数学物理方程第一章
第一章+数学物理方程概述
第一章 数学物理方程概述数学物理方程,其定义是研究反映物理规律的数学方程。
由于一般的物理量基本都具有多个变量()t z y x ,,,,因此,它所满足的微分方程属于偏微分方程。
本章的目的,归纳出几个常见物理问题对应的数学物理方程。
§1.1 常见数学物理方程的导出1.1.1 常见的几个偏微分方程波动方程:数学上称双曲型方程,表现为场的波动性。
热传导方程或扩散方程:数学上称抛物型方程,表现为不可逆的输运过程。
拉普拉斯(Laplace )方程和泊松方程:数学上称椭圆型方程,表现为场的稳定分布。
()⎪⎩⎪⎨⎧−=∇=∇zy x u u ,,022ρ其中,算符z y x e ze y e x ˆˆˆ∂∂+∂∂+∂∂=∇,∇⋅∇=∇=Δ2称为拉普拉斯算子。
直角坐标系下, ()xx u xux u =∂∂=∇222一维yy xx u u y uxu y x u +=∂∂+∂∂=∇22222),( 二维 ()zz yy xx u u u zuy u x u z y x u ++=∂∂+∂∂+∂∂=∇2222222,, 三维1.1.2 常见数学物理方程的导出一、波动方程的导出1、弦的横振动如图1所示,一根拉紧的弦在平衡位置(x 轴)附近做横向微小振动()1<<α。
已知弦的线密度为ρ,作用于弦单位长度的外力为()t x F ,,方向垂直x 轴,弦上的张力为T ,()t x u ,表示弦上x 点在时刻t 的距离平衡位置的垂直位移。
推导弦横向振动所满足的方程。
图1 弦的横振动将弦上任意一小段()x x x Δ+,作为研究对象,由牛顿第二定律,小弦纵向和横向的运动方程分别为⎪⎩⎪⎨⎧∂∂⋅Δ=Δ+−=2211222211sin sin cos cos t ul l F T T T T ραααα由于弦的振动幅度比较小(α较小),所以有如下近似条件: T T T ==⇒≈=21111cos cos αα,T 为常数; x x u ∂∂=⇒==1111sin sin tan αααα,xx xuΔ+∂∂=2sin α;弦长x dx x u l xx xΔ≈⎟⎠⎞⎜⎝⎛∂∂+=Δ∫Δ+21。
数学物理方程第一章、第二章习题全解
18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
第一章 数学物理中的偏微分方程
M'
T'
u ( x, t ) sin tan x u ( x dx, t ) sin ' tan ' x
ds
'
T
M
gds
x x dx x
T T '
其中: m
ds
u ( x dx, t ) u( x, t ) T gds ma x x
举例(多元函数)
2u 2u 2u 2 2 0 2 x y z u u u u 2 2 2 x y z t
2 2 2
拉普拉斯(Laplace)方程
热传导方程
u u u u 2 2 2 2 x y z t
2 2 2 2
波动方程
14
物理模型与定解问题的导出
15
弦振动方程的导出
16
一长为L的柔软均匀细弦,拉紧后,当它 受到与平衡位置垂直的外力作用时,开始作微 小横振动。 假设这运动发生在同一平面内, 求弦上各点位移随时间变化规律。
弦上各点作往返运动的主要原因在于弦的张力 作用,弦在运动过程中各点的位移、加速度和张力 都在不断变化,但它们遵循物理的运动规律。由此 可以建立弦上各点的位移函数所满足的微分方程。
2 vxvxx vy vyy v2
拟线性PDE
8.
9.
拟线性PDE
a( x, y)(vxx vyy ) ev (vx vy )
半线性PDE
10. 11.
ut ux sin u
半线性PDE 完全非线性PDE
ut ux
2
2
u2
12
1.2 三个典型的方程
数学物理方程
方程 uxx uyy A5ux B5uy C5u D5, 称为椭圆型方程的 标准形。
三、方程的化简
步骤:第一步:写出判别式 a122 a11a22 ,根据判别式判 断方程的类型;
第二步:根据方程(1)写如下方程
a11
(
dy dx
)
2
2a12
dy dx
a22
0
(2)
称为方程(1)的特征方
(2)当 0 时,特征线 (x, y) c. 令 (x, y), (x, y).
其中 (x, y)是与 (x, y)线性无关的任意函数,这样以, 为新变量方程(1)化为标准形 u Au Bu Cu D,
其中A,B,C,D都是 , 的已知函数。
(3)当 0 时,令 1 ( ), 1 ( ). 以 , 为新
程。方程(2)可分解为两个一次方程
dy a12 (3)
dx
a11
称为特征方程,其解为特征线。
设这两个特征线方程的特征线为 (x, y) c1, (x, y) c2.
令 (x, y), (x, y).
第三步(1)当 0 时,令 (x, y), (x, y). 以 , 为 新变量方程(1)化为标准形 u Au Bu Cu D, 其中A,B,C,D都是, 的已知函数。
(3)若在(x0, y0 ) 处 0, 称方程(1)在点 (x0, y0 ) 处为椭圆型方程。
例:波动方程 utt a2uxx f (x,t) a2 0 双曲型
热传导方程 ut a2uxx f (x,t) 0 抛物型
位势方程 uxx uyy f (x, y) 1
椭圆型
二、方程的标准形式
定义:方程
uxy A1ux B1uy C1u D1,
第1章 复数与复变函数数学物理方程
z平面
ω 平面
复变函数w =f(z)可以写成w =u(x,y)+iv(x,y), 其中z=x+iy
All Rights Reserved by CDUT.
复变函数论
第1章 复数与复变函数
几类基本初等函数 幂函数
n为正整数
z n n (cos i sin ) n n (cosn i sin n ) n e in
z1
z2 p
区域D连同它的边界一起构成闭区域,记为 D
All Rights Reserved by CDUT.
复变函数论
第1章 复数与复变函数
定义5:单连通域与多连通域
若在区域D内作任意闭合曲线,曲线所包围的所有点都属于D, 那么D称为单连通区域,否则,D称为复连通区域。 规定:若观察者沿边界线走时,区域总保持在观察者的左边, 那么观察者的走向为边界线的正向;反之,则称为边界线的 负向。
两个复数相乘等于 它们的模相乘,幅 角相加
All Rights Reserved by CDUT.
复变函数论
第1章 复数与复变函数
z1 x1 x2 y1 y2 x1 y2 x2 y1 i 2 2 2 2 z2 x2 y 2 x2 y 2 r1 cos(1 2 ) i sin(1 2 ) r2 r1 exp[i(1 2 )] r2
指数函数 e z e x cos y i sin y
e z e x , Arg e z y
z x iy
性质
周期性
y 0时, e z e x ; x 0时, eiy cosy isiny
exp(z i2 ) exp(z)
第1章 数学物理方程及定解问题
2
T
ρ
, f (x, t) =
F(x, t)
ρ
, 得 力 用 ,弦 动 程 外 作 下 振 方 为
一维非齐次波动方程
∂ 2 u( x , t ) ∂ 2 u( x , t ) − a2 = f ( x , t ). 2 2 ∂t ∂x
二维波动方程或膜振动方程
一块均匀的紧张的薄膜,离开静止水平位置作垂直 于水平位置的微小振动,其运动规律满足
2 ∂ 2u ∂ 2u 2∂ u = a 2 + 2 + f ( x, y , t ) 2 ∂t ∂y ∂x
在时刻t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t ) ∫x ρ ∂t dx;
x + ∆x x
在时刻t + ∆t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t + ∆t ) dx . ∫x ρ ∂t
∫
=∫
∂u( x , t + ∆ t ) ∂u( x , t ) − ρ dx . ∂t ∂t
第一节 波动方程及定解条件
1.一维波动方程或弦振动方程 一维波动方程或弦振动方程
物理模型
一长为 l 的柔软、均匀的细弦,拉紧以后,让它离 的柔软、均匀的细弦,拉紧以后, 开平衡位置在垂直于弦线的外力作用下作微小横振 求弦上个点的运动规律。 动,求弦上个点的运动规律。
张紧的、静止的弦是一直线,该直线是弦的 平衡位置,以此为 x 轴。振动总是传播到整 根弦,横振动就是弦中的质点离开平衡位置 的位移垂直于 x 轴, 可用 t 时刻弦上各质点 x 离开平衡位置的横向位移 u ( x, t ) 来描述弦的 状态, 某一时刻 u ( x, t ) 的分布代表弦的形状, 称为位形。由于弦中质点的位移不同导致弦 的形变,形变产生应力,为了便于应力的描 述,不妨假定所研究的弦为“柔软的”弦。
数学物理方程 第一章典型方程和定解条件
sin ' tan ' u(x dx,t)
x
则
T T'
u
M'
ds
T'
'
M
gds
T
x
x dx x
T
u(
x dx, x
t)
u ( x, x
t
)
gds
ma
T
u(x dx,t) x
u ( x, x
t)
gds
ma
m ds
其中:
a 2u(x,t) t 2
ds dx
T
u(x dx,t) x
微小: 振幅极小, 张力与水平方向的夹角很小。
u
M'
ds
T'
'
M
gds
T
x
x dx x
牛顿运动定律:
横向:T cos T 'cos ' 0
纵向:T sin T 'sin ' gds ma 其中: cos 1 2 4 1
2! 4!
cos ' 1
sin tan u(x,t)
数学物理方程与特殊函数
☆ 数学与物理的关系
数理不分家
☆ 数学物理方程: 用数学方程来描述一定的物理现象
数学物理方程(简称数理方程)是指自然科学和工程技术的各门 分支学科中出现的一些偏微分方程(有时也包括积分方程、微分方程等), 它们反映了物理量关于时间的导数和关于空间变量的导数 之间的制约关系。例如声学、流体力学、电磁学、量子力学等等 方面的基本方程都属于数学物理方程的研究对象。
• 如图,取杆长方向为x轴方向,垂直于杆长 方向的各截面均用平行位置x标记;在任一 时刻t,此截面相对于平衡位置的位移为u( x, t )
数学物理方程答案谷超豪
数学物理方程答案谷超豪数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程u ?x.u?2u?ux2?[l?(x??x)]∣x??x?g?[l?x]∣?gxx?x?t利用微分中值定理,消去?x,再令?x?0得2u??ug[(l?x)]。
x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程2222u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?y x,y,t有二阶连续偏导数。
且232u(t2?x2?y2)?tt35u(t2?x2?y2)2?3(t2?x2?y2)2?t22t(t2x2?y2)32(2t2?x2?y2)u(t2?x2?y2)?x32x2u?x2t?x22352?2222?22?y?3t?x?yx52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2 2u2?u?2?a2t?x?ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5?t2?x2?y22t2?2x2?y22u?x22u?y2t?x?225?y222t2x?y22t2.2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
第一章----波动方程
总之:
无外力作用的一维弦振动方程:
2u t 2
a2
2u x2
0
外力作用下的弦振动方程:
(1.4)
2u t 2
a2
2u x2
f (x,t)
(1.5)
其中 a2 T , f F , f 称为非齐次项(自由项)。
注:弦振动方程也叫波动方程,因为它描述的是一种 振动或波动现象,后面将给出解释。
1973年布莱克(Black)和休尔斯(Scholes)建立了倒向 微分方程决定欧式期权的无套利价格:
f t
rS
f S
1 2S2
2
2 f S 2
rf
这里,对买入期权有 f (S,t) |tT max{ST X ,0} ;对卖出期权有
f (S,t) |tT max{X ST ,0} 。其中 r 为无风险利率, S 为股票价格,
一般步骤(从宇宙探星谈起): 1、将物理问题归结为数学上的定解问题; 2、求解定解问题; 3、对求得的解给出物理解释。
四、偏微分方程的研究内容-适定性的概念
1、存在性 2、唯一性 3、稳定性
如果一个定解问题的解是存在的、 唯一的,而且是稳定的,则称该定 解问题是适定的。
五、微分方程的重要作用
可以说有了微积分,就有了微分方程 (微积分是17世纪为了解决物理、力学、 天体问题而产生的,而这些问题多为数学 物理方程)。
1 (tan )2 dx 1 2 dx dx
(2)弦上各点的张力是常数
由于弦做横振动,弦沿 x 轴无运动,所以合力为零
T1 cos1 T2 cos2 T1 T2 T
数学物理方程 陈才生主编 课后习题答案 章
1.1 基本内容提要
1.1.1 用数学物理方程研究物理问题的步骤 (1) 导出或者写出定解问题,它包括方程和定解条件两部分; (2) 求解已经导出或者写出的定解问题; (3) 对求得的解讨论其适定性并且作适当的物理解释.
1.1.2 求解数学物理方程的方法 常见方法有行波法(又称D’Alembert解法)、分离变量法、积分变换法、Green函
q = −k∇u,
其中k 为热传导系数,负号表示热量的流向和温度梯度方向相反.写成分量的形式
qx = −kux, qy = −kuy, qz = −kuz.
(3) Newton冷却定律. 物体冷却时放出的热量−k∇u 与物体和外界的温度差 u 边 − u0 成正比, 其 中u0为周围介质的温度.
·2·
1 n
en2
t
sin nx
(n
1), 满足
ut = −uxx,
(x, t) ∈ R1 × (0, ∞),
u(x, 0) = 1 +
1 n
sin
nx,
x ∈ R1.
显然, 当n → +∞时supx∈R
un(x, 0) − 1
=
1 n
→
0.
但是, 当n → ∞时
sup
x∈R1 ,t>0
un(x, t) − 1
∂2u ∂t2
=
E ρx2
∂ ∂x
x2
∂u ∂x
.
(1.3.9)
解 均匀细圆锥杆做微小横振动,可应用Hooke定律,并且假设密度ρ是常数. 以u¯ 表 示 图1.1所 示[x, x + ∆x]小 段 的 质 心 位 移, 小 段 质 量 为ρS∆x, S是 细
数学物理方程
x x0 时,对 y(x,x0,y0), 有 y 0 ,则称 y 0 解稳定。
定义11:
设 yg(x,y)为方程 的平凡解, 00,x0, 0,y0
若 y0 ,当 x1 x时0 ,
,
有 y(x1,x0,y0)
,则 y(x)bk(x,t)y(t)dt a
y
(
x0
)
y0
称为SturmLiouville方程。
六、微分方程解的理论基础
定义8
对于一阶微分方程,称以下问题为Cauchy问题:
f(x, y, y, y)0, t(, ) a1y()a2y()a3y()a4y()a5
定义9
对于二阶微分方程,称以下问题为边值问题:
y 0
定义10:
设为 yg(x,y) 方程 0,x0 I,(,x0)0, y0的平凡解,
一、散度与通量
设S是一分片光滑的有向曲面,其单位侧向量
为 A(x, y, z),则向量场 AdSAn0dS沿曲面S的第二类曲
面积分
S
S
AdS An0dS
S
S
p(x, y, z)dydzq(x, y, z)dzdxr(x, y, z)dxdy S
(px qy rz)dxdydz V
称为向量场通过曲面S向着指定侧的通量。
求导算子D:
梯度算子
与Laplace算子x,
, y
z
是两个最基本的算符:
x22 y22 z22
uu(x, y, z)
设为向量场,graduu为数值函数,则有
以下公式:
divA A
rot A A
2u u gradu u
( u v ) u v u v
数学物理方程数学物理第一章
偏分方程中所有最高阶 偏导数都是线性的,而 其系数
本课遇到一二阶线性偏微分方程的一般表达形式 一阶线性偏微分方程的一般表达形式
u u a( x, y ) b( x, y ) c( x, y )u f ( x, y ) x y
二阶线性偏微分方程的一般表达形式
2u 2u 2u A( x, y ) 2 2 B( x, y ) C ( x, y ) 2 x xy y u u D( x, y ) E ( x, y ) F ( x, y )u G ( x, y ) 0 x y
在数学物理方程中,我们特别强调通过分析过程推测可能得到 的结论!而对结论的严格论证则常给予略去。这种做法并不意 味着可以取消综合过程,而是意味着分析过程从方法到结论都 能给我们一些新的结论,而验证结论的正确性原则上没有什么 困难。
正因为分析过程的任务在于探求新结论,而结论的确实成立与 否还需另行证明,所以在分析过程的推理中,并不要求十分严 格,特别的不要由于某些定理的条件限制而束缚自己的思路, 这是本课程中应该注意的。
2
2u
二阶线性非齐次的
三阶非线性
2
3u x y
2
ln u 0
§2方程及定解问题的物理推导
2.1、弦振动方程 2.1.1、物理模型
设有长为 l一 根 拉 紧 的 均 匀 柔 软 弦 细, 两 端 被 固 定 在 O, A 两 点 , 且 在 单 位 长 度受 上到 垂 直 于 OA向 上 的 力 F作 用 当 它 在 平 衡 位 置 附 近垂 作直 于 OA方 向 的 微 小 横 向 振 动
18世纪著名数学家、物理学家 达朗贝尔(1717-1783欧拉(1707-1783))
弦振动的研究先驱
第一章_波动方程
假定有垂直于x轴方向的外力存在,并设其线密度为F(x,t),则 弦段(x, x+Δx)上的外力为:
x x
x
F ( x ,t) dx
它在时间段(t, t+Δt)内的冲量为:
t x
t t x x
F ( x , t ) dx dt
数学物理方程
第一章 波动方程
于是有:
2 2 u ( x , t ) u ( x , t ) [ 2 T F ( x , t )] dx dt 0 2 t x t x t t x x
数学物理方程
第一章 波动方程
回 答 下 列 方 程 是 线 性、 的非 线 性 的 ? 齐 次 非次 齐? 阶 数 ?
(1)
4u
4
x x y y u u ( 2)u xy 0 x x
2u
2
2
4u
2 2
4u
4
0
四阶线性齐次 一阶非线性,拟线性的 二阶线性齐次的 二阶线性非齐次的 三阶非线性
要在区域 ( 0 x l ,t 0 )上(见右上图)求上述定解问题的解,就是
要求这样的连续函数u(x, t) ,它在区域0<x<l,t>0中满足波动方程(2.1);在x 轴上的区间[0,l]上满足初始条件(2.2);并在边界x=0和x=l上满足边界条件 (2.3)和 (2.4)。 一般称形如(2.3)和(2.4)的边界条件为第一类边界条件,也叫狄利克雷 (Dirichlet)边界条件。
非均匀弦的强迫横振动方程
一维波动方程不仅可以描述弦的振动,还可以描述: 弹性杆的纵向振动 管道中气体小扰动的传播 ………等等 因此,一个方程反应的不止是一个物理现象, 而是一类问题。
数学物理方程(谷超豪)课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
1 偏微分方程定解问题
(5)微小横振动——绝对位移和相对位移都很小。
建立坐标系:确立未知函数 研究对象:u ( x, t ) ,弦上某点在 t 时刻的横向位移。
7
数学物理方程
第1章偏微分方程定解问题
微元分析法:取微元[x,x+dx], t时刻 牛顿运动定律: F=ma
2 u ( x, t ) dx u0 T t , x dx T t , x G t , x; dx 2 t T x dx g t , x dxu0
17
数学物理方程 翻译:对微元应用物理定律 dt时间内温度升高所需热量
第1章偏微分方程定解问题
Q Q流入 Q放出 u Q cdxdydz dt t
2u 2u 2 u Q流入 Q左右 Q上下 Q前后 k( 2 2 2 )dtdxdydz x y z u u Q左右 k dtdydz k dtdydz x (t , x, y , z ) x (t , x dx, y , z ) 2u z k 2 dtdxdydz (x+dx, x+dy, z+dz) x 2u Q前后 k 2 dtdxdydz y dz 2 y u dy Q上下 k 2 dtdxdydz z (x,y,z) dx
2 2u u 2 a f t, x 2 2 t x
ut 6uxux uxxx 0
(4)自由项 在偏微分方程中,不含有未知函数及其偏导数的 项称为自由项.
3
数学物理方程
第1章偏微分方程定解问题
2u 2 2 a u f (t , x) ☆波动方程: 2 t
2 T2 u u u T2 T1 张力沿切线: T T12 T22 T1 1 T1 T1 x x x 由(1)得: T1 T1 t (T 与 x 无关)
数学物理方程第一章 基础概念
ds = 1 + (
弧段 M ′ M 在 t 时刻,沿 u 方向运动的加速度近似为 以
∂ 2 u ( x, t ) , x 为弧段 M ′ M 的质心。所 ∂t 2
− T sin α + T ′ sin α ′ − ρgdx = ρdx
即
∂ 2 u ( x, t ) ∂t 2
Q2 = ∫∫∫ cρ [u ( x, y, z , t1 ) − u ( x, y, z , t 2 )]dV
式中, c 为物体的比热, ρ 为物体的密度。 如果物体内部没有热源,则由热量守恒可得 Q1 = Q2 ,则
Ω
(1.2.3)
∫
t2 t1
⎡ ∂u ⎤ ⎢ ∫∫ k dS ⎥dt = ∫∫∫ cρ [u ( x, y, z , t1 ) − u ( x, y, z , t 2 )]dV ⎢∑ ∂n ⎥ Ω ⎦ ⎣
(1.2.4)
假设函数 u 关于 x, y, z 具有二阶连续导数,关于 t 具有一阶连续导数,则利用 Gauss 公 式有
t2 ⎡ ⎡ ∂ ⎛ ∂u ⎞ ∂ ⎛ ∂u ⎞ ∂ ⎛ ∂u ⎞⎤ ⎤ Q1 = ∫ ⎢ ∫∫∫ ⎢ ⎜ k ⎟ + ⎜ ⎟ + ∂z ⎜ k ∂z ⎟⎥dV ⎥dt ⎜ k ∂y ⎟ t1 x x y ∂ ∂ ∂ ⎝ ⎠ ⎝ ⎠⎦ ⎥ ⎢ ⎠ ⎝ ⎣Ω ⎣ ⎦
次方程,若 f ( x, t ) = 0 ,则称为齐次方程。式(1.1.3)称为非齐次一维波动方程。
1.1.2 定解条件 一般弦线的特定振动状态还依赖于初始时刻弦的状态和通过弦线两端所受外界的影响。 为了确定一个具体的弦振动的规律, 除了列出方程外, 还需要写出它满足的初始条件和边界 条件,我们称之为定解条件。 初始条件,即初始时刻 t = 0 时,弦上各点的位移和速度。
数理方程第一章-3讲解
a2
(
2u x2
2u y2
2u z2
)
u t
a2 k c
—— 三维热传导方程
本课程内容,只涉及线性边界条件,且仅包括以下三类。
深圳大学电子科学与技术学院
第一类边界条件:物理条件直接规定了 u 在边界上的值,如
u S
f1
第二类边界条件:物理条件并不直接规定了 u 在边界上的值,而是规定了u 的法向微商在边界上的值,如
深圳大学电子科学与技术学院
知识补充:
弹性模量是指当有力施加于物体或物质时,其弹性变 形(非永久变形)趋势的数学描述。物体的弹性模量 定义为弹性变形区的应力-应变曲线的斜率。杨氏模 量指的是受拉伸和压缩时的弹性模量。
杨氏模量(Young‘s modulus)是描述固体材料抵抗形变 能力的物理量。一条长度为L、截面积为S的金属丝在 力F作用下伸长L。F/S叫应力,其物理意义是金属丝 单位截面积所受到的力; L/L叫应变,其物理意义是 金属丝单位长度所对应的伸长量。
dx
x
不考虑垂直杆方向的形变,根据Hooke定律,应力与应变成正
比,即 P E u x
代入
P x
2u t 2
2u t2
a2
2u x2
0 xl , t0
其中
a2 E
深圳大学电子科学与技术学院
例6:一根均匀杆,原长为l,一端固定,另一端沿杆的轴线方向被拉长e而静 止。突然松手,任其纵向振动。写出定解问题。
(3)对于稳恒场,上述边界条件的两端均不含时间 t ; (4)边界条件的推导,步骤与泛定方程的推导大致相同,但微元只能在边界上选取。
x
x
S 2u d x
t2
Sdx dm(微元质量)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:u(x,0) (x) (0 x l) (初始时刻的位移) ut (x,0) (x) (0 x l) (初始时刻的速度)
这里 (x),(x) 为已知函数。
2)边界条件:弦在两端的状态,一般有三种。 第一类边界条件(Dirichlet边界条件):端点的位移
变化。
即:u(0,t) g1(t), u(l,t) g2 (t) 这里g1(t), g2 (t) 为已知函数。 特别地当 g1(t) g2 (t) 0 时,称弦线具有固定端。
在空气中的传播,一般写成:
utt x, y, z,t a2 uxxx, y, z,tuyy(x, y, z,t) uzz (x, y, z,t) f x, y, z,t
4.定解条件与定解问题:
一根弦线的特定的振动状况,还依赖于初始时刻弦 线的状态和通过弦线的两端所受到的外界的影响,因此 为了确定一个具体的弦振动,除了列出它满足的方程以 外还必须写出适合的初始条件和边界条件。 1)初始条件:弦在初始条件的状态,这里指位移和速度
第三类边界条件(Robin边界条件):端点的位移与所 受外力的线性组合。
即:T 0ux (0,t) 1u(0,t) g1(t),这里g1(t), g2 (t) 为已知函数。 T0ux (l,t) 2u(l,t) g2 (t)(i 0,i (i 1,2) 表示弹性系数)
特别地:g1(t) g2 (t) 0 时,表示弦的两端固定在弹性支撑上
第一章 典型方程与定解条件
牛顿第二定律 方程的导出
能量守恒定律
弦振动方程 热传导方程
基本概念:题的适定性:解的存在、唯一、稳定性
一、牛顿第二定律与弦振动方程
1.物理模型:一根两端固定的拉紧的长为l 的均匀柔软的
细弦,在垂直于平衡位置的外力作用下在平衡位置附近
或声波在管中的传播,也可以表示杆的纵振动(即一均
匀细杆在外力的作用下延长杆方向作微小振动)。
当n=2时,为二维波动方程,表示膜的振动或水面上的水
波的传播,一般写成:
utt x, y,t a2 uxxx, y,t uyy(x, y,t) f x, y,t
当n=3时,为三维波动方程,表示电磁波的传播或者声波
称方程为弦的自由微小横振动方程。
称形如:
utt x1, x2 , xn , t a2u f x1, x2 , xn , t
的方程为n维波动方程,其中 x1, x2, xn 表示位置变量,
t表示时间变量,
n
i 1
2 xi 2
称为n维Laplace算子。
当n=1时,为一维波动方程或弦振动方程,表示弦的振动
做微小的横振动,求弦上各点的运动规律。
2.模型的假设说明(:忽略非本质因素,抓住本质)
1)弦本身:
均匀:体密度 (kg / m3)为常数;
线密度
细:弦的横截面直径相对于弦的长 度
(kg / m)
为常数
柔软可:以只忽抗略伸不长计不,抗弦弯近曲似,地即看各成点线的。张力沿各点的切
线方向。(解释:弯皮筋不费力,弯铁丝费力)
step1:证明弦上各点的张力大小T (x,t) 为常数(即与 x, t
无关)。 在弦上各点任取一小段弧 M1M 2 ,设其弧长为 s ,则有:
s
x2 x1
1 ux2 dx
ux 1
s x2 x1 ………(1)
由(1)的这段弦在振动过程中没有伸长,由Hooke定
律得到弦上各点所受张力在运动过程中保持不变,即
第二类边界条件(Neumann边界条件):端点所受的垂 直于平衡位置外力的作用。
即:T 0ux (0,t) g1(t),T0ux (l,t) g2 (t) ,这里 g1(t), g2 (t) 已知
可写成 ux (0, t) 1(t), ux (l, t) 2 (t) 这里 1(t), 2 (t) 已知 特殊地:1(t) 2 (t) 0 时,称弦具有自由端。
2)弦运动: 横振动:弦的运动发生在同一平面内,且弦上各 点的位移与平衡位置垂直。
x 轴,且
弦上各点以横坐标表示。
如右图建立直角坐标系,则在
t 时刻,弦的形状为曲线u u(x,t)
微小:各点的位移小且 ux 1,即相对1可忽略不计 3.建立方程(利用牛顿第二定律和微分中值定理) 复习:微分中值定理:若函数f (x) 在[a,b]连续,(a,b)可 导,则存在c(a,b)有:f (b) f (a) (b a) f (c)
另一方面由于弦段 (x1, x2) 很小,其上各点的加速度相差也
太大,因此可用其中任一点 处的加速度 utt | 代替,
于是该小弦的质量与加速度的乘积为
utt | (x2x1) (x1 x2 )
垂直于平衡位置的力密度 f0 (x,t) 在 (x1, x2) 所产生的力为:
f0 ( ,t)( x2 x1) 由牛顿第二定律有:
T (x,t) 与 t 无关。
进一步设弦上 M1, M 2 两点所受张力的大小分别为T (x1),T (x2)
且弦在 M1, M 2 的切线正向与 x 轴正向的夹角为1,2
由于弦做“横振动”,弦在水平方向上的受力为0,则有:
T (x1) cos1 T (x2 ) cos2
ux 1
T (x1) T (x2 )
cos 1 1 ux2
即T (x,t)与 x无关,由上得到 T (x,t) 与 x, t 无关。以下记
之 T0 。 step2:利用牛顿第二定律来建立方程。 张力在u轴方向分量 的代数和为
fu T0 sin 2T0 sin 1 T0 tan 2T0 tan 1
T0 ux (x2,t) ux (x1,t) T0uxx(,t)(x2x1) (x1 x2)
T0uxx( ,t) f0 ( ,t) utt (,t)
令 x2 x1 则有:
Tu xx (x, t) f0 (x, t) utt (x, t) utt a2uxx f
其中
a2 T , f f0
………(2)
注: 称(2)为弦的强迫微小横振动方程;若无外力,则(2)式
显然为:utt a2uxx