姜启源层次分析法课件

合集下载

第1章:层次分析法PPT课件

第1章:层次分析法PPT课件

g1 / g1
A
(aij
)33
g2
/
g1
g3 / g1
g1 / g2 g2 / g2 g3 / g2
g1 / g3
g2
/
g3
g3 / g3
-
6
1.1 AHP方法的基本原理
二、判断矩阵及其特征向量
设3个物体重量组成的向量为 G ( g1 , g2 , g3 )T
g1 / g1
A
G
g2
阶数 1
2
3
4
5
6
7
8
R.I. 0 阶数 9
0 0.52 0.89 1.12 1.26 1.36 1.41 10 11 12 13 14 15
R.I. 1.46 1.49 1.52 1.54 1.56 1.58 1.59
一致性指标C.I与同阶平均随机一致性指标R.I的比较值,称为一致性比率
C.R C.I
设判断矩阵A的全部特征值为:1= max,2,,m
由于A是互反矩阵,aii=1,(i=1,2,,m)。由矩阵理论有
max 2 m m aii m , 即 | m i | max m
i 1
i2
为达到满意一致性,除了max之外,其余特征值尽量接近于零。取
m
| i2 i | max m C .I
-
7
1.1 AHP方法的基本原理
二、判断矩阵及其特征向量
a11 a12 a13 g1 / g1 g1 / g2 g1 / g3 1 g1 / g2 g1 / g3
判断矩阵
A
a21
a22
a23
g2
/
g1
g2 / g2

数学模型姜启源 ppt课件

数学模型姜启源 ppt课件
6
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介

数学模型 姜启源

数学模型  姜启源
《数学模型》 姜启源 主编
数学模型
数学模型
精选ppt
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称
学时
36
数学模型与数学建模 Mathematical Modeling
学分 课程类别
3 专业选修课
先修课程
微积分、线性代数、概率论与数理统计
课程简介
本课程是计算机及管理专业的一门专业选修课。也是本科生参加数学建 模竞赛的辅导课程。数学模型是架于数学理论和实际问题之间的桥梁。 数学建模是应用数学解决实际问题的重要手段和途径。本书介绍数学建 模中常用的一些基本概念、理论和典型的数学模型,包括:数据拟合, 网络模型,优化模型,离散模型、随机模型,时间序列预报模型,回归 分析及其试验设计。通过数学模型和数学建模有关问题的论述和模型实 例的介绍,使学生应用数学解决实际问题的能力有所提高。
• 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);
• 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每小时20千米/小时)。
精选ppt
9
《数学模型》 姜启源 主编
第一章 建立数学模型
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
《数学模型》 姜启源 主编
第一章 建立数学模型
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
了解实际背景 明确建模目的 形成一个

比较清晰
备 搜集有关信息 掌精选握ppt 对象特征 的‘问题’25

数学模型姜启源-(第五版)名师公开课获奖课件百校联赛一等奖课件

数学模型姜启源-(第五版)名师公开课获奖课件百校联赛一等奖课件

例2 奶制品旳生产销售计划 在例1基础上深加工
12h 1桶 牛奶 或
3kgA1 1kg 2h, 3元
获利24元/kg 0.8kgB1
获利44元/kg
8h
4kgA2
50桶牛奶, 480h
1kg 2h, 3元
获利16元/kg 0.75kgB2
获利32净利润最大
Objective value:
3460.800
Total solver iterations:
2
Variable
Value Reduced
Cost
X1 0.000000
1.680000
X2 168.0000
0.000000
X3 19.20230
0.000000
X4 0.000000
0.000000
O
c l5
l3 D x1
z=0 z=2400
在B(20,30)点得到最优解.
目的函数和约束条件是线性函数 可行域为直线段围成旳凸多边形 目旳函数旳等值线为直线
最优解一定在凸多边 形旳某个顶点取得.
模型求解
软件实现
LINGO
model: max = 72*x1+64*x2; [milk] x1 + x2<50; [time] 12*x1+8*x2<480; [cpct] 3*x1<100; end
决策 变量
目的 函数
8h
4kg A2
1kg
2h, 3元
出售x1 kg A1, x2 kg A2,
获利16元/kg
0.75kg B2
获利32元/kg
x3 kg B1, x4 kg B2

清华大学数学模型姜启源第八章离散模型ppt课件

清华大学数学模型姜启源第八章离散模型ppt课件

一致性检验 对A确定不一致的允许范围 已知:n 阶一致阵的唯一非零特征根为n
可证:n 阶正互反阵最大特征根 n, 且 =n时为一致阵
定义一致性指标: CI n CI 越大,不一致越严重
n1
为衡量CI 的大小,引入随机一致性指标 RI——随机模 拟得到aij , 形成A,计算CI 即得RI。
w1(3)=(w11(3),w12(3),w13(3),0)T P1
P2
P3
P4
A不一致, 应选权向量w使wi/wj与 aij相差 尽量小(对所有i,j)。
用拟合方法确定w
2
n
min
wi (i1,,n) i1
n j1aij
w wij
非线性 最小二乘
线n
wi(i1, ,n) i1
n j1l
naijlnw wij
Ak (ai(jk)),
a(k) ij
~k步强度 体现多步累积效应
i ,j , k 0 , k k 0 , a i ( k ) s a ( j k ) s 或 a i ( k ) s a ( j ( k ) s s 1 , n )
当k足够大, Ak第i行元素反映Ci的权重 求Ak的行和
2)构造成对比较阵
用成对比较法和1~9尺度,构造各层对上一层每一因素的 成对比较阵。
3)计算权向量并作一致性检验
对每一成对比较阵计算最大特征根和特征向量,作一致性 检验,若通过,则特征向量为权向量。
4)计算组合权向量(作组合一致性检验*)
组合权向量可作为决策的定量依据。
二. 层次分析法的广泛应用
• 应用领域:经济计划和管理,能源政策和分配, 人才选拔和评价,生产决策,交通运输,科研选题, 产业结构,教育,医疗,环境,军事等。

层次分析法课件ppt

层次分析法课件ppt

按行相加为:
Wi= 1nbij
(i =1,2,….n)
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
o对向量W=( W1, W2…… Wn)t归一 化处理:
Wi=
Wi 1nWj
(i =1,2,….n)
层次分析法(AHP)具体步骤:
✓明确问题 在分析社会、经济的以及科学管
理等领域的问题时,首先要对问题有 明确的认识,弄清问题的范围,了解 问题所包含的因素,确定出因素之间 的关联关系和隶属关系。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
9 两个元素比较,一元素比另一元素极端重要
2,4,6,8 表示需要在上述两个标准之间拆衷时的标度
1/bij 两个元素的反比较
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
判断矩阵B具有如下特征:
o bii = 1 o bji = 1/ bij o bij = bik/ bjk
j1
Wi
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
层次分析法(AHP)具体步骤:
✓层次总排序 利用层次单排序的计算结果,进
一步综合出对更上一层次的优劣顺序 ,就是层次总排序的任务。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益

《层次分析法》课件

《层次分析法》课件
详细描述
企业在制定战略决策时,需要考虑多种因素,如市场环境、 竞争态势、自身资源等。层次分析法可以将这些因素按照重 要性进行排序,帮助企业明确重点,制定出更符合实际情况 的战略计划。
资源分配问题
总结词
层次分析法可以用于解决资源分配问题,通过对不同方案进行权重分析和比较 ,确定最优的资源分配方案。
详细描述
它通过构建层次结构模型,将决策问题分解为不同的组成因素,并根据 因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形
成一个多层次的分析结构模型。
在这个模型中,上一层次的元素作为准则,对下一层次元素起支配作用 ,通过两两比较的方式确定层次中诸因素的相对重要性。
层次分析法的起源与发展
1980年代初,美国运筹学家 T.L.Saaty首次提出层次分析法。
经过多年的发展,层次分析法已经广 泛应用于各个领域,如经济计划、财 政预算、资源分配、人才选拔等。
该方法最初应用于解决复杂的决策问 题上,特别是那些难以完全用定量方 法来处理的决策问题。
层次分析法的发展也经历了多个阶段 ,包括理论方法的完善、应用领域的 拓展以及计算机软件的普及等。
层次分析法的应用领域
在资源有限的情况下,如何将资源合理分配到各个部门或项目中,是企业管理 者面临的重要问题。层次分析法可以对各种资源分配方案进行评估和比较,为 企业提供科学的决策依据。
风险评估问题
总结词
层次分析法可以用于风险评估,通过对风险因素进行分析和权重排序,帮助企业 识别和评估潜在的风险。
详细描述
企业在经营过程中面临多种风险,如市场风险、财务风险、技术风险等。层次分 析法可以对各种风险因素进行权重分析和排序,帮助企业识别出主要的风险来源 ,从而采取相应的措施进行防范和控制。

姜启源编数学模型第四版第3章简单的优化模型-PPT精选

姜启源编数学模型第四版第3章简单的优化模型-PPT精选
建模目的确定恰当的目标函数. • 求解静态优化模型一般用微分法.
问题
3.1 存贮模型
配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费. 该厂 生产能力非常大,即所需数量可在很短时间内产出.
已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元. 试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小.
A
=QT/2
Q rT
0
T
t
一周期贮存费为
c2
T 0
q(t)dt
c2
QT 2
一周期 总费用
C~
c1
c2
QT 2
c1
c2
rT 2 2
每天总费用平均 值(目标函数)
C(T)C ~c1c2rT TT 2
模型求解 求 T 使C(T)c1c2rTmin
T2
dC 0 dT
T 2 c1 rc 2
模型解释
Q rT 2c1r c2
要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系.
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元. • 每天生产一次, 每次100件,无贮存费,准备费5000元.
每天费用5000元 • 10天生产一次, 每次1000件,贮存费900+800+…+100 =4500元,准备费5000元,总计9500元.
第三章 简单的优化模型
--静态优化模型
3.1 存贮模型 3.2 生猪的出售时机 3.3 森林救火 3.4 消费者的选择 3.5 生产者的决策 3.6 血管分支 3.7 冰山运输

(完整版)数学模型姜启源-第七章(第五版)

(完整版)数学模型姜启源-第七章(第五版)

标准化第1步:区分
费用型属性 效益型属性
价格X1
性能X2, 款式X3
对费用型的属性值dij作倒数变换 ——将全部属性统一为效益型.
25 9 7
D 18
7
7

12 5 5
1/ 25 9 7
D 1/18
7
7

1/12 5 5
1)决策矩阵及其标准化
R (rij )mn , 0 rij 1
标准化第2步:对dij作比例尺度变换
rij
dij
m
dij
i 1
rij

dij
i
max
1, 2 ,
m
dij
rij
dij
m
di2j
i 1
R的列和为1 ~归一化
R的列最大值 为1~最大化
R的列模为1 ~模一化
R~标准化的决策矩阵 当且仅当dij=0时才有rij=0
比例变换假定: 属性的重要性随属性值线性变化.
2.决策矩阵 3.属性权重 4.综合方法. 1. 确定属性集合的一般原则: • 全面考虑, 选取影响力(或重要性) 强的. • 属性间尽量独立(至少相关性不太强) • 不选难以辨别方案优劣的(即使影响力很强). • 尽量选可量化的, 定性的也要能明确区分档次. • 若数量太多(如大于7个), 应将它们分层.
WP
0.3067 0.3364 0.3569
TOPSIS
0.2411 0.2840 0.4749
SAW(R归一化, 最大化), WP结果差别很小,
TOPSIS结果差别稍大. 优劣顺序均为A3 , A2 , A1
• 简单、直观的加权和法(SAW)是人们的首选.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2)构造成对比较阵 )
用成对比较法和1~9尺度,构造各层对上一层每一因素的 尺度, 用成对比较法和 尺度 成对比较阵。 成对比较阵。
3)计算权向量并作一致性检验 )
对每一成对比较阵计算最大特征根和特征向量, 对每一成对比较阵计算最大特征根和特征向量,作一致性 检验,若通过,则特征向量为权向量。 检验,若通过,则特征向量为权向量。
w1 w 1 w2 A = w1 L L wn w1
w1 w2 w w w w
2 2L Ln 2 NhomakorabeaL
w1 wn w2 wn wn wn
• A的秩为 ,A的唯一非零特征根为 的秩为1, 的唯一非零特征根为 的唯一非零特征根为n 的秩为 • A的任一列向量是对应于 的特征向量 的任一列向量是对应于n 的任一列向量是对应于 • A的归一化特征向量可作为权向量 的归一化特征向量可作为权向量
一致性检验
对A确定不一致的允许范围 确定不一致的允许范围
已知: 阶一致阵的唯一非零特征根为n 已知:n 阶一致阵的唯一非零特征根为 可证: 可证:n 阶正互反阵最大特征根λ ≥n, 且λ =n时为一致阵 时为一致阵 定义一致性指标: 定义一致性指标 CI =
λ − n CI 越大,不一致越严重 越大,
组合 权向量
层对第1层的权向量 第2层对第 层的权向量 层对第
第1层O 层 第2层C1,…Cn 层 第3层P1, …Pm 层
w = (w1 ,L, wn )
( 2) ( 2)
( 2) T
层对第2层各元素的权向量 第3层对第 层各元素的权向量 层对第
(3) (3) (3) T
w k = ( w k 1 , L , w km ) , k = 1, 2, L , n
O C1 C2 C3 C4 C5
C1 1 2 1/4 1/3 1/3
C2 1/2 1 1/7 1/5 1/5
C3 4 7 1 2 3
C4 3 5 1/2 1 1
C5 3 5 1/3 1 1
成对比较阵和权向量 成对比较的不一致情况
1 A= 2 LL
1/ 2 1
4 L 7 L
4)计算组合权向量(作组合一致性检验*) )计算组合权向量(
组合权向量可作为决策的定量依据。 组合权向量可作为决策的定量依据。
四. 层次分析法的广泛应用
• 应用领域:经济计划和管理,能源政策和分配, 应用领域:经济计划和管理,能源政策和分配, 人才选拔和评价,生产决策,交通运输,科研选题, 人才选拔和评价,生产决策,交通运输,科研选题, 产业结构,教育,医疗,环境,军事等。 产业结构,教育,医疗,环境,军事等。 • 处理问题类型:决策、评价、分析、预测等。 处理问题类型:决策、评价、分析、预测等。 • 建立层次分析结构模型是关键一步,要有主要决 建立层次分析结构模型是关键一步, 策层参与。 策层参与。 • 构造成对比较阵是数量依据,应由经验丰富、判 构造成对比较阵是数量依据,应由经验丰富、 断力强的专家给出。 断力强的专家给出。
定义一致性比率 CR = CI/RI
选择旅游地” “选择旅游地”中 准则层对目标的权 向量及一致性检验 最大特征根λ=5.073
准则层对目标的成对比较阵 准则层对目标的成对比较阵
1 2 A = 1/ 4 1/ 3 1/ 3 1/ 2 1 1/ 7 1/ 5 1/ 5 4 7 1 2 3 3 5 1/ 2 1 1 3 5 1 / 3 1 1
• 便于定性到定量的转化: 便于定性到定量的转化:
尺度
a ij
1 相同
2
3 稍强
4
5 强
6
7
8
9 绝对强
Ci : C j的重要性
明显强
aij = 1,1/2, ,…1/9 ~ Ci : C j 的重要性与上面相反 • 心理学家认为成对比较的因素不宜超过 个 心理学家认为成对比较的因素不宜超过9个 • 用1~3,1~5,…1~17,…,1p~9p (p=2,3,4,5), d+0.1~d+0.9 (d=1,2,3,4)等27种比较尺度对若干实例构造成对比较 等 种比较尺度对若干实例构造成对比较 算出权向量,与实际对比发现, 尺度较优。 阵,算出权向量,与实际对比发现, 1~9尺度较优。 尺度较优
最大特征根 λ1 权向量 w1(3)
λ2
w2(3)
组合权向量
k 1 0.595 0.277 0.129 3.005 0.003
层对第2层的计算结果 第3层对第 层的计算结果 层对第 2 0.082 0.236 0.682 3.002 0.001 3 0.429 0.429 0.142 3 0 4 0.633 0.193 0.175 3.009 0.005 5 0.166 0.166 0.668 3 0
权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T 权向量(特征向量) 一致性指标 CI = 5 .073 − 5 = 0 .018 5 −1 查表) 随机一致性指标 RI=1.12 (查表 查表 一致性比率CR=0.018/1.12=0.016<0.1 一致性比率 通过一致 性检验
桥梁 D1
隧道 D2
渡船 D2
(2)过河代价层次结构 )
例4 科技成果 的综合评价
效益C 效益 1
层次分析法的基本步骤 成对比较阵 和权向量 元素之间两两对比, 元素之间两两对比,对比采用相对尺度
设要比较各准则C 对目标O的重要性 设要比较各准则 1,C2,… , Cn对目标 的重要性
Ci : Cj ⇒ aij
选 择 旅 游 地
1 2 A = 1/ 4 1/ 3 1/ 3
构造矩阵
W ( 3 ) = [ w1( 3 ) , L , wn( 3 ) ]
则第3层对第 层的组合权向量 则第 层对第1层的组合权向量 层对第 层对第1层的组合权向量 第s层对第 层的组合权向量 层对第
w
(3)
=W w
( 3)
(2)
w =W W
(s) (s)
( s−1)
LW w
( 3)
( 2)
其中W 是由第p层对第 其中 (p)是由第 层对第 p-1层权向量组成的矩阵 层权向量组成的矩阵
1 A = ( aij ) n×n , aij > 0, a ji = aij
1/ 2 1 1/ 7 1/ 5 1/ 5 4 7 1 2 3 3 5 1/ 2 1 1
3 成对比较阵 5 A~成对比较阵 1 / 3 是正互反阵 A是正互反阵 1 1
要由A确定 要由 确定C1,… , Cn对O的权向量 确定 的权向量
组合权向量
记第2层 准则)对第 层 目标) 记第 层(准则)对第1层(目标) (2) (2) (2) T 的权向量为 w = ( w1 , L , w n ) 方案层对C 费用 费用) 方案层对 2(费用 的成对比较阵
1 1/ 3 1/8 B2 = 3 1 1 / 3 8 3 1
例1 国家 实力分析
国家综合实力
国民 收入
军事 力量
科技 水平
社会 稳定
对外 贸易
美、俄、中、日、德等大国
例2 工作选择
贡 献 收 入
工作选择
发 展
声 誉
关 系
位 置
供选择的岗位
例3 横渡 江河、 江河、海峡 方案的抉择
节 省 时 间 C1
过河的效益 A 经济效益 B1 当 地 商 业 C4 建 筑 就 业 C5 社会效益 B2 安 全 可 靠 C6 交 往 沟 通 C7 环境效益 B3 舒 适 C9 进 出 方 便 C1
n −1
为衡量CI 的大小,引入随机一致性指标 RI——随机模 为衡量 的大小,引入随机一致性指标 随机模 拟得到a 形成A,计算CI 即得RI。 拟得到 ij , 形成 ,计算 即得 。 Saaty的结果如下 的结果如下
n RI 1 2 10 11 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 当CR<0.1时,通过一致性检验 时 3 4 5 6 7 8 9
层次分析法的基本步骤
1)建立层次分析结构模型 )
深入分析实际问题,将有关因素自上而下分层(目标 深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响 方案或对象),上层受下层影响, 准则或指标 方案或对象),上层受下层影响,而层内 各因素基本上相对独立。 各因素基本上相对独立。
允许不一致,但要确定不一致的允许范围 允许不一致, 考察完全一致的情况
W ( = 1) ⇒ w1 , w2 ,L wn
L L
令aij = wi / w j
w = ( w1 , w2 ,L wn )T ~ 权向量
L
成对比较阵和权向量 成对比较完全一致的情况 满足 aij ⋅ ajk = aik , i, j, k =1,2,L, n 的正互反阵A称一致阵, 的正互反阵 称一致阵,如 一致阵 性质
三. 层次分析法的基本步骤
例. 选择旅游地
目标层
如何在3个目的地中按照景色、 如何在3个目的地中按照景色、 费用、居住条件等因素选择. 费用、居住条件等因素选择.
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
“选择旅游地”思维过程的归 选择旅游地” 选择旅游地 纳 • 将决策问题分为 个层次:目标层 ,准则层 , 将决策问题分为3个层次 目标层O,准则层C, 个层次: 方案层P;每层有若干元素, 方案层 ;每层有若干元素, 各层元素间的关系 用相连的直线表示。 用相连的直线表示。 • 通过相互比较确定各准则对目标的权重,及各方 通过相互比较确定各准则对目标的权重, 案对每一准则的权重。 案对每一准则的权重。 • 将上述两组权重进行综合,确定各方案对目标的 将上述两组权重进行综合, 权重。 权重。 层次分析法将定性分析与定量分析结合起来 完成以上步骤,给出决策问题的定量结果。 完成以上步骤,给出决策问题的定量结果。
相关文档
最新文档