七年级数学核心概念的整理及教学策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“数学课程核心概念”的教学解决策略
——以七年级概念教学为例
数学概念是人对客观事物中有关数量关系和空间形式方面本质属性的抽象。概念反映的所有对象的共同本质属性的总和,叫做这个概念的内涵。适合于概念所指的对象的全体,叫做这个概念的外延。如七下①等腰三角形内涵就是等腰三角形所代表的所有对象的本质属性:两腰相等,两底角相等,“三线合一”等;等腰三角形的外延包括了一般的等腰三角形、等边三角形、等腰直角三角形等。概念的内涵和外延是相互依存、相互制约的,它们是构成概念的统一而不可分割的两个方面。在初中数学教学中,加强概念课的教学,正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想的基础。因此在数学教学过程中,数学概念的教学尤为重要。
一、目前概念教学中存在的一些问题
1. 概念引入时过分注重场景而忽略了目的
课堂教学引入得当,直接影响到激发学生的学习兴趣,调动学生学习的积极性,使学生投入到课堂教学中去。但不少教师注重在概念教学中创设问题情境,过于注重激发学生的学习兴趣和探索新知识的强烈愿望,而忽略了目的。例如,某位数学教师在七上①“对称图形”概念教学中,设计了“在优美的小提琴协奏曲'梁祝化蝶'选段的渲染中,学生开始观察'碧草清清花盛开,彩蝶双双久徘徊'的优美画面”的导入情境,接着提问学生:蝴蝶有什么特点?学生答道:“蝴蝶很漂亮”“一只蝴蝶大,一只蝴蝶小”……不难看出,上述导入情境虽赏心悦目,但充斥了许多与教学内容无关的信息,离数学中的对称图形知识相去甚远。导入活动占用了较长时间,却没有一个学生从对称的角度指出蝴蝶图案的特点,未达到教学设计的预期目标。
2. 概念形成时急于组成文字或者抄概念,而轻概念的形成过程
一般概念的形成要先感知后认知两个阶段。感知是人们认识事物不可或缺的心理过程,是对事物外部特征的直接反映,属于认识过程的感性阶段。感知所提供的对事物的认识是简单的、表面的、零散的。而认知是在感知的基础上,在通过大脑反思琢磨后,能用精炼的语言概述出来,这中间的过程称为认知。感知不等于认知,但往往有些老师把感知代替了认知。例如,在七下“三角形的稳定性”教学中,比较普遍的做法是通过教师演示或让学生用手拉三角形木架感知是否坚固、不变形,并以此解释三角形的“稳定性”,而忽视从“三角形三条边的长度一定时,三角形的形状和大小不变”“不在同一线上的三点确定一个平面”上引导学生理解三角形的稳定性,误导了学生。笔者认为,考虑到七年级学生的思维处于形象思维逐步向抽象思维过渡的发展阶段,在数学概念教学中,重视直观性、感知、体验,无疑是必要的。但如果止步于对事物的感知,忽视对概念本质特征的抽象与概括体验过程,这样做实际上低估了学生的学习能力,势必影响到对概念的理解。
3. 概念理解时注重记忆,忽视了对概念本质的理解
在概念教学中,重记忆、轻理解的现象主要表现为以下两点:
其一是偏重形式记忆。数学中有一些概念是以符号语言或用式子举例的形式表示其意义的,而且在运用中又往往直接和这些符号或式子打交道。由此造成一些教师在教学中疏于引导学生对概念意义的理解,偏重于学生记忆概念的外部表现形式。例如,
在七上“代数式”概念教学中,教师先让学生记住:用运算符合和括号把数或表示数的字母连接而成的式子。然后补充说运算符号指的是加减乘除还有开方,另外单独一个数或一个字母也是一个代数式,这些只让学生。实践证明学生最终还是不知道为什么a>0不是代数式,也不知道为什么a和1是代数式的合理性,如果老师解释一下,a=1.a,而单独的一个数可以表示特殊的量,比喻1可以表示一项工程(六年级遇到过)或者一个班级,一群人等所以称为代数式有一定的合理性。经验告诉我们,无论图形还是概念、名词,不理解其意义,单纯的、机械的形式记忆是靠不住的。形式记忆会影响学生后续知识的学习,是一种短视的教学行为。
其二是偏重概念复述。概念的定义或描述是对概念本质特征和外延的说明,它是判断、解释、推理和应用的基础。怎样让学生掌握概念?有些教师只是简单地让学生复述一遍概念的定义。结果,学生虽会背概念,但遇到具体问题时,却茫然不知如何用概念,即所谓“死知识”。例如七下平面直角坐标系概念:所画的两条数轴中,有一条是水平放置的,它的正方向向右,这条数轴叫横轴(记为x轴);另一条是铅直放置的,它的正方向向上,这条数轴叫做纵轴(记为y轴),如图记作平面直角坐标系。这个概念文字较多,更多的是描述图形的构成,这种“描述性”概念即使学生能一字不漏的复述或背诵,他们依然不能领悟直角坐标系的真正含义,必须有前面的例证和对“有序数对”的感悟,才会理解平面直角坐标系的含义。因此,衡量学生是否理解和掌握概念,不是看他会不会说概念或背概念,而是看能否在具体情境中做出正确判断、解释和运用。
4. 概念应用时过分注重反复练习,而忽视了例题的针对性和代表性
应用既是概念学习的目的,也是深化概念学习的手段和途径。因此,重要概念的应用教学不仅仅要关注问题的解决,还要关注对概念的深化理解,探索概念要素之间的新关系(即概念的其他性质),拓展对概念的认识。但有部分老师没有抓住概念的本质属性,过分考虑题目的难度和数量,达不到进一步理解概念的效果。例如,在“中心对称”概念运用时,第一题就“先画一个钝角三角形关于O点成中心对称的图形,再画出凹五边形ABCEF关于O中心对称的图形,并且这个点O在五边形内部。画五边形这个完全没必要,这是反复练习,刻意加大难度,有三角形就可以了,还有O 点位置可以从外到内逐步移动,学生有个体验的过程。
上述四个方面的问题既有区别又有联系,一方面反映了一些教师在概念教学理念上的偏差,另一方面也反映了部分教师在数学概念理解上的偏差。
二、核心概念教学策略
1. 概念的引入 :用实际事例或事物、模型引出概念。
实践经验告诉我们,当人们听到一个概念时,在他们头脑里出现的不是该范畴所有成员都具有的共同特征,而是该范畴的原型或最佳实例。由此可见,提供范例,丰富学生的表象是概念教学的第一步。范例与表象都是学生获取概念的重要条件和基础。范例从外部提供反馈信息,有助于学生掌握概念的定义特征;表象具有直观性与概括性的特征,是从具体感知到概念教学形成的过渡和桥梁。所以不管概念多复杂,进行概念教学的关键就是提供一组能突出概念的定义特征的范例。范例的特征越明显,学生越容易观察,引出概念越自然明了。例如在《中心对称》概念教学