平面问题的有限元法
弹性力学平面问题的有限元法实例
分析与决策
(1)何种类型?
平面问题中的结构问题,且为静力问题;
平面问题中具有对称性,为减少[K],简化模型取
1/4;
简化后加约束,(1)在ox面上,位移u是对称的,
位移v是反对称的;在oy面上,位移u是反对称的, 位移v是对称的; (2)在ox面上,载荷对称,在oy 面上,载荷对称;
(1)何种类型?
4.5剖分面(续)
以垂线剖分面。依次单击preprocessor-modelingoperate-booleans-divide-area by line,弹出对话框, 选择对话框中的box单选,用窗口选择两个面元素, 后单击apply,在窗口中选L6-ok,完成面元素剖分。 单击plotctrls菜单中的numbering命令,关闭line numbers –ok; 单击plot菜单中的area命令,用面元素显示模型, 剖分的模型如图所示,由2个面变为4个面,面元素 的编号同时发生变化。
Preprocessor-material
props-material models-弹出define material model behavior 对话框-列表框material models available中, 依次单击structural-linear-elastic-isotropic, 添加弹性模量2.1e+11,泊松比0.3-ok;
操作过程
一、建立新文件
二、类型的选择 Structural-ok;
二、前处理
1、添加单元类型 选择:Quad 4node 42(单元库编号); 具有厚度:选择 option-plane str w/thk(平面应力有厚度);
2、设置实常数(Real constants)
有限元分析——平面问题
Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1
第4章 平面问题的有限元法-4收敛准则
8
9 10 11 12 13 14
2
4
6
8 10 12 14
(a)
(b)
图4-13
四. 单元节点i、j、m的次序 在前面章节中,我们曾指出,为了在计算中保证单元的 面积 不会出现负值,节点i、j、m的编号次序必须是逆时 针方向。事实上,节点i、j、m的编号次序是可以任意安排 的,只要在计算刚度矩阵的各元素时,对取绝对值,即可 得到正确的计算结果。在实际计算时,应该注意所选有限元 分析软件的使用要求。 五. 边界条件的处理及整体刚度矩阵的修正 在前面讨论整体刚度矩阵时,已经提到,整体刚度矩阵 的奇异性可以提高考虑边界约束条件来排除弹性体的刚体位 移,以达到求解的目的。
B =2(d+1)
若采取带宽压缩存储,则整体刚度矩阵的存储量N 最 多为N =2nB = 4n(d+1) 其中:d为相邻节点的最大差值,n为节点总数。 例如在图4-13中,(a)与(b)的单元划分相同,且节点 总数都等于14,但两者的节点编号方式却完全不同。(a) 是按长边进行编号, d =7, N =488;而(b)是按短边进行 编号,d =2,N =168。显然(b)的编号方式可比(a)的编号 方式节省280个存储单元。
为了保证解答的收敛性,要求位移模式必须满足以下三 个条件,即 ⑴ 位移模式必须包含单元的刚体位移。也就是说,当 节点位移是由某个刚体位移所引起时,弹性体内将不会产生 应变。所以,位移模式不但要具有描述单元本身形变的能力 ,而且还要具有描述由于其它单元形变而通过节点位移引起 单元刚体位移的能力。 例如,三角形三节点单元位移模式中,常数项1、4 就 是用于提供刚体位移的。 ⑵ 位移模式必须能包含单元的常应变。每个单元的应变 一般都是包含着两个部分:一部分是与该单元中各点的坐标 位置有关的应变(即所谓各点的变应变);另一部分是与位 置坐标无关的应变(即所谓的常应变)。从物理意义上看,
第七章 平面问题的有限单元法(Q4)
8
4节点四边形单元
y, v
u1 v 1 u2 u de 2 u3 u3 u4 u 4 displacements at node 1 displacements at node 2 displacements at node 3 displacements at node 4
x 1 2 3 4 N1 x1 N 2 x2 N 3 x3 N 4 x4 y 1 2 3 4 N1 y1 N 2 y2 N 3 y3 N 4 y4
1 N (1 )(1 ) 1 4 N 1 (1 )(1 ) 2 4 1 N (1 )(1 ) 3 4 N 1 (1 )(1 ) 4 4
1 4
Nj 1 4 (1 j )(1 j )
4 ( 1, +1) ( u4, v4)
1
N3 1 4 (1 )(1 ) N4 1 4 (1 )(1 )
N 3 at node 1 1 4 (1 )(1 ) 1 0 N 3 at node 2 1 4 (1 )(1 ) 1 0
同理:
1 1 1 1 1 y1 2 1 1 1 1 1 y2 1 1 1 1 4 3 y3 1 1 1 1 y4 4
K e B DBtd
e
T
11
等参单元
对于一般的四边形单元,在总体坐标系下构造 位移插值函数,则计算形状函数矩阵、单元刚 度矩阵及等效节点载荷列阵时十分冗繁;而对 于矩形单元,相应的计算要简单的多。 矩形单元明显的缺点是不能很好的符合曲线边 界,因此可以采用矩形单元和三角形单元混合 使用(网格划分困难)。更为一般的方法是通 过等参变换将局部自然坐标系内的规格化矩形 单元变换为总体坐标系内的任意四边形单元( 包括高次曲边四边形单元)。 等参单元的提出为有限元法成为现代工程实
有限元分析第四章
19
4)形函数的性质
形函数是有限单元法中的一个重要函数,它具 有以下性质: 性质1 形函数Ni在节点i上的值等于1,在其它节点 上的值等于0。对于本单元,有
20
Ni ( xi , yi ) 1 Ni ( x j , y j ) 0 Ni ( xm , ym ) 0
(i、j、m)
利用 N i 1 (ai bi x ci y )和ai、bi、ci公式证明 2A
对于一个具体问题进行分析,不管采用什么样的单元, 分析过程与思路是一样的,所不同的只是各种单元的位移模 式和单元刚度矩阵不一样,其他的包括整体刚度矩阵的组装 过程都完全一样,所以我们仅仅对矩形单元位移模式的求取 和单元刚度矩阵的求解加以介绍。
4.7 收敛准则
可以证明,对于一个给定的位移模式,其刚度系统的数 值要比精确值大。所以,在给定载荷的作用下,有限元计算 模型的变形要比实际结构的变形小。因而,当单元网格分得 越来越细时,位移的近似解将由下方收敛于精确解,即得到 真实解的下界。 为了保证解答的收敛性,要求选取的位移模式必须满足 以下三个条件: 1)位移模式必须包含单元的刚体位移 也就是说,当节点位移是某个刚体位移所引起时,弹 性体内将不会产生应变。所以位移模式不但要具有描述单元 本身形变的能力,而且还要具有描述由其他变形而通过节点 位移引起单元刚体位移的能力。例如,三角形三节点位移模 式中,常数项就是用于提供刚体位移的。
Ni(x、y)
1 i(xi,yi) x xi
x xi N i ( x, y ) 1 x j xi
N m ( x, y ) 0
证
N
y j (xj,yj)
m (xm,ym)
xj
x
N i ( x, y )
4.5.14.5平面问题有限元分析步骤及计算实例
K
88
K 12 11 K21 1
K 12 31
K41 2
K22 1 K32 1
K 12 33
K43 2
K
44
2
由于[Krs]=[Ksr]T,又单元1和单元2的节点号按1、2、
3对应3、4、1,则可得:
K11 1
K33 2
3E 16
3 0
0 1
K21 1 K43 2
K12 1
3E 8
3 1 0
0 0 1
3 1 1
1 3 1
0 0 1
013
q/E 0
q/E 0
3E 8
8q
0 /(3E) 0
0 q1
0
0
单元应力可看作是单元形心处的应力值。
7)引入约束条件,修改刚度方程并求解
根据约束条件:u1 =v1=0;v2=0;u4=0和等效节点力列
阵:F 0 0 0 0 0 q / 2 0 q / 2T
五. 边界条件的处理及整体刚度矩阵的修正 整体刚度矩阵的奇异性可以通过引入边界约束条件来排除弹性体的
刚体位移,以达到求解的目的。
(两种)方法 “化1置0法”
“乘大数法”
⑴修改后的总刚为非奇异,对应的总体平衡方程可求解; ⑵如果已知位移不等于0,采用第二种方法,固定约束用 第一种方法。 ※求解可以采用解方程组的任何一种方法。(高斯消去法 常用),可借用一些计算机软件:如Matlab,Excel等。
所以 q / E0 0 1/ 3 0 1/ 3 1 0 1T
习题和思考题
• 4.1三角形常应变单元的特点? • 4.2平面问题有限元法的基本思想和解题步骤。 • 4.3简述形函数的概念和性质。 • 4.4平面问题整体刚度矩阵的推导过程。 • 4.5矩形单元的特点? • 4.6有限元方法解的收敛准则。
平面问题的有限元分析
4.1 三角形常应变单元
(1)单元特性分析 1)用面积坐标建立单元位移场——面积坐标的定义
Ai Apjm Aj Apmi Ak Apij
恒等关系:
A Ai Aj Am Aijm
P点位置可由3个比值来确定:
p(Li , Lj , Lm )
其中面积坐标:
Li Ai / A Lj Aj / A Lm Am / A
4):单元推导。 对单元构造一个适合的近似解,即推导有限单元的列式,其中
包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元 各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或 柔度阵)。
对工程应用而言,重要的是应注意每一种单元的解题性能与约
束。 5)总装集成。 将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似
0
Nm
Ni
I22
单元内任意一点的位移可由节点位移表示为:
N j I22
d
u
v
Nδe
e ui vi u j v j um
Nm I22
T
vm
4.1 三角形常应变单元
(1)单元特性分析
2)单元应变和单元应力
d
u
v
Nδe
代入
ε
x y
u / x v / y
xy
u / y v / x
其中
K rs
BrT DBshA
Eh
4(1 2 ) A
brbs
1
2
crcs
crbs
1
2
brcs
brcs
1
2
crbs
crcs
1
2
brbs
4.1 三角形常应变单元
有限元分析 第二章 平面问题的有限元方法
A:
梁结构的离散:取一段梁为一单元 单元类型:简单直线段 离散原则:几何上真实模拟原结构及其变形
平板的离散:取一小面积板为一单元 单元类型:由最基本的平面图形构成 三角形、四边形(如正方形、长方形、梯形) 而五边形、圆、扇形不宜作为单元。 离散原则:几何上真实模拟原结构(无缺陷、重叠) 模拟变形状态
(2.3)
对于平面问题:
u x x v y y u v xy y x
(2.4)
x x y 0 z y
0 u y v x
简记,
u H ( x, y)a v
u H a v
(2.14)
e e Ⅱ、单元节点位移 与 a 之关系
u l 1 xl v 0 0 l u m 1 x m v m 0 0 u n 1 x n vn 0 0
第2章 平面问题的有限元方法
2.1 弹性理论基础
Ⅰ、基本假设: • 连续性-物质连续。相应的应力应变,位移等连续变量可 以用坐标的连续函数表示; • 均质各向同性——物体内部各点,各方向上物理性质相同, 材料常数(弹性模量,泊松比)不随坐标方向而变; • 完全弹性——材料服从Hooke定律; • 小变形(几何假设)——略去二阶小量,所有微分方程为 线性的; • 无初应力——加载前物体内无初应力。
yl 0 ym 0 yn 0
0 1
0 xl
0 0 1 xm 0 1 0 xn
0 a1 a yl 2 0 a3 y m a 4 0 a 5 yn a 6
有限元分析第4章 平面问题有限单元法1
6
P
3
4 5
4
2
位移协调条件:各单元共享节点的位移相等 节点平衡条件:各节点单元内力与节点外力构成平衡力系
最终数学模型: K Q
基本概念
单元(element) 节点 (node)
回顾
单元节点位移 (node displacement)
单元节点内力 (node force)
单元刚度矩阵 (element stiffness matrix)
e
bx u by v
d
S
e p
px u py v dS
代入
u v
N
e
{} [B]{ }e
{ } [S]{ }e
得
内力虚功=
e x x y y xy xy d
T d
cj
y)v j
(am
bmx
cm y)vm ]
二、平面问题三角形单元分析
三角形单元形函数
形函数
u x,
y
1 2A
[(ai
bi x
ci
y)ui
(a j
bj x
cj
y)u j
(am
bm x
cm
y)um ]
v x,
y
1 2A
[(ai
bi x
ci
y)vi
(a j
插值系数的确定:待定系数法
ui a1 a2 xi a3 yi u j a1 a2 x j a3 y j um a1 a2 xm a3 ym
第4章 平面问题的有限元法-1离散化ppt课件
第四章 平面问题的有限单元法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 第九节 有限元法基本思想和解题步骤 三角形常应变单元 形函数的性质 刚度矩阵 等效节点力载荷列阵 矩形单元 收敛准则 有限元分析的步骤 计算实例
第一节
有限元法基本思想和解题步骤
R y R y R
o R
(a)
x R
o
(b)
x
四、有限元计算中要解决的二个问题
划分单元后,得到有限元的计算模型,按照分析杆 件结构同样的思路去分析平面问题,但在分析中要解决 两个问题: 1.有限元模型中各单元之间只以节点相连,为了 与真实问题一致,应保证受力变形过程中单元之间在边 界上“不开裂”也不互相“挤入”,即:应该保证在变 形过程中,相邻单元的位移在交界边上是相同的、连续 的。 2.单元刚度矩阵的确定。平面问题的单元刚度矩 阵本身就是一个连续体问题,不能像杆单元一样直接通 过计算得到。
②单元的大小,可根据部位不同而有所不同。 一般在应力比较大的、变化较快的、有应力集中的部位取较 小的单元;在不太重要的、应力较小、变化不大的部位取较 较大的单元。 如图所示受拉的带孔平板,在孔心有应力集中,为危险 区域,所以取较密网格。
③单元各边的长度(或三个顶角)不要相差太大,否则会在 计算中出现过大的误差,影响求解的精度。
问题: 单元的选取、结构的离散化应考虑哪些因素?
3. 选择单元的位移模式
结构离散化后,要用单元内节点的位移通过插值(?)来获 得单元内各点的位移。在有限元法中,通常都是假定单 元的位移模式是多项式,一般来说,单元位移多项式的 项数应与单元的自由度数相等。它的阶数至少包含常数 项和一次项。至于高次项要选取多少项,则应视单元的 类型而定。 (4-1) f N e
第2章 弹性力学平面问题有限单元法(1-3节)
第二章 弹性力学平面问题有限单元法§2-1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。
一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。
在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。
即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。
构造位移函数的方法是:以结点(i,j,m)为定点。
以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。
在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x y ααα==++546(,)v v x y x y ααα==++ (2-1-2)a{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。
将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j jm mx u A x u x u =2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为:m m i j i a x y x y =-m ij by y =- (,,)i j mm i jc x x =-(,,)i j m表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。
第五章弹性力学平面问题的有限单元法解析
(1) 平面应变问题: 如图柱形管道和长柱形坝体,具有如下特点:a纵向尺寸远大 于横向尺寸,且各横截面尺寸都相同;b 载荷和约束沿纵向不变, 因此可以认为,沿纵向的位移分量 等于零。
一悬臂梁的力学模型简化和单元划分如图: 在确立了力学模型的基础上,再把原来连续的弹性体离散化, 分为有限个单元,这些单元可以是三结点三角形、四结点任意四边 形、八结点曲边四边形等等。单元之间只在结点处相联结。平面问 题的结点为铰结点。完成单元划分以后,需要对所有单元按次序编 号,就得到了有限元的计算模型。
A
S
U
(
A
*
xx
*
yy
xy
* xy
)
t
dx
dy
上面三个积分的意义为:
W 中的第一个积分表示全部体积力作的虚功;第二个积分表示
自由边界S 上的表面力作的虚功。U 中的积分为
dU
(
x
* x
y
* y
xy
* xy
)
t
dx
dy
它表示单面体四个侧面上的应力在虚应变上作的虚功。
1 力学模型的简化 用有限元法研究实际工程结构的强度与刚度问题,首先要从工 程实际问题中抽象出力学模型,即要对实际问题的边界条件,约束 条件和外载荷进行简化,这种简化应尽可能反映实际情况,使简化 后的弹性力学问题的解答与实际相近,但也不要带来运算上的过分 复杂。 在力学模型简化过程中,必须明确以下几点 ①判断实际结构的问题类型,是 二维问题还是三维 问题;对于 平面问题,是平面应变 问题还是平面应力 问题。 ②结构是否对称 。如果是对称的,要充分利用对称条件,以简 化计算。 ③简化的力学模型必是静定 的或超静定的。
弹性力学平面问题的有限元法
用于描述四节点四边形单元内任意一点的位移和 应力状态。
刚度矩阵
由四节点四边形单元的形状函数和弹性力学基本 公式构建,用于描述单元的刚度特性。
平面六面体八节点单元
六面体八节点单元
是一种三维有限元单元, 具有六个面和八个节点。
形状函数
用于描述六面体八节点 单元内任意一点的位移 和应力状态。
刚度矩阵
对复杂问题的处理能力有限
对于一些高度非线性或耦合问题,有限元法可能难以获得准确解,需要采用其他数值方法 或实验手段。
对高维问题的处理难度较大
随着问题维度的增加,有限元法的计算量和内存消耗会急剧增加,限制了其在高维问题中 的应用。
未来发展方向与挑战
高效算法设计
研究更高效的有限元算法,提高计算速度和精度,降低计算成本。
载荷向量的确定
根据边界条件和外力分布,确定每个节点的载荷 向量。
3
系统刚度矩阵与总载荷向量
将各个单元的刚度矩阵和载荷向量组合起来,形 成系统刚度矩阵和总载荷向量。
求解线性方程组
线性方程组的求解
利用数值方法(如Gauss消去法、迭代法等)求解由 系统刚度矩阵和总载荷向量构成的线性方程组。
解的收敛性与稳定性
02 弹性力学基本方程
应力和应变的关系
01
02
03
胡克定律
在弹性范围内,应力与应 变之间存在线性关系,即 应力与应变成正比。
应变分量
描述物体变形的量,包括 线应变和角应变。
应力分量
描述物体内部受力情况的 量,包括正应力和剪切应 力。
平衡方程
静力平衡
物体在无外力作用下保持静止状态, 即合力为零。
弹性力学平面问题的有限元法
弹性力学平面问题有限元法
度之间相关的是应力在其作用截面的法线方向和
z
C
τ zx +
∂τ zx dz ∂z ∂τ yz σx ∂τ xz dy τ yz + τ xz + dx ∂y ∂x fz τxy τyx ∂σ y fy fx σy + dy ∂τ xy τxz σy ∂y τ xy + dx ∂τ yx ∂x ∂σ x τ yx + dy σx + dx ∂y ∂x τ B
yz
σz +
∂σz dz ∂z ∂τ zy dz τ zy + ∂z
P
τzy
τzx
A
σz
o
y
x
正六面单元体的取法
经过物体内任一点如P 经过物体内任一点如P点取出一个微小的正六面 体,它的棱边分别平行于三个坐标轴而长度分别 为: PA = ∆x, PB = ∆y, PC = ∆z。将每个面上的应力分 解为一个正应力和两个切应力。 解为一个正应力和两个切应力。正应力用 σ 表 表示。 示,切应力用 τ 表示。 应力下标的含意: 应力下标的含意:
物理方程的表达形式
以应力表示应变
以应变表示应力
τxy 1 εx = σx −v(σy +σz ) γ xy = E G τ yz 1 ε y = σy − v(σx +σz γ yz = E G τxz 1 εz = σz −v(σx +σy ) γ xz = E G
σx =λθ +2Gεx τxy =Gγxy σy =λθ +2Gεy τyz =Gγ yz σz =λθ +2Gεz τxz =Gγxz
θ = εx + ε y + εz
第4章 平面问题的有限元法-3刚度矩阵
二、整体刚度矩阵
讨论了单元的力学特性之后,就可转入结构的整体分析
。假设弹性体被划分为N个单元和n个节点,对每个单元 按前述方法进行分析计算,便可得到N组形如(4-25)
式的方程。将这些方程集合起来,就可得到表征整个弹 性体的平衡关系式。
1
i
j
m
n
1
外力在虚位移上所做的虚功
V
F1
* 1
F2
* 2
F3
* 3
* T
F
单位体积内的虚应变能
x
* x
y
* y
z
* z
xy
* xy
yz
* yz
zx
* zx
*
T
整个物体的的虚应变能
U * T dxdydz
e
ui
vi
u j
v j
um
T
vm
且假设单元内各点的虚位移为{f *},并具有与真实位移
相同的位移模式。
故有
f N e
(c)
参照(4-13)式,单元内的虚应变{ *}为
B e
(d)
于是,作用在单元体上的外力在虚位移上所做的功可写为
br cs
1
2
cr bs
cr cs
1
2
brb s
( r = i、j、m;s = i、j、m ) (4-28)
平面问题有限元解法(公式推导讲解)
应力边界条件:
若在su部分边界上给定了面力 和 ,则由平衡条件得出平面应力问题的应力(或面力)边界条件为:
其中,l,m是边界面外法线的方向余弦。
*
圣维南原理
在求解弹性力学问题时,应力分量、形变分量和位移分量必须满足区域内的三套基本方程,还必须满足边界上的边界条件。但是,要使边界条件得到完全满足,往往遇到很大的困难。
有限单元法的分析步骤如下: 物体离散化 单元特性分析 单元组集,整体分析 求解未知节点的位移 由节点的位移求解各单元的位移和应力
*
有限元单元模型中几个重要概念
单元 网格划分中每一个小的块体 节点 确定单元形状、单元之间相互联结的点 节点力 单元上节点处的结构内力 载荷 作用在单元节点上的外力 (集中力、分布力) 约束 限制某些节点的某些自由度 弹性模量(杨式模量)E 泊松比(横向变形系数)μ 密度
由于(d)图中,面力连续分布,边界条件简单,应力容易求得。其它三种情况,应力难以求得。把d情况下的应力解答应用到其它三个情况,虽不能满足两端的应力边界条件,但仍然可以表明离杆端较远处的应力状态,没有显著的误差。 图e,构件右端有位移边界条件, ,d情况的解答,不能满足位移边界条件,但e图右端的面力,一定是合成为经过截面形心的力F。所以把图d情况的解答应用于图e时,仍然只是在靠近两端处有显著的误差,而在离两端较远之处,误差可以不计。
按位移求解的方法,称为位移法。它以位移分量为基本未知函数。
按应力求解的方法,称为应力法。它以应力分量为基本未知函数。
*
按位移法求解平面问题
平面问题中,取位移分量u和v为基本未知函数。 从方程中消去形变分量和应力分量:
将几何方程代入上式
利用平衡微分方程和边界条件,导出用位移表示的平衡微分方程:
第4章 平面问题的有限元法-2形函数
(h)
利用形函数的这一性质可以证明,相邻单元的位移分 利用形函数的这一性质可以证明, 别进行线性插值之后,在其公共边上将是连续的。 别进行线性插值之后,在其公共边上将是连续的。
y m
例如,对图4-3所示的单元 ijm 和ijn ,具有公共边ij。 由(4-23)式可知,在ij边上
o
i j n
图4-3
N i ( x , y) + N j ( x , y) + N m ( x , y) 1 ai + bi x + ci y + a j + b j x + c j y + a m + bm x + cm y 2∆ 1 = (ai + a m + am ) + bi + b j + bm x + ci + c j + cm y 2∆ =1 =
(
)
1 b j cm − bm c j = ( x − xi ) 2∆ cm
(h)
故有
从上式计算的过程?
x − xi N j ( x, y) = x j − xi
(g)
另外,由(4-22)可以求得
x − xi N i ( x, y) = 1 − N j − N m = 1 − x j − xi
[
]
{σ } = [D]{ε }
平面应力问题
µ
1− µ
µ
1 0
0 0 1− µ 2
µ
1− µ 1
0 0 1 − 2µ 2(1 − µ ) 0
应变矩阵为常量,单元内应力也是常数,相邻单 元的应变与应力将产生突变,但位移确是连续的。