圆中的最值问题
(完整版)圆最值问题题型归纳
x圆中最值问题类型一 圆上一点到直线距离的最值问题例1 已知P 为直线y=x +1上任一点,Q 为圆C :22(3)1x y -+=上任一点,则PQ 的最小值为 .变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QAB S 的最小值为 .变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则当PC= 时,APB ∠最大.变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 .例2已知圆C :222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小值的点P 坐标.类型二 利用圆的参数方程求最值(或几何意义)例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值.如在上例中,改为求12y x --,22(2)(1)x y -+-,1x y --的取值范围,该怎么求解?类型三:转化成函数或不等式求最值例4已知圆O :221x y +=,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PA PB ⋅的最小值为例5已知圆C :22+24x y +=(), 过点(1,0)A -做两条互相垂直的直线12l l 、,1l 交圆C 与E 、F 两点,2l 交圆C 与G 、H 两点,(1)EF +GH 的最大值.(2) 求四边形EGFH 面积的最大值.6、已知C 过点)1,1(P ,且与M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称.(Ⅰ)求C 的方程;(Ⅱ)设Q 为C 上的一个动点,求PQ MQ ⋅的最小值;(Ⅲ)过点P作两条相异直线分别与C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.7、如图,在矩形ABCD 中,3,1AB BC ==,以A 为圆心1为半径的圆与AB 交于E (圆弧DE 为圆在矩形内的部分)(Ⅰ)在圆弧DE 上确定P 点的位置,使过P 的切线l 平分矩形ABCD 的面积;(Ⅱ)若动圆M 与满足题(Ⅰ)的切线l 及边DC 都相切,试确定M 的位置,使圆M 为矩形内部面积最大的圆.l P E C M。
圆中最值问题10种求法
圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中 cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2。
解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2 C.3 D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C。
与圆有关的最值问题
O B
2
P
r 2 po r (1 2sin ) po 1 1 2( ) po 2 2 2 设po t (t 1) 则PAPB (t 1)(1 t ) t t 3 2 2 3
C O x
3 5. 易得 PM 的最小值为 10
二、利用所求式的几何意义转化为线 性规划问题求最值
例2:若实数x、y满足 x y 2x 4 y 0 求(1)x-2y的最大值.
2 2
y 1 ( 2) x 2
的取值范围。 2 2 ( x 2) ( y 1) 的取值范围。 ( 3) (4) x y 1 的取值范围。
2 2 ( x 2) ( y 1) (3)
表示为圆上任意一点P到点A(2,1)距离的平方
P
因为 所以
PA [CA 5, CA 5]
. C
A(2,1)
PA2 ( x 2)2 ( y 1)2 [50 10 2,50 10 2]
(4) 因为圆上任一点P(x,y)到直线 x y 1 0 的距离
E M A N G C F H O x
解(1)令圆心C到弦EF的距离为 EF+GH 2( 4 d12 4 d 2 2 )
d1,到弦GH的距离为 d2,则
又 d12 d22 CA2 1
4 d12 4 d22 4 d12 4 d22 2 2
(当且仅当 d1 d 2
2 取等号) 2 故EF+GH 2 8 1 14 2
与圆有关的最值问题
与圆有关的最值问题圆是自然界中优美的图形之一,也是数学中的重要研究对象.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形特点,利用数形结合来求解.当然,我们也会用到函数思想和基本不等式来处理与圆有关的最值问题.在处理与圆有关的最值问题时,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.【与圆有关的最值类型】①一定点与定圆上动点间距离的最大与最小值.处理方法:利用定点到圆心的距离加(减)圆的半径. ①定直线与定圆上动点间距离的最大与最小值. 处理方法:定点到圆心的距离加(减)圆的半径. ①分别在两定圆上的两动点间距离的最大与最小值. 处理方法:圆心距加(减)两圆的半径.例1.(1)圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是( ).A.6;3.B.6;4.C.5;3.D.5;4.(2)已知点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,则a 2+b 2的最小值是_____. 解:(1)法1.圆心O 到直线的距离为d=25√32+42=5,而圆的半径为1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是5+1=6和5-1=4.故应选B.法2.设圆x 2+y 2=1上的点P(cos θ,sinθ),点P 到直线l :3x +4y -25=0距离d ′, 则 d ′=|3cosθ+4sinθ−25|5=|sin (θ+φ)−5|,① −1≤sin (θ+φ)≤1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是6和4.故应选B.(2)法1. ① 圆x 2+y 2-2x +4y -20=0的圆心和半径分别为(1,-2),r=5.而圆心到原点的距离d=√5,① 5−√5≤√a 2+b 2≤5+√5,⇒30−10√5≤a 2+b 2≤30+10√5. 因此,a 2+b 2的最小值是30-10 5.法2. ① 点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,可设P(1+5cos θ,-2+5sin θ), ① a 2+b 2=(1+5cos θ)2+(-2+5sin θ)2=30+10√5sin (θ+φ),① −1≤sin (θ+φ)≤1, ① a 2+b 2的最小值是30-10 5.例2.在圆x 2+y 2=4上且与直线4x+3y -12=0距离最小的点的坐标是( ). A.(85,65). B.( 85,−65). C.( −85,65) D.( −85,−65). 解:法1.过原点且与直线4x+3y -12=0垂直的直线为3x -4y=0, 联立{x 2+y 2=4,3x −4y =0,⇒{x =85y =65或{x =−85y =−65.结合图4.7—1知选A. xyO 4x+3y -12=0CAE FGHxOM N y 图3.7—2法2.由圆的几何性质可知,所求点为与直线4x+3y -12=0平行且与圆x 2+y 2=4相切的切点.设切线方程为4x+3y+c=0,由|c|5=2,⇒c =∓10.结合图3.7—1 知,c=10.联立{4x +3y −10=0,x 2+y 2=4,⇒{x =85y =65, 故应选A. 法3.对于选择题,可结合图形知所求点应在第一象限内,再看选择支,极易确定选A.想一想①:1.圆x 2+y 2=1上与直线4x -3y -12=0距离最短的点坐标是 .2.已知A (0,1),B (2,3).Q 为圆C:(x -3)2+y 2=1上任一点,则S ΔOAB 的最小值为 .3.若实数x 、y 满足x 2+y 2+2x -4y=0,求x -2y 的最大值.例2.(1)已知a 、b 是单位向量且a ①b.若向量c 满足|c -a -b |=1,则|c |的取值范围是 .(2)已知点A(-1,1)和圆C :(x -5)2+(y -7)2=4.一束光线从A 点经过x 轴反射到圆周C 的最短路程是( ).A.10.B.2√6.C.4√6.D.8. 解:(1) ① a 、b 是单位向量且a ①b ,可设a=(1,0),b=(0,1),c=(x ,y),又① |c -a -b |=1,① (x -1)2+(y -1)2=1. ① 原点O 到圆心(1,1)的距离为√2.① |c | =√x 2+y 2∈[√2−1,√2+1].(2)由光学原理知,点A 关于x 轴的对称点A ′(-1,-1)在反射线上,① 光线从A 点经过x 轴反射到圆周C 的最短路程是过A ′且与圆相切的切线段长|A ′T|=√(−1−5)2+(−1−7)2−4= 4√6.应选C.例3.已知圆C :(x+2)2+y 2=4,过点A(-1,0)作两条互相垂直的直线l 1,l 2,l 1交圆C 与E 、F两点,l 2交圆C 与G 、H 两点.(1)EF+GH解:(1)令圆心C 到弦EF 的距离为d 1,到弦GH 则EF +GH =2(√4−d 12+√4−d 22),又d 12+d 22=CA 2=1由:√4−d 12+√4−d 222≤√8−(d 12+d 22)2=√8−12= √142,(当且仅当d 1=d 2= √22取等号).故EF +GH ≤√14. (2)① EF ⊥GH ,① S 四边形EFGH =12EF ×GH =2(√4−d 12√4−d 22 ≤2×8−(d 12+d 22)2=7.(当且仅当d 1=d 2= √22取等号).例4(1)如图3.7—3(1).点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan①BOC=m ,则m 的取值范围是_________.(2)如图3.7—3(2).在边长为1的等边①OAB 中,以边AB 为直径作①D , C 为半圆弧AB 上的一个动点(不与A 、B 两点重合).BC=a ,AC=b ,求a+b 的最大值.(3)如图3.7—3(3).线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边①ACD 和等边①BCE ,①O 外接于①CDE ,则①O 半径的最小值为( ). A.4. B. 2√33. C. √33. D.2._ B_y_ COED解:(1)由已知,点C 是第一象限内在圆(x -3)2+y 2=4点,结合图2.8—4(1)知,tan①AOC ∈(0,2√55],∵①AOC 与①BOC 互余,① m ≥√52. (2)① AC 2+BC 2=AB 2,即a 2+b 2=1 由柯西不等式得,(12+12)(a 2+b 2)≥(a+b)2, ① (a+b)≤√2,故 a +b 的最大值为√2.(3)设外接圆的半径为R ,由已知可得∠DOE =600.再由正弦定理知DE=2Rsin600,① R=√33DE .在∆DCE 内由余弦定理可得DE 2=DC 2+CE 2-DC ∙CE =(DC+CE)2-3DC ∙CE =16-3DC ∙CE ≥16-3(DC+CE 2)2=4,即DE ≥2. ① R=√33DE ≥2√33.应选B.想一想①:1.如图3.7—4.①M ,①N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为①M 上的任意一点,Q 为①N 上的任意一点,直线PQ 与连心线所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α的最大值为( ).A.√612B.43.C.√33.D.34.2.如图3.7—5.①BAC=600,半径长为1的圆O 与①BAC 的两边相切, P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A.3. B.6. C. .3√32.D. 3√3.例5.(1)过点M(−2,,0)的直线l 与曲线y=√4−x 2相交于A ,B 两点,当∆ABO (O 为坐标原点)的面积最大时,直线l 的斜率为 . (2)两个圆C 1:x 2+y 2+2ax+a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by+b 2-1=0(b ∈R )恰有三条公切线,则a+2b 的取值范围为 . 解:(1) ① 曲线y=√4−x 2的方程可变形为x 2+y 2=4(y ≥0),① 此曲线表示以原点为圆心,2为半径,在x 轴及其上方的半圆,如图3.7—6.① S ∆ABO =12OA ×OB ×sin∠AOB =2sin∠AOB , 当∆ABO 的面积最大时,∠AOB =900,此时∆ABO为等腰直角三角形,① 点O 到直线AB 的距离为√2. 设直线AB 的方程为 y=k(x+2√2),即kx -y+2√2k =0, ①2√2k √1+k 2=√2,解得k=±√33,又由已知k>0,① k= √33.(2) ① 圆C 1的圆心为C 1(-a ,0),半径为2;圆C 2的圆心为C 2(0,b),半径为1.l xy MABO 图3.7—6图3.7—4P QMNA D E BCP. . O图3.7—5由已知两圆外切,① | C 1 C 2|=2+1=3,即a 2+b 2=9.令a+2b=m ,则 √1+4≤3,解得 −3√5≤m ≤3√5,① a+2b 的取值范围为[−3√5,3√5].习题3.71.已知A 、B 两点的坐标分别为(-2,0)、(0,1),①C 的圆心坐标为(0,-1),半径为1,D 是①C 上的一个动点,射线AD 与y 轴交于点E ,则①ABE 面积的最大值是( ).A.3.B. 103. C.103. D.4. 2.圆x 2+y 2-2x -2y+1=0上的点到直线2x y -=距离的最大值是( ).A.2.B.1+√2.C.2+√22. D.1+2√2.3.由直线y=x +1上一点向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为 .4.已知P 为直线y=x +1上一动点,过P 作圆C :(x -3)2+y 2=1的切线PA ,PB(A 、B 为切点),则四边形PACB 面积的最小值为 .5.求过直线2x+y+4=0和圆x 2+y 2+2x -4y+1=0的交点,且满足下列条件之一的圆的方程.①过原点;①有最小面积.6.求圆(x -2)2+(y+3)2=4上的点到直线x -y +2=0最远和最近的距离.7.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x+y -2=0上. (1)求圆M 的方程. (2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点.求四边形PAMB 面积的最小值.8.在平面直角坐标系中,M(3,4),P 是以M 为圆心,2为半径的①M 上一动点,A(-1,0)、B(1,0),连接PA 、PB ,求PA 2+PB 2最大值.9.过定点M 的直线l 1:ax+y -1=0与过定点N 的直线l 2:x - ay +2a -1=0交于点P.求|PM|∙|PN|的最大值.【参考答案】想一想①:1. (45,−35). 2.4+√2. 3.10.想一想①:1.D.考虑PQ 为两圆的内公切线时的情形.2.在△ADE 中,由正弦定理得|DE|=2Rsin600,其中R 为△ADE 的外接圆半径.如图2.8—4(3)知,AP 的最大值为|OP|+1=3,① |DE|max =3√3. 故应选D.习题3.71. A.2. B.3. √7.4. √7.5.(1)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① 所求圆过原点,得λ=−14. ①x 2+y 2+32x+74y =0为所求.(2)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① R 2=D 2+E 2−4F 4=5λ2−16λ+164,① 当 λ=85时R 2最小. ① x 2+y 2+265x −125y +375=0为所求6.7√2−42;7√2+42. 7.(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r >0).根据题意得, {(1−a)2+(1+b)2=r 2,(−1−a)2+(1−b)2=r 2,a +b −2=0. 解得a=b=1,r=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)① 四边形PAMB 的面积S=S ①PAM +S ①PBM =|AM|·|PA|+|BM|·|PB|,又|AM|=|BM|=2,|PA|=|PB|,① S=2|PA|,而|PA|=√|PM|2−|AM|2=√|PM|2−4, 即S=2√|PM|2−4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, ① |PM|min =√32+42=3.因此,四边形PAMB 面积的最小值为S=2√|PM|2−4=2√5.8.设P(3+2cos θ,4+2sin θ),则PA 2+PB 2=60+24cos θ+32sin θ=60+40sin(θ+φ)≤100. ① PA 2+PB 2最大值为100.9. 1. 由已知有,直线l 1过定点M(0,1),直线l 2过定点N(1,2),且|MN|=√2,l 1⊥l 2.由平面几何的知识知,点P 在以MN 为直径的圆上运动.设点P 到MN 的距离为PD ,则有|PM|∙|PN|=|MN||∙|PD| =√2∙|PD|,∴ 当|PD|取最大值√22 时,(|PM|∙|PN|)max =√2∙√22=1.。
圆中最值的十种求法
所以 所以CQ=CP
因为CP是⊙O的动弦 最大值为⊙O的直径
所以CP的最大值为5
此时当点P运动到CP为⊙O的直径时
CQ的最大值为×5=
五、利用弧的中点到弦的距离最大求最值
5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.
[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.
解 所以PQ⊥AQ
在Rt△APQ中,PQ2=PA2-AQ2
即PQ=
又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2
所以PQ的最小值=
三、利用两点之间线段最短求最值
3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
A. B.2 C.3 D.3
1
连接PA,过O作OE⊥CD,垂足为E
在△OCD中,因为∠AOC=60° 所以∠D=∠C=30°
在Rt△ODE中 cos30°=
即DE=2×cos30°= 所以CD=2DE=2
即PA+PC的最小值为2.
二、利用垂线段最短求最值
2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .
[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.
圆中的最值问题运动轨迹
圆中的最值问题运动轨迹圆中的最值问题运动轨迹引言:圆是一种几何学中常见的形状,它具有许多独特的性质和特点。
在数学中,研究圆的最值问题既有理论意义,又有实际应用。
本文将讨论圆中的最值问题,并探索与之相关的运动轨迹。
通过对这些问题的分析和求解,可以帮助我们更深入地理解圆的性质和运动规律。
一、圆的最值问题1. 最大面积问题圆的面积公式为S=πr²,其中r为圆的半径。
那么,在给定周长的情况下,如何确定圆的半径以使其面积最大化?解法:根据周长公式C=2πr,可得r=C/(2π),将该值代入面积公式得到S=π(C/(2π))²=(C²/(4π))π=(C²π/4π)=C²π/4。
所以,当给定周长时,圆的面积最大值为C²π/4。
2. 最小周长问题如果圆的面积是固定的,如何确定圆的半径以使其周长最小化?解法:根据面积公式S=πr²,可得r=√(S/π),将该值代入周长公式得到C=2π(√(S/π))=2√(πS)。
所以,当给定面积时,圆的周长最小值为2√(πS)。
3. 最大周长问题在给定面积的情况下,如何确定圆的半径以使其周长最大化?解法:根据面积公式S=πr²,可得r=√(S/π),将该值代入周长公式得到C=2π(√(S/π))=2√(πS)。
所以,当给定面积时,圆的周长最大值为2√(πS)。
二、圆的运动轨迹1. 圆的滚动轨迹当一个圆沿着另一个圆或者直线滚动时,滚动圆上一点的轨迹称为圆的滚动轨迹。
滚动轨迹通常是一条曲线,而滚动圆上的所有点都具有相似的运动特性。
2. 圆上的运动轨迹假设一个小球在一个固定大小的圆上运动,小球在圆上的位置随时间变化而改变。
小球在圆上的运动轨迹通常是一条曲线,其形状取决于小球在圆上的起始位置、运动速度和加速度等因素。
结论:圆中的最值问题涉及到圆的面积和周长,通过合理选择圆的半径,可以确定面积最大、周长最小或周长最大的圆。
圆中最值问题
中考培优课程5圆中最值知识导航1、圆中最值基本模型(1)点与圆的最值已知点Q为⊙O上一动点,P为平面内任意一点,现在来探究PQ的最值.①当P为圆外一点时,连接PO交⊙O于Q2,PO延长线交⊙O于Q1.则PQ min=PQ2,PQ max=PQ1.②当P为圆内一点时,连接OP并延长交⊙O于Q2,连接PO并延长交⊙O于Q1.则PQ min=PQ2,PQ max=PQ1.③当P为圆上一点时,连接PO并延长交⊙O于Q1.则PQ min=PQ2=0,PQ max=PQ1=直径.(2)直线与圆的最值已知点Q为⊙O上一动点,l为平面内任意一条直线,现在探究Q到直线l的距离d的最值.①若l与⊙O相离,过点O作OP1⊥l于P1,交⊙O于Q2,延长P1O交⊙O于Q1.则d min=P1Q2,d max=P1Q1.②若l与⊙O相交,过点O作OP⊥l于P,分别交⊙O于Q1、Q2两点.则d min=0,优弧中的最大值为d max=PQ1,劣弧中的最大值为d max=PQ2.③若l与⊙O相切,则d min=0,d max=直径.2、题目一般会把“已知点Q为⊙O上一动点”这一条件进行隐藏,也就是说动点的运动轨迹需要我们去证明是一个圆,这就是接下来要给大家介绍的隐圆问题.模块一线段条件产生的隐圆例1在坐标系中,点A坐标为(4,0),点B为y轴正半轴上一点,点C是坐标系中一点,且AC=2,则∠BOC度数取值范围为.练习在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△MNC,P、Q分别是AC、MN的中点,AC=2t,连接PQ,则旋转时PQ长度的最大值是.例2(2016年江汉区九上期中第10题)如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,以C为圆心,CF的长为半径作圆,D是⊙C上一动点,E为BD的中点.当AE最大时,BD的长为()A.23B.25C.23+1 D.6练习(2016年洪山区九上期中第10题)如图,在等腰Rt△ABC中,斜边AB=8,点P在以AC为直径的半圆上,M为PB的中点,当点P沿半圆从点A运动至点C时,点M运动的路径长是()A.22πB.2πC.2πD.22模块二线段与角度条件产生隐圆题型一定边对定角(90度)例31、(2013年武汉中考第16题)如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG 于点H.若正方形的边长为2,则线段DH长度的最小值是.2、(2015年洪山区九上期中)如图,线段AB上有一动点M,分别以AM、BM为边作正方形AMFE、MBCD.正方形AMFE、MBCD的外接圆⊙O、⊙O' 交于M、N两点,则直线MN的情况是()A.定直线B.经过定点C.一定不过定点D.以上都有可能练习在平面直角坐标系中,直线y=-x+6分别与x轴、y轴交于A、B两点,点P在y轴左边,且∠APB=90°,则点P的横坐标α的取值范围是.题型二定边对定角(非90度)例41、(2016年新洲区九上期中)正方形ABCD的边长为4,E为正方形外一动点,∠AED=45°,AP=1,线段PE的最大值是.2、如图,已知在等边△ABC中,AB=AC=BC=8,点D、E分别是边AC、AB上两点,且AE=CD,BD 交CE于F,连接AF,则AF的最小值为.3、如图,等边△ABC中,BC=2,射线AM∥BC,P是射线AM上一动点(P不与A点重合),△APC的外接圆交BP于Q,则AQ长的最小值为.4、(2015年武昌区九上期中)如图,△ABC中,BC=4,∠BAC=45°,以42为半径,过B、C两点作⊙O,连OA,则线段OA的最大值为.例51、如图,⊙O的半径为2,弦AB的长为23,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的面积的最大值是.2、如图,在弓形BAC中,∠BAC=60°,BC=23,若点A在优弧BAC上由点B向点C移动,记△ABC 的内心为I,则△ABC内切圆半径的最大值为.3、如图,在扇形AOB中,OA⊥OB,D是AB上一动点,DE⊥OA于E,若OA=42,记△DEO的内心为I,则△DEO内切圆半径的最大值为.题型三定边对动角例6如图,在展览大厅中,墙壁上的展品最高处点P距离地面2.5米,最低处点Q距地面2米,观赏者的眼睛(在E点)距离地面1.6米.当视角∠PEQ最大时,站在这个位置的观赏效果最理想,求此时E到墙壁的距离为米.练习1、已知A(2,0),B(4,0)是x轴上的两点,点C是y轴上的动点,当∠ACB最大时,则点C的坐标为.2、如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=3,则弦BC的最大值为.第5讲本讲课后作业A 基础巩固1、如图,已知矩形ABCG(AB<BC)和矩形CDEF全等,点B、C、D在同一直线上,∠APE的顶点P2、如图,正方形ABCD的边长为4,∠AED=45°,P为AB的中点.当点E运动时,求PE的最大值和最小值.3、如图,P为正方形ABCD的边CD上任意一点,E为AP上一点,BE=AB,∠CBE的平分线交AP延长线于点Q.若正方形的边长为a,当点P在CD边上由C移动到D时,则点Q到CD的最大距离为.B 综合训练4、如图,△ABC中,∠BAC=60°,∠ACB=45°,AC=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF的最小值为.数学故事贝多芬的成就贝多芬的心中充满了自由、平等、博爱的理想,他是1789年法国资产阶级革命的热烈拥护者。
圆的几何意义求最值的题型
圆的几何意义求最值的题型
在圆的几何意义中,有一种常见的求最值的题型,即求解圆内和圆外某点到圆心的距离之和的最大值或最小值。
这种题型常常需要利用几何性质和数学方法来解决。
以下是两个典型的例题:
1.求在圆外给定一个点P,如何选择点P,使得点P到圆心
的距离之和最小。
解答:根据几何性质,圆上任意一点到圆心的距离是常量,所以点P到圆心的距离之和最小的位置是直径的中点。
因此,点P应该选择直径的中点。
2.求在圆内给定一个点P,如何选择点P,使得点P到圆心
的距离之和最大。
解答:根据几何性质,圆上任意一点到圆心的距离是常量,而圆内的点到圆心的距离之和最大的位置是圆的边界上的点P。
因此,点P应该选择圆的边界上与圆心相连的点。
这些题目常常需要根据已知条件和几何性质进行分析,并利用数学方法解决。
计算距离、应用三角关系、利用几何等价性和最值性质等技巧都可以在解决这类问题时发挥作用。
高中数学-圆中的最值问题
圆中的最值问题例:平面上有两点A(-1,0),B(1,0),P为圆上的一点,试求的最大值与最小值,并求相应的P点坐标。
错解1:把已知圆的一般方程化为标准方程得,设点P的坐标为,则点P()在已知圆上,同理,,即。
的最大值为116,最小值为4。
错解2:设点P的坐标为(),则当时等号成立,把代入圆的方程化简,得,解得,取较小值得,这时。
的最小值为,而无最大值。
错因分析1:在错解1中,产生错误的原因,在于把看成相互独立的,能同时达到最大值、最小值的量。
实际上作为两个“变量”是相互联系的,它们同时受的约束,这个约束条件表示了与的最大取值区间。
但是,当、成为没有联系的独立变量后,就不一定同时满足约束条件了,离开了约束条件的变量肯定会扩大解集。
例如当取得最大值5时,只能等于4,不能取得最大值6;当取得最大值6时,只能等于3,不能取得最大值5。
同样也不能同时取得最小值。
在不等式的性质中,若“”,但反之,由“”,也就是说,的充分不必要条件。
错解用的是放缩变形,不是同解变形,故改变了解集,比如:设,,可以得到:然而,由却得不出,只能得出。
这是因为中的不是独立的,而是相互制约的,从而扩大了所求S的取值范围。
比如,,但是是不成立的,因为,这也是由于与都受条件约束,当与离开约束条件以后,的范围明显发生了改变,即扩大了取值范围。
错因分析2:在错解2中,利用不等式求最值,不等式的一边必须为定值,若乘积为定值m,则当时,平方和的最小值为;若平方和为定值n,则当时,乘积的最大值为。
但因错解2中乘积不是定值,因而不能应用这一方法求最值。
正解:把已知圆的一般方程化为标准方程得,设点P的坐标为,则点P在已知圆上,的最大值是100,这时点P的坐标是。
S的最小值是20,这时点P的坐标是()。
印象文华:不等式的性质是解题的理论基础,要深刻理解与正确应用不等式的性质,不仅要弄清每一个性质的条件和结论各是什么,还需要弄清条件和结论之间是“单向”的(如就是单向的,即条件是结论的充分不必要条件;还有,但等也是单向的)、不可逆的,还是“双向”的(如的充分必要条件,即)。
圆中最值问题(解析版)
圆中最值问题一、点到直线的最值问题原理:垂线段最短.1、如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为().A. B. C. 3 D. 2答案:B解答:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2-OQ2,而OQ=2,∴PQ2=OP2-4,即,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PQ选B.2、在平面直角坐标系中,以原点O为圆心的圆过点),直线y=kx-3k+4与⊙O交于B,C两点,则弦BC 的长的最小值为().A. 5B.C.D.答案:D解答:直线y=kx-3k+4必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦.∵点D的坐标是(3,4),∴OD=5.∵以原点O为圆心的圆过点,∴圆的半径为BC的长的最小值为3、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为______.答案:3解答:当OM⊥AB时,OM最小,此时.4、如图,在Rt△AOB中,O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ (点Q为切点),切线PQ的最小值为______.解答:连接OP,OQ,如图所示,∵PQ是O的切线,∴OQ⊥PQ,根据勾股定理知:PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,,∴OA=8,∴S△AOB=12OA·OB=12AB·OP,即OP=OA OBAB⋅=4,∴5、如图,直线y=kx-3k+4与⊙O交于B、C两点,若⊙O的半径为13,求弦BC长度的最小值.答案:24.解答:y=kx-3k+4必过点D(3,4),∴最短的弦BC是过点D且与该圆直径垂直的弦,∴OD=5,OB=13,∴BD=12,∴BC的长的最小值为24.二、点到圆的最值问题原理:定点与圆上的动点之间的距离:当定点、动点和圆心三点共线时有最大或最小值.AP max=OA+r,AP min=|OA-r|.6、已知点P到圆上各点的最大距离为5,最小距离为1,则圆的的半径为().A. 2或3B. 3C. 4D. 2或4答案:A解答:当点P在圆内,则圆的直径=5+1=6,所以圆的半径=3;当点P在圆外,则圆的直径=5-1=4,所以圆的半径=2.通常构造辅助圆求点到圆的最值问题7、(2021·南平延平区模拟)如图,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延长线上取一点D,使得DC=BD,在直线AD左侧有一动点P满足∠P AD=∠PDB,连接PC,则线段CP长的最大值为______.答案:解答:如图,取AD的中点O,连接OP,OC.∵∠P AD=∠PDB,∠PDB+∠ADP=90°,∴∠P AD+∠ADP=90°,∴∠APD=90°.∵AO=OD,∴PO=OA=OD.∵AD==∴OP=∵BC=CD=4,OD=∴OC===∵PC≤OP+OC∴PC≤∴PC的最大值为8、(2021·佛山三水区校级二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是△ABC内部的一个动点,且满足∠ACD=∠CBD,则AD的最小值为______.答案:2解答:∵∠ACB=90°,∴∠BCD+∠DCA=90°.∵∠DBC=∠DCA,∴∠CBD+∠BCD=90°,∴∠BDC=90°,∴点D在以BC为直径的☉O上,连接OA交☉O于点D,此时DA最小,在Rt△CAO中,∵∠OCA=90°,AC=4,OC=3,OA==∴5∴DA=OA-OD=5-3=2.故答案为29、如图,在△ABC中,∠BCA=90°,AC=BC=2,点P是同一平面内的一个动点,且满足∠BPC=90°,连接AP,求线段AP的最小值和最大值.答案:解答:解:如图,以BC为直径作圆O,连结AO交圆于两点P1,P2,则AP 1最小,AP 2最大.∵AP 1•AP 2=AC 2,AC =2,P 1P 2=2,∴AP 1(AP 1+2)=4,解得AP 1=51±-(负值舍去),∴AP 2=51251+=++-.故线段AP 的最小值和最大值分别是51+-和51+.10、如图,在矩形ABCD 中,AB =3,BC =2,M 是AD 边的中点,N 是AB 边上的动点,将△AMN 沿MN 所在直线折叠,得到△A ′MN ,连接A ′C ,求线段A ′C 的最小值.答案:解答:解:∵四边形ABCD 是矩形∴AB =CD =3,BC =AD =2,∵M 是AD 边的中点,∴AM =MD =1∵将△AMN 沿MN 所在直线折叠,∴AM =A 'M =1∴点A '在以点M 为圆心,AM 为半径的圆上,∴如图,当点A '在线段MC 上时,A 'C 有最小值, ∵1022=+=CD MD MC ,∴A ′C 的最小值=MC -MA '=110-.11、如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连接A ′C ,请求出A ′B 长度的最小值.答案:解答:解:如图,由折叠知A ′M =AM ,又M 是AD 的中点,可得MA =MA ′=MD ,故点A ′在以AD 为直径的圆上,由模型可知,当点A ′在BM 上时,A ′B 长度取得最小值,∵边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,∴BM =3122=-,故A ′B 的最小值为13-12、如图,在矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,求四边形AGCD 的面积的最小值.答案:解答:∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5,∵AB =3,AE =2,∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为,∵S 四边形AGCD =S △ACD +S △ACG =AD ×CD +AC ×=×4×3+21×5×h =25h +6, ∴要四边形AGCD 的面积最小,即h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点,h 2121h 21∴EG ⊥AC 时,h 最小,即点E ,点G ,点H 共线. 由折叠知∠EGF =∠ABC =90°,延长EG 交AC 于H ,则EH ⊥AC ,在Rt △ABC 中,sin ∠BAC =54=AC BC , 在Rt △AEH 中,AE =2,sin ∠BAC =54=AE EH , ∴EH =54AE =58, ∴h =EH -EG =58-1=53,∴S 四边形AGCD 最小=25h +6=5325⨯+6=215.。
圆中最值问题10种求法(供参考)
圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为.[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2C.3D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C.四、利用直径是圆中最长的弦求最值4.如图:半径为2.5的⊙O中,直径AB的两侧有定点C和动点P,已知BC:CA=4:3,点P在劣弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,(1)求∠P的正切值;(2)当CP⊥AB时,求CD和CQ的长;当点P运动到什么位置时,CQ取得最大值,并求出此时CQ的长.[分析]:易证明△ACB∽△PCQ,所以,即CQ=PC. 当PC最大时,CQ最大,而PC是⊙O 的动弦,当PC是⊙O的直径时最大.五、利用弧的中点到弦的距离最大求最值5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.[分析]:设BC边上的高为h因为S△ABC=BC h=×2h=h当h最大时S△ABC最大,当点A在优弧的中点时h最大.解:当点A为优弧的中点时,作AD⊥BC于D连接BO 即BD=CD=在Rt△BDO中,OD2=OB2-BD2=22-()2=1所以OD=1 所以AD=2+1=3所以S△ABC=×BC·AD=×2×3=3即△ABC面积的最大值为3六、利用周长一定时,圆的面积最大求最值6.用48米长的篱笆材料,在空地上围成一个绿化场地,现有两种方案:一种是围成正方形的场地,另一种是围成圆形场地,试问选用哪一种方案,围成的场地面积较大?并说明理由.[分析]:周长一定的几何图形,圆的面积最大.解:围成圆形场地的面积较大设S1、S2分别表示围成的正方形场地、圆形场地的面积则S1=()2=144 S2=π·()2=因为π<4 所以>所以>=144 所以S2>S1 所以应选用围成圆形场地的方案面积较大七、利用判别式求最值7.如图:在半径为1的⊙O中,AB是弦,OM⊥AB,垂足为M,求OM+AB的最大值.[分析]:可设AM=x,把OM用x的代数式表示出来,构造关于x的一元二次方程,然后利用判别式来求最值.解:设AM=x,在Rt△OAM中OM=所以OM+AB=+2x=a整理得:5x2-4ax+(a2-1)=0因为△=(-4a)2-4×5×(a2-1)≥0即a2≤5 所以a≤所以OM+AB的最大值为八、利用一条弧所对的圆周角大于圆外角求最值8.如图:海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为避免触礁,轮船P与A、B的张角∠APB的最大值为.[分析]:连接AC,易知∠ACB=∠AOB=40°,又因为∠ACB≥∠P,所以∠P的最大值为40°.解:如图:连接AC,根据圆周角定理可知∠ACB=∠AOB=×80°=40°又因为∠ACB≥∠P 即∠APB≤40°所以∠APB的最大值为40°九、利用经过⊙O内一定点P的所有弦中,与OP垂直的弦最短来求最值9.如图:⊙O的半径为5cm,点P为⊙O内一点,且OP=3cm,则过点P的弦AB长度的最小值为cm.[分析]:过P作AB⊥OP,交⊙O于A、B,则AB的长最小.解:在Rt△OAP中,AP=所以AB=2AP=2×4=8所以AB的最小值为8十、利用经过圆外一点与圆心的直线与⊙O的两个交点与点P的距离最大或最小求最值10.如图:点P为⊙O外一点,PQ切⊙O于点Q,⊙O的半径为3cm,切线PQ的长为4cm,则点P与⊙O上各点的连线长度的最大值为,最小值为.[分析]:过P、O两点作直线交⊙O于A、B,则PA的长度最大,PB的长度最小.解:连接OQ 因为PQ切⊙O于Q所以OQ⊥PQ在Rt△PQO中PQ2+OQ2=OP2即42+32=OP2 所以OP=5所以PB=5-3=2 PA=6+2=8所以点P与⊙O上各点连线长度的最大为8cm,最小值为2cm.。
高中数学期末备考:解析几何03圆中最值问题含解析
3.圆最值问题一.重要结论1.圆中与距离最值有关的常见的结论:结论1.圆外一点A 到圆上距离最近为AO r ,最远为AO r ;结论2.过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3.直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r ,最近为d r ;2.圆中与面积有关的最值结论:结论4.圆的内接三角形面积最大当且仅当其为等边三角形;结论5.过圆外一点P 向圆O 引两条切线,切点记为B A ,,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.3.圆中与角度有关的最值问题.结论6.圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7.圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8.圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论9.圆内两点,圆上一点(圆上点为顶点)的最大夹角问题(米勒圆问题).4.其他与圆有关的最值问题结论10.两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.二.强化练习1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.52.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.54.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.25.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.26.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.157.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.38.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN 的最大值为()11B.1711D.159.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()1110.(2021新高考1卷).已知点P 在圆 225516x y 上,点 4,0A , 0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA 最小时,PBD.当PBA 最大时,PB 参考答案1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.5【答案】A2.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.【答案】B3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.5【答案】A4.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.2【答案】B5.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.2【答案】D6.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.15【答案】B7.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.3【答案】C8.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN的最大值为()11 B.1711D.15【答案】C9.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()2112D.22【答案】D 10.ACD解析:圆 225516x y 的圆心为 5,5M ,半径为4,直线AB 的方程为142x y,即240x y ,圆心M 到直线AB4 ,所以,点P 到直线AB 的距离的最小值为425 ,最大值为4105,A 选项正确,B 选项错误;如下图所示:当PBA 最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ,BM4MP ,由勾股定理可得BP CD 选项正确.故选:ACD.多圆最值问题研究一.基本原理1.将军饮马模型:如图,动点C 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么CA CB 的最小值即为做点B 关于l 的对称点'B ,然后连接'BB 后其长度.2.三角不等式:任意两边之和大于等于第三边,任意两边之差小于等于第三边,取等条件当且仅当三点共线.如图动点P 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么P A PB 的最大值当且仅当B A P ,,三点共线.倘若B A ,在l 两侧,则需先利用对称将其搬到一侧再寻找最大值!此时,P A PB 的最小值为0,即P 为AB 中垂线与l 的交点.总结:“和最小,化异侧,差最大,转同侧”二.典例分析1.距离和的最小值(公众号:凌晨讲数学)例1.已知圆221:430C x y y ,圆222:6260C x y x y ,M N ,分别为圆1C 和圆2C 上的动点,P 为直线:1l y x 上的动点,则||MP NP 的最小值为A.3 B.333解析:由圆 221:21C x y ,圆 222314C x y ,可知圆1C 圆心为 0,2 ,半径为1,如图,圆2C 圆心为 3,1 ,半径为2,圆1C 关于直线:1l y x 的对称圆为圆 221':311C x y ,连结12'C C ,交l 于P ,则P 为满足使PM PN 最小的点,此时M 点为1'PC 与圆1'C 的交点关于直线l 对称的点,N 为2PC 与圆2C 的交点,最小值为 12'21C C ,而12'C C ,PM PN 的最小值为3 ,故选A.2.距离差的最大值(公众号:凌晨讲数学)例2.已知圆 221:111C x y ,圆 222:459C x y ,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM 的最大值是()A.4B.9C.7D.2解析:圆 221:111C x y 的圆心为 11,1C ,半径为1,圆 222:459C x y 的圆心为 24,5C ,半径为3.max min maxPN PM PN PM ∵,又2max 3PN PC ,1min1PMPC ,2121max314PN PMPC PC PC PC .点 24,5C 关于x 轴的对称点为24,5C ,2121125PC PC PC PC C C,所以,max549PN PM ,故选:B.3.逆用阿波罗尼斯圆1.阿氏圆定义:已知平面上两点B A ,,则所有满足1,|||| PB P A 的动点P 的轨迹是一个以定比为n m :内分和外分定线段AB 的两个分点的连线为直径的圆.若)0,(),0,(b B a A ,则圆的半径为|||1|2AB ,圆心为)0|,|11(22AB .(公众号:凌晨讲数学)2.结论:已知圆222)()(r b y a x 上任意一点P 和坐标轴上任意两点B A ,,求形如)(PB P A PB P A 的最值问题,可逆用阿氏圆转化为三点共线最值计算.例3.已知圆C 是以点 2,M 和点 6,N 为直径的圆,点P 为圆C 上的动点,若点2,0A ,点 1,1B ,则2PA PB 的最大值为()B.4C.8解析:由题设,知:(4,0)C 且||8MN ,即圆C 的半径为4,∴圆C :22(4)16x y ,如上图,坐标系中(4,0)D 则24OD AC CP OC ,∴12AC PC CP DC ,即△APC △PCD ,故12PA PD ,(亦可逆用阿氏圆,其实就是阿氏圆的几何推导).∴2||||PA PB PD PB ,在△PBD 中||||||PD PB BD ,∴要使||||PD PB 最大,,,P B D 共线且最大值为||BD 的长度.∴||BD 故选:A例4.在平面直角坐标系xOy 中,点P 在圆22:(8)16C x y -+=上运动,(6,0),(6,1),A B 则2PB PA 的最小值为()B.6C.D.2解析:P 为圆C 上任意一点,圆的圆心 8,0C ,半径4r ,如下图所示,4PC ∵,8OC ,2AC 12AC PC PC OC ,PAC OPC 12PA OP,即2OP PA ,2PB PA PB OP ,又PB OP OB (当且仅当P 为线段OB与圆C 的交点时取等号),2PB PA OB 2PB PA本题正确选项:A三.练习题(公众号:凌晨讲数学)1.已知,P Q 分别是直线:20l x y 和圆22:1C x y 上的动点,圆C 与x 轴正半轴交于点(1,0)A ,则PA PQ 的最小值为2B.251210122.已知P ,Q 分别是圆 22:48C x y ,圆 22:41D x y 上的动点,O 是坐标原点,则22PQ PO的最小值是______.3.平面直角坐标系中,点3,3A 、 3,3B 、23,0C ,动点P 在ABC 的内切圆上,则12PC PA 的最小值为_________.4.在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆:C 22230x y x 上的动点,则2AB BO 的最小值为__________.。
圆中最值问题的常见解法
分析:由于 都不是定值,加之平方式,所以直接用函数、均值不等式、几何法求解,都无能为力.于是考虑先设点 的坐标,先代数化,再看有没有几何意义.
解:设点 ,则
, 表示点 到定点 距离的平方,而
, 的最大
值是 ,此时点 的坐标满足 .
一.利用三角形性质求最值
众所皆知:三角形中任意两边之和大于第三边,任意两边之差小于第三边,极端情况下,当三点共线时,两边之和等于第三边,两边之差等于第三边,这正是取得最值的时刻,这就是圆中解决最值问题的常用方法之一.主要模型是:求一定点与圆上动点之间距离的最大值与最小值.即有:设圆心为C,圆的半径为 ,定点为A,圆上动点为P,则 =
的最小值是 ,此时点 的坐标满足
.
评析:在几何方法受阻的情况下,可以先做代数化处理,在构造几何意义,本题的解决,得
益于构造圆外一点到圆上动点距离的最值模ቤተ መጻሕፍቲ ባይዱ.
相关问题:(1)已知圆 ,圆 , 分别是圆 上的动点, 为 轴上的动点,则 的最小值为( )A
A. B. C. D.
(2)P为双曲线 的右支上一点,M、N分别是圆 ,
解决圆中最值问题的常见方法
圆问题是高中解析几何中的重点问题,在这类问题中的最值问题又是常见题型,由于在解决过程中所需要的数学素养层次比较高,特别是对学生的直观想象素养、抽象素养、运算素养、逻辑推理素养有较高要求,所以学生在学习中常常感到比较困难.基于此,非常有必要对这类问题的常见解法做一些总结,以供参考.
.
例1.点 在椭圆 上运动,点 在圆 上运动,求 .
分析:由于有两个动点,所以需要分步完成,可以先固定点 ,这样就可以利用三角形性质求得 ,然后再利用函数法求得最终结果.
圆中最值问题例析
圆中最值问题例析圆中最值问题(CentroidProblems)是一类具有重要理论意义且广泛应用于多种场景中的优化问题。
它是一种改进版的经典二次规划问题,通过把原先对称的对称约束条件变化为一般约束条件,以求解出一个具有位置最优特性的非对称的二次规划。
圆中最值问题的基本形式:$begin{align}min &f(x)=frac{1}{2}x^TAx+b^Txtext{s.t.}&g(x)=frac{1}{2}(x+alpha)^TC(x+alpha)-alpha^TCalphaleq 0&h(x)=frac{1}{2}(x-alpha)^TC(x-alpha)-alpha^TCalphaleq 0end{align}$其中,x∈Rn 为优化变量,A, C∈Rn×n 为对称矩阵,α∈Rn 为指定的圆中点。
圆中最值问题解决的问题是,如何在原有二次优化问题中加入圆中点约束,使得得到的优化结果在最小值附近具有一定的稳定性,从而得到较为合理的结论。
圆中最值问题的特殊性在于:(1)相对于经典二次规划而言,增加了圆中点约束项,这种约束使得优化变量强制必须满足原问题最小值附近;(2)该约束项是一种非线性约束,使得原先线性可解的问题变成了一种非线性规划问题;(3)有时候可能会改变问题本身的结构,使得其存在不可避免的拟合能力有限的问题。
圆中最值问题的重要性可以从以下几方面来看:(1)它在很多实际问题中都有着重要的应用,如最小二乘拟合、模式识别等;(2)它可以帮助我们解决更多的二次优化结构问题;(3)它的解的稳定性强于经典二次优化问题;(4)它在充分理解优化问题内在机制等方面也有重要的意义。
目前圆中最值问题有多种解法,最常用的解法是基于拉格朗日原理的精确求解法及其简化法,同时还有基于数值优化方法的求解法等。
(1)拉格朗日原理法使用 Lagrange理,可以把圆中最值问题转化成以下的对偶问题: $begin{align}min&L(x,lambda,mu)=frac{1}{2}x^TAx+b^Tx+lambdaleft(frac{1}{2}(x+alpha)^TC(x+alpha)-alpha^TCalpharight)+muleft(frac{1}{2}(x-alpha)^TC(x-alpha)-alpha^TCalpharight)text{s.t.} &xin mathbb{R}^nend{align}$通过解决该问题,即可得到原始圆中最值问题的最优解。
圆的最值问题归纳-与圆有关的最值问题
圆的问题探究安阳市龙安高级中学 段可贺高中数学中,研究最多的一种曲线是圆。
在研究圆的相关问题时,最值问题又是研究的重点和热点,现把常见的与圆相关的最值问题,总结如下。
希望对读者有些启发。
类型一、“圆上一点到直线距离的最值”问题分析:求圆上一点到直线距离的最值问题,总是转化成求圆心到定直线的距离问题来解决。
1、求圆C: (x-2)2+(y+3)2=4上的点到直线l :x-y+2=0的最大、最小距离. 解析:作CH l ⊥交于H ,与圆C 交于A ,反向延长与圆交于点B 。
所以max min 2; 2.CH BH AH d d d d d =====-2、求圆C: (x-1)2+(y+1)2=2上的点与直线l : x-y+4=0距离的最大值和最小值. 解析:方法同第一题, max min BH d d d ===== 3、圆222=+y x 上的点到直线l :02543=++y x 的距离的最小值为________________.解析:方法同第一题, min 5d =类型二、“圆上一点到定点距离的最值”问题分析:本质是两点间距离。
涉及与圆相关的两点的距离,总是转化为圆心与定点距离问题来解决。
1.已知点P (x,y )是圆C : x 2+y 2-2x-4y+4=0上一点,求P 到原点的最大最小距离.解析:连接OC 与圆交于A ,延长OC 交于B.max min 1;1.OC OC d d r d d r =+==-=2.已知圆C :04514422=+--+y x y x 及点()3,2-Q ,若M 是圆C 上任一点,求MQ 最大值和最小值. 解析:方法同第一题,max Q min Q C C d d r d d r =+===-==3 .已知x,y 满足条件 x 2+y 2-2x-4y+4=0,求22y x +范围.解析:方程看作是圆C ,表达式几何意义是圆C 上点(,)x y 与(0,0)距离的范围,求max min ,d d 即可,与第一题答案相同.4.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求22)2()2(+++y x 范围. 解析: 表达式几何意义是圆C 上点(,)x y 与P (-2,-2)距离的最值的平方.max min 22maxmin5,6, 4.36,16.[16,36].CP d d dd=====所以范围是5.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求z=x 2+y 2+2x+2y 范围.解析: 22(1)(1)2z x y =+++-表达式几何意义是圆C 上点(,)x y 与P (-1,-1)距离的最值的平方减去2.max min 22max min 2121)212[12CP d d z z ====-=+=-=--+所以范围是 6.已知圆()()143:22=-+-y x C ,点A (-1,0),B (1,0),点P 为圆上一动点,求22PB PA d +=的最大值和最小值及对应的P 点坐标. 解析:222222max min 2()2,.2(51)274;2(51)234.[34,74].d PA PB x y d d =+=++=++==-+=几何意义是点P 与原点O 距离的平方2倍加2|OC|=5,所以答案类型三、“过定点的弦长”问题1:已知直线:2830l mx y m ---=和圆22:612200C x y x y +-++=;(1)m R ∈时,证明l 与C 总相交。
圆的最值问题求解四法
2023年9月上半月㊀解法探究㊀㊀㊀㊀圆的最值问题求解四法◉云南省普洱市孟连县第一中学㊀孙宝恩㊀㊀摘要:与圆有关的最值问题是近年来高考数学的热点之一,它着重考查数形结合与转化思想.求圆的最值问题 四化法 的基本思路是,利用平面几何知识,或利用圆的参数方程,或设圆上点的坐标,将其转化为函数的最值问题.关键词:化为斜率法;化为截距法;化为距离法;化为三角函数法㊀㊀与圆有关的最值问题,因为其代数式具有明显的几何意义,所以应优先考虑数形结合法.运用数形结合法求最值,既可以借助图形直观获得简捷解法,又可避免因对限制条件考虑不周造成的失误,还有利于沟通数学各个分支,深化思维,全面提高学生数学综合素质[1].涉及与圆有关的最值问题,可借助圆的几何性质,并根据代数式的几何意义,利用数形结合思想来求解.一般情况下,求形如t =y -bx -a的最值问题,可转化为动直线的斜率问题;求形如t =a x +b y +c 的最值问题,可转化为动直线的截距问题;求形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离问题.另外,还可以通过建立目标函数求最值.与圆有关的最值问题,既是高中数学中的难点问题,又是近年来高考中的热点题型,因此有必要熟悉和掌握其常用的解题思路与方法.1化为斜率法例1㊀已知实数x ,y 满足方程x 2+y 2-4x +1=0,求yx的最大值和最小值.解:原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.yx 的几何意义是该圆上一点与原点连线的斜率,所以设yx=k ,即y =k x .图1当直线y =k x 与圆相切时,如图1,斜率k 取最大值或最小值,此时2k -0k 2+1=3,解得k =ʃ3所以yx的最大值为3,最小值为-3.思路与方法:本题中yx 的几何意义是圆上的点与原点连线的斜率,两切线的斜率为其最值,可由2k -0k 2+1=3求切线的斜率,也可将y =k x 代入圆的方程,由Δȡ0,求解k 的范围.例2㊀求y =1+s i n x2+c o s x 的最值.图2解:将原函数式变形为y =s i n x -(-1)c o s x -(-2),其几何意义是在直角坐标系中,动点(c o s x ,s i n x )与定点P (-2,-1)连线的斜率.动点P 的轨迹为单位圆(如图2),由图可知,k P B 最小,k P C 最大.显然,k P B =0.由t a n θ=O B P B =12,得t a n øB P C =t a n2θ=2t a n θ1-t a n 2θ=43,即k P C =43.故y 的最小值为0,最大值为43.思路与方法:从本题的解题思路可以归纳 形如f (x )-ag (x )-b 的函数式,可以将其看作点(g (x ),f (x ))与点(b ,a )连线的斜率,这也是最常见的解题方法.2化为截距法例3㊀在圆O :x 2+y 2=1上求一点P ,使得过点P 的切线与两条坐标轴所围成的三角形面积最小.解法1:设P (x 1,y 1),则切线l 为x 1x +y 1y =1,即x 1x 1+y 1y 1=1,截距a =1x 1,b =1y 1.所以,过点P 的切线与两坐标轴所围成的三角形面积为S =12a97Copyright ©博看网. All Rights Reserved.解法探究2023年9月上半月㊀㊀㊀b =121x 1 1y 1=12x 1y 1ȡ1x 21+y 21=11=1,当且仅当x 1=y 1=22时,取等号,S 的最小值为1.故所求点P 的坐标为(22,22),(22,-22),(-22,-22),(-22,22).解法2:因为点P 在圆x 2+y 2=1上,可设P (c o s φ,s i n φ),所以切线l :x c o s φ+y s i n φ=1,其截距a =1c o s φ,b =1s i n φ.因此,过点P 的切线与两坐标轴所围成的三角形面积为S =12a b =121c o s φ 1s i n φ=1s i n 2φȡ1.当s i n 2φ=ʃ1,即φ=ʃπ4,ʃ34π时,S 取最小值,且最小值为1.故所求点P 的坐标为(22,22),(22,-22),(-22,-22),(-22,22).思路与方法:本题的两种解法都是将与圆有关的求三角形的最值问题转化为直线与圆相切的截距型问题.通过设点P 的坐标,先求出截距,然后再根据三角形面积公式推出S әȡ1,最后确定点P 的位置.例4㊀设x ,y 满足y =-x 2-2x ,求S =x +y 的最大值和最小值.图3解:y =-x 2-2x =1-(x +1)2,其图象为如图3所示的半圆O ᶄ,S 的最大值与最小值分别是直线y =-x +S 和半圆O ᶄ有公共点时截距的最大值与最小值.由A (-2,0),k A D =-1,得D (0,-2),即S m i n =-2.又O ᶄB =B C =1,所以O ᶄC =2,得O C =2-1=O D ᶄ,则点D ᶄ的坐标为(0,2-1),即S m a x =2-1.故S 的最大值与最小值分别为2-1,-2.思路与方法:本题是将其转化㊁变形为截距型最值问题,并对半圆㊁直线截距的几何意义进行了由 隐 到 显 的挖掘,其中紧扣 S 的最大值与最小值分别是直线y =-x +S 和半圆O ᶄ有公共点时截距S的最大值与最小值 是关键.3化为距离法例5㊀在әA B C 中,øA ,øB ,øC 所对的边分别为a ,b ,c ,且c =10,c o s A c o s B =b a =43,P 为әA B C的内切圆上的动点,求点P 到顶点A ,B ,C 的距离的平方和的最大值与最小值.解法1:由c o s A c o s B =b a ,得c o s A c o s B =s i n Bs i n A ,即s i n 2A =s i n2B .在әA B C 中,因为A ʂB ,所以2A +2B =π,则A +B =π2,故әA B C 为直角三角形.图4由c =10,b a =43,可得a =6,b =8.建立如图4所示的平面直角坐标系,设әA B C 的内切圆圆心为O ᶄ,切点分别为D ,E ,F ,则|A D |+|D B |+|E C |=12(10+8+6)=12,内切圆的半径r =|E C |=12-10=2,则内切圆O ᶄ方程为(x -2)2+(y -2)2=4.设圆O ᶄ上动点P 的坐标为(x ,y ),则点P 到顶点A ,B ,C 的距离的平方和为S =P A 2+P B 2+P C 2=(x -8)2+y 2+x 2+(y -6)2+x 2+y 2=3[(x -2)2+(y -2)2]-4x +76=88-4x .由点P 在圆上,可知,0ɤx ɤ4,于是S 的最大值为88,最小值为88-4ˑ4=72.解法2:同解法1,得әA B C 是直角三角形,其内切圆半径r =2.设圆上动点P 的坐标为(2+2c o s α,2+2s i n α)(0ɤαɤ2π),则点P 到顶点A ,B ,C 的距离的平方和为S =P A 2+P B 2+P C 2=(2c o s α-6)2+(2+2s i n α)2+(2+2c o s α)2+(2s i n α-4)2+(2+2c o s α)2+(2+2s i n α)2=80-8c o s α.因为0ɤαɤ2π,所以S 的最大值为=80+8=88,最小值为=80-8=72.思路与方法:本题可转化为点到直线的距离型最值问题.解法1是由三角形的边㊁角关系推证出әA B C 为直角三角形,然后建立平角直角坐标系,通过设三角形内切圆,求三角形三边的长度获解;解法2在已知әA B C 为直角三角形的基础上,通过设动点坐标,利用三角函数求出最值.08Copyright ©博看网. All Rights Reserved.2023年9月上半月㊀解法探究㊀㊀㊀㊀例6㊀已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.图5解:x 2+y 2-4x +1=0可化为(x -2)2+y 2=3,它表示以C (2,0)为圆心,3为半径的圆.如图5所示,x 2+y 2表示圆上的一点与坐标原点距离的平方.由平面几何知识可知,在坐标原点和圆心连线与圆的两个交点处取得最大值和最小值.又因为圆心C 到原点的距离为2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-43.思路与方法:本题中的x 2+y 2可看作是圆上的点与原点距离的平方,所以可以借助平面几何知识,利用数形结合法快速求解.4化为三角函数法例7㊀已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得øA P B =90ʎ,则m 的最大值为(㊀㊀).A.7㊀㊀㊀㊀B .6㊀㊀㊀㊀C .5㊀㊀㊀㊀D.4解:设点P (x 0,y 0),则x 0=3+c o s θ,y 0=4+s i n θ{(θ为参数).由øA P B =90ʎ,得A P ң B P ң=0,即(x 0+m )(x 0-m )+y 20=0,则m 2=x 20+y 20=26+6c o s θ+8s i n θ=26+10s i n (θ+φ)ɤ36(其中t a n φ=34).所以0<m ɤ6,即m 的最大值为6.故选答案:B .思路与方法:本题是通过建立目标函数来求最值.由于øA P B =90ʎ,则点P 也在以A B 为直径的圆上,因此问题还可转化为两圆有公共点,求m 的最大值,即两圆内切时,m 有最大值6.例8㊀半圆O 的直径为2,A 为直径延长线上一点,O A =2,B 为半圆上任意一点,以A B 为一边作等边三角形A B C .问点B 在什么位置时,四边形O A C B的面积最大,并求这个最大值.图6解:如图6,设øA O B =α(0<α<π),在әA O B 中,又O B =1,O A =2,由余弦定理,得A B 2=O A 2+O B 2-2O A O B c o s α=5-4c o s α.设四边形O A C B 的面积为S ,则㊀㊀㊀S =12O A O B s i n α+34A B 2=s i n α+34(5-4c o s α)=534+(s i n α-3c o s α)=534+2s i n (α-π3),当且仅当s i n (α-π3)=1,即α=5π6时,四边形O A C B的面积最大,且最大值为534+2.思路与方法:本题通过运用余弦定理,将与圆有关的四边形面积的最值问题,转化为三角函数问题来求解.从解题过程不难看出,对y =a s i n x +b c o s x (a ,b ʂ0)引入辅角θ,则y =a 2+b 2s i n (x +θ)(其中t a n θ=ba),其最值一目了然.根据以上典例及 四化法 的运用情况,可以把与圆有关的最值问题大致归纳总结为以下几种类型:①定点与圆上的点的距离的最值题型,可将其转化为定点到圆心的距离ʃ半径 ;②定直线与圆上点的距离的最值题型,可将其转化为 圆心到直线的距离ʃ半径 ;③形如t =y -bx -a 的最值题型,可将其转化为动直线的斜率问题(切线处取得最值);④形如t =a x +b y +c 的最值题型,可将其转化为动直线的截距问题(切线处取得最值);⑤形如(x -a )2+(y -b )2的最值问题,可将其转化为定点到圆上动点的最值问题.圆是一种很规则的图形,解答与圆有关的最值问题很适合采用数形结合法.运用 四化法 解题的关键,是在准确理解题意的基础上进行合理联想和类比,将代数式通过转化㊁变形㊁给予几何解释[2].上述典型例题的解析可以帮助学生学会从 形 中觅 数 的思路与方法,掌握如何根据图形去寻求数量关系的技巧,能够娴熟地将几何问题代数化,通过不断加强这类题型的解题训练,最终达到触类旁通㊁举一反三㊁开阔思路㊁运用自如㊁综合提高的目的.参考文献:[1]杜超.例谈与圆有关的最值问题[J ].理科考试研究,2021(9):16G18.[2]程会海.与圆有关的最值问题的解题策略例说[J ].中学数学,2022(5):64G65.Z 18Copyright ©博看网. All Rights Reserved.。
圆的最值问题归纳
圆的问题探究高中数学中,研究最多的一种曲线是圆。
在研究圆的相关问题时,最值问题又是研究的重点和热点,最常见的与圆相关的最值问题,总结如下。
希望对同学们有些启发。
类型一、“圆上一点到直线距离的最值”问题分析:求圆上一点到直线距离的最值问题,总是转化成求圆心到定直线的距离问题来解决。
1、求圆C: (x-2)2+(y+3)2=4上的点到直线l :x-y+2=0的最大、最小距离. 解析:作CH l ⊥交于H ,与圆C 交于A ,反向延长与圆交于点B 。
所以max min 2; 2.222CH BH AH d d d d d ===+==-2、求圆C: (x-1)2+(y+1)2=2上的点与直线l : x-y+4=0距离的最大值和最小值. 解析:方法同第一题, max min BH d d d === 3、圆222=+y x 上的点到直0254=+y 的距离的最小值为________________.解析:方法同第一题, min 5d =类型二、“圆上一点到定点距离的最值”问题分析:本质是两点间距离。
涉及与圆相关的两点的距离,总是转化为圆心与定点距离问题来解决。
1.已知点P (x,y )是圆C : x 2+y 2-2x-4y+4=0上一点,求P 到原点的最大最小距离.解析:连接OC 与圆交于A ,延长OC 交于B.max min 1;1.OC OC d d r d d r =+==-=2.已知圆C :04514422=+--+y x y x 及点()3,2-Q ,若M 是圆C 上任一点,求MQ 最大值和最小值. 解析:方法同第一题,max Q min Q C C d d r d d r =+===-==3 .已知x,y 满足条件 x 2+y 2-2x-4y+4=0,求22y x +范围.解析:方程看作是圆C ,表达式几何意义是圆C 上点(,)x y 与(0,0)距离范围,求max min ,d d 即可,与第一题答案相同.4.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求22)2()2(+++y x 范围. 解析: 表达式几何意义是圆C 上点(,)x y 与P (-2,-2)距离的最值平方.max min 22maxmin5,6, 4.36,16.[16,36].CP d d dd=====所以范围是5.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求z=x 2+y 2+2x+2y 范围.解析: 22(1)(1)2z x y =+++-表达式几何意义是圆C 上点(,)x y 与P (-1,-1)距离的最值的平方减去2.max min 22max min 13-1.2121)212[12CP d d z z ====-=+=-=--+所以范围是 6.已知圆()()143:22=-+-y x C ,点A (-1,0),B (1,0),点P 为圆上一动点,求22PB PA d +=的最大值和最小值及对应的P 点坐标. 解析:222222max min 2()2,.2(51)274;2(51)234.[34,74].d PA PB x y d d =+=++=++==-+=几何意义是点P 与原点O 距离的平方2倍加2|OC|=5,所以答案类型三、“过定点的弦长”问题1:已知直线:2830l mx y m ---=和圆22:612200C x y x y +-++=;(1)m R ∈时,证明l 与C 总相交。
与圆有关的最值问题
与圆有关的最值问题最值问题是数学中经常遇到的一类问题,也是我们在生活和工作中经常需要解决的问题。
与圆有关的最值问题较为常见,下面我们就来详细讲解一下与圆有关的最值问题。
1、圆的面积最大值问题对于一个给定的周长,圆的面积大小是有限制的,那么圆的面积能达到最大值吗?答案是肯定的。
如何求得圆的面积最大值呢?可以利用圆形是周长相等的图形之中,面积最大的形状,这一性质来进行求解。
根据圆形的定义可知,圆形是以线段为半径作为圆心所在的圆周所包括的区域,而圆弧是圆周上的一段线段,用圆弧代替直线段,使得圆与圆弧缩短弧长,从而面积更大。
所以,圆的面积最大时,其圆弧的长度正好等于圆的周长的一半。
2、圆的周长最大值问题圆的周长与圆的半径成正比,所以圆的周长最大时,其半径也最大。
因此,圆的周长最大值问题可转化为半径最大值问题。
但是一般情况下,圆的半径是有限制条件的,比如半径必须小于一定数值,这时我们需要用到极值的判定方法来求解。
3、圆内切正方形的最大面积若题目给出一个圆,要在圆内切一个面积最大的正方形,该如何求解?首先可以画出该图形的示意图,现在有一个边长等于圆的直径的正方形,在其中画出一个圆,且与正方形的四个顶点相切,如图。
将图形旋转一定角度,使正方形的一条边与水平线重合,则圆的直径同样水平,则圆的直径就是正方形的边长,此时,圆内切正方形的面积为(半径的平方)÷2。
4、圆外接正方形的最小边长同样地,若题目给出一个圆,要在圆周上找到一个最小边长的正方形,该如何求解?先画出一个圆外接正方形的示意图,即在圆上取四个点,使得这四个点构成一个正方形(如图)。
要求这个正方形的最小边长,就是要求这个正方形的最小周长。
由于正方形的边长相等,所以可以将正方形的周长都化为边长l的形式来表示。
根据边长l和圆的半径r的关系,可以列出如下方程:2l + 2√2l = 2πr将方程进行化简,得:l = r(π - 2√2)所以,圆外接正方形的最小边长为r(π - 2√2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拔高专题圆中的最值问题一、基本模型构建
常见模型
图(1) 图
(2)
思考图(1)两点之间线段最短;
图(2)垂线段最短。
.在直线L上的同侧有两个点A、B,在直线L上有到A、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.
二、拔高精讲精练
探究点一:点与圆上的点的距离的最值问题
例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。
解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,
∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3,
∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32.
【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。
探究点二:直线与圆上点的距离的最值问题
例2:如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值
解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2,
∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3 2,
∴AB=2OA=6,∴OP=
•
OA OB
AB
=3,∴PQ=22
OP OQ
=22.
【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值.
解:(1)线段AB长度的最小值为4,
理由如下:
连接OP,
∵AB切⊙O于P,
∴OP⊥AB,
取AB的中点C,
∴AB=2OC;
当OC=OP时,OC最短,
即AB最短,
此时AB=4.
【教师总结】结合切线的性质以及辅助线的作法,利用“垂线段最短”是解决此类问题的关键。