初中数学 整式的乘除 复习课件
七下第一章《整式的乘除》复习课件
七下第一章《整式的乘除》复习课件一、教学内容1. 整式的乘法:多项式乘以多项式,多项式乘以单项式,单项式乘以单项式。
2. 整式的除法:多项式除以多项式,多项式除以单项式,单项式除以单项式。
3. 平方差公式:a^2 b^2 = (a + b)(a b)。
4. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 2ab + b^2 = (a b)^2。
二、教学目标1. 掌握整式的乘除运算法则,能够熟练地进行整式的乘除计算。
2. 理解并熟练运用平方差公式和完全平方公式。
3. 提高学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点重点:整式的乘除运算,平方差公式和完全平方公式的运用。
难点:灵活运用平方差公式和完全平方公式解决实际问题。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:笔记本、练习本、文具。
五、教学过程1. 情景引入:以实际生活中的问题引入,例如计算购物时优惠后的价格。
2. 知识回顾:复习整式的乘法、除法,平方差公式和完全平方公式。
3. 例题讲解:讲解典型例题,让学生理解并掌握整式的乘除运算方法和技巧。
4. 随堂练习:布置随堂练习题,让学生巩固所学知识,并及时纠正错误。
5. 课堂互动:组织学生进行小组讨论,分享解题心得和方法。
7. 作业布置:布置课后作业,巩固所学知识。
六、板书设计1. 整式乘法法则2. 整式除法法则3. 平方差公式:a^2 b^2 = (a + b)(a b)4. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 2ab + b^2 = (a b)^2七、作业设计1. 题目:计算下列整式的乘除结果。
(1)(x + 2)(x 2)(2)(x + 3)÷(x 1)(3)(a + b)^22. 答案:(1)x^2 4(2)x + 4(3)a^2 + 2ab + b^2八、课后反思及拓展延伸1. 课后反思:本节课学生对整式的乘除运算掌握较好,但在运用平方差公式和完全平方公式解决实际问题时,部分学生还存在一定的困难。
七下第一章《整式的乘除》复习完整ppt课件
B. (2a)2 4a2
C. 30 31 3
D. 4 2
6、下列各式运算结果为 x8 的是( A )
A. x4 ·x 4
B. (x 4 )4
C. x16 ¸ ¸ x2
精选
D. x4+x 4
二、填空题:
1.(2008年宁波)计算: (-2a) 2 =___4_a_2___.
2.(2009年海南)计算:a .a2+a3=__2_a_3_.
16. 己知:x+x-1=-3 , 求代数式 : x4+x-4 的值。
精选
(2). 2n4(2)2n
(3 ).3 x 2 (x 3 y 2 2 x ) 4 x ( x 2 y )2
(4).t2(t1)t(5)
精选
( 5 )( . 2 a ) 8 [ ( 2 a ) 2 ] ( 2 a ) 9 ( 2 a ) 3
( 6 )( .x 4 y 6 z )x (4 y 6 z ) (7 ).( 3 )3 ( 3 ) 3 (1)3 (1) 3
精选
11. 己知x+y=3 ,x2+y2=5 则xy 的值等于多少? 12. 己知x-y=4 , xy=21 ,则 x2+y2 的值等于多少?
精选
13. 己知10m=4 , 10n=5 , 求103m+2n 的值。
14. 解方程:(2x-3)2 = (x-3)(4x+2)
精选
15.己知: (x+1)(x2+mx+n) 的计算结果不含x2和x项
33
(8). (0.12)55218
精选
( 9 ). ( 4 a 3 1 a 2 b 2 7 a 3 b 2 ) ( 4 a 2 )
第一章《整式的乘除》复习课件(共35张PPT)
积的乘方 平方差公式 完全平方公式
(a+b)(a-b)=a²-b² (a±b)²=a²±2ab+b²
幂的乘方
同底数幂 的乘法
乘法公式 单项式乘 单项式乘 以单项式 以多项式
多项式乘
幂的运算 整式乘法
以多项式
整式的乘法知识树
√ 积的乘方 平方差公式 完全平方公式 (a+b)(a-b)=a²-b² (a±b)²=a²±2ab+b²
先用一个多项式的每一项 乘另一个多项式的每一项 再把所得的积相加。
计算:
(1)(x+2)(x+3)-(x+6)(x-1)
=x²+3x+2X+6-(x²-x+6X-6)=12 (2)(x²+ax+8)(x²-3x+b)结果中不含 x²和x³项,求a、b的值
(x²+ax+8)(x²-3x+b)
x4 3x3 bx2 ax3 3ax2 abx 8x2 24x 8b
杨幂的爸爸妈妈都姓杨,加 上她一共三个姓杨的,即: 杨×杨×杨=杨的三次方, 三次方又是三次幂,所以她 的父母给她取名杨幂。
而在数学中,幂的相关计算有哪些?以幂 的运算为基础的整式乘法又有哪些内容?
整式的乘除知识树
同底数幂 的乘法
幂的乘方
(a
平方差公式
b)(a b) a2
b2
完全平方公式
READY
GO! 一、每组4号黑板作答
(1)9(x+2)(x-2)-(3x-2)² (2)2009²-2010×2008 (3)(x-2)²-(x-1)(x+3) (4)(-2x4)4 +2x10 ·(-2x²)3 (5)(x+2)²-(x+1)(x-1)
七下第一章《整式的乘除》复习课件
Part
02
整式乘除的运算
单项式乘单项式
总结词
基础运算,直接相乘
详细描述
单项式与单项式相乘时,只需将它们的系数、相同字母的幂分别相乘,其余字母、指数不变。例如: $2x^3y times 3x^2y = 6x^{5}y^{2}$。
单项式乘多项式
总结词:逐项相乘
详细描述:单项式与多项式相乘时,需将单项式的每一项分别与多项式的每一项 相乘,然后合并同类项。例如:$2x(x^2 + 3x + 1) = 2x^3 + 6x^2 + 2x$。
七下第一章《整式的 乘除》复习课件
• 整式乘除的回顾 • 整式乘除的运算 • 整式乘除的应用 • 整式乘除的练习与巩固 • 整式乘除的总结与展望
目录
Part
01
整式乘除的回顾
整式的定义与表示
总结词
理解整式的定义和表示方法
详细描述
整式是由常数、变量、运算符以及括号按一定规则组成的数学表达式。整式可 以表示为代数式,其中只包含加、减、乘、除、乘方五种基本运算。常见的整 式有单项式和多项式。
理解概念
深入理解整式乘除的基本 概念和规则,避免混淆和 误解。
拓展学习
可以尝试学习更复杂的整 式运算,如因式分解、分 式的运算等,为后续的学 习打下基础。
有幂的除法时, 容易忽略指数的变化,例 如将$frac{a^2}{b}$误简 化为$ab$。
忽略公因式的提取
在整式除法中,常常需要 提取公因式来简化表达式 ,例如将$a^2 - b^2$误 分解为$(a+b)(a-b)$。
整式乘除的进一步学习建议
加强练习
通过大量的练习来巩固整 式乘除的知识点,提高运 算速度和准确性。
北师版初一下第一章整式的乘除复习课件
(x)3 (x)2 (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(其中m、n为正整数)
[(a m )n ] p amnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4)4 a44 a8,[(b2)3]4 b234 b24
A 1,2; B 2,1 C 1,1, D 1,3
2、下列运算正确的是:( C )
A x3·x2=x6
B x3-x2=x
C(-x)2·(-x)=-x3 D x6÷x2=x3
3、已知代数式3y2-2y+6的值为8,则代数式 1.5y2-y+1的值为(B )
A1 B2
C 3 D4
4请你观察图形,依据图形面积间的关系,不需要添加辅助线,便 可得到两个你非常熟悉的公式,这两个公式分别是
1 c= 20 x+21
,则代
数式 a2+b2+c2-ab-bc-ca 的值是( B )
A. 4
B.3
C.2
D.1
12、若a,b都是有理数且满足 2a2 -2ab+b 2 +4a+4=0 ,
则2ab的值等于( B )
A. -8
B. 8
C.32
D.2004
13、下列算式正确的是( D )
A、—30=1
9、完全平方公式 法则:两数和(或差)的平方,等于这两数 的平方和再加上(或减去)这两数积的2倍。
数学符号表示:
(a b)2 a2 2ab b2; (a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
七年级下第1章《整式的乘除》单元复习课件(共25张PPT)
课后作业
Listen attentively
7.(2016普宁期末)若□×2xy=16x3y2,则□内应 填的单项式是( )D A.4x2yB.8x3y2 C.4x2y2 D.8x2y 8.(2016商河期末)下列算式能用平方差公式计 算的是(D) A.(2a+b)(2b﹣a) B. C.(3x﹣y)(﹣3x+y) D.(﹣m﹣n)(﹣m+n) 9.已知6m5nx÷2myn3=3m2n2,则( )B A.x=3,y=2 B.x=5,y=3 C.x=3,y=5 D.x=2,y=3
课后作业
Listen attentively
17.(2016门头沟期末)化简: (8a2b﹣4ab2)÷(﹣4ab).
解:(8a2b﹣4ab2)÷(﹣4ab) =﹣2a+b.
课后作业
Listen attentively
18.计算与求值: (1)(﹣ )﹣2﹣(﹣2016)0+()11×(﹣)12; (2)(3x﹣2)2+(﹣3+x)(﹣x﹣3); (3)(9x4y3﹣6x2y+3xy2)÷(﹣3xy).
C.(x+y﹣z)(﹣z﹣y+x)
D.(2x﹣y)(﹣y﹣2x)
2.计算2x3•3x2的结果是( D)
A.5x5 B.6x6 C.5x6 D.6x5
3.(2015•成都)下列计算正确的是( C)
A.a2+a2=a4
B.a2•a3=a6
C.(﹣a2)2=a4 D.(a+1)2=a2+1
课前小测
Listen attentively
课堂精讲
Listen attentively
【类比精练】 1.(2016陕西)下列计算正确的是( D) A.x2+3x2=4x4 B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2 D.(﹣3x)2=9x2 解:A、原式=4x2,错误; B、原式=2x5y,错误; C、原式=2xy2,错误; D、原式=9x2,正确, 故选D
七下第一章《整式的乘除》复习课件(1)
七下第一章《整式的乘除》复习课件一、教学内容1. 单项式乘单项式2. 单项式乘多项式3. 多项式乘多项式4. 乘法公式5. 整式的除法6. 整式的混合运算二、教学目标1. 熟练掌握整式的乘除法则,提高运算速度和准确性。
2. 能够运用乘法公式简化计算,解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:乘法公式的运用,整式的混合运算。
2. 教学重点:整式的乘除法则,乘法公式的推导和应用。
四、教具与学具准备1. 教具:多媒体课件,黑板,粉笔。
2. 学具:练习本,计算器。
五、教学过程1. 导入:通过实际情景引入,如购物时商品价格的计算,让学生体会整式的乘除在实际生活中的应用。
2. 知识回顾:引导学生回顾整式的乘除法则,乘法公式等知识点。
3. 例题讲解:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)乘法公式(5)整式的除法(6)整式的混合运算4. 随堂练习:针对每个知识点设计练习题,让学生及时巩固所学知识。
6. 应用:运用所学知识解决实际问题。
六、板书设计1. 七下第一章《整式的乘除》复习2. 内容:整式的乘除法则,乘法公式,例题,练习题。
七、作业设计1. 作业题目:(1)计算题:给出具体数值,让学生计算整式的乘除。
(2)应用题:设计实际情景,让学生运用整式的乘除解决问题。
2. 答案:详细给出作业题目的答案。
八、课后反思及拓展延伸1. 反思:针对课堂教学中出现的问题,进行自我反思,调整教学方法。
2. 拓展延伸:引导学生探索整式的乘除在生活中的其他应用,提高学生的实际运用能力。
重点和难点解析1. 教学难点与重点的确定2. 例题讲解的深度和广度3. 随堂练习的设计4. 作业设计中的应用题5. 课后反思及拓展延伸的深度一、教学难点与重点的确定整式的乘除是初中数学的基础内容,其中乘法公式的运用和整式的混合运算是学生普遍感到难以掌握的部分。
因此,这两个方面应成为教学的重点和难点。
七下第一章《整式的乘除》复习课件
七下第一章《整式的乘除》复习课件一、教学内容本节课复习的是七年级下册第一章《整式的乘除》。
具体内容包括:整式的乘法法则、整式的除法法则、多项式乘多项式、平方差公式、完全平方公式以及综合应用。
二、教学目标1. 熟练掌握整式的乘除法则,能够正确进行整式的乘除运算。
2. 熟练运用平方差公式和完全平方公式进行因式分解。
3. 能够解决实际问题中涉及整式乘除的问题,提高解决问题的能力。
三、教学难点与重点重点:整式的乘除法则、平方差公式、完全平方公式。
难点:整式的除法法则、多项式乘多项式的运算、因式分解。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入通过一个实际情景,引导学生思考如何用整式的乘除法则解决问题。
例:一个长方形的长是a+b,宽是ab,求这个长方形的面积。
2. 例题讲解(1)整式的乘法法则(2)整式的除法法则(3)多项式乘多项式(4)平方差公式(5)完全平方公式3. 随堂练习针对每个知识点,设计相应的练习题,让学生当堂巩固所学内容。
六、板书设计1. 整式的乘法法则2. 整式的除法法则3. 多项式乘多项式4. 平方差公式5. 完全平方公式七、作业设计1. 作业题目(1)计算题:a^2 (a+b),(a+b)^2,(ab)^2(2)应用题:已知一个正方形的面积是a^2 b^2,求它的边长。
2. 答案(1)a^3 + a^2b,a^2 + 2ab + b^2,a^2 2ab + b^2(2)边长为a+b或ab。
八、课后反思及拓展延伸1. 反思:本节课学生掌握整式的乘除法则的情况,及时发现问题并进行针对性讲解。
2. 拓展延伸:引入整式的乘除在实际问题中的应用,提高学生解决问题的能力。
如:已知一个长方体的长、宽、高分别是a、a+b、ab,求长方体的体积。
重点和难点解析1. 整式的乘除法则的理解与运用2. 平方差公式和完全平方公式的记忆与运用3. 教学过程中的实践情景引入和例题讲解4. 作业设计中的题目难度与答案解析一、整式的乘除法则1. 乘法法则:掌握分配律、结合律和交换律,能够灵活运用。
第12章整式的乘除本章归纳总结-2024-2025学年初中数学八年级上册(华师版)上课课件
(2)(a+b)2+2(a+b)+1 =(a+b+1)2
(3)4x4+4x3+x2 =x2(4x2+4x+1) =x2(2x+1)2
(4)x2-16ax+64a2 =(x2-8a)2
14.把下列多项式分解因式:
(5)(x-1)(x-3)+1
(6)(ab+a)+(b+1)
=(x2-4x+3)+1 =x2-4x+4 =(x-2)2
6.计算:
(1)(6a4-4a3-2a2)÷(-2a2) =6a4÷(-2a2)-4a3÷(-2a2)-2a2÷(-2a2) =-3a2+2a+1
(2)(4x3y+6x2y2-xy3)÷2xy =4x3y÷2xy+6x2y2÷2xy-xy3÷2xy =2x2+3xy-0.5y2
6.计算:
(3)(x4+2x3- 1 x2)÷(- 1 x)2
(2)(m+n)43;n) =-(m+n)(m+n) =-(m2+2mn+n2) =-m2-2mn-n2
(5)(-m+n)(m-n) =-(m-n)(m-n) =-(m2-2mn+n2) =-m2+2mn-n2
(6)
2 3
x
3 4
y
2
= 4 x2 xy 9 y2
2.计算: (1)2a·3a2 =2·3a·a2 =6a3
(3)(-2a2)2·(-5a3) =4a4·(-5a3) =4×(-5)a4·a3 =-20a7
(2)(-3xy)·(-4yz) =(-3)×(-4)xy·yz =12xy2z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 化简求值:
x(x2 6x 9) x(x2 8x 15) 2x(3 x)
其中 x 1 .
6
知识点三 多项式与多项式相乘 先确定符号定
法则: 多项式与多项式相乘,先用一个多项式的 每一项乘另一个多项式 的 每一项 ,再把所得的积 相加 . 多项式与多项式相乘,可以转化为单项式与多项式相乘再计算.
2.已知a2 a 5 0,则(a 3)(a 2)的值是 -11 .
整体代入
3.
4.解方程:( x 10)( x 8) x2 100 .
x2 8x 10x 80 100 x2 x2 8x 10x 100 80
2x 20 x 10
5.已知,(a+3)(b+4)=25,(a+4)(b+3)=24,求a-b的值.
答:增大的面积为21cm2.
跟踪训练1 计算:
(1)- 1 a2 • 2a
2
(2)- 3a2 • (2ab2 ) • (b2c)
- a3
6a3b4c
例1 计算:
(1)3xy • (2x)3 • ( 1 y2 )2 4
先算乘方, 再算乘除, 最后算加减
(2)2x3 • (2x)2 4x3 • (5x2 )
- 3 x4y5 2
第六章 整式的乘除
整式的乘法巩固复习
复习目标: 1、掌握单项式与单项式、单项式与多项式、多项式与多项式 相乘的运算法则,并熟练运用法则进行有关计算; 2、进一步明确乘法分配律在整式乘法中的运用.
重点:运用整式乘法法则进行有关计算.
难点:符号问题
知识点一 单项式与单项式相乘
法则: 单项式与单项式相乘,把它们的 系数 、 相同字母的幂 分别 相乘,其余字母连同它的指数 不变 ,作为积的因式.
跟踪训练3
计算: (1)x 12x 3
(2)3x 5y 62x 5y
2x2 x 3 6x2 25xy 25 y2 12 x 30 y
例3 填空
(1)若(x 3)( x a) x2 2x 15, 则a= -5 .
(2)已知(x 2() 1 kx) (2x 3)( x 2)
-12x5
知识点二 单项式与多项式相乘 先确定符号定
法则: 单项式与多项式相乘,就是根据 分配律 用单项式去乘多项式 的 每一项 ,再把所得的积 相加 .
跟踪训练2
计算: (1) 2xy (3xy xy2 ) (2)(- 2a3 3a2 4a)(5a2 )
6x2y2 2x2y3
10a5 15a4 20a3
由(a+3)(b+4)=25得ab+4a+3b+12=25 由 (a+4)(b+3)=24得ab+3a+4b+12=24 两式相减得 (ab-ab)+(4a-3a)+(3b-4b)+(12-12)=25-24 所以a-b=1.
6.一个长方形的长为2xcm,宽比长少4cm,若将长方形的长 和宽都扩大3cm. (1)求扩大后长方形的面积是多少? (2)若x=2,求增大的面积为多少?
的结果中不含x的二次项,则k= -2 .
借助系数求未 知数的值
例4 将四个数a,b,c,d排成2行2列,两边各加一条竖线记成实质一是次解方一程元
a b ,定义 a b ad bc, 上述记号叫做二阶行列式,
cd
cd
x2
若
x 1
x 3 5x,求x的值. x2
巩固提升
1.设A是三项式,B是四项式,则A乘B的结果的项数一定是( D ) A.多于7项 B.不多于7项 C.等于12项 D.不多于12
解:(1) (2x 3)(2x 4 3)
(2x 3)(2x 1) 4x2 2x 6x 3 4x2 4x 3
答:扩大后长方形的面 积是(4x2+4x-3)cm2.
(2)(4x2 4x 3) 2x(2x 4) 4x2 4x 3 4x2 8x 12x 3 当x 2时, 原式 12 2 - 3 21.