异方差性的检验及处理方法
异方差性在回归分析的影响
异方差性在回归分析的影响在回归分析中,异方差性是一个重要的概念,指的是误差项的方差不是恒定的,而是随着自变量的变化而变化。
异方差性会对回归分析的结果产生影响,导致参数估计不准确甚至失真,从而影响对模型的解释和预测能力。
本文将从异方差性的定义、影响、检验以及处理方法等方面展开讨论。
一、异方差性的定义在回归分析中,我们通常假设误差项具有同方差性,即误差项的方差是恒定的。
然而,在实际应用中,误差项的方差可能会随着自变量的变化而发生变化,这种情况被称为异方差性。
异方差性通常表现为误差项的方差与自变量的水平相关,即方差不是常数。
二、异方差性的影响1. 参数估计的不准确性:异方差性会导致参数估计的不准确性,使得回归系数的估计偏离真实值,从而影响对自变量与因变量之间关系的解释。
2. 统计检验的失真:异方差性会使得回归模型的显著性检验结果失真,可能导致错误的结论,影响对模型整体拟合优度的评估。
3. 预测精度的下降:异方差性会影响对未来观测值的预测精度,使得预测结果不可靠,降低模型的预测能力。
三、异方差性的检验为了检验回归模型是否存在异方差性,可以采用以下方法:1. 图形诊断法:通过残差图、残差与预测值的散点图等图形来观察残差的分布情况,如果残差呈现出明显的异方差性模式,就可以怀疑模型存在异方差性。
2. 统计检验法:利用异方差性检验统计量,如White检验、Goldfeld-Quandt检验、Breusch-Pagan检验等,对模型的异方差性进行显著性检验。
四、处理异方差性的方法当检验结果表明模型存在异方差性时,可以采取以下方法进行处理:1. 加权最小二乘法(Weighted Least Squares, WLS):通过对残差进行加权,使得残差的方差与自变量的水平相关,从而消除异方差性。
2. 变量转换:对自变量或因变量进行对数变换、平方根变换等,使得变量的方差变化较小,减轻异方差性的影响。
3. 引入干扰项:在模型中引入干扰项,如虚拟变量、交互项等,来控制异方差性的影响。
实验四异方差性的检验与处理
实验四异方差性的检验与处理集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]实验四 异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法; (2)、掌握异方差的处理方法。
二、实验学时:2学时 三、实验要求(1)掌握用MATLAB 软件实现异方差的检验和处理; (2)掌握异方差的检验和处理的基本步骤。
四、实验原理1、异方差检验的常用方法(1) 用X-Y 的散点图进行判断(2). 22ˆ(,)(,)e x e y 或的图形 ,),x )i i y i i ((e 或(e 的图形)(3) 等级相关系数法(又称Spearman 检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。
检验的三个步骤 ① ˆt t y y=-i e②|i x i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)③ 做等级相关系数的显着性检验。
n>8时,/2(2),t t n α>-反之,若||i i e x 说明与之间存在系统关系,异方差问题存在。
(4) 帕克(Park)检验帕克检验常用的函数形式:若在统计上是显着的,表明存在异方差性。
2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121(i i p pi iy x x uf xβββ=+⋅++⋅+在该模型中:即满足同方差性。
于是可以用OLS估计其参数,得到关于参数12,,,pβββ的无偏、有效估计量。
五、实验举例例101i i iy x u=++若用线性模型,研究不同收入家庭的消费情况,试问原数据有无异方差性如果存在异方差性,应如何处理解:(一)编写程序如下:(1)等级相关系数法(详见文件)%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性 %%%%%%%%[data,head]=xlsread('');x=data(:,1); %提取第一列数据,即可支配收入xy=data(:,2); %提取第二列数据,即居民消费支出yplot(x,y,'k.'); % 画x和y的散点图xlabel('可支配收入x(千元)') % 对x轴加标签ylabel('居民消费支出y(千元)') % 对y轴加标签%%%%%%%% 调用regres函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones(size(x,1),1),x]; %在x矩阵最左边加一列1,为线性回归做准备[b,bint,r,rint,s]=regress(y,xdata);yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'};[head1;num2cell([b,bint])]% 定义元胞数组,以元胞数组形式显示y的真实值,y的估计值,残差和残差的95%置信区间head2={'y的真实值','y的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell([y,yhat,r,rint])]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'};[head3;num2cell(s)]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot(r,rint) % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot(yhat,r,'k.') % 画散点图xlabel('估计值yhat') % 对x轴加标签ylabel('残差r') % 对y轴加标签%%%%%%%%%%%% 调用corr函数计算皮尔曼等级相关系数res=abs(r); % 对残差r取绝对值[rs,p]=corr(x,res,'type','spearman')disp('其中rs为皮尔曼等级相关系数,p为p值');(2)帕克(park)检验法(详见文件)%%%%%%%%%%%%%%% 用帕克(park)检验法来检验异方差性 %%%%%%%[data,head]=xlsread(''); %导入数据x=data(:,1);y=data(:,2);%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats(y,x,'linear',{'yhat','r','standres'});scatter(x,.^2) % 画x与残差平方的散点图xlabel('可支配收入(x)') % 对x轴加标签ylabel('残差的平方') %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log(x)和log(r^2)进行一元线性回归ST1=regstats(log(.^2),log(x),'linear',{'r','beta','tstat','fstat'})% 输出参数的估计值% 输出回归系数t检验的P值% 输出回归模型显着性检验的P值(3)加权最小二乘法(详见文件)%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread(''); % 导入数据x=data(:,1);y=data(:,2);% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit(x,y) %调用函数作稳健回归% 输出模型检验的P值%%% 绘制残差和权重的散点图 %%%%%%%plot,,'o') %绘制残差和权重的散点图xlabel('残差')ylabel('权重'(二)实验结果与分析:第一步::用OLS方法估计参数,并保留残差(1)散点图图可支配收入(x)居民消费支出(y)散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状。
stata异方差检验和解决命令
stata异方差检验和解决命令在数据分析中,异方差是一个常见的问题。
异方差指不同样本的方差不相等,这会导致统计结果的不准确性。
Stata提供了许多方法来检验和解决异方差问题。
一、异方差检验检验异方差通常使用Breusch-Pagan-Godfrey(BPG)检验或White检验。
这里以BPG检验为例,该检验的原假设是方差相等,备择假设是方差不相等。
命令格式:estat hettest示例代码:reg y x1 x2 x3estat hettest如果p值小于0.05,则拒绝原假设,说明存在异方差问题。
二、异方差稳健标准误当检测到异方差问题时,可以使用异方差稳健标准误来解决。
异方差稳健标准误在计算系数的标准误时考虑了异方差问题,从而提高了结果的准确性。
命令格式:robust示例代码:reg y x1 x2 x3, robust使用robust命令后,结果中的Standard Error一栏即为异方差稳健标准误。
三、异方差稳健回归如果异方差问题比较严重,只使用异方差稳健标准误可能无法解决问题。
此时可以使用异方差稳健回归。
命令格式:robust示例代码:reg y x1 x2 x3, vce(robust)使用vce(robust)参数后,回归结果中的系数和标准误都是异方差稳健的,并且t值和p值也已经经过了调整。
总结:通过Breusch-Pagan-Godfrey检验或White检验可以检验异方差问题,如果存在异方差问题,可以使用异方差稳健标准误或异方差稳健回归来解决。
在使用robust命令时,不需要进行任何假设检验,因为参数已经考虑了异方差问题。
异方差性的检验及处理方法
异方差性的检验及处理方法异方差性是指随着自变量变化,因变量的方差不保持恒定,即方差存在不均匀的变化趋势。
在统计分析中,如果忽视了异方差性,可能会导致误差的不准确估计,从而影响对因变量的显著性检验和参数估计结果的准确性。
为了避免异方差性给统计分析带来的影响,需要进行异方差性的检验和处理。
下面将介绍几种常用的异方差性检验及处理方法。
一、异方差性的检验方法:1.绘制残差图:绘制因变量的残差(观测值与拟合值之差)与自变量的散点图,观察残差是否随着自变量的变化而存在明显的模式。
如果残差图呈现出锥形或漏斗形状,则表明存在异方差性。
2.帕金森检验:帕金森检验是一种常用的检验异方差性的方法。
该方法的原理是通过对残差进行变换,判断变换后的残差是否与自变量相关。
3. 布罗斯-佩根检验(Breusch-Pagan test):布罗斯-佩根检验是一种常用的检验异方差性的方法。
该方法的原理是通过计算残差与自变量的相关系数,进而判断是否存在异方差性。
4. 品尼曼检验(Leve ne’s test):品尼曼检验是一种非参数的检验方法,可以用于检验不同组别的方差是否存在显著差异。
二、异方差性的处理方法:1.变量转换:通过对因变量和自变量进行变换,可以使数据满足异方差性的假设。
比如可以对因变量进行对数转换或平方根转换,对自变量进行标准化处理等。
2.使用加权最小二乘法(WLS):加权最小二乘法是一种可以处理异方差性的回归分析方法。
该方法的原理是通过对残差进行加权,使得残差的方差与自变量无关。
3.使用广义最小二乘法(GLS):广义最小二乘法是一种可以处理异方差性的回归分析方法。
该方法的原理是通过对残差进行加权,使得残差的方差可以通过自变量的一个线性组合来估计。
4.进行异方差性的鲁棒估计:鲁棒估计是一种对异常值和异方差性具有较好鲁棒性的估计方法。
通过使用鲁棒估计,可以减少异方差性对参数估计的影响。
综上所述,异方差性是统计分析中需要重视的问题。
第二节 异方差性检验
3.计算 利用求回归估计式得到辅助回归函数的可决系 数 nR2 , n 为样本容量。 4.提出假设 H0 : 2 = ...= 6 = 0, H1 : (j= 2,,3,...,6)不全为零 j
et a0 a1 xt h vt 步骤:
h 1, 2, 1 , 2
1、应用OLS估计回归模型并求残差e t ; 2、分别建立 et 对每个解释变量的各种回归方程; 3、检验每个回归方程参数1的显著性,如果参数1显著不为零, 则随机项存在异方差,反之,随机项具有等方差性。 帕克提出如下假定函数形式: et2 a0 xa1 e vt t 即lnet2 a 0 a1lnx t v t
之间是否有相关关系。 X
如果随着 X 的增加, 的离散程度为逐渐增大(或 Y 减小)的变化趋势,则认为存在递增型(或递减型)的 异方差。
(二)残差图形分析 设一元线性回归模型为:
Yi β1 β2 X i ui
运用OLS法估计,得样本回归模型为:
ˆ ˆ ˆ Yi = β1 + β2 X i
其中vt 为随机误差项。
2 σt2 = α1 +α2 X 2t +α3 X 3t +α4 X 2t +α5 X 32t +α6 X 2t X 3t +vt
1.求回归估计式并计算 ˆ 用OLS估计线性回归模型,计算残差 et Yt - Yt ,并求残差 的平方 et2 。
2.求辅助函数 et2 作为异方差 σ t2 的估计,并建立 用残差平方 2 的辅助回归,即 X 2t , X 3t , X 2t , X 32t , X 2t X 3t
异方差实验报告步骤(3篇)
第1篇一、实验目的1. 掌握异方差性的基本概念和检验方法。
2. 学会运用统计软件进行异方差的检验和修正。
3. 提高对计量经济学模型中异方差性处理能力的实践应用。
二、实验原理1. 异方差性:在回归分析中,若回归模型的误差项(残差)的方差随着自变量或因变量的取值而变化,则称模型存在异方差性。
2. 异方差性的检验方法:图形检验、统计检验(如F检验、Breusch-Pagan检验、White检验等)。
3. 异方差性的修正方法:加权最小二乘法(WLS)、广义最小二乘法(GLS)等。
三、实验步骤1. 数据准备1. 收集实验所需数据,确保数据质量和完整性。
2. 对数据进行初步处理,如剔除异常值、缺失值等。
2. 模型设定1. 根据研究问题,选择合适的回归模型。
2. 利用统计软件(如Eviews、Stata等)进行初步的回归分析。
3. 异方差性检验1. 图形检验:绘制散点图,观察残差与自变量或因变量的关系,初步判断是否存在异方差性。
2. 统计检验:- F检验:检验回归系数的显著性。
- Breusch-Pagan检验:检验残差平方和与自变量或因变量的关系。
- White检验:检验残差平方和与自变量或因变量的多项式关系。
4. 异方差性修正1. 若检验结果表明存在异方差性,则需对模型进行修正。
2. 选择合适的修正方法:- 加权最小二乘法(WLS):根据残差平方与自变量或因变量的关系,计算权重,加权最小二乘法进行回归分析。
- 广义最小二乘法(GLS):根据残差平方与自变量或因变量的关系,选择合适的方差结构,广义最小二乘法进行回归分析。
5. 结果分析1. 对修正后的模型进行回归分析,观察回归系数的显著性、拟合优度等指标。
2. 对实验结果进行分析,解释实验现象,验证研究假设。
6. 实验报告撰写1. 撰写实验报告,包括以下内容:- 实验目的- 实验原理- 实验步骤- 实验结果- 分析与讨论- 结论2. 实验报告应结构清晰、逻辑严谨、语言简洁。
异方差性的检验及处理方法
实验四异方差性【实验目的】掌握异方差性的检验及处理方法【实验内容】建立并检验我国制造业利润函数模型【实验步骤】【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
一、检验异方差性⒈图形分析检验⑴观察销售利润(Y)与销售收入(X)的相关图(图1):SCA T X Y图1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。
图2 我国制造业销售利润回归模型残差分布图2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
⒉Goldfeld-Quant检验⑴将样本按解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图3),其残差平方和为2579.587。
SMPL 1 10LS Y C X图3 样本1回归结果⑶利用样本2建立回归模型2(回归结果如图4),其残差平方和为63769.67。
SMPL 19 28LS Y C X图4 样本2回归结果⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.372.2405.0=>=F F ,所以存在异方差性⒊White 检验⑴建立回归模型:LS Y C X ,回归结果如图5。
图5 我国制造业销售利润回归模型⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图6。
时序预测中的异方差性检验方法探讨(十)
时序预测是统计学和经济学中一个重要的课题,通常用来预测未来某一时间点的数值。
然而,在进行时序预测时,我们经常会遇到异方差性的问题。
异方差性指的是时间序列数据的方差不是恒定的,而是随时间变化的情况。
在异方差性存在的情况下,传统的预测方法可能会出现问题,因此需要采用一些特殊的方法来进行检验和处理。
本文将探讨时序预测中的异方差性检验方法,为读者提供一些参考和借鉴。
一、异方差性的检验方法在进行时序预测之前,我们首先需要检验数据是否存在异方差性。
常用的异方差性检验方法包括LM检验、BP检验和White检验。
LM检验是利用残差平方和的序列进行检验,其原假设是数据不存在异方差性。
BP检验是对LM检验的一种改进,可以检验更多的异方差性形式。
White检验是一种广义的异方差性检验方法,适用于多元回归模型。
通过对数据进行这三种检验,我们可以初步判断数据是否存在异方差性,并选择合适的处理方法。
二、异方差性的处理方法一旦确定数据存在异方差性,我们需要对数据进行处理,以确保预测模型的准确性。
常用的异方差性处理方法包括加权最小二乘法、异方差稳健标准误差和变换方法。
加权最小二乘法是一种根据异方差性的严重程度对数据进行加权的方法,可以有效减少异方差性对预测结果的影响。
异方差稳健标准误差是一种对参数估计的标准误差进行修正的方法,可以提高参数估计的准确性。
变换方法是通过对原始数据进行变换,使其满足异方差性的假设,从而得到更准确的预测结果。
通过选择合适的处理方法,我们可以有效处理数据的异方差性,提高预测模型的准确性。
三、异方差性对时序预测的影响异方差性对时序预测模型的影响是不可忽视的。
在存在异方差性的情况下,传统的预测方法可能会出现参数估计偏误、标准误差过低等问题,导致预测结果的不准确性。
因此,及时发现和处理数据的异方差性是非常重要的。
通过合适的异方差性检验和处理方法,我们可以有效降低异方差性对时序预测的影响,得到更准确的预测结果。
回归分析中的异方差性检验方法(六)
回归分析中的异方差性检验方法回归分析是统计学中一种常用的数据分析方法,它用来研究自变量和因变量之间的关系。
在进行回归分析时,我们通常会假设误差项的方差是恒定的,即不存在异方差性。
然而,在实际应用中,误差项的方差往往并非恒定的,而是存在异方差性。
异方差性会对回归分析的结果产生影响,因此需要进行异方差性检验并进行相应的修正。
一、异方差性的概念及影响异方差性是指误差项的方差不是恒定的,而是随着自变量的变化而变化。
当存在异方差性时,回归系数的估计值会失真,标准误差会被高估或低估,导致对回归系数和其显著性的检验结果产生偏误。
因此,必须进行异方差性的检验和修正,以确保回归分析结果的准确性和可靠性。
二、异方差性检验方法1. Park检验Park检验是一种常用的异方差性检验方法,它是基于残差的平方和与自变量的关系来进行检验的。
具体步骤是:首先进行回归分析,然后计算残差的平方和,接着将残差的平方和与自变量进行回归,最后通过F检验来检验残差的方差是否与自变量相关。
如果F统计量的显著性水平小于设定的显著性水平(通常为),则拒绝原假设,即存在异方差性。
2. Glejser检验Glejser检验是另一种常用的异方差性检验方法,它是通过对自变量的绝对值进行回归来进行检验的。
具体步骤是:首先进行回归分析,然后计算自变量的绝对值,接着将自变量的绝对值与残差进行回归,最后通过t检验来检验残差的方差是否与自变量相关。
如果t统计量的显著性水平小于设定的显著性水平(通常为),则拒绝原假设,即存在异方差性。
三、异方差性的修正方法1. 加权最小二乘法(Weighted Least Squares, WLS)当检验结果表明存在异方差性时,可以采用加权最小二乘法来进行修正。
加权最小二乘法是通过对残差进行加权,使得残差的方差与自变量的关系消失,从而得到回归系数的一致估计。
2. 广义最小二乘法(Generalized Least Squares, GLS)广义最小二乘法是对加权最小二乘法的推广,它允许误差项之间存在相关性,并对误差项的方差-协方差矩阵进行估计,从而得到回归系数的一致估计。
异方差性的概念类型后果检验及其修正方法
异方差性的概念类型后果检验及其修正方法异方差性(heteroscedasticity)是指随着自变量的变化,被解释变量的方差不保持恒定,呈现出不同的分散特征。
异方差性可能会导致线性回归模型的参数估计不精确,误差项的标准误差的估计不准确,常见的检验和修正方法包括Breusch-Pagan检验和White检验,同时,还可以采取加权最小二乘法或者转换变量的方法来修正异方差性。
异方差性可以分为条件异方差和非条件异方差两种类型。
条件异方差是指在给定自变量的情况下,被解释变量方差的大小存在差异;非条件异方差则是指被解释变量的方差在整个样本空间内都存在差异。
异方差性的后果是导致参数估计的不准确性和偏误。
当存在异方差性时,OLS(普通最小二乘法)估计的标准误差会低估真实标准误差,从而使得参数显著性以及模型拟合效果可能出现问题。
此外,在存在异方差性的情况下,t检验、F检验等假设检验的结果也会受到影响。
在进行线性回归模型时,常常需要对异方差性进行检验。
一种常用的检验方法是Breusch-Pagan检验,其基本思想是对残差的平方与自变量进行回归,然后通过F检验来判断异方差的存在与否。
另一种常用的检验方法是White检验,它是在一个包含自变量和交互项的扩展模型中对残差的平方与自变量进行回归,通过Wald检验统计量来判断异方差的存在与否。
异方差性可以通过多种修正方法来处理。
其中,一种常用的方法是采用加权最小二乘法(WLS)来估计参数。
WLS的基本思想是将方差不恒定的观测值加权,使得每个观测值的权重与方差的倒数成正比。
另一种常用的方法是通过转换变量,使得原始数据变换成具有恒定方差的形式,例如对数变换、平方根变换等。
下面以一个案例来说明如何检验和修正异方差性。
假设我们研究了城市的房价(被解释变量)与房屋面积和所在地区(自变量)之间的关系。
我们采集了100个样本数据,并构建了线性回归模型进行分析。
1.检验异方差性:使用Breusch-Pagan检验来检验模型的异方差性。
时序预测中的异方差性检验方法探讨(四)
时序预测中的异方差性检验方法探讨在时序预测中,异方差性是一个常见的问题,它指的是随着时间推移,误差项的方差并不保持恒定。
异方差性存在的情况下,传统的预测方法可能会失效,因此需要对异方差性进行检验和处理。
本文将探讨几种常见的异方差性检验方法,并对它们进行比较分析。
一、异方差性的原因及影响异方差性通常会出现在时间序列数据中,它的产生有多种原因,比如数据的不稳定性、季节性、趋势等。
异方差性会导致传统的预测模型的参数估计不准确,进而影响预测结果的准确性。
因此,对异方差性进行检验和修正是十分必要的。
二、常见的异方差性检验方法1. BP检验法BP检验法是一种经典的异方差性检验方法,其基本思想是通过对残差序列的平方进行自相关检验,来判断误差项是否存在异方差性。
BP检验法的优点是简单易行,适用于各种模型的残差序列。
但是,它也存在一些局限性,比如在样本量较小的情况下,检验结果可能不够准确。
2. White检验法White检验法是另一种常用的异方差性检验方法,它的原理是通过对残差的平方进行回归,然后对回归残差进行一阶自相关和二阶自相关的检验。
White检验法相对于BP检验法来说,更加严格和准确,适用范围更广。
但是,它也需要更多的计算和数据处理,相对来说也更加复杂。
3. ARCH检验法ARCH检验法是一种基于时间序列模型的异方差性检验方法,它的核心是通过建立ARCH模型来检验残差的异方差性。
相对于传统的BP和White检验法,ARCH检验法更加灵活,能够更好地适应不同的数据特征。
但是,它也需要对模型进行一定的假设和拟合,因此在实际应用中需要谨慎使用。
三、异方差性检验方法的比较分析在对上述三种异方差性检验方法进行比较分析之后,我们可以得出一些结论:首先,BP检验法是一种简单易行的方法,适用于各种模型的残差序列,但是在样本量较小的情况下可能不够准确。
其次,White检验法相对于BP检验法来说,更加严格和准确,适用范围更广,但是需要更多的计算和数据处理。
计量经济学第六章异方差性
构建统一的异方差 性处理框架
未来可以构建一个统一的异方 差性处理框架,整合现有的处 理方法和技巧,为实际应用提 供更为全面和系统的指导。同 时,该框架还可以为计量经济 学的教学和研究提供便利。
THANK YOU
感谢聆听
03
异方差性对假设检验 的影响
异方差性可能导致假设检验中的t统计 量和F统计量失效,从而影响假设检 验的结论。
异方差性下的模型选择和评价
异方差性检验
在进行模型选择和评价之前,需要对异方差性进行检验。常用 的异方差性检验方法有怀特检验、布雷施-帕甘检验等。
模型选择
在存在异方差性的情况下,应选择能够处理异方差性的模型, 如加权最小二乘法(WLS)、广义最小二乘法(GLS)等。
性质
异方差性违反了经典线性回归模型的同方差假设,可能导致参数 估计量的无偏性、有效性和一致性受到影响。
产生原因及影响
模型设定误差
模型遗漏了重要变量或函数形式设定错误。
数据采集问题
观测数据的误差或异常值。
产生原因及影响
• 经济现象本身:某些经济变量之间的关系可能随时间和空间的变化而变化,导致异方差性。
等级相关系数法
计算残差绝对值与解释变量之间的等 级相关系数,若显著则表明存在异方 差性。
Goldfeld-Quandt检验法
假设条件
该检验假设异方差性以解释变量的某个值为界,将样本分为两组,且两组的方差不同。
检验步骤
首先根据假设条件将样本分组,然后分别计算两组的残差平方和,最后构造F统计量进行假设检验。
05
异方差性在计量经济学模型中的应用
异方差性对模型设定的影响
01
异方差性可能导致参 数估计量的偏误
当存在异方差性时,普通最小二乘法 (OLS)的参数估计量可能不再具有无 偏性和一致性,从而导致估计结果的偏 误。
实验四-异方差性的检验与处理
实验四异方差性的检验及处理〔2学时〕一、实验目的〔1〕、掌握异方差检验的基本方法; 〔2〕、掌握异方差的处理方法.二、实验学时:2学时 三、实验要求〔1〕掌握用MATLAB 软件实现异方差的检验和处理; 〔2〕掌握异方差的检验和处理的基本步骤.四、实验原理1、异方差检验的常用方法<1> 用X-Y 的散点图进行判断<2>.22ˆ(,)(,)e x e y 或的图形,),x )i i y i i ((e 或(e 的图形)<3> 等级相关系数法〔又称Spearman 检验〕是一种应用较广的方法,既可以用于大样本,也可与小样本. 检验的三个步骤 ①ˆt t y y=-i e②|i x i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)③做等级相关系数的显著性检验.n>8时,/2(2),t t n α>-反之,若||i i e x 说明与之间存在系统关系,异方差问题存在.<4> 帕克<Park>检验帕克检验常用的函数形式:若α在统计上是显著的,表明存在异方差性. 2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:1211(i i p pi iy x x u f x βββ=+⋅++⋅+在该模型中:即满足同方差性.于是可以用OLS 估计其参数,得到关于参数12,,,pβββ的无偏、有效估计量.五、实验举例例101i i i ,研究不同收入家庭的消费情况,试问原数据有无异方差性?如果存在异方差性,应如何处理?解:〔一〕编写程序如下:〔1〕等级相关系数法〔详见test4_1.m 文件〕%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性%%%%%%%% [data,head]=xlsread<'test4.xlsx'>; x=data<:,1>; %提取第一列数据,即可支配收入x y=data<:,2>; %提取第二列数据,即居民消费支出y plot<x,y,'k.'>; % 画x 和y 的散点图xlabel<'可支配收入x 〔千元〕'> % 对x 轴加标签 ylabel<'居民消费支出y<千元>'> % 对y 轴加标签%%%%%%%% 调用regres 函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones<size<x,1>,1>,x]; %在x 矩阵最左边加一列1,为线性回归做准备 [b,bint,r,rint,s]=regress<y,xdata>; yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间 head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'}; [head1;num2cell<[b,bint]>]% 定义元胞数组,以元胞数组形式显示y 的真实值,y 的估计值,残差和残差的95%置信区间 head2={'y 的真实值','y 的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell<[y,yhat,r,rint]>]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'};[head3;num2cell<s>]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot<r,rint> % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot<yhat,r,'k.'> % 画散点图xlabel<'估计值yhat'> % 对x轴加标签ylabel<'残差r'> % 对y轴加标签%%%%%%%%%%%%调用corr函数计算皮尔曼等级相关系数res=abs<r>; % 对残差r取绝对值[rs,p]=corr<x,res,'type','spearman'>disp<'其中rs为皮尔曼等级相关系数,p为p值'>;〔2〕帕克〔park〕检验法〔详见test4_2.m文件〕%%%%%%%%%%%%%%% 用帕克〔park〕检验法来检验异方差性%%%%%%%[data,head]=xlsread<'test4.xlsx'>; %导入数据x=data<:,1>;y=data<:,2>;%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats<y,x,'linear',{'yhat','r','standres'}>;scatter<x,<ST.r>.^2> % 画x与残差平方的散点图xlabel<'可支配收入<x>'> % 对x轴加标签ylabel<'残差的平方'> %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log<x>和log〔r^2〕进行一元线性回归ST1=regstats<log<<ST.r>.^2>,log<x>,'linear',{'r','beta','tstat','fsta t'}>% 输出参数的估计值% 输出回归系数t检验的P值% 输出回归模型显著性检验的P值<3>加权最小二乘法〔详见test4_3.m文件〕%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread<'test4.xlsx'>; % 导入数据x=data<:,1>;y=data<:,2>;% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit<x,y> %调用函数作稳健回归stats.p% 输出模型检验的P值%%% 绘制残差和权重的散点图%%%%%%%plot<stats.resid,stats.w,'o'> %绘制残差和权重的散点图xlabel<'残差'>ylabel<'权重'〔二〕实验结果与分析:第一步::用OLS方法估计参数,并保留残差〔1〕散点图图4.1 可支配收入〔x〕居民消费支出〔y〕散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状.〔2〕回归模型参数估计值与显著性检验表1'系数的估计值' '估计值的95%置信下限' '估计值的95%置信上限'[ -0.5390] [ -3.7241] [ 2.6460][ 0.8091] [ 0.6768] [ 0.9415]'判定系数' 'F统计量的观测值' '检验的P值' '误差方差的估计值'[ 0.8485] [ 156.8387] [5.4040e-13] [ 9.1316]由输出结果看,常数项和回归系数的估计值分别为-0.539和0.8091,从而可以写出线性回归方程为^=−0.539+0.8091∗xy回归系数的估计值的95%置信区间为[0.6768,0.9415].对回归直线进行显著性检验,原假设和对立假设分别为H0:β1=0 H1:β1≠0检验的P值为5.4040×10−13<0.01,可知在显著性水平α=0.01下应拒绝原假设H0,可认为y〔居民消费收入〕与x〔可支配收入〕的线性关系是显著的.〔3〕方差分析图4.2原始数据对应残差图从残差图可以看到有2条线段〔红色虚线〕与水平线y=0没有交点,它对应的观测号为22和29,也就是说这两组观测对应的残差的置信区间不包含0点,可认为这两组观测数据为异常数据.它们分别是〔30,16.7〕,〔35,20〕.第二步:异方差性检验〔1〕图示法图4.3<2> 等级相关系数法在y与x 的OLS 回归的基础上计算出残差的绝对值,并记为res,并计算出皮尔曼等级相关系数rs=0.4860与对应的p值为0.0065<0.05〔*〕,说明残差r与x 存在系统关系,即存在异方差问题.〔3〕帕克<Park>检验法1〕散点图图4.4可支配收入与残差平方的散点图从图4.4可知,可考虑拟合指数曲线.现将其取对数,即可进行一元线性拟合.2〕回归系数与模型检验做ln<r^2>对ln<x>回归,得到表2β0=-8.49730.02950.0207β1=2.96790.0207从上表可以看出,得到的回归模型为ln (r 2)=−8.4973+2.9679∗ln (x),常数项和线性项的t 检验的P 值均小于0.05,说明回归方程中常数项和线性项均是显著的.并且,检验的P 值为0.0207小于0.05,说明整个回归方程是显著的,表明存在异方差性.综上所述,通过以上3种方法的检验,我们得到原数据存在异方差性.第三步:用加权最小二乘法处理异方差性表3‘回归系数’回归系数t 检验的P 值β0=-1.6091 0.2375β1=0.8870 0.0000由表3得:回归方程为 y ^=−1.6091+0.887x ,由p 值可知x 的回归系数是显著的,常数项未显著,说明其无实际意义.图4.5 残差和权重的散点图由图4.5知:权重集中在最上方的1附近的点比较多,说明稳健性比较好.六、实验内容01i i i FDI u ββ=++若用线性模型GDP ,研究不同地区FDI 和GDP 的关系,试问原数据有无异方差性?如果存在异方差性,应如何处理?七、思考练习现用线性模型01i i i y x u ββ=++ ,研究不同收入水平家庭的消费情况,试问原数据有无异方差性?如果存在异方差性,应如何处理?八、参考文献[1].李宝仁.计量经济学[M].机械工业出版社,2007.12 [2].何晓群. 应用回归分析[M].中国人民大学出版,2002.9。
异方差性的检验方法和修正
Z N UE L异方差性的检验方法和修正一、 实验目的熟练掌握异方差性的检验方法和修正处理方法二、实验原理异方差(heteroskedasiticity )是计量经济工作红线性回归模型经常遇到的问题,异方差的存在对线性回归分析有很强的破坏作用。
利用异方差的图形检验、戈德菲尔特-夸特检验、怀特检验方法,检验案例中线性回归模型的异方差是否存在,若存在的话,如何通过加权最小二乘法进行修正,建立能够真正反应案例的经济模型,实现对经济的正确指导作用。
三、实验要求通过Eviews 软件应用给定的案例做异方差模型的图形检验法、Glodfeld-Quanadt(戈德菲尔特-夸特)检验与White(怀特)检验,并使用加权最小二乘法(WLS)对异方差进行修正。
四、 实验步骤在现实经济活动中,最小二乘法的基本假定并非都能满足,本案例讲讨论随机误差项违背基本假定的一个方面—异方差性。
本案例将介绍:异方差模型的图形检验、戈德菲尔特-夸特检验、怀特检验;异方差模型的加权最小二乘法修正。
1、建立workfile 和对象,录入2007年城镇居民收入X 和消费额Y 的数据。
2、参数估计按住ctrl 键,同时选中序列X 和序列Y ,点右键,在所出现的右键菜单中,选择open\as Group 弹出一对话框,点击其上的“确定”,可生成并打开一个群对象。
在群对象窗口工具栏中点击view\Graph\Scatter\Simple Scatter, 可得X 与Y 的简单散点图,可以看出X 与Y 是带有截距的近似线性关系。
点击朱界面菜单Quick\Estimate Equation, 在弹出的对话框中输入 Y C X,点确定即可到回归结果,如下:VariableCoefficientStd. Errort-StatisticProb. C 756.6871570.1912 1.3270760.1948X0.3076930.01908216.124970.0000R-squared0.899659 Mean dependent var 8689.161Durbin-Watson stat1.694571 Prob(F-statistic)0.0000003、异方差检验本案例用的是2007年的全国各个诚实城镇居民收入和消费额,由于地区之间这种差异使得模型很容易产生异方差,从而影响模型的估计和运行,为此必须对该模型是否存在异方差进行检验。
(完整版)异方差性的white检验及处理方法
(完整版)异⽅差性的white检验及处理⽅法实验⼆异⽅差模型的white检验与处理【实验⽬的】掌握异⽅差性的white检验及处理⽅法【实验原理】1. 定性分析异⽅差(1) 经济变量规模差别很⼤时容易出现异⽅差。
如个⼈收⼊与⽀出关系,投⼊与产出关系。
(2) 利⽤散点图做初步判断。
(3) 利⽤残差图做初步判断。
2、异⽅差表现与来源异⽅差通常有三种表现形式(1)递增型(2)递减型(3)条件⾃回归型。
3、White检验(1)不需要对观测值排序,也不依赖于随机误差项服从正态分布,它是通过⼀个辅助回归式构造χ2 统计量进⾏异⽅差检验。
White检验的零假设和备择假设是H0: (4-1)式中的ut不存在异⽅差,H1: (4-2)式中的ut存在异⽅差。
(2)在不存在异⽅差假设条件下,统计量T R 2 ~χ2(5) 其中T表⽰样本容量,R2是辅助回归式(4-3)的OLS估计式的可决系数。
⾃由度5表⽰辅助回归式(4-3)中解释变量项数(注意,不计算常数项)。
T R 2属于LM统计量。
(3)判别规则是若T R 2 ≤χ2α (5), 接受H0(ut 具有同⽅差)若T R 2 > χ2α (5), 拒绝H0(ut 具有异⽅差)【实验软件】Eview6【实验要求】熟练掌握异⽅差white检验⽅法【实验内容】建⽴并检验我国部分城市国民收⼊y和对外直接投资FDI异⽅差模型【实验⽅案设计】下表列出了我国部分城市国民收⼊y和对外直接投资FDI的统计资料,并利⽤统计软件Eviews建⽴异⽅差模型。
地区Y FDI北京32061219126天津26532153473河北1051396405⼭西743521361内蒙古89758854辽宁14258282410吉林933819059⿊龙江1161532180上海46718546849江苏168091056365浙江20147498055安徽645536720福建14979259903江西6678161202⼭东136********河南757053903湖北9011156886湖南7554101835⼴东17213782294⼴西596941856海南831642125重庆720926083四川641841231贵州36034521云南56628384陕西648033190⽢肃50222342青海72772522宁夏66911743新疆97001534【实验过程】1、启动Eviews6软件,建⽴新的workfile.在主菜单中选择【File】--【New】--【Workfile】,弹出Workfile Create对话框,在Workfile structure typ中选择unstructured/undted.然后在observations中输⼊30.在WF中输⼊Work1,点击OK按钮。
检验异方差性与调整异方差性
检验异方差性与调整异方差性1. 异方差性的概念及检验方法异方差性指的是随机变量的条件方差,并且条件方差不是常数。
也就是说,观测值的方差不仅仅取决于均值,还可能取决于其他因素。
在统计分析中,如果存在异方差性,会对参数估计和假设检验产生影响。
因此,需要在进行统计分析之前,先检验数据是否存在异方差性。
1.1 异方差性检验方法常用的异方差性检验方法有多种,包括:•基于残差的图形检验方法,如残差图和方差-均值图;•基于统计检验的方法,如Levene检验、Bartlett检验以及Brown-Forsythe检验;1.2 基于残差的图形检验方法1.2.1 残差图残差图是一种简单直观的检验异方差性的方法。
在残差图中,横轴表示预测值或观测值的均值,纵轴表示对应的残差。
如果残差的方差与均值无关,则残差图应该呈现出随机分布的特点。
反之,如果残差图中存在明显的模式,即残差的方差与均值相关,则可以初步判断存在异方差性。
1.2.2 方差-均值图方差-均值图是一种更细致的检验异方差性的方法。
在方差-均值图中,横轴表示预测值或观测值的均值,纵轴表示对应的残差的方差。
如果方差-均值图中存在明显的模式,即残差的方差与均值相关,则可以初步判断存在异方差性。
1.3 基于统计检验的方法1.3.1 Levene检验Levene检验是一种常用的检验异方差性的方法。
Levene检验基于修正后的中位数差异进行计算,主要用于检验两个或多个样本之间的方差是否存在显著差异。
在假设检验中,原假设为各组样本方差相等,备择假设为各组样本方差不等。
如果p值小于设定的显著性水平(如0.05),就可以拒绝原假设,认为样本之间存在异方差性。
1.3.2 Bartlett检验Bartlett检验是另一种常用的检验异方差性的方法。
Bartlett检验基于观测值与各组均值差异进行计算,主要用于检验两个或多个样本之间的方差是否存在显著差异。
在假设检验中,原假设为各组样本方差相等,备择假设为各组样本方差不等。
异方差性的概念、类型、后果、检验及其修正方法(含案例).
其中
2 SEYˆ Y 1 X0 (XX) 1 X 0
0 0
所以,当模型出现异方差性时,Y预测区间的建立将发生困 难,它的预测功能失效。
三、异方差性的检验(教材P111)
1.检验方法的共同思路 • 既然异方差性就是相对于不同的解释变量观测值,
随机误差项具有不同的方差,那么: 检验异方差性,也就是检验随机误差项的方差与解 释变量观测值之间的相关性及其相关的“形式”。 • 各种检验方法正是在这个共同思路下发展起来的。
分别为两个子样对应的随机项方差。
H0成立,意味着同方差; H1成立,意味着异方差。
⑤构造统计量
nc 2 ~ e2i ( 2 k 1) nc nc F ~ F( k 1, k 1) nc 2 2 2 ~ e ( k 1 ) 1i 2
⑥检验。给定显著性水平,确定F分布表中相应的临界值
2 E() I
Var( ) 2 , i 1,2, , n i Cov( , ) 0, i j i j
即同方差和无序列相关条件。
2.变量的显著性检验失去意义
在变量的显著性检验中,t统计量
t ˆ
j j j
ˆ ) Se(
~2 来表示随机误差项的方差。 即用e
i
2.图示检验法
(1)用X-Y的散点图进行判断(李子奈P108)
看是否存在明显的散点扩大、缩小或复杂型 趋势(即不在一个固定的带型域中)。
随机误差项的 方差描述的是 取值的离散程 度。而由于被 解释变量Y与随 机误差项有相 同的方差,所 以利用Y与X之 间的相关图形 也可以粗略地 看出的离散程 度与X之间是否 有相关关系。
什么是异方差性如何进行异方差性的检验与处理
什么是异方差性如何进行异方差性的检验与处理异方差性,它是统计学中一种常见的现象,指的是观测值的方差在不同的条件下不相等。
在数据分析和建模过程中,异方差性可能会导致模型参数估计不准确,假设检验无效以及预测效果下降等问题。
因此,了解异方差性并进行检验和处理是非常重要的。
1. 异方差性的表征异方差性通常表现为残差的方差与预测值的关系不稳定。
在回归分析中,当残差的方差与预测值的关系呈现出一定的模式时,可以初步判断存在异方差性。
常见的异方差性模式有以下几种:(1)线性模式:残差的方差与预测值呈线性关系,即残差的方差随着预测值的增大而增大或减小。
(2)指数模式:残差的方差与预测值呈指数关系,即残差的方差随着预测值的增大呈指数级别增大或减小。
(3)对数模式:残差的方差与预测值呈对数关系,即残差的方差随着预测值的增大呈对数级别增大或减小。
(4)多重峰值模式:残差的方差具有多个峰值,表示不同分组或条件之间存在不同的方差水平。
2. 异方差性的检验针对上述异方差性模式,可以进行一些统计检验来验证异方差性的存在。
常用的异方差性检验方法包括帕金森-斯皮尔曼检验(Park test)、布劳什-帕甘检验(Breusch-Pagan test)和韦斯特曼检验(White test)等。
这些检验方法都是基于残差的方差与预测值之间的关系建立的。
以布劳什-帕甘检验为例,该检验的原假设是残差的方差与预测变量之间不存在显著相关关系,即不存在异方差性。
在进行检验时,首先需要对模型进行拟合,并获得残差。
然后,根据拟合残差和预测变量的关系构建辅助回归模型,并进行显著性检验。
如果辅助回归模型的显著性检验结果小于设定的显著性水平(通常为0.05),则可以拒绝原假设,认为存在异方差性。
3. 异方差性的处理在实际数据分析中,如果检验结果表明存在异方差性,需要对数据进行处理以减小或消除其影响。
常用的异方差性处理方法包括以下几种:(1)对数或平方根变换:通过对原始数据进行对数或平方根变换,可以降低数据的异方差性。
(完整版)异方差性的white检验及处理方法
实验二异方差模型的white检验与处理【实验目的】掌握异方差性的white检验及处理方法【实验原理】1. 定性分析异方差(1) 经济变量规模差别很大时容易出现异方差。
如个人收入与支出关系,投入与产出关系。
(2) 利用散点图做初步判断。
(3) 利用残差图做初步判断。
2、异方差表现与来源异方差通常有三种表现形式(1)递增型(2)递减型(3)条件自回归型。
3、White检验(1)不需要对观测值排序,也不依赖于随机误差项服从正态分布,它是通过一个辅助回归式构造χ2 统计量进行异方差检验。
White检验的零假设和备择假设是H0: (4-1)式中的ut不存在异方差,H1: (4-2)式中的ut存在异方差。
(2)在不存在异方差假设条件下,统计量T R 2 ~χ2(5) 其中T表示样本容量,R2是辅助回归式(4-3)的OLS估计式的可决系数。
自由度5表示辅助回归式(4-3)中解释变量项数(注意,不计算常数项)。
T R 2属于LM统计量。
(3)判别规则是若T R 2 ≤χ2α (5), 接受H0(ut 具有同方差)若T R 2 > χ2α (5), 拒绝H0(ut 具有异方差)【实验软件】Eview6【实验要求】熟练掌握异方差white检验方法【实验内容】建立并检验我国部分城市国民收入y和对外直接投资FDI异方差模型【实验方案设计】下表列出了我国部分城市国民收入y和对外直接投资FDI的统计资料,并利用统计软件Eviews建立异方差模型。
地区Y FDI北京32061219126天津26532153473河北1051396405山西743521361内蒙古89758854辽宁14258282410吉林933819059黑龙江1161532180上海46718546849江苏168091056365浙江20147498055安徽645536720福建14979259903江西6678161202山东136********河南757053903湖北9011156886湖南7554101835广东17213782294广西596941856海南831642125重庆720926083四川641841231贵州36034521云南56628384陕西648033190甘肃50222342青海72772522宁夏66911743新疆97001534【实验过程】1、启动Eviews6软件,建立新的workfile.在主菜单中选择【File】--【New】--【Workfile】,弹出Workfile Create对话框,在Workfile structure typ中选择unstructured/undted.然后在observations中输入30.在WF中输入Work1,点击OK按钮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四异方差性
【实验目的】
掌握异方差性的检验及处理方法
【实验容】
建立并检验我国制造业利润函数模型
【实验步骤】
【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
表1 我国制造工业1998年销售利润与销售收入情况
行业名称销售利润销售收入行业名称销售利润销售收入
食品加工业187.25 3180.44 医药制造业238.71 1264.1
食品制造业111.42 1119.88 化学纤维制品81.57 779.46
饮料制造业205.42 1489.89 橡胶制品业77.84 692.08
烟草加工业183.87 1328.59 塑料制品业144.34 1345
纺织业316.79 3862.9 非金属矿制品339.26 2866.14
服装制品业157.7 1779.1 黑色金属冶炼367.47 3868.28
皮革羽绒制品81.7 1081.77 有色金属冶炼144.29 1535.16
木材加工业35.67 443.74 金属制品业201.42 1948.12
家具制造业31.06 226.78 普通机械制造354.69 2351.68
造纸及纸品业134.4 1124.94 专用设备制造238.16 1714.73 印刷业90.12 499.83 交通运输设备511.94 4011.53 文教体育用品54.4 504.44 电子机械制造409.83 3286.15
石油加工业194.45 2363.8 电子通讯设备508.15 4499.19
化学原料纸品502.61 4195.22 仪器仪表设备72.46 663.68
一、检验异方差性
⒈图形分析检验
⑴观察销售利润(Y)与销售收入(X)的相关图(图1):SCAT X Y
图1 我国制造工业销售利润与销售收入相关图
从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也
逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析
首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。
图2 我国制造业销售利润回归模型残差分布
图2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
⒉Goldfeld-Quant检验
⑴将样本按解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)
⑵利用样本1建立回归模型1(回归结果如图3),其残差平方和为2579.587。
SMPL 1 10
LS Y C X
图3 样本1回归结果
⑶利用样本2建立回归模型2(回归结果如图4),其残差平方和为63769.67。
SMPL 19 28
LS Y C X
图4 样本2回归结果
⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。
取
05
.0=α时,查F 分布表得
44.3)1110,1110(05.0=----F ,而
44.372.2405.0=>=F F ,所以存在异方差性
⒊White 检验
⑴建立回归模型:LS Y C X ,回归结果如图5。
图5 我国制造业销售利润回归模型
⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图6。
图6 White 检验结果
其中F 值为辅助回归模型的F 统计量值。
取显著水平
05.0=α,由于
2704.699.5)2(2205.0=<=nR χ,所以存在异方差性。
实际应用中可以直接观察相伴概率
p 值的大小,若p 值较小,则认为存在异方差性。
反之,则认为不存在异方差性。
⒋Park 检验
⑴建立回归模型(结果同图5所示)。
⑵生成新变量序列:GENR LNE2=log(RESID^2)
GENR LNX=logx
⑶建立新残差序列对解释变量的回归模型:LS LNE2 C LNX ,回归结果如图7所示。
图7 Park 检验回归模型
从图7所示的回归结果中可以看出,LNX 的系数估计值不为0且能通过显著性检验,即随即误差项的方差与解释变量存在较强的相关关系,即认为存在异方差性。
⒌Gleiser 检验(Gleiser 检验与Park 检验原理相同) ⑴建立回归模型(结果同图5所示)。
⑵生成新变量序列:GENR E=ABS(RESID)
⑶分别建立新残差序列(E )对各解释变量(X/X^2/X^(1/2)/X^(-1)/ X^(-2)/ X^(-1/2))的回归模型:LS E C X ,回归结果如图8、9、10、11、12、13所示。
图8
图9
图10
图11
图12
图13
由上述各回归结果可知,各回归模型中解释变量的系数估计值显著不为0且均能通过显著性检验。
所以认为存在异方差性。
R确定异方差类型
⑷由F值或2
R值确定异方差的具体形式。
本例中,图10所示的回归Gleiser检验中可以通过F值或2
R)最大,可以据次来确定异方差的形式。
方程F值(2
二、调整异方差性
⒈确定权数变量
根据Park检验生成权数变量:GENR W1=1/X^1.6743
根据Gleiser检验生成权数变量:GENR W2=1/X^0.5
另外生成:GENR W3=1/ABS(RESID)
GENR W4=1/ RESID ^2
⒉利用加权最小二乘法估计模型
在Eviews命令窗口中依次键入命令:
W) Y C X
LS(W=
i
或在方程窗口中点击Estimate\Option按钮,并在权数变量栏里依次输入W1、W2、W3、W4,回归结果图14、15、16、17所示。
图14
图15
图16
图17
⒊对所估计的模型再进行White检验,观察异方差的调整情况
对所估计的模型再进行White检验,其结果分别对应图14、15、16、17的回归模型(如图18、19、20、21所示)。
图18、19、21所对应的White检验显示,P值较大,所以接收不存在异方差的原假设,即认为已经消除了回归模型的异方差性。
图20对应的White检验
nR的值,这表示异方差性已经得到很好的解决。
没有显示F值和2
图18
图19
图20
图21。