六年级数学竞赛试题-及参考答案
小学六年级数学竞赛试卷(附答案)
小学六年级数学竞赛试卷(附答案)一、拓展提优试题1.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.2.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).3.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.4.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).5.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).6.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.7.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.8.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.9.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.10.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.11.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)12.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.13.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.14.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.15.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.【参考答案】一、拓展提优试题1.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.2.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.3.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.4.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.5.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.6.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.7.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.8.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.9.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.10.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.11.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.12.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.13.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.14.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:915.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.。
2023年六年级数学竞赛题及答案
六年级数学竞赛题及答案【篇一:六年级数学竞赛试题及参考答案】)(每空2分)1.342.把1.606、123和1.6按从大到小的顺序排列为()。
3.一张半圆形纸片半径是1分米,它的周长是(),要剪成这样的半圆形,至少要一张面积是()平方分米的长方形纸片。
4. 一排长椅共有90个座位,其中一些座位已有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
本来至少有__人已经就座。
5.57吨煤平均7次运完,每次运这些煤的()(填分数),每次运煤()吨。
6. 十几辆卡车运送315桶汽油,每辆卡车运的桶数同样多,且一次运完.那么, 每辆卡车运()桶。
7. 五个数的平均数是30,若把其中一个数改为40,则平均数是35,这个改动的数是( )。
8.两个圆的直径比是 2 :5,周长比是(),面积比是()。
二、判断(10分)1.某班男生人数比女生人数多1,那么女生人数就比男生少132。
() 2.半圆的周长就是圆周长的一半。
( ) 3.把圆提成若干份,分的份数越多,拼成的图形越接近于长方形。
()4.把10克糖放入100克水中,糖是糖水的110。
() 5.7吨的19和1吨的79同样重。
()三、选择(18分)1.下面图形中,()是正方体的表面展开图.a.b. c.2.一种商品先降价18,又提价18,现价与原价相比()。
a.现价高;b.原价高;c.相等。
3.一个三角形,三个内角度数的比是1:3:6,这个三角形是()。
a.同样大;b.正方形大;c.圆大;d.无法比较。
四、计算(18分)1110= 2.求末知数x(4分)x-4五、应用题(28分)1.一个环形内圆半径是3米,外圆周长是37.68米,这个环形的面积是多少平方米?(4分)六年级数学竞赛参考答案一、填空1. 20 122. 1 1.606 1.63. 5.14分米 24. 455. 2315 6. 217.157498. 2:5 4:25 二、判断1. c2. b3. c4. c5. c 四、计算 1.直接写得数。
小学数学六年级下册竞赛试题附完整答案(全优)
小学数学六年级下册竞赛试题一.(共8题,共16分)1.在-3、-0.5、0、-0.1这四个数中,最小的是()。
A.-3B.-0.5C.0D.-0.12.点A为数轴上-1的点,将点A沿数轴向左移动2个单位长度到达点B,则点B表示的数为()。
A.-3B.3C.1D.1或-33.小明家六月份用电180度,开展节约用电后,七月份用电120度,比六月份用电节约了百分之几?正确的列式为()。
A.120÷180×100%B.(180-120)÷180×100%C.180÷120×100%D.(180-120)÷120×100%4.某商场将运动衣按进价的50%加价后,写上“大酬宾,八折优惠”,结果每件运动衣仍获利20元,运动衣的进价是()元。
A.110B.120C.130D.1005.一件衣服先按获取利润40元销售,后将利润降低到25元出售,现在的利润是()。
A.-25元B.+15元C.-40元D.+25元6.张远按下边的利率在银行存了10000元,到期算得税前的利息共612元,他存了()年。
A.五B.三C.二D.一7.将一个圆柱体削制成一个圆锥体,削去部分的体积是圆柱体积的()。
A. B. C.2倍 D.不能确定8.在比例里,两个外项互为倒数,如果一个外项是1.6,那么另一个外项是()。
A.6.1B.1.6C.135D.二.(共8题,共16分)1.表面积相等的长方形和正方体,它们的体积也相等。
()2.一件工作,甲单独完成于乙单独完成所用的时间比是5:6,那么他们的工作效率比是6:5。
()3.正方体的棱长和体积成正比例。
()4.比例由两项组成,分别叫做前项和后项。
()5.把一个正方形按3∶1放大,它的面积扩大到原来的3倍。
()6.从侧面看到的是圆形。
()7.圆柱的体积比与它等底等高的圆锥大2倍。
()8.5不是正数,因为5前面没有“+” 。
数学竞赛试卷(试题)--2024年六年级下册数学含参考答案
数学竞赛试卷(人教版六年级下册)满分100分 时间90分钟题号 一 二 三 四 总分 等级 得分一、填空题(每题2分,共20分)1.47= ( )2222=44+221177+( )=00.88( )= 4%:2.5千米是8千米的_______%,8千米比5千米多_______%.3.1时15分= 时;2立方米40立方分米= 立方米。
4.如果一个圆的半径是r 厘米,且5:r=r:6,这个圆的面积是( )平方厘米。
5.设A 和B 都是自然数,并且满足A 5+B 9=2345,那么A+B= 。
6.下左图中阴影三角形与空白三角形关于虚线对称。
根据图中信息,请用数对表示出点A 、B 的位置。
A ( , ),B ( , )。
7.如右上图,一把纸扇完全打开后是一个扇形(不考虑扇钉处的影响),外侧两竹条夹角为120°,竹条的长为30cm,贴纸部分的宽为18cm 。
(1)记该扇形的面积为S,没贴纸部分的面积为M ,则M S=_______。
(2)扇形贴纸部分的面积约为_______cm ²。
(结果保留整数)8.已知两数的差与这两数的商都等于9,那么,这两个数的和是_______。
9.一只船在河里航行,顺流而行时航速为每小时20千米.已知此船顺水航行3小时和逆水航行5小时所行的路程相等,问船速和水速分别为 , 。
10.如图所示,给出了三幅所代表的数值,根据规律,第四幅图所代表的数值是( )。
二、选择题(每题2分,共12分)1.有一根木头要锯成8段,每锯一次要2分钟,全部锯完需要( )分钟。
A.10B.12C.14D.162.男生人数比女生人数少20%,那么女生人数与男生人数的比是 ( )A.1:5B.5:1C.5:4D.4:53.为了清楚地反映出某地一周来气温的变化情况,应选用( )统计图。
A.条形B.折线C.扇形4.桌面上有一串手链,手链上均匀分布着12个小珠子,其中三个小珠子是蓝色的,其他的小珠子是白色的(如图所示)。
小学六年级数学竞赛试卷(附答案)图文百度文库
小学六年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.5.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.6.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.7.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.8.已知自然数N的个位数字是0,且有8个约数,则N最小是.9.若质数a,b满足5a+b=2027,则a+b=.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.12.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.13.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.14.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.5.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.6.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.7.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.8.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.12.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30013.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.14.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.15.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
浙江温州市瑞安市解放路小学2024年六年级下学期竞赛数学试卷含参考答案
浙江省瑞安市解放路小学第三届“行知杯”数学竞赛六年级试卷(时间:60分钟 总分100分) 2024.6一、填空(每小题4分,共64分)1.一个数由32个百、56个百分之一组成,这个数是( ),读作( )它含有( )个0.01,这个数保留到十分位是( )2.5.02立方米=( )立方米( )立方分米,5小时20分=( )小时3.一张零件图纸的比例尺是6:1,在图上量得某零件长是48毫米,这零件实际长是( )毫米。
4.小明语文、数学、英语的平均分是a 分,语文、数学的平均分是b 分,英语 分。
5.一项工程,甲单独做8天完成,乙单独做3天完成这项工程的41,则甲乙合作需要 天能完成这项工程。
6.如图,用黑白两种颜色的正五边形地砖按下图所示的规律,拼成若干个蝴蝶图案。
则第7个蝴蝶图案中白色地砖有 个。
(第4题图) (第6题图)7.已知x=2×3×5×A,y=2×3×A×11,已知xy 的最大公因数是42,则A=( )8.如图,边长是12厘米的正方形与半径是8厘米的圆有部分重叠,若没有重叠的两空白部分的面积分别是1s 和2s ,则1s -2s = 平方厘米。
(π取3.14)9.阳光小学组织安全意识知识竞赛,共20题。
答对一道题得10分,答错一道题扣5分,弃权不扣也不加。
芳芳弃权两道题,得了120分,则她答对了 题。
10 .把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了200平方厘米。
圆柱高20厘米,圆柱的体积是 立方厘米。
11.王老师今年39岁,是他弟弟年龄的1.3倍,再过 年王老师的年龄是他弟弟年龄的1.25倍。
12. 计算:21+61+121+201+301= 13.现有 2.5.8.9四张牌,请将这四个数用适当的运算符号和括号组成24,写出四种方法: 、 、 、 。
14.A 、B 是平面上的两个定点,在平面上找一点C ,使三角形ABC 构成等腰直角三角形,这样的点C 有 个。
小学六年级数学竞赛试题及详细答案
小学六年级数学竞赛试题及详细答案二、填空题共40分,每小题5分1.在下面的“□”中填上合适的运算符号,使等式成立:1□9□9□2×1□9□9□2×19□9□2=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边;那么,这个等腰梯形的周长是_ _厘米;3.一排长椅共有90个座位,其中一些座位已经有人就座了;这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻;原来至少有_ _人已经就座;4.用某自然数a去除1992,得到商是46,余数是r;a=_ _,r=_ _;5.“重阳节”那天,延龄茶社来了25位老人品茶;他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000;其中年龄最大的老人今年_ ___岁;6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本;那么,至少__ __个学生中一定有两人所借的图书属于同一种;7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分;那么得分最少的选手至少得__ __分,至多得__ __分;每位选手的得分都是整数8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管;那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少;三、解答下面的应用题要写出列式解答过程;列式时,可以分步列式,可以列综合算式,也可以列方程共20分,每小题5分1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米;现由甲工程队先修3天;余下的路段由甲、乙两队合修,正好花6天时间修完;问:甲、乙两个工程队每天各修路多少米2.一个人从县城骑车去乡办厂;他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米;又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程;3.一个长方体的宽和高相等,并且都等于长的一半如图12;将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米;求这个大长方体的体积;4.某装订车间的三个工人要将一批书打包后送往邮局要求每个包内所多35本;第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包;这批书共有多少本四、问答题共35分1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输;问:保证一定获胜的对策是什么5分2.有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒;现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米6分3.个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的a、b两种形状的铁皮毛坯;现有甲、乙两块铁皮下脚料如图14、图15,图13、图14、图15中的小方格都是边长相等的正方形;金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品“成套”,指a、b两种铁皮同样多,并且一点材料也不浪费;问:1金师傅应当从甲、乙两块铁皮下脚料中选哪一块3分2怎样裁剪所选用的下脚料请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯5分4.只修改21475的某一位数字,就可以使修改后的数能被225整除;怎样修改6分5.1要把9块完全相同的巧克力平均分给4个孩子每块巧克力最多只能切成两部分,怎么分5分2如果把上面1中的“4个孩子”改为“7个孩子”,好不好分如果好分,怎么分如果不好分,为什么5分详解与说明一、计算题说明:要想得到简便的算法,必须首先对题中每个数和运算符号作全面、,马上就应该知道它可以化为3.6;而3.6与36只差一个小数点,于是,又容易想到把“654.3×36”变形为“6543×3.6”,完成了这步,就为正”采用了同样的手段,这种技巧本报多次作过介绍;说明:解这道题可以从不同的角度来观察;解法一是先观察、比较分子部分每个加数连乘积的因数,发现了前后之间的倍数关系,从而把“1×3×24”作为公因数提到前面,分母部分也作了类似的变形;而解法二,是着眼于整个繁分数,由分子看到分母,发现分子部分的左、中、右三个乘分子部分括号内三个乘积的和约去了;本题是根据数学之友7第2页例5改编的;3.解法一:解法二:说明:解法一是求等比数列前n项和的一般方法,这种方法本报217期第一版“好伙伴信箱”栏中曾作过介绍;由于本题中后一个加数总是前一个加数的一半,因而,只要添上一个最小的加数,就能凑成“2倍”,也就是它前面的一个加数,这就不难想到解法二;二、填空题1.解:1×9×9+2×1+9-9+2×19-9-2=83×3×8=1992或1×9×9+2×1×9÷9×2×19-9+2=83×2×12=1992本题答案不唯一,只要所填的符号能使等式成立,都是正确的说明:在四个数字之间填上三个运算符号,使它们的计算结果为某个已知数,这是选手们熟悉的“算式谜”题;而这道题却不容易一下子判断括号内的计算结果应该是多少,这就需要把1992分解为三个数连乘积的形式,1992=83×3×2×2×2,因为83、3、2、2、2组成三个乘积为1992的数有多种组合形式,所以填法就不唯一了;2.解:55+15+25×2=120厘米说明:要算周长,需要知道上底、下底、两条腰各是多长;容易判断:下底最长,应为55厘米;关键是判断腰长是多少,如果腰长是15厘米,15×2+25=55,说明上底与两腰长度之和恰好等于下底长,四条边不能围成梯形,所以,腰长只能是25厘米;读者从本报190期第三版任意三根小棒都能围成三角形吗一文中应当受到启发;3.解:最少有说明:根据题意,可推知这排长椅上已经就座的任意相邻的两人之间都有两个空位;但仅从这个结果中还不能肯定长椅上共有多少个座位,因为已经就座的人最左边一个最右边一个既可以坐在左边右边起第一个座位上,也可以坐在左边右边起第二个座位上如图16所排出的两种情况,“●”表示已经就座的人,“○”表示空位”;不过,题目中问“至少”有多少人就座,那就应选第二种情况,每三人○●○一组,每组中有一人已经就座;1●○○●○○●……2○●○○●○○●○……图164.解法一:由1992÷46=43 (14)立即得知:a=43,r=14解法二:根据带余除法的基本关系式,有1992=46a+r0≤r<a由r=1992-46a≥0,推知由r=1992-46a<a,推知因为a是自然数,所以a=43r=1992-46×43=14说明:本题并不难,因此应尽可能运用简单的方法,迅速地算出答案;解法一是根据1992÷a的商是46,因而直接用1992÷46得到了a和r;解法二用的是“估值法”;5.解法一:先算出这25位老人今年的岁数之和为2000-25×2=1950年龄最大的老人的岁数为1950+1+2+3+4+……+24÷25=2250÷25=90岁解法二:两年之后,这25位老人的平均年龄年龄处于最中间的老人的年龄为2000÷25=80岁两年后,年龄最大的老人的岁数为80+12=92岁年龄最大的老人今年的岁数为92-2=90岁说明:解法一采用了“补齐”的手段详见本报241期第一版“削平”与“补齐”一文;当然,也可以用“削平”法先求年龄最小的老人的岁数,再加上24;解法二着眼于25人的平均年龄,先算年龄处于最中间的老人的岁数,算起来更简便些;6.解:根据“抽屉原理”,可知至少7个学生中有两人所借图书的种类完全相同;说明:本题是抽屉原理的应用;应用这个原理的关键是制造抽屉;从历史、文艺、科普三种图书若干本中任意借两本,共有——史,史、文,文、科,科、史,文、史,科、文,科这六种情况,可把它们看作六只“抽屉”,每个学生所借的两本书一定是这六种情况之一;换句话说,如果把借书的学生看作“苹果”,那么至少7个苹果放入六个抽屉,才能有两个苹果放在同一个抽屉内;本题是由本报234期“奥林匹克学校”拦的例2改换而成的;7.解:得分最低者最少得404-90+89+88+87=50分得分最低者最多得404-90-1+2+3÷4=77分说明:解这道题要考虑两种极端情形:1要使得分最低的选手的得分尽可能地少,在五名选手总分一定的条件下,应该使前四名领先于第五名的分数尽可能多才行;第一名得分是已知的90分,这就要求第二、三、四名的得分尽可能靠近90分,而且互不相等,只有第二、三、四名依次得89分、88分、87分时,第五名得分最少;2要使得分最低的选手得分最多,在总分和第一名得分一定的条件下,应当使第二、三、四、五名的得分尽可能接近;考虑到他们的得分又要互不相等,只有当第二、三、四、五名的得分为四个连续自然数时才能做到,用“削平”的方法可以算出第五名最多得多少分;本题是根据数学之友7第46页第13题改编的;8.解:设38毫米、90毫米的铜管分别锯X段、Y段,那么,根据题意,有38X+90Y+X+Y-1=100039X+91Y=1001要使损耗最少,就应尽可能多锯90毫米长的铜管,也就是说上面式中的X应尽可能小,Y尽可能大;由于X、Y都必须是自然数,因而不难推知:X=7,Y=8;即38毫米的铜管锯7段,90毫米的铜管锯8段时,损耗最少;说明:选手们读题之后,可以马上想到:要使损耗最少,应尽可能多锯90毫米长的铜管,但必须符合“两种铜管都有”、“两种铜管长度之和加上损耗部分长度应等于1米”两个条件,这样算起来就不那么简单了;这种题目,借助等量关系式来进行推理比较方便,不过,列方程时可别忘掉那损耗的1毫米,而且损耗了几个“1毫米”也不能算错,应该是“总段数-1”;列出方程式之后,还有两点应当讲究:1变形要合理;2要选用简便算法;如上面解法中,把1001写成7×11×13,39写成3×13,91写成7×13,使分子部分和分母部分可以约分,对于迅速推知最后结果是大有帮助的;本题是数学之友7第51页练习六中的原题;三、应用题1.解法一:假设乙工程队每天与甲工程队修的路同样多,那么两队一共修的路就要比4200米少600米,这3600米就相当于甲工程队用15天15=3+6×2修完的,列式为4200-600÷3+6×2=3600÷15=240米240+100=340米解法二:设甲工程队每天修路X米,那么乙工程队每天修路“X+100”米,根据题意,列方程3X+6×X+X+100=4200解得X=240从而X+100=340米答:甲工程队每天修路240米,乙工程队每天修路340米;说明:“假设”是我们解应用题时经常采用的算术方法,它体现了机智、敏捷,能迅速得到答案;本题根据本报第234期第二版“思考题解答”一栏中的例题改编而成;2.解:从题目可知,前30分钟行完总路程的一半,后20分钟没有把另一半行完,比总路程的一半少2千米;换句话说,后20分钟比前30分钟少行了2000米;为什么会少行呢原因有两方面:1后20分钟比前30分钟少行10分钟;2后20分钟比前30分钟每分钟多行50米;这样,容易推知前30分钟里每10分钟所行的路程是20×50+2000=3000米;前30分钟每分钟行3000÷10=300米总路程为300×30×2=18000米答:县城到乡办厂之间的总路程为18千米;说明:解本题的关键是:1通过比较,知道这个人前30分钟比后20分钟多行多少路程;2找出前30分钟比后20分钟多行2000米的原因是什么;详见本报209期抓住矛盾找原因一文;3.解法一:设大长方体左右面面积为X平方分米,则大长方体表面积为10X;切成12个小长方体后,新增加的表面积为3X+2×2X×2=14X12个小长方体表面积之和为10X+14X=600X=25V=25×10=250立方分米解法二:把大长方体的表面积看作——“1”,则切成12个小长方体后,V=25×5×2=250立方分米答:这个大长方体的体积为250立方分米;说明:这道题比较简单,只要明白把一个几何体切成两部分后,“新增加的表面积等于切面面积的2倍”这个关系,不过,在计算新增加表面积时,稍不留心就会弄错;本题根据本报第226期第一版“教你思考”栏中的例题改编的;又因为10包+25本+35本←→11包所以1包←→60本14+11×60=1500本解法二:列方程解则有7X=14Y+35 15X=11Y-35 21-2,得ZX—3Y+70 31+2,得12X=25Y 43×6,得12X=18Y+420 5比较4、5两式,有25Y=18Y+420解得Y=6012X=25×60=1500本答:这批书共有1500本;说明:这道题目里的数量关系其实很容易看出,解法一几乎是心算出结果的;所以,不能把问题想得很复杂;解法二比较容易想到,但设“未知数”也很有讲究,如果设这批书有X本,变形就比较麻烦了;四、问答题1.答:保证一定获胜的对策是:1先取1粒钮扣,这时还剩1991粒钮扣;2下面轮到对方取,如果对方取n粒1≤n≤4,自己就取“5-n”粒,经过398个轮回后,又取出398×5=1990粒钮扣,还剩1粒钮扣,这1粒必定留给对方取;说明:本题只是把本报233期“奥林匹克学校”栏对策问题的“例1”改掉一个字——“胜”改为“输”;一字之差,对策就要改变;我们知道,解对策问题有一个基本思路:把失败输的可能留给对手;本题中,谁取到最后一粒钮扣谁就算输,因而,要想获胜,就必须抢到第1991粒;想到这一点,就容易找到保证获胜的对策了;2.答:剪去的小正方形边长应为4厘米;说明:要回答这道题,可以先到一个表来比较一下;通过比较,容易知道剪去的小正方形边长是几厘米时,做成的纸盒容积最大;从上面表中一下子可以看出结果;还可以设被剪去的小正方形边长纸盒的高为h,那么,纸盒底面边长为24-2h;它的容积为因为24-2h+24-2h+4h=48定数,根据数学之友7第23页所介绍的结论,当24-2h=4h时,24-2h×24-2h×4h乘积最大;也就是说,当h=4时,V最大;3.答:1应选甲铁皮料;2剪法如图17;说明:题中要求选一块铁皮料适合做“成套”的铁皮制品,这就要求所选的铁皮料中包含的ab两种毛坯同样多;又因为不能浪费材料,所以,只要算一算数一数甲、乙两块材料中各有多少小正方形,看甲或乙材料中小正方形的总数能不能被10+7=17整除;在回答第2个问题时,可以把ab两块毛坯拼成图18,再根据上面所算出的结果,从中心处向四个方向剪开,就得到4个图18的形状;仔细观察图17,容易发现图中的对称美,这种美也能启发你找到剪裁铁皮的方法;4.答:可以把“1”改为“0”,也可以把“4”改为“3”,还可以把“1”改为“9”,把“2”改为“1”;说明:本题有四种符合要求的答案,就看你考虑问题是不是全面了;因为225=25×9,所以要修改后的数能被225整除,就是既能被25整除,又能被9整除;被25整除不成问题,末两位数75不必修改,只要看前面三个数字;有2+1+4+7+5=19=18+1=27-8,不难排出上面四种答案;5.答:1把9块中的三块各分为两部分:说明:这个分糖的问题很有趣;先得算一算,9块糖平分给4个孩子,。
小学六年级数学竞赛试卷(参考答案)
小学六年级数学竞赛试卷(参考答案)小学六年级数学竞赛试卷(参考答案)一、填空题,(每题4分,共80分)1、42、363、884、575、1306、367、51,7 8、四 9、2 10、28 11、6812、630 13、15,5 14、10,60 15、52,25616、100,150 17、18 18、45 19、2 20、4.5二、应用题,(每题4分,共20分)21、车速:12000÷(75-15)=20(米/秒)车长:20×15=300(米)22、23、3.5×9÷(14-5)=6.3(吨)24、解:在△ABC与△ADE中,∠BAC=∠DAE。
因为AB=6AD,AC=3AE,所以S△ABC=6×3×S△ADE=18×1=18(平方厘米)。
25、解答:由于运费是以每吨货物运输1千米为单位(即吨·千米)计量的,因此要使运费最省,就要把所有货物运往离货物最多的仓库适当近的地方集中。
我们依次计算以一、二、…、五号仓库为集中点所需的运费:0.8×(20×100+40×400)=14400(元),0.8×(10×100+40×300)=10400(元),0.8×(100×200+20×100+40×200)=9600(元),0.8×(10×300+20×200+40×100)=8800(元),0.8×(10×400+20×300)=8000(元)。
因此,把所有货物集中到五号仓库所需的运费最少,运费为8000元。
小学六年级数学竞赛试题附答案
1 小学六年级数学竞赛试题一、选择题。
(毎小题10分)以下毎题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在毎题的圆括号内。
1.科技小组演示自制机器人,若机器人从点A 向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再向东行走2米,最后又向南行走1米到达B 点,则B 点与A 点的距离是( )米。
(A )3 (B )4 (C )5 (D )72.将等边三角形纸片按图1所示的步骤折3次(图1中的虚线是三边中点的边线),然后沿两边中点的边线剪去一角(图2)。
将剩下的纸展开、铺平,得到的图形是()。
(A )(B)(C ) (D )3.将一个长和宽分别是是1833厘米和423厘米的长方形分割成若干修正在方形,则正方形最少是( )个。
(A )78 (B )7 (C )5 (D )64.已知图3是一个轴对称图形,若将图中某些黑色的图形去掉后,得到一些新的图形,则其中轴对称图形共有( )个。
(A )9 (B )8 (C )7 (D )6 图35.若a=1515…15×333…3,则整数a 的所有位数上的数字和等于( )。
1004个5 2008个3(A )18063 (B )18072 (C )18079 (D )180546.若a=2008200720062005⨯⨯,b=2009200820072006⨯⨯,c=2010200920082007⨯⨯,则有( )。
(A )a>b>c (B )a>c>b (C )a<c<b (D )a<b<c二、填空题。
(毎小题10分,满分40分。
第10题每空5分)7.如图4所示,甲车从A ,乙车从B 同时相向而行,两车第一次相遇后,甲车继续行驶4小时到达B ,而乙车只行驶了1小时就到达A ,甲乙两车的速度比为 。
图1 图2 甲车乙车 A B图42 8.华杯赛网址是 ,将其中的字母组成如下算式:www+hua+bei+sai+cn=2008.如果每个字母分别代表0~9这十个数字是的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且w=8,h=6,a=9,c=7,则三位数bei 的最小值是 。
【经典】小学六年级数学竞赛试卷(附答案)图文百度文库
【经典】小学六年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.4.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.5.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.6.如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是.(填序号)7.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.8.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.9.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点A n,然后从点A n出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.10.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.11.被11除余7,被7除余5,并且不大于200的所有自然数的和是.12.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)13.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.14.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.15.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.【参考答案】一、拓展提优试题1.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.4.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.5.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.6.解:如图.图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是图2①;故答案为:①7.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.8.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.9.解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).10.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.11.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.12.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.13.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.14.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.15.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.。
六年级数学竞赛试题及答案
六年级数学竞赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是质数?A. 2B. 4C. 9D. 10答案:A2. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,它的体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A3. 一个数的1/4加上它的1/2,等于这个数的:A. 3/4B. 5/6C. 7/12D. 1答案:B4. 如果一个圆的半径是5厘米,那么它的周长是多少厘米?A. 31.4B. 15.7C. 62.8D. 50答案:C5. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 20C. 24D. 32答案:B二、填空题(每题2分,共10分)6. 一个数的平方是36,这个数是______。
答案:6或-67. 一个数的3/4比它的1/2多1,这个数是______。
答案:48. 如果一个三角形的底是10厘米,高是6厘米,那么它的面积是______平方厘米。
答案:309. 一个数的5倍加上8等于38,这个数是______。
答案:610. 如果一个分数的分子是9,分母是12,化简后是______。
答案:3/4三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) 36 ÷ 6 + 4 × 2(2) (5 - 3) × 8 ÷ 2答案:(1) 12(2) 812. 解下列方程:(1) 2x + 5 = 13(2) 3x - 7 = 14答案:(1) x = 4(2) x = 713. 一个长方形的长是宽的2倍,如果长增加10厘米,宽增加5厘米,面积变为原来的2倍,求原长方形的长和宽。
答案:设原宽为x,则原长为2x。
根据题意,(2x + 10) * (x + 5) = 2 * (2x * x),解得x = 5,所以原长为10厘米,宽为5厘米。
四、解答题(每题10分,共20分)14. 一个农场有鸡和兔子共35只,它们的腿总共有94条。
2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)
2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)一、填空题。
1.(3分)使得以下不等式成立的自然数有很多,所有满足题目要求的自然数之和是。
÷>2.(3分)计算:=.3.(3分)某种计算机病毒会“吃掉”硬盘空间。
第一天吃掉硬盘空间的二分之一,第二天吃掉剩下的三分之一,第三天吃掉剩下的四分之一,第四天吃掉剩下的五分之一,第五天吃掉剩下的六分之一。
此时,硬盘还剩下160G(G是硬盘大小的单位)。
这个硬盘本来一共有G。
4.(3分)=。
5.(3分)两圆公共部分的面积是大圆面积的九分之一,是小圆面积的十五分之四。
大圆面积比小圆面积大56平方厘米。
大圆面积是平方厘米?6.(3分)一个长方形的长与宽之比为13:8,在这个长方形中剪掉一个最大的正方形。
剩下的长方形长与宽的比值是。
7.(3分)今年是2021年,健康、幸福、爱情、和睦、勤奋、逐梦、富贵、崛起,这八个词每个词刚好是21划。
那么8个2021相乘的积有个因数。
8.(3分)如图,在正方形ABCD中,红色、绿色正方形的面积分别是125平方厘米和20平方厘米,且红、绿两个正方形有一个公共顶点。
黄色正方形的一个顶点位于红色正方形的中心,一个顶点位于绿色正方形的中心。
那么黄色正方形的面积是平方厘米。
9.(3分)在如图中,正方形ABCD的面积是196平方厘米,E、F分别是AB、AD的中点,2FG=5CG。
则阴影部分面积是平方厘米。
10.(3分)有一辆自行车,前轮和后轮都是新的,并且可以互换。
1个新轮胎在前轮位置可以行驶4000千米,在后轮位置可以行驶2400千米。
使用2个新轮胎,这辆自行车最多可行驶千米。
11.(3分)一个自然数分别除以3、4、6、7,所得余数分别为2、1、5、6,并且四个商的和为859。
这个自然数是。
12.(3分)如图,用一个斜边长43厘米的红色直角三角形,一个斜边长94厘米的蓝色直角三角形与一个黄色正方形正好拼成一个大的直角三角形。
红色三角形与蓝色三角形的面积之和是平方厘米?13.(3分)在如图中,正方形ABCD的面积是36平方米,AE=3EB,BF=4FC,CG:GD=4:11,DH:HA=1:5,阴影部分面积是平方分米。
小学六年级数学竞赛试卷及答案
小学六年级数学竞赛试卷及答案一、拓展提优试题1.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.2.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.3.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.4.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.5.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a 相乘)6.22012的个位数字是.(其中,2n表示n个2相乘)7.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.8.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.9.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.10.若质数a,b满足5a+b=2027,则a+b=.11.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?12.若三个不同的质数的和是53,则这样的三个质数有组.13.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.14.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.2.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.3.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.4.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.5.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.6.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.7.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.8.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.9.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.10.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.11.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.12.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;若三个不同的质数的和是53,可以有以下几组:(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;(11)13,17,23;所以这样的三个质数有11组.故答案为:11.13.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.14.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.15.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.的和是奇数还是偶数?2.得数是奇数还是偶数?3.得数是奇数还是偶数?4.的计算结果是奇数还是偶数,为什么?5.的和是奇数还是偶数?为什么?6.东东在做算术题时,写出了如下一个等式:,他做得对吗?7.能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请说明理由(1)1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=10(2)1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=278.能否从、四个6,三个10,两个14中选出5个数,使这5个数的和等于44.9.一个自然数数分别与另外两个相邻奇数相乘,所得的两个积相差150,那么这个数是多少?10.一个偶数分别与其相邻的两个偶数相乘,所得的两个乘积相差80,那么这三个偶数的和是多少?11.多米诺骨牌是由塑料制成的1×2长方形,共28张,每张牌上的两个1×1正方形中刻有“点”,点的个数分别为0,1,2,…,6个不等,其中7张牌两端的点数一样,即两个0,两个1,…,两个6;其余21张牌两端的点数不一样,所谓连牌规则是指:每相邻两张牌必须有一端的点数相同,且以点数相同的端相连,例如:现将一付多米诺骨牌按连牌规则连成一条链,如果在链的一端为6点,那么在链的另一端为多少点?并简述你的理由.12.一条线段上分布着n个点,这些点的颜色不是黑的就是白的,它们将线段分为n+1段,已知线段两端的两个点都是黑的,而中间的每一个点的两边各有一黑一白.那么白点的数目是奇数还是偶数?13.是否存在自然数a和b,使得ab(a+b)="115?"14.是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=45327?15.a、b、c三个数的和与它们的积的和为奇数,问这三个数中最多可以有几个奇数?16.已知a,b,c中有一个是511,一个是622,一个是793。
六年级数学数学竞赛试题答案及解析
六年级数学数学竞赛试题答案及解析1.甲数=2×3×5,乙数=2×5×7,甲、乙两数的最大公因数是,最小公倍数是.【答案】10,210.【解析】根据求两个数最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积求解.解:甲数=2×3×5,乙数=2×5×7,所以甲、乙两数的最大公因数是2×5=10,最小公倍数是2×5×3×7=210;故答案为:10,210.【点评】考查了求几个数的最大公因数的方法与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.2.王东玩掷骰子游戏,要保证掷出的骰子总数至少有两次相同,他最少应掷()次.A.5B.6C.7D.8【答案】C【解析】骰子能掷出的结果只有6种,掷7次的话必有2次相同;即把骰子的出现的六种情况看作“抽屉”,把掷出的次数看作“物体的个数”,要保证至少有两次相同,那么物体个数应比抽屉数至少多1;进行解答即可.解:6+1=7(次);故答案为:C.【点评】此题属于典型的抽屉原理习题,解答此类题的关键是找出把谁看作“抽屉个数”,把谁看作“物体个数”,然后根据抽屉原理解答即可.3.李叔叔要给房间的四面墙壁涂上不同的颜色,但结果是至少有两面的颜色是一致的,颜料的颜色种数是()种.A.2B.3C.4D.5【答案】B【解析】本题可以用抽屉原理的最不利原则;故意在3个墙面上涂上甲、乙、丙3种颜色,没有重复,但第4面墙只能选甲、乙、丙中的一种,至少有两面的颜色是一致的;所以得出颜料的种数是3种.解:4﹣1=3(种);故答案应选:B.【点评】此题属于抽屉原理的习题,做题时应确定哪个是抽屉,哪个相当于物体个数,然后可利用抽屉原理的最不利原则进行分析即可.4.一个盒子里装有黄、白乒乓球各5个,要想使取出的乒乓球中一定有两个黄乒乓球,则至少应取出()个.A.4B.5C.6D.7【答案】D【解析】首先考虑最坏的取法,5个白乒乓球全部取出,但没有黄乒乓球,继续往下取,再取就是黄球,由取出的乒乓球中一定有两个黄乒乓球解决问题.解:5+2=7;答:则至少应取出7个,使取出的乒乓球中一定有两个黄乒乓球.故选:D.【点评】此题属于最基本的抽屉原理题目,解答时注意数据的选择.5. 5只小鸡装入4个笼子,至少有一个笼子放小鸡3只..(判断对错)【答案】×【解析】此题是典型的利用抽屉原理解决的问题,可以先根据题干条件,求出正确的答案,再进行判断.解:把4个笼子看做是4个抽屉,考虑最差情况:每个抽屉里都放1只小鸡,那么剩下的1只无论怎么放都至少有1个抽屉里有2只小鸡,所以原题说法错误.故答案为:×.【点评】此题考查了抽屉原理在实际问题中的灵活应用.6.全世界52个国家308名选手参加了第三十一届国际中学生数学奥林匹克竞赛,按组委会规定,每个国家的选手不得超过6名,问至少有几个国家派足6名选手参赛?【答案】48【解析】每个国家最多派出的选手不超过6名,而且要保证派满6名选手的国家数量最少,我们可以假设52个国家每个国家都派了5名,则剩下308﹣52×5=48(名)选手.因为每个国家派出的选手不超过6名,所以只好把48名选手平均分到48个国家中去,也就是说,至少有48个国家派足6名选手参赛.解:308﹣52×5=308﹣260=48(名)48÷(6﹣5)=48÷1=48(个)答:至少有48个国家派足6名选手参赛.【点评】此题也可这样解答:假设52个国家都派了6名选手,则一共有52×6=312(名)选手,结果只去了308名,说明至多有4个国家没派足6名选手,那么至少有52﹣4=48个国家派足6名选手参赛.7.一个盒子里装有黑白两种颜色的跳棋各10枚,从中最少摸出几枚才能保证有2枚颜色相同?从中至少摸出几枚,才能保证有3枚颜色相同?【答案】最少摸出3枚;至少摸出5枚。
广东深圳“鹏程杯”2024学年六年级下学期竞赛数学试卷含答案
2023-2024学年广东省深圳市“鹏程杯”六年级(下)竞赛数学试卷一、不定项选择题(共30题,每小题5分,每题给出的五个选项中,至少有一个正确答案,错选和不选均不得分,少选但选项正确的,所得分值在正确选项个数中平均分配。
)1.(5分)计算:=()A.1B.2C.3D.4E.52.(5分)三个最简真分数,其分子的比为3:2:4,分母的比为5:9:15,将这三个分数相加,再经过约分后为,则这三个分数的分母相加等于()A.203B.36C.210D.105E.223.(5分)如图是用6个正方形、6个三角形、一个正六边形组成的图形,正方形边长都是1厘米,这个图案的周长是()厘米。
A.24B.18C.12D.6E.44.(5分)爷爷、奶奶和小明年龄的和是132岁,而4年前,爷爷与奶奶年龄的和是小明年龄的11倍,那么小明今年()岁。
A.11B.12C.13D.14E.95.(5分)如图中的实线围成一个十四边形,所有顶点处的角都是直角,则至少需要知道()条边长,方可计算出这个十四边形的面积。
A.8B.10C.13D.9E.56.(5分)如图中的9个点在2×2方格的格点处,请你用线段连接任意两个格点,如果所连的线段内部不经过其它格点,这样的线段称为“简单线段”,共可连接出()条“简单线段”。
A.64B.72C.36D.28E.217.(5分)鹏鹏和程程用同样的速度(例如读“24”和读“2024”所用时间相同)同时开始读“数”,鹏鹏从24开始往后每隔4个数读一个“数”,他读的“数”是:24,29,34,39,……程程从2024开始向前每隔8个数读一个“数”,她读的“数”是:2024,2015,2006,1997,……那么,他们同时读出的两个最接近的数的差是()A.6B.4C.2D.8E.108.(5分)一个非负整数a,它的30倍减2能被2024整除,a的最小值是()A.21B.262C.135D.265E.2649.(5分)将如图9个3×3的方格网拼成一个9×9的方格网,然后在拼好的9×9方格网空的小方格中填入1~9这9个数字,如果要求每一行、每一列、每条大对角线填入的数字都不能重复,那么下面的这3×3的方格网中能放在9×9方格网的中心区域是()A.AB B.CDC.FG D.HIE.以上都不对10.(5分)有个等差数列:1,4,7,10,……,1+3×99,这个数列共有()个数码。
小学六年级数学竞赛试卷及答案
小学六年级数学竞赛试卷及答案一、填空题1、一个正方形的面积是100平方米,它的边长是()米。
答案:10米解析:正方形的面积是边长的平方,所以边长为10米。
2、在一个直角三角形中,已知一个锐角为40度,另一个锐角为()度。
答案:50度解析:直角三角形中有一个直角,两个锐角,所以另一个锐角为90度-40度=50度。
3、一个长方形的周长是80厘米,长是25厘米,宽是()厘米。
答案:15厘米解析:周长是长和宽的和的两倍,所以宽为(80/2)-25=15厘米。
二、选择题1、一个圆的半径是5厘米,它的面积是()平方厘米。
A. 25B. 100C. 50答案:A. 25平方厘米解析:圆的面积公式为πr²,所以面积为3.14×5²=25平方厘米。
2、下列哪个数字是偶数?A. 11B. 19C. 27D. 33答案:C. 27是偶数解析:偶数是能够被2整除的数字,只有27符合这个条件。
其他数字都是奇数。
三、计算题1、计算下列图形的面积:图1:()平方厘米图2:()平方分米图3:()平方米答案:图1面积为:6×4=24平方厘米;图2面积为:3×4/10=1.2平方分米;图3面积为:8×6/100=0.48平方米。
解析:图1为长方形面积公式,图2为梯形面积公式,图3为圆形面积公式。
根据公式计算即可得到答案。
四、简答题请描述什么是质数?什么是合数?并举例说明。
答案:质数是只有1和本身两个因数的数,例如2、3、5、7等都是质数;合数是除了1和本身外还有其他因数的数,例如4、6、8、9等都是合数。
2008年5月1日,目前人类已知的最大单块石陨石落在了吉林省境内。
这块陨石的质量约有千克,合________吨;体积约30立方米,合________立方分米;密度约为7×10³千克/立方米,合________克/立方厘米。
甲、乙两个正方体物块放置在水平地面上,它们对地面的压强相等,且甲的密度小于乙的密度。
通用版六年级数学竞赛试题(含答案)
六年级竞赛题1.四宫数独:把1 ~ 4 填入下面的宫格,使每一横行,每一竖列,每个粗线框中的四个格子所填数字不重复。
“?”表示的数字是.2.四宫数独:把1 ~ 4 填入下面的宫格,使每一横行,每一竖列,每个粗线框中的四个格子所填数字不重复。
“?”表示的数字是.3.4.5.6.(A) (B) (C) (D)7.(A) (B) (C) (D)8.(A) (B) (C) (D)9.10.11.阿凡提来到了魔法城堡,魔法城堡的大门是一个智能密码锁,大门上有提示语:下面这个计算的结果就是打开大门的密码了.•••1000 - 3.4 28571⨯ 2.3 =请你输入打开魔法城堡大门的密码:.12.蓝精灵热爱学习,可是她被下面这道计算题给难住了,你能帮她吗?计算:5.4321×0.5679-0.4321×5.5679+0.321=.13.已知大白拥有的魔力磁铁数量的2比小宏的少10%,则用百分数表示,大白3拥有的魔力磁铁数量比小宏的多%.14.哈利波特用魔法杖改变了一个分数,变化后发现分子增加20%,分母减少19%,则新分数比原来分数增加了%.(四舍五入精确到1%)15.霍格沃兹的魔法世界里定义了一种新运算△,规定a△b=(a+b)÷b,那么:3 4△19= .5 2016.迷糊老师在黑板上写了三个分数:2012,2013,2014,其中最大的分数是:2017 2018 2019.17.小猪佩奇的后花园是一个如图所示的梯形(单位:m ),梯形的面积是m2.18.猪八戒爱喝含糖的水,他有甲、乙两杯糖水,所含糖的重量之比为5:3,所含水的重量之比为3:5,糖水的总重量比为5:8,则甲杯的含糖量是.(结果用最简分数表示)19.皮卡丘爱做化学实验,她有一杯含盐7%的盐水重100 克,蒸发了一部分水后,盐水含盐10%,则蒸发的水是克.20.皮皮鲁在学习除法竖式,他发现一个三位数除以19,商是a,余数是b (a,b都是自然数),则a+b 的最大值是.21.鲁西西家里面有一个三层书架,其中第一,二层书的数量比为5:3,第二,三层书的数量比为7:13,若书架上的书总数不超过100 本,则第三层放有本书.22.数学王子高斯是一个数论高手,他的小学老师曾经考过他这么一个问题:从数字1,2,3,4,5,6,7,8,9 中任取3 个数组成三位数,所组成的数中,能被4 整除的三位数有个.23.欧几里得是一位伟大的古希腊时期的数学家,他写过一本书叫做《几何原本》.他曾经思考过这样一个问题:26. 小乔巴将 1 到 25 这 25 个数随意排成一行,然后将它们依次和 1,2,3,…,25 相减,并且都是大数减小数,把得到的 25 个差相加,结果最大是.27. 劳拉在最近的这次古墓任务中来到了古埃及,她在一个神秘金字塔里发现了1 , 3 , 5 , 7 , 9 , 11 , 13 ,1 123 5 8 13π取 3.14)24. 青青草原羊村里举行了一次智力大比拼.结果发现,前五名的平均成绩比前三名的平均成绩少 1 分,前七名的平均成绩比前五名的平均成绩少 3 分.若第四名到第七名的平均成绩为 84 分,则前三名的平均成绩是 分.25. 神探夏洛克·福尔摩斯发现了一个密码宝箱,已知密码是一个三位数 A .目前有一个线索,在 123,931,297,419 四个三位数中,每个数都恰好含有三位数 A 中的一个数字,且出现的位置和 A 中的位置不同,则三位数 A 是.一个有趣的数列,请你观察下面一列数的规律,这列数从左往右第 10 个数 是.如图,OAB 是一个圆心角为 45°,半径为 12 m 的扇形,以 OA 为直径画 一个半圆,交 OB 于点 C ,则图中阴影部分的面积是 m 2.(圆周率29. 阿里巴巴商城在举行促销活动,一套巴克球降价 5 元出售,和往日按原价销售相比,销量提高了 20%,获利提高了 10%,则降价后每套巴克球可获利元.30. 名侦探柯南在自己的笔记本上写了两个两位数,他发现其中一个数的 3等于其中的△ABF 和△AFD 的面积分别是 40 和 64. 则四边形 DFEC 的面积是.的 3 倍少 1 米,则短绳原来长米.1另一个数的 3,这两个数的差最大是.31. 龙猫家的大花园是一个平行四边形.如图,线段 AE 和 BD 将花园分成四块,32. 黄金梅丽号轮船从甲港经丙港到乙港,从甲港到丙港是逆水而行,从丙港到乙港是顺水而行,从甲港到丙港的路程是从丙港到乙港的 2.轮船逆水而行3的速度是顺水而行的速度的一半,轮船从甲港经丙港到乙港共行了 7 小时. 这艘轮船从乙港经丙港返回甲港需要小时.有两条绳子,长绳比短绳的 2 倍多 4 米,各截掉 6 米以后,长绳比短绳28. 所罗门是以色列最有智慧的君王,有一天,他给大臣们出了一道题:33.如图,正方形ABCD 与梯形CDEF 共边,AF 与BC 交于点G,若AD=DE=3,AG : GF=1 : 2,则梯形CDEF 的面积为.34.精灵宝可梦从1~20 这20 个自然数中任取若干个(至少两个),使这些数的乘积的末位数字是3,则它共有种不同的取法.35. 步行的菲菲和骑自行车的猪猪侠,分别从相距40 千米的A、B 两地同时出发,相向而行.已知菲菲每小时行4 千米,但每行30 分钟就休息 5 分钟;猪猪侠每小时行12 千米,分钟后,两人在途中相遇.36. 数学家高斯在研究整数问题时,发明了取整记号[x ],用[x ]表示不超过 x 的最大整数.问:自然数 n 的值依次取 1,2,3,…,2019 时,[ n ] + n + n的值共[ ] [ ]2 3 6有种可能.37. 甲、乙两个工程队合作一项大工程,计划按照甲、乙、甲、乙、……的顺序轮流施工,即每队施工一天后由另一队接替,这样甲和乙施工的天数刚好一样多;实际按照甲、乙、乙、甲、乙、乙、……的顺序施工,结果比原计划提前两天完工,且最后一天是甲施工.已知甲的工作效率是乙的 2,则完成3 这项工程实际用了天.38. 小聪明爱看故事书,他有一本故事书标记的页码是 1~m 页,所有页码的各位数字之和是 190,则 m =.39. 英国航海家库克船长在探险时发现了一个神秘的图形.如图,点 E ,F ,G ,H 分别是四边形 ABCD 各边上的点,若 2AF =FB ,2CH =HD ,BG =GC ,DE =EA ,四边形 ABCD 的面积是 12,则四边形 EFGH 的面积是.40. 史莱克和钢铁侠从同一地出发去环球影城,史莱克走得慢,比钢铁侠早出发5 分钟,钢铁侠出发后 15 分钟可追上史莱克.若史莱克每分钟多走 5 米,钢铁侠每分钟多走 10 米,其他条件不变,则钢铁侠出发后 13 分钟追上史莱克, 则史莱克初始的速度是每分钟走米答案。
六年级数学竞赛试题及答案(六套)
时间:90分钟,总分:120分
班级姓名得分
一、判断题。(共10分,每小题2分)
1、在 、0.67、66.7%中最大的数是66.7%。()
2、梯形不是轴对称图形。()
3、一种商品先提价20%,后又降价20%,这时的价格是最初价格的99%()
4、4∶5的后项增加10,要使比值不变,前项应增加8。()
(25-5)X = 4000
20 X =4000
X =200
答:略。
5、(5×3.5+3×3.5)×2 + 5×3
=(17.5 + 10.5) ×2 + 15
=56 + 15
=71(平方分米)
答:略。
6、20÷2 = 10(米)
20×25 - × 3.14 × 102
=500 – 1.57 × 100
1、阳光小学有少先队员967人,比全校学生数的 少8人。这个学校有学生多少人?
2、三个小队共植树210棵,第一小队植了总数的 ,第二小队与第三小队植树比为2:5,这三个小队各植了多少棵树?
3、小明家饲养的鸡与猪的只数比为26∶5,羊与马的只数比为25∶9,猪与马的只数比为10∶3。求鸡、猪、马和羊的只数比。
A、扩大100倍B、缩小100倍C、扩大10倍
3、一个等腰三角形,一个底角与顶角度数的比是1:2,则这个等腰三角形也是( )。
A、钝角三角形 B、直角三角形 C、锐角三角形 D、无法确定
6、某班男生是女生人数的 ,则男生占全班人数的(),女生人数与男生人数的比是()。
7、一个三位小数用四舍五入法取近似值是8.30,这个数原来最大是( ),最小是( )。
8、圆柱和圆锥的底面积比是4:3,高的比是2:5,它们的体积比是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备欢迎下载
实验小学学年度第学期六年级数学竞赛试题(卷)
(试题总分98分卷面2分共100分时间40分钟)题号一二三四五卷面分总分复核
得分
评卷
一、填空(24分)(每空2分)
1.
4
3=15÷()=()﹕16
2.把 1.606、1
3
2和 1.6按从大到小的顺序排列为()。
3.一张半圆形纸片半径是1分米,它的周长是(),要剪成这样的半圆形,至少要一张面积是()平方分米的长方形纸片。
4. 一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
5.
7
5吨煤平均7次运完,每次运这些煤的()(填分数),每次运煤()吨。
6. 十几辆卡车运送315桶汽油,每辆卡车运的桶数一样多,且一次运完.那么, 每辆卡车运()桶。
7. 五个数的平均数是30,若把其中一个数改为40,则平均数是35,这个改动的数是( )。
8.两个圆的直径比是 2 :5,周长比是(),面积比是()。
二、判断(10分)
1.某班男生人数比女生人数多
3
1,那么女生人数就比男生少
2
1。
()
2.半圆的周长就是圆周长的一半。
( )
3.把圆分成若干份,分的份数越多,拼成的图形越接近于长方形。
()
4.把10克糖放入100克水中,糖是糖水的
10
1。
()
5.7吨的
9
1和1吨的
9
7一样重。
()
三、选择(18分)
1.下面图形中,()是正方体的表面展开图.
A. B. C.
2.一种商品先降价
8
1,又提价
8
1,现价与原价相比()。
A.现价高;
B.原价高;
C.相等。
3.一个三角形,三个内角度数的比是1:3:6,这个三角形是()。
A.锐角三角形;
B.直角三角形;
C.钝角三角形
4.甲数是m,比乙数的8倍多n,表示乙数的式子是()
A.8m+n
B.m+8+n
C.(m-n)÷8
5.正方形和圆的周长相等,那么面积谁大?()
A.同样大;
B.正方形大;
C.圆大;
D.无法比较。
班级:姓名:学号:
线封
密
服合算在一起,结果是( )。
A.赚了
B.亏了
C.不赚不亏
D.无法比较
四、计算(18分)
1.直接写出得数(6分) 66
÷
10
11
= 7.2÷9×0.4= 1.9-0.009= 0.52= 2.86×99+2.86= 97
÷
12
7
= 2.求末知数x (4分) x -
x 41=83
x 53÷94= 12
1
3.下面各题怎样算简便就怎样算(8分) 4
33÷185-3.6+6.25×533+533 3141×43+4
1
51×54+5161×65
五、应用题(28分)
1.一个环形内圆半径是3米,外圆周长是37.68米,这个环形的面积是多少
平方米?(4分)
2.在一张长12厘米,宽8厘米的长方形纸上,剪下两个最大的圆,那么每个圆
六年级数学竞赛参考答案
一、填空
1. 20 12
2. 13
2 > 1.606 > 1.6 3. 5.14分米 2 4. 45 5. 71 49
5
6. 21
7. 15
8. 2:5 4:25 二、判断
1.×
2.×
3.×
4.×
5.√ 三、选择
1. C
2. B
3. C
4. C
5. C
6. B 四、计算 1.直接写得数。
60 0.32 1.891 0.25 286 13
1 2.求未知数X
X= 2
1
X=
16
5 3.=3.6×(3.75+6.25) =31+41+51 =3
6 =123 五、应用题
1. 6米 84.78平方米
2. 28.26平方厘米 39.48平方厘米
3. 51人
4. 2400米
5. 35厘米。