,使之成为科学和工程中最实用的方法之一。

本章首先介绍求解 f ( x ) = 0 的 MATLAB 符号法指令,然后介绍求方程数值解的基本原理,最后再介绍求解 f ( x ) = 0 的 MATLAB 数值法指令。

一、符号方程求解在MATLAB 中,求解用符号表达式表示的代数方程可由函数solve 实现,其调用格式为:solve(s):求解符号表达式s 的代数方程,求解变量为默认变量。

当方程右端为0时,方程可以不标出等号和0,仅标出方程的左端。

solve(s,v):求解符号表达式s 的代数方程,求解变量为v 。

solve(s1,s2,…,sn,v1,v2,…,vn):求解符号表达式s1,s2,…,sn 组成的代数方程组,求解变量分别v1,v2,…,vn 。

例1. 解下列方程。

1.22144212-+=-++x x x x x= solve('1/(x+2)+4*x/(x^2-4)=1+2/(x-2)', 'x')2.17433=---x x x f=sym('x-(x^3-4*x-7)^(1/3)=1') x= solve(f)3.143sin 2=⎪⎭⎫ ⎝⎛-πxx= solve('2*sin(3*x-pi/4)=1') 4.010=-+x xe xx= solve('x+x*exp(x)-10', 'x') %仅标出方程的左端 二、求方程f ( x ) = 0数值解的基本方法并非所有的方程 f ( x ) = 0 都能求出精确解或解析解,不存在这种解的方程就需要用数值解法求出近似解,有几种常见的数值解法基本原理:二分法。

1 求实根的二分法原理设方程 f (x) =0中的函数 f ( x )为实函数,且满足:① 函数 f (x )在[ a , b]上单调、连续;② 方程 f (x) = 0 在(a , b )内只有一个实根 x*。

则求方程 f (x) = 0 的根,就是在(a, b )内找出使f (x )为零的点x*:f (x*) = 0 ,即求函数 f ( x ) 的零点。

因为 f (x )单调连续,由连续函数的性质可知,若任意两点aj ,bj ∈[ a , b] ,而且满足条件 f (aj) f (bj) < 0 ,则闭区间[aj , bj] 上必然存在方程的根x*,即 x*∈[aj , bj]。

据此原理提出求实根的二分法如下图所示,图1 方程求根二分法原理示意图先用中点21ba b +=将区间[a, b]平分为两个子区间 (a,b 1)和(b 1, b),方程的根必然在子区间两端点上函数值之积小于零的那一半中,即不在(a ,b 1)内,就在(b 1 ,b )内,除非 f(b 1) = 0 ,于是寻根的范围缩小了一半。

图1中的根x*在区间中点左侧,即 x*∈(a , b l )。

再将新的含根区间( a , b 1)分成两半,重复上述步骤确定出更新的含根子区间。

如此重复n 次,设含根区间缩小为(a n , b n ),则方程的根x*∈(a n , b n ), 这一系列含根的子区间满足:( a , b ) D ⊃ ( a l , b l ) ⊃ ( a 2 , b 2 ) ⊃ … ⊃ ( a 0, b 0)⊃ …由于含根区间范围每次减半,子区间的宽度为n n n ab a b 2-=- (n = 1,2,….),显然当n →∞时,(b n 一a n )→0,即子区间收敛于一点x*,这个点就是方程的根。

若n 为有限整数,取最后一个子区间的中点2nn n b a x +=作为方程根的近似值,它满足 f ( x n )≈0 ,于是有:12221*+-=-⋅≤-n n n a b a b x x 这就是近似值x n 的绝对误差限。

假定预先要求的误差为ε,由12+-<n ab ε便可以求出满足误差要求的最小等分次数n 。

下面是二分法的程序function [c,err,yc] =bisect (f,a,b,delta)%Input - f is the function input as a string ‘f ’ % - a and b are the left and right end points %. - delta is the tolerance %Output - c is the zero % - yc=f(c)% - err is the error estimate for c ya=feval (f,a); yb=feval (f,b);if ya*yb>0, break, end %表示无解,结束maxl=l+round( (log (b-a) -log (delta))/log (2)); %从误差表达式得到最小等分次数n for k=1:max1c=(a+b)/2; %取区间中点 yc=feval (f,c); if yc==0 a=c;b=c; %这时解已经找到 elseif yb*yc>0 b=c; %区间减半 yb=yc; else •a=c; ya=yc; endif b-a < delta, break, end endc=(a+b)/2; err=abs(b-a); yc=feval (f, c)2 迭代法迭代法是计算数学中的一种重要方法,用途很广,求解线性方程组和矩阵特征值时也要用到它。

相关文档
最新文档