连续梁桥—内力计算

合集下载

30+45+30m预应力连续梁计算书

30+45+30m预应力连续梁计算书

30+45+30米连续梁计算书一、预应力钢筋砼上部结构纵向计算书(一)工程概况:本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。

桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。

箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。

箱梁顶板厚22cm。

为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。

其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。

结构支承形式见图1.3。

主梁设纵向预应力。

钢束采用Øj15.24低松弛预应力钢绞线,标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。

预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。

纵向钢束采用大吨位锚。

钢束为19Øs15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。

图1.1 中跨跨中截面形式图1.2 横梁边截面形式图1.3 结构支承示意图(二)设计荷载结构重要性系数:1.0设计荷载:桥宽9.5米,车道数为2,城-A汽车荷载。

人群荷载:没有人行道,所以未考虑人群荷载。

设计风载:按平均风压1000pa计,地震荷载:按基本地震烈度7度设防,温度变化:结构按整体温升200C,整体温降200C计,桥面板升温140C,降温70C。

基础沉降:桩基础按下沉5mm计算组合。

其他荷载:(三)主要计算参数材料:C50砼;预应力钢束:高强度低松弛钢绞线,抗拉标准强度fpk=1860MPa,抗拉设计强度fpd=1260MPa,抗压设计强度fpd=390Mpa。

一期恒载 容重325/kN m γ=;二期恒载:防撞墙砼重量为0.34722517.35/kN m ⨯⨯=,花槽填土重量为0.419208.38/kN m ⨯=;桥面铺装:沥青砼323/kN m γ=,计算每延米重量为7.750.092316.04/kN m ⨯⨯=;(四)计算模型结构计算、施工模拟分析以设计图纸所示跨度、跨数、断面尺寸及支承形式为基础,有关计算参数和假定以现行国家有关设计规范规程为依据。

桥梁工程第二篇第6章 主梁内力计算

桥梁工程第二篇第6章 主梁内力计算
车道荷载总效应:
计算主梁支点或靠近支点截面的剪力时,荷载横向 分布系数在这一区段内是变化的。

时 , 为负值,这意味着剪力反而减小了
2 .计算示例 已知:五梁式桥,计算跨径 19.5m 。 荷载:公路 — Ⅱ级,人群: 3.0kN/m2 求:跨中最大弯矩和最大剪力,支点截面最大剪力
解: ( 1 )公路 — Ⅱ级车道荷载标准值计算 ( 2 )冲击系数: 《桥规》:
第六章 简支梁桥的计算
桥梁工程计算的内容
内力计算——桥梁工程、基础工程课解决 截面计算——混凝土结构原理、预应力混凝
土结构课程解决 变形计算
简支梁桥的计算构件
上部结构——主梁、横梁、桥面板 支座 下部结构——桥墩、桥台
计算过程
开始 拟定尺寸 内力计算 截面配筋验算

是否通过 是
计算结束
2、作用在横梁上的计算荷载Ps
1)集中荷载 当一个集中荷载P作用在跨中时, Ps=2P/l 2) 均布荷载
全跨布满荷载q时, Ps=4q/
第三节 桥面板计算
行车道板的作用——直接承受车轮荷载、 把荷载传递给主梁
一.行车道板的类型
板支承在纵梁和横梁上,按支承情况和板尺寸,从力学计算 角度分为以下几类:
wa wb Pala3 Pblb3 48EIa 48EIb

Ia Ib
Pb Pa
la lb
3
二、车轮荷载在板上分布 轮压一般作为分布荷载处理,以力求精确
车轮着地面积:a2×b2
桥面板荷载压力面:a1×b1 荷载在铺装层内按45°扩散。 沿纵向:a1=a2 +2H 沿横向:b1=b2+2H 桥面板的轮压局部分布荷载
横梁的作用与受力特点

桥梁工程毕业设计计算书(五跨等截面连续梁桥)

桥梁工程毕业设计计算书(五跨等截面连续梁桥)

1 设计基本资料1.1 概述跨线桥应因地制宜,充分与地形和自然环境相结合。

跨线桥的建筑高度选取除保证必要的桥下净空外,还需结合地形以减少桥头接线挖方或填方量,最终再谈到经济实用的目的。

如果桥两端地势较低,主要采用梁式桥;略高的则主要采用中承式拱肋桥;更高的则宜采用斜腿刚构、双向坡拱等形式。

在桥型的选择时,一方面从“轻型”着手,以减少圬工体积,另一方面结合当地的资源材料条件,以满足就地取材的原则。

随着社会和经济的发展,生态环境越来越受到人们的关注与重视,高速公路跨线桥将作为一种人文景观,与自然相协调将会带来“点石成金”的效果。

高速公路上跨线桥常常是一种标志性建筑物,桥型本身具有的曲线美,能够与周围环境优美结合。

茶庵铺互通式立体交叉K65+687跨线桥,必须遵照“安全、适用、经济、美观”的基本原则进行设计,同时应充分考虑建造技术的先进性以及环境保护和可持续发展的要求。

1.1.1设计依据按设计任务书、指导书及地质断面图进行设计。

1.1.2 技术标准(1)设计等级:公路—I级;高速公路桥,无人群荷载;(2)桥面净宽:净—11.75m + 2×0.5 m防撞栏;(3)桥面横坡:2.0%;1.1.3 地质条件桥址处的地质断面有所起伏,桥台处高,桥跨内低,桥跨内工程地质情况为(从上到下):碎石质土、强分化砾岩、弱分化砾岩,两端桥台处工程地质情况为:弱分化砾岩。

1.1.4 采用规范JTG D60-2004 《公路桥涵设计通用规范》;JTG D62-2004 《公路钢筋砼及预应力砼桥涵设计规范》;JTG D50-2006 《公路沥青路面设计规范》JTJ 022-2004 《公路砖石及砼桥涵设计规范》;1.2 桥型方案经过方案比选,通过对设计方案的评价和比较要全面考虑各项指标,综合分析每一方案的优缺点,最后选定一个最佳的推荐方案。

按桥梁的设计原则、造价低、材料省、劳动力少和桥型美观的应是优秀方案。

独塔单索面斜拉桥比较美观,但是预应力混凝土等截面连续梁桥桥梁建筑高度小,工程量小,施工难度小,可以采用多种施工方法,工期较短,易于养护。

连续梁桥计算

连续梁桥计算
n
M0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
1
0
-1
2
0
0.250000
-1
3
0
-0.066667
0.266667
-1
4
0
0.017857
-0.071429
0.267857
-1
5
0
-0.004785
0.019139
-0.071771
0.267943
-1
6
0
0.001282
-0.005128
0.019231
阶段图式1在主墩上悬臂浇注砼2边跨合龙3中跨合龙4拆除合龙段挂篮5上二期恒载图11采用悬臂浇筑法施工时连续梁自重内力计算图式四阶段4拆除合龙段的挂篮此时全桥已经形成整体结构超静定结构拆除合龙段挂篮后原先由挂篮承担的合龙段自重转而作用于整体结构上
第一章 混凝土悬臂体系和连续体系梁桥的计算
第一节 结构恒载内力计算
阶段
图 式
1
在主墩上悬臂浇注砼
2
边跨合龙
3
中跨合龙
4
拆除合龙段挂篮
5





图1-1采用悬臂浇筑法施工时连续梁自重内力计算图式
(四)阶段4 拆除合龙段的挂篮
此时全桥已经形成整体结构(超静定结构),拆除合龙段挂篮后,原先由挂篮承担的合龙段自重转而作用于整体结构上。
(五)阶段5 上二期恒载
在桥面均布二期恒载 的作用下,可得到三跨连续梁桥的相应弯矩图。
顶推连续梁的内力呈动态型的,其内力值与主梁和导梁二者的自重比,跨长比和刚度比等因素有关,很难用某个公式来确定图1-2b中最大正弯矩截面的所在位置,因此,只能借助有限元计算程序和通过试算来确定。但在初步设计中,可以近似地按图1-4的三跨连续梁计算图式估算。其理由是距顶推连续梁端部0.4 截面处的正弯矩影响线面积之和相对最大,虽然在导梁的覆盖区也有负弯矩影响线面积,但导梁自重轻,故影响较小。

连续梁桥(T构)计算

连续梁桥(T构)计算

计算方法
结果分析
采用有限元法进行计算,将主梁离散化为 多个单元,建立整体有限元模型。
通过计算和分析,得出主梁在各种工况下 的应力、应变和挠度等结果,验证主梁的 受力性能是否满足设计要求。
某高速公路的T构优化设计
工程概况
某高速公路连续梁桥(T构)需 要进行优化设计,以提高结构 的承载能力和稳定性。
优化内容
和意外事故。
提高施工质量
施工控制有助于提高桥梁的施工 质量,通过控制施工过程中的各 项参数,确保桥梁的线形、内力
和变形等指标符合设计要求。
节约成本
合理的施工控制可以避免施工过 程中的浪费和不必要的返工,从
而节约施工成本。
施工控制的主要内容
施工监控
对桥梁施工过程中的线形、内力和变形进行实时 监测,确保施工状态符合设计要求。
对主梁的截面尺寸、配筋和桥墩 的布置进行优化设计,降低结构 的自重和提高结构的刚度。
优化方法
采用有限元法进行计算和分析, 通过调整结构参数和材料属性, 对结构进行多方案比较和优化。
结果分析
经过优化设计,结构的承载能力 和稳定性得到了显著提高,同时
降低了结构的自重和造价。
某铁路桥的T构施工控制与监测
03
需要保证桥面平度的桥梁
连续梁桥(T构)的桥面平度较高,能够满足高速铁路、高速公路等对桥
面平度的要求。
02
T构的力学分析
静力学分析
1
计算T构在静力作用下的内力和变形,包括恒载 和活载。
2
分析T构在不同工况下的应力分布和最大、最小 应力值。
3
评估T构的承载能力和稳定性,确保满足设计要 求和使用安全。
在满足安全性和功能性 的前提下,降低T构的造

第三章 连续梁桥内力次内力计算

第三章 连续梁桥内力次内力计算

• 实体截面:用于小跨度的桥梁(现浇)
• 空心板截面:常用于1530m的连续梁桥 (现浇)
• 肋式截面:常用跨度在1530m范围内, 常采用预制架设施工,并在梁段安装完 成之后,经体系转换形成连续梁。鱼腹 式
• 特点:构造简单,施工方便,适用于中、 小跨度的连续梁桥。
9
第三章 连续梁桥 第一节 概述
7
第三章 连续梁桥 第一节 概述
混凝土连续梁桥概述-布置
(2)梁高的选择
等高度连续梁
变高度连续梁
等截面连续梁
VS
变截面连续梁
➢梁高不变。具有构造、制造和施 工简便的特点。适用于中等跨度 (4060m左右)的、较长的桥梁。 可按等跨或不等跨布置。长桥多采
用等跨布置,以简化构造,统一模
式,便于施工。
➢更能适应结构的内力分布规律。受 力状态与其施工时的内力状态基本吻 合。梁高变化规律可以是斜(直)线、 圆弧线或二次抛物线。箱型截面的底 板、腹板和顶板可作成变厚度,以适 应梁内各截面的不同受力要求。
箱内外,配以横隔板、转向块等构
特点-减小截
造,对梁体施加预应力。
面尺寸;提高混
凝土浇筑质量;
无须预留孔道,
减少孔道压浆等
工序;施工方便
迅速,钢束便于
更换;钢束线形
容易调整,减小
预应力损失;但
其对力筋防护和
结构构造等的要
求较高,抗腐蚀、
耐疲劳性能有待
提高。
在桥梁工程中
有所应用(新桥
设计和既有桥梁
加固)。
37
第三章 连续梁桥 第一节 概述
混凝土连续梁桥概述-设计实例
38
第三章 连续梁桥 第一节 概述
混凝土连续梁桥概述-设计实例

自-九江长江大桥中间三拱受力分析

自-九江长江大桥中间三拱受力分析

拱结构水平推力的传递--由九江长江大桥引发的几点思考摘要:传统的桥梁一般采用梁式桥或拱桥的桥型,梁式桥的受力简单,但是不利于弯矩的传递,同时也不利于跨度的加大或加大跨度需要付出的代价相比于拱桥大得多。

而拱桥则能大大减小桥面的弯矩,变桥面弯矩为拱桁架的轴向压力,然而拱桥有一个很大的致命弱点就是由于拱的影响会有很大的水平推力作用于桥的两个支座处,如何解决水平推力的传递问题已经是拱桥发展中间的一个很大的因素,同时采用一定的拱形式能够将弯矩变为零,使整个桁架处于零弯矩状态可以有效地利用材料性能,节约工程成本。

关键字:拱结构梁结构水平推力弯矩材料性能0 引言九江长江大桥于1993年1月16日建成,是京九铁路和合九铁路的“天堑通途”,为双层双线铁路、公路两用桥。

铁路桥长7675米,公路桥长4460米,其中江上正桥长1806米,10个桥墩,11孔钢梁,不论长度和跨度为160米的普通钢桁梁外,主航道为三孔刚性桁、柔性拱,桁高16米,跨度为180米,中间一孔最大跨度达216米,最大知高32米。

目前九江大桥不仅是中国,而且是世界最长的铁路、公路两用的钢桁梁大桥,既是我国南北交通的大动脉,又是九江最引人注目的新旅游景点。

九江长江大桥和武汉长江大桥都是桁架梁桥,为什么要在中间三跨加拱,加了拱之后,拱脚处的水平推力由什么东西来承担?长江上要通航,所以跨度就要增大,如果还采用梁桥形式则要加大桥梁厚度来增加刚度,这样一来,就会影响通航高度,如果加拱的话,相当于在梁上加了很多弹性支撑,梁上的弯矩就会小很多,就可以增大跨度,同时,吊杆受拉,拱圈受压,充分发挥了材料性能,但是,拱的特点是有水平推力,且有时水平推力很大,如果不把水平推力抵消的话,桥梁肯定不稳,极易破坏。

连拱中,拱与拱之间的水平力可以通过改变失挎比来平衡,边拱则采用飞燕式来平衡支座处得水平力,这样就将水平力通过桁架梁传到桥台,水平推力得以平衡,此外,主航道为刚性桁、柔性拱,桁架梁本身也可分担一定的水平力。

连续梁桥—内力计算

连续梁桥—内力计算
6.施工过程中,主梁最大自重弯矩发生 在鼻梁刚过前方支点。
7.主梁最小自重负弯矩发生在鼻梁刚过 前方支点或鼻梁刚接近前方支点时。
(六)悬臂施工
1.悬臂施工的连续梁桥最终结构自重内 力与合龙次序、预应力、砼收缩徐变有关。
2.例:一3跨预应力砼连续梁桥,上部结 构采用挂篮对称平衡悬臂法施工,分为 5个施 工阶段,合龙次序为先边跨后中跨。
(4)阶段4:中跨合龙 现浇合龙段自重与挂篮施工机具重力之 和R0施加单悬臂的悬臂端, R0产生的内力如e (5)阶段5:拆除合龙段挂篮 跨中合龙段砼凝固与两边单悬臂梁形成
(5)阶段5:拆除合龙段挂篮 跨中合龙段砼凝固与两边单悬臂梁形成 连续梁后,拆除施工机具,相当于对连续梁 施加一对反向力 R0,跨中合龙段自重则作用 与连续梁上,内力如f 以上为每个阶段的内力分析,某个阶段 的累计内力为该阶段内力与前几个阶段内力 叠加值。
5.根据规范构造、施工要求,将估算的预 应力筋进行横、立、平面布置;
6.根据钢筋布置结果,考虑钢筋对主梁截 面几何特性的影响,重新模拟施工过程,进行 主梁真实作用效应计算,再次进行相应作用效 应组合即第二次效应组合;
7.据第二次效应组合值,进行规定状况下 极限状态的截面强度、应力、裂缝、变形等验 算;
该施工法无体系转换一期期恒载都按一次落架方式作用在连续梁上叠加两个施工阶段的内力即为结构重力作用的内力
普通高等学校土木工程专业精编力计算
连续梁桥内力计算
本节内容
一、桥梁设计步骤 二、结构重力计算
3
一、桥梁设计步骤
桥梁设计一般分 总体设计(初步设计) 、 结构设计(施工图设计) 两步。前者工作: 选定桥位、桥型方案;确定桥长、跨径、桥 宽、主梁截面形式、梁高等关键要素。后者 工作:细化构造、明确作用(汽车荷载、人 群、温度、基础变位等)、确定材料、施工 方法、完成内力计算、配筋设计、验算,最 终形成施工图。

迈达斯桥梁计算示例

迈达斯桥梁计算示例
10.0000000.0000000.000000
21.0000000.0000000.000000
32.0000000.0000000.000000
43.0000000.0000000.000000
54.0000000.0000000.000000
65.0250000.0000000.000000
5554.0000000.0000000.000000
5655.2750000.0000000.000000
5756.0000000.0000000.000000
5857.0000000.0000000.000000
5958.0000000.0000000.000000
6059.0000000.0000000.000000
0
0
-7.21
0
148.81
0
31
梁体自重
I[31]
0
0
-7.21
0
148.81
0
35
梁体自重
J[36]
0
0
44.57
0
54.94
0
36
梁体自重
I[36]
0
0
44.57
0
54.94
0
40
梁体自重
J[41]
0
0
96.35
0
-299.13
0
41
梁体自重
I[41]
0
0
-96.35
0
-299.13
0
45
梁体自重
1)结构重力引起主梁内力及变形计算(人行道荷载12.35KN/m)。
a.梁体自重情况下
梁体自重作用内力图如下

预应力混凝土连续梁桥

预应力混凝土连续梁桥
也可以选用精轧螺纹钢筋。
34
预应力混凝土连续梁桥的构造
竖向预应力筋
Ø 当腹板混凝土、普通钢筋、纵向下弯预应力筋等不足 以抵抗荷载剪力时,就需要在腹板内布置竖向预应力 筋。
Ø 竖向预应力筋一方面可以提高截面的抗剪能力,另一 方面也可以与挂篮施工配合,作为后锚钢筋。
Ø 竖向预应力筋比较短,直筋采用钢绞线、钢丝束,也 可以选用精轧螺纹钢筋。
Ø 为简化多肋T形梁的施工,也有宽矮肋的单 T断面,肋宽可达3~4m,外悬长翼板,称 为脊形梁(脊骨梁)或异形结构。
15
预应力混凝土连续梁桥的构造
箱形截面
Ø 当跨径超过40~60m或更大时,主梁多采用箱形截面, 适用于有支架现浇施工,逐孔施工、悬臂施工等多种 施工方法。
Ø 常用的截面形式:单箱单室、单箱双室、双箱单室
1 50
)l
11
预应力混凝土连续梁桥的构造
变截面连续梁适用范围
Ø 连续梁的主跨跨径大于70m 。 Ø 适合悬臂浇筑和悬臂拼装两种施工 。 Ø 大跨径预应力混凝土连续梁桥采用悬臂法施工
时,存在墩梁临时固结和体系转换的工序,结 构稳定性应予以重视,施工较为复杂;此外, 主墩需要布置大型橡胶支座,存在养护上甚至 更换上的麻烦。
悬臂(浇注/拼装)施工
Ø 梁部施工从桥中间墩处开始、按对称方式逐步接长并 悬出梁段至合龙的施工方法。
Ø 施工支架和临时设备少。 Ø 施工时不影响桥下通航、通车,也不受季节、河道水
位的影响。 Ø 能在大跨度桥上采用。
39
预应力混凝土连续梁桥的施工方法
简支变连续施工
40
预应力混凝土连续梁桥的施工方法
逐跨(浇注/拼装)施工
因素,一般采用2~5m,超过3m应布置横向预 应力筋。

连续刚构桥设计方法

连续刚构桥设计方法

连续刚构桥设计方法一、连续刚构桥的特点作为梁桥的一种,连续梁桥有着结构刚度大、变形小;动力性能好;无伸缩缝、行车平顺的优点。

而连续刚构桥是由t型刚构桥演变而来的,其结构特点是梁体连续、梁墩固结。

这样既保持了连续梁无伸缩缝、行车平顺的优点,又保持了t型刚构不设支座、不需转换体系的优点。

且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足大跨度桥梁的受力要求。

二、连续刚构桥的适用范围连续刚构桥上部主梁的受力与连续梁桥基本相似;下部桥墩由于结构的整体性,温度和收缩徐变造成的内力十分显著。

因此其桥墩应该有一定的柔度。

使用高强度、轻质混凝土是大跨度梁桥的发展方向之一。

目前世界上已建成的连续刚构桥最大单跨为挪威斯托尔马桥(stolma),主跨301米,国内最大单跨为虎门大桥辅航道桥,主跨270米。

三、设计时需收集的基础资料设计时应围绕桥位选择、桥墩位置、跨径、立面布置、结构体系、施工方法等因素,对桥梁建设的自然条件和功能要求有充分的了解。

1、自然条件包括(1)地形地貌、控制物等;(2)工程地质条件;(3)水文条件;(4)气象条件;(5)地震。

2、功能要求包括(1)桥梁本身使用功能,如铁路桥梁、公路桥梁、城市桥梁、轨道交通、人行桥等;(2)桥下功能要求,如通车、通航等。

四、桥型方案的选择设计时应根据桥梁建设条件,结合技术可行性、施工难度、工程风险与进度、经济合理性、景观协调性等因素,进行桥型比选,确定桥梁的跨径布置。

五、上部结构构造尺寸连续刚构桥设计时,可根据工程实践统计,初步拟定构造尺寸,再进行具体计算复核。

1、边、中跨跨径比一般在0.52~0.58之间。

当边、中跨比较小时,边跨现浇段较短,可减少边跨现浇段支架,对施工有利,但应保证各种工况下边墩处支座不出现负反力。

2、梁的截面形式连续刚构桥多采用箱形截面,其具有良好的抗弯和抗扭性能。

根据桥梁宽度,可采用单箱单室、单箱多室等截面形式。

3、梁高桥梁跨度在60米以内时,可考虑采用等截面高度,构造简单,施工快捷。

[PPT]桥梁(连续梁、简支梁)超静定结构次内力计算

[PPT]桥梁(连续梁、简支梁)超静定结构次内力计算

应力应变公式

时刻的应力增量
在t时刻的应变
从0 时刻到 t 时刻的总应变

时效系数

利用中值定理计算应力增量引起的徐变
时效系数
从0 时刻到 t 时刻的总应变

松弛系数——通过实验计算时效系数

松弛实验
台座
实验构件
令 松弛系数通过实验数据拟合
近似拟合松弛系数
令折算系数
徐变应力增量
换算弹性模量
非线性温度梯度对结构的影响
温度梯度场
2)自应力计算
温差应变 平截面假定 温差自应变 温差自应力
T(y)=T(y) a(y)=0+y (y)=T(y)-a(y)=T(y)-(0+y) s0(y)=E(y)=E{T(y)-(0+y)}
调整预应力束筋在中间支点的位置, 使预应力筋重心线线性转换至压力线 位置上,预加力的总预矩不变,而次 力矩为零。 次力矩为零时的配束称吻合索
多跨连续梁在任意荷载作用下
结论: 按外荷载弯矩图形状布置预应力束及为 吻合束 吻合束有任意多条
均布荷载q
集中荷载q
3)等效荷载法求解总预矩
把预应力束筋和混凝 土视为相互独立的脱 离体,预加力对混凝 土的作用可以用等效 荷载代替
4. 预应力次内力计算
预应力初弯矩:
预应力次弯矩:
总预矩:
压力线:
简支梁压力线与预
应力筋位置重合 连续梁压力线与预 应力筋位置相差
1)用力法解预加力次力矩
(1) 直线配筋

力法方程

变位系数 赘余力
总预矩 压力线位置


(2)曲线配筋
梁端无偏心矩时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.根据规范构造、施工要求,将估算的预 应力筋进行横、立、平面布置; 6.根据钢筋布置结果,考虑钢筋对主梁截 面几何特性的影响,重新模拟施工过程,进行 主梁真实作用效应计算,再次进行相应作用效
应组合即第二次效应组合;
7.据第二次效应组合值,进行规定状况下
极限状态的截面强度、应力、裂缝、变形等验
算;
5.例
有一联 30+45+30m 的预应力砼变截面连续梁桥,
按一次落架施工法,单元离散图如下:
(三)简支转连续施工
先架设预制主梁形成简支梁,再主梁在 墩顶连成整体形成连续梁体系。以4跨连续梁 桥为例,施工过程如下:
1.阶段1:架设主梁
2.阶段2:边跨合龙
3.阶段3:中跨合龙
4.阶段4:体系转换
1. 在桥梁一端搭设的台座上逐段预制、
逐段向桥另一端推进。结构体系经历悬臂梁、
简支梁、双跨连续梁、多跨连续梁直到成桥 连续梁体系。 2. 在顶推过程中,结构体系、梁体内力 不断发生变化,施工过程中的主梁各截面自 重内力比使用状态下自重内力更不利。
3. 主梁配筋由施工过程内力包络图和使
用阶段内力包络图共同决定。
(二)满堂支架施工
1.适用:桥墩不高、桥下地面适宜搭设支架中
小跨径连续梁桥。
2.该施工法无体系转换,一期、期恒载都按一
次落架方式作用在连续梁上,叠加两个施工阶段的
内力即为结构重力作用的内力;
3.结构自重内力可用力法、位移法、影响线法、 有限单元法计算; 4.采用有限单元法时,将各单元自重简化为均 布荷载,横隔板简化为集中力作用在横隔板中心线
主要步骤如下: 1.细化结构尺寸、确定材料类型; 2.模拟实际施工阶段,计算相关作用内力 3.将各作用内力进行持久状况承载能力和 正常使用极限状态效应组合即第一次效应组合
4.据第一次效应组合值,按持久状况承载
能力和正常使用极限状态估算预应力筋。对PC
连续梁桥,估算预应力筋时,一般将第一次入。
(二)预加力引起的次内力
预应力砼简支梁在预加力作用下只产生
自由挠曲和预应力偏心矩,不产生次力矩。
连续梁由于多余约束产生限制梁体自由 变形,在多余约束处产生垂直次内力,在梁 体内产生次力矩,如下图。
(三)徐变引起的次内力
砼在荷载作用下的变形分为:弹性变形
(与荷载有关)、收缩变形(与时间有关)、
徐变变形(与荷载和时间有关)
可用等跨径等挠曲刚度即“等效刚度简 支板、梁法”代替连续板、梁求其横向分布 系数。
可将连续板、梁换算为不同跨径等挠度
即“等挠度跨径换算法”求其横向分布系数。
可用连续板、梁弯矩图反弯点之间的跨
径作为简支板梁跨径求其横向分布系数。
四、次内力计算
(一)次内力
连续梁结构受强迫变形时会在多余约束 处产生约束反力,从而产生附加内力,又称 结构次内力(或称二次力)。
叠加值。
三、可变作用内力计算
(一)计算公式
������=(1+������)ξ ������������(������������Ω +������������������������)
(二)荷载横向分布系数的算法
影响横向分布系数因素:桥梁宽跨比、
主梁抗弯、搞扭刚度。
超静定连续板、梁桥横向分布系数:
跨中合龙段砼凝固与两边单悬臂梁形成
连续梁后,拆除施工机具,相当于对连续梁
(5)阶段5:拆除合龙段挂篮 跨中合龙段砼凝固与两边单悬臂梁形成 连续梁后,拆除施工机具,相当于对连续梁 施加一对反向力 R0 ,跨中合龙段自重则作用 与连续梁上,内力如f 以上为每个阶段的内力分析,某个阶段
的累计内力为该阶段内力与前几个阶段内力
8.若各项难处均满足桥规要求,则设计通 过;若有些截面不满足,则调整钢筋、甚至修 改截面尺寸重新计算,直至各项验算满足桥规
为止。
二、结构重力计算
(一)计算特点
结构重力作用包括一期恒载(主梁自重)
和二期恒载(结构附加重力:桥面铺装、人
行道、拉杆、灯柱等); 一期恒载内力与施工方法密切相关; 二期恒载模拟为均布荷载; 连续梁桥常用五种施工方法如下:
普通高等学校土木工程专业精编系列规划教材
桥梁 工程
主编 赵青
连续梁桥内力计算
连续梁桥内力计算
本节内容
一、桥梁设计步骤 二、结构重力计算
3
一、桥梁设计步骤
结构设计(施工图设计)两步。前者工作:
桥梁设计一般分总体设计(初步设计)、
选定桥位、桥型方案;确定桥长、跨径、桥
宽、主梁截面形式、梁高等关键要素。后者 工作:细化构造、明确作用(汽车荷载、人 群、温度、基础变位等)、确定材料、施工 方法、完成内力计算、配筋设计、验算,最 终形成施工图。
连续梁砼徐变变形,结构受多余约束而
产生次内力,称为徐变次内力。
(四)收缩引起的次内力
结构砼收缩不是因外力,而因结构材料
本身特性引起的,是与时间有关的变形。
收缩是三维的,结构分析中主要考虑顺
桥向收缩变形量,连续梁桥只计算结构收缩
位移量,墩梁固结的刚构桥,需考虑因收缩
引起的结构次内力。
(五)基础变位引起的次内力
4. 每顶出一段长度(一般取 5m )进行一
次自重内力分析,顶推施工时弯矩包络图如
下:
5.与鼻梁相接的第1孔梁截面受力最不利; 其他孔截面内力约为固端梁在自重作用下的 弯矩。
6. 施工过程中,主梁最大自重弯矩发生
在鼻梁刚过前方支点。
7. 主梁最小自重负弯矩发生在鼻梁刚过
前方支点或鼻梁刚接近前方支点时。
(3)阶段3:拆除临时锚固
边跨合龙连成整体后,拆除临时锚固,
即对主梁施加一对方向相反的力 R,以释 放边跨合龙时在临时锚固中产生的力,R在悬 臂体系引起的内力如图d。 (4)阶段4:中跨合龙 现浇合龙段自重与挂篮施工机具重力之 和R0施加单悬臂的悬臂端, R0产生的内力如e
(5)阶段5:拆除合龙段挂篮
值变化,连续梁无水平约束,年温差强引起
结构均匀伸缩,并不产生温度次内力;日照
温差会温度在结构表面和内部不均匀分布产
生次内力。
五、内力包络图
内力包络图:轴力、剪力、弯矩包络图。
六、截面钢筋估算及布置
根据第一次最不利作用组合下的轴力、
剪力、弯矩包络图(不含预应力及相关内力)
预估配筋量并进行合理布筋。
(六)悬臂施工
1. 悬臂施工的连续梁桥最终结构自重内
力与合龙次序、预应力、砼收缩徐变有关。
2.例:一3跨预应力砼连续梁桥,上部结
构采用挂篮对称平衡悬臂法施工,分为5个施
工阶段,合龙次序为先边跨后中跨。
(1)阶段1:在主墩上悬臂浇筑砼 在1号、2号墩顶浇筑0号块梁段,后用挂 篮桥墩两侧分节段对称平衡悬臂施工,边跨 不对称梁段用支架施工,如上图b。 (2)阶段2:边跨合龙 此时形成单悬臂体系,主梁自重内力如c
1.正截面抗弯强度验算
2.斜截面抗剪、抗弯强度验算
(二)持久状况正常使用极限状态验算
1. 持久状况法向应力验算(砼法向压应
力、斜截面主应力、拉区钢筋拉应力),
2.抗裂验算。
3.裂缝宽度验算 4.变形验算
(二)短暂状况验算
1.施工阶段验算 4.施工阶段变形验算
5.阶段5:桥面系施工
(四)移动模架逐孔浇筑施工
1.阶段1:悬臂梁体系 在支架上浇筑边跨砼,形成单悬臂梁状 态
2.阶段2:带悬臂连续梁体系 在支架上浇筑第2跨砼,形成一次超静定 连续梁状态。以此类推,浇筑后面跨。
3.阶段3:连续梁体系 在支架上浇筑最后一跨砼,形成连续梁 体系。
(五)顶推施工
基础变位包括墩台沉降和支座强迫位移,
二者引起的结构内力称为基础变位次内力。
收缩是三维的,结构分析中主要考虑顺
桥向收缩变形量,连续梁桥只计算结构收缩
位移量,墩梁固结的刚构桥,需考虑因收缩
引起的结构次内力。
(六)温度次内力
温度影响包括年温差影响和局部温差影
响(日照温差)。前者指气温随季节周期性
变化对结构物的作用,假定温度在结构内均
考虑预配筋预应力损失及弹性次内力后, 根据全桥最不利第2次作用效应组合值(含预 应力及相关内力)进行调筋和验算。
(一)预应力筋布置、体系选择
a)顶推连续梁,b)先简支后连续梁,c)、d)正、负弯矩预应力筋分别布 置,在弯矩0点附近分散交叉,d)整体浇筑连续梁的连续配筋。
七、验算
(一)持久状况承载能力极限状态验算
相关文档
最新文档