认识无理数2【公开课教案】(含反思)

合集下载

2.1认识无理数2(教案)-2022-2023学年八年级上册初二数学同步备课(北师大版)

2.1认识无理数2(教案)-2022-2023学年八年级上册初二数学同步备课(北师大版)
2.无理数的表示:介绍无理数的常见表示方法,如根号表示、无限不循环小数等。
3.常见无理数:列举一些常见的无理数,如π、e以及一些开方开不尽的数,如√2、√3等数轴上的位置关系。
二、核心素养目标
1.培养学生逻辑推理能力:通过探索无理数的定义和性质,让学生理解数学概念之间的内在联系,提高逻辑推理和思维能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是不能表示为两个整数比的数,它们在数轴上有着重要的位置。无理数是实数的一个重要部分,了解它们对我们深入理解数学世界至关重要。
2.案例分析:接下来,我们来看一个具体的案例。以π为例,讲解其在几何学中的应用,如计算圆的周长和面积,以及π如何帮助我们解决实际问题。
2.1认识无理数2(教案)-2022-2023学年八年级上册初二数学同步备课(北师大版)
一、教学内容
2.1认识无理数2(教案)-2022-2023学年八年级上册初二数学同步备课(北师大版)
本节教学内容主要依据北师大版八年级上册数学教材第二章第一节“认识无理数”部分展开。具体内容包括:
1.无理数的定义:通过复习有理数的概念,引导学生理解无理数的定义,即不能表示为两个整数比的数。
小组讨论环节,我发现学生们在讨论无理数在实际生活中的应用时,思路很开阔,提出了不少有趣的例子。这说明他们能够将理论知识与实际情境联系起来,这是一个很好的学习态度。不过,我也观察到有些小组在讨论时,个别成员参与度不高,今后我需要更加注意引导每位学生都参与到讨论中来。
在讲解无理数与有理数的区别时,我尝试用数轴来直观展示它们的关系,但感觉这部分讲解可能还需要更具体的例子或者更形象的比喻,以便让学生们更深刻地理解两者之间的区别。
2.提升数学抽象素养:借助具体实例,引导学生理解无理数的抽象概念,培养数学抽象思考能力。

北师大版初中数学八年级上册第二章《2.1认识无理数》 教案

北师大版初中数学八年级上册第二章《2.1认识无理数》 教案

北师大版数学八年级上册《认识无理数(2)》教案一、学生起点分析学生在小学阶段已经学习了非负数,七年级又学习了有理数.本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,借助计算器,感受无理数是无限不循环小数,会判断一个数是无理数,并能结合实际判别有理数和无理数.在活动中进一步发展学生独立思考的意识和合作交流的能力,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,而且对今后学习数学也有着重要意义.为此,本节课的教学目标是: 1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.三、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数(如1-,0,2,3,…) 有理数 分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a 面积s 1<a <21<s<4 1.4<a <1.5[来源:学+科+1.96<s<2.25 1.41<a <1.42 1.9881<s<2.0164 1.414<a <1.415 1.999396<s<2.002225 1.4142<a <1.41431.99996164<s<2.00024449归纳总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b 的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础. 2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况? 探究结论:分数只能化成有限小数或无限循环小数. 即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).[来源:学.科.网Z.X.X.K]目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念. 第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力. 第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数.有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数例1填空: 0.351, 4.96••-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形; (D ) 面积为1.44的正方形. [来源:Z 。

2.1.1认识无理数(教案)

2.1.1认识无理数(教案)
2.1.1认识无理数(教案)
一、教学内容
本节教学内容选自数学教科书八年级上册第二章“数与代数”中的2.1.1节“认识无理数”。主要内容包括:
1.无理数的定义:介绍无理数的概念,让学生理解无理数是无限不循环小数,与有理数的区别。
2.无理数的表示:学习无理数的表示方法,如根号表示、无限小数表示等。
3.常见无理数:列举一些常见的无理数,如π、e、√2、√3等,并简要介绍它们的特点。
2.提升逻辑推理能力:在学习无理数性质和应用的过程中,引导学生运用逻辑推理,培养学生逻辑思维和推理能力。
3.增强数学抽象能力:让学生从具体的实例中抽象出无理数的概念,学会用数学符号表示无理数,提高数学抽象能力。
4.培养数学应用意识:通过探讨无理数在实际问题中的应用,让学生体会数学与现实生活的联系,培养数学应用意识。
此外,学生在小组讨论中的成果分享环节表现不错,能够将所学知识运用到实际问题的解决中。但我也注意到,部分学生对于无理数在实际生活中的应用还不够熟悉。为了提高学生的应用意识,我计划在今后的教学中增加一些与生活密切相关的实例,让学生更好地感受到数学知识的实用性。
在课程结束后,我对学生进行了简单的问卷调查,发现他们在本节课中掌握的知识点较为扎实。但同时,他们也反映出了对无理数性质和证明过程的理解不够深入。针对这个问题,我将在下一节课中进行针对性的讲解,通过更多的实例和练习,帮助学生巩固和深化对无理数性质的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是无限不循环小数,它与有理数(整数和分数)不同,不能精确表示为有限的小数或分数。无理数在数学中具有重要地位,如在几何中的比例关系、物理学的公式中等。
2.案例分析:接下来,我们来看一个具体的案例。通过圆的周长与直径的比例(π),展示无理数在实际中的应用,以及它如何帮助我们解决几何问题。

《认识无理数》第2课时示范课教学设计【数学八年级上册北师大】

《认识无理数》第2课时示范课教学设计【数学八年级上册北师大】

《认识无理数》教学设计第2课时一、教学目标1.探索无理数的定义,,并从中体会无限逼近的思想;2.能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.在探索无理数是无限不循环小数的过程中,培养学生的估算能力,发展学生的抽象概括能力;4.充分调动学生参与数学问题的积极性,同时培养学生的合作精神,提高辨识能力.二、教学重难点重点:比较无理数与有理数的区别,能辨别出一个数是无理数还是有理数.难点:探索无理数是无限不循环小数的过程.三、教学用具多媒体、课件、计算器四、教学过程设计从而归纳出无理数的概念(无限不循环小数).问题:面积为2的正方形的边长a究竟是多少呢?能不能确定一下a的大致范围?预设答案:∵a2=2, 而12=1, 22=4,···∴12<a2<22 , 1< a< 2,而1.52=2.25, 2.25>2∴a的值一定小于1.5∴a的大致范围在1~1.5之间.问题:(1)如下图,三个正方形的边长之间有怎样的大小关系?预设答案:通过对比观察,可以直观得出:3个正方形的边长之间的大小关系为1<a<2.问题:(2)a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.预设答案:分析:使用计算器计算a取不同值时的平方值,整理得到表格:预设答案:a的整数部分是1,十分位是4,百分位是1,千分位是4.追问:还可以继续算下去吗?a可能是有限小数吗?通过想一想提出问题来解决该追问.【想一想】边长a会不会算到某一位时,它的平方恰好等于2呢?为什么?a可能是有限小数吗?预设答案:假如a算到某一位时,它的平方恰好等于2,即a是一个有限小数,那么它的平方一定是一个有限小数,而不可能是2,所以边长a不会算到某一位时,它的平方恰好等于2,所以a不可能是有限小数.【做一做】(1)估计面积为5的正方形的边长b的值(结果精确到0.1),并用计算器验证你的估计.预设答案:使用计算器计算a取不同值的平方值,整理得到表格:列表格:从表格观察可知,面积为5的正方形的边长b的值满足:b2=5,经过计算器验证b≈2.2(结果精确到0.1)(2)如果结果精确到0.01呢?预设答案:使用计算器计算a取不同值的平方值,整理得到表格:列表格,在(1)的基础上面积为5的正方形的边长b 的值满足:b 2=5,经过计算器验b ≈2.24(结果精确到0.01) 结论:在等式a 2=2中,a =1.41421…,它是一个无限不循环小数.在等式b 2=5中,b =2.23606…,它是一个无限不循环小数.a ,b 不是整数,也不是分数,是无限不循环小数.【议一议】把下列各式表示成小数,你发现了什么? 4358235894511-,,,,,预设答案: 3 3.0=;40.85=;30.3758=;50.59=;80.1745-=-; 20.18.11=- 发现:有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.0.57,0.1010001000001的个数逐次加0.57是0.57,是有理数.…是无限不循环小数,∴根据无理数的定义,0.10100010000010.57;3.7,-判断下列说法是否正确:3.7,-思维导图的形式呈现本节课的主要内容:。

八年级数学认识无理数2教学设计

八年级数学认识无理数2教学设计

《认识无理数2》教学设计一、教学目标1、掌握无理数的概念;能用所学定义正确判断所给数的属性.2、借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.3、在掌握估算方法的过程中,开展学生的数感和估算能力.二、教学重难点【重点】能用所学定义正确判断所给数的属性.【难点】无理数概念的建立.三、教学准备【教师准备】计算器、立方体、多媒体课件.【学生准备】计算器、复习有理数的分类.四、教学过程〔一〕导入新课前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如-1,0,2,3,…)分数(如13,-25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a2=2,b2=5中的a,b不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.〔二〕新知建构1、数的小数表示面积为2的正方形的边长a究竟是多少呢?(1)如下图,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a的整数局部是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?边长a面积S1<a<2 1<S<41.4<a<1.5 1.96<S<2.25 1.41<a<1.42 1.9881<S<2.01641.414<a<1.415 1.999396<S<2.0022251.4142<a<1.4143 1.99996164<S<2.00024449【思考】a的范围在哪两个数之间?左面的边长中,前面的数值和后面的数值相比,哪个更接近正方形的实际边长?【归纳总结】a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.【做一做】(1)请大家用上面的方法估计面积为5的正方形的边长b的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b≈2.2,精确到0.01,b≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c =1.25992105…,它也是一个无限不循环小数.2、有理数的小数表示,明确无理数的概念思路一请同学们以学习小组的形式活动.【议一议】 把以下各数表示成小数,你发现了什么?3,45,59,-845,211. 【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·. 分数化成小数,最终此小数的形式有哪几种情况?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.【强调】 像.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数)【想一想】 你能找到其他的无理数吗?〔三〕例题讲解以下各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.…(相邻两个1之间0的个数逐次加2).解:有理数有:3.14,-43,0.5·7·; 无理数有:0.…(相邻两个1之间0的个数逐次加2).【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q 的形式(q ≠0,p ,q 为整数且互质),而无理数不能.〔四〕拓展确定x 2=a (a ≥0)中正数x 的近似值的方法:1.确定正数x 的整数局部.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数局部.例如:求x 2=5中的正数x 的整数局部,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数局部为2.2.确定x 的小数局部十分位上的数字.(1)将这两个整数平方和的平均数与a 比拟,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数局部的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.〔五〕课堂小结数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数〔六〕随堂训练1.以下说法中正确的是( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数答案:C2.以下各正方形的边长是无理数的是( )A .面积为25的正方形B .面积为425的正方形C .面积为8的正方形D .面积为1.44的正方形解析:52=25,(25)2=425,(1.2)2=1.44.应选C . 3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数.4.-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n ,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n .(2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).五、板书设计第2课时1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.六、布置作业【必做题】教材第24页随堂练习.【选做题】教材第25页习题2.2第2,4题.。

北师大版数学八年级上册2.1认识无理数第二课时优秀教学案例

北师大版数学八年级上册2.1认识无理数第二课时优秀教学案例
5.引导学生掌握无理数的计算方法,如平方根、立方根的求解技巧。
(二)过程与方法
1.采用探究式学习,让学生通过自主探究、合作交流,发现无理数的性质和规律。
2.运用案例分析法,让学生结合实际案例,深入理解无理数在现实生活中的应用。
3.采用数形结合法,引导学生通过图形直观地理解无理数的概念和性质。
4.教授数学归纳法,培养学生运用归纳思维解决数学问题的能力。
2.强调无理数在现实生活中的重要性。例如,通过案例分析,让学生认识到无理数在建筑、音乐等领域的重要作用。
3.总结本节课的学习方法。例如,强调探究式学习、合作交流等方法的重要性,让学生学会学习。
(五)作业小结
1.布置具有针对性的作业。例如,让学生运用所学的无理数知识解决实际问题,巩固所学内容。
2.要求学生在作业中反思自己的学习过程。例如,让学生在作业中总结自己在课堂上的学习心得,找出需要改进的地方。
3.鼓励学生自主探究,引导他们通过自己解决问题。
(三)小组合作
1.组织学生进行小组讨论,促进他们之间的交流与合作。例如,将学生分成若干小组,让他们共同探讨无理数的性质,并分享各自的发现。
2.设计合作性的数学活动,让学生共同解决问题。例如,安排学生分组进行数学探究项目,要求他们共同研究无理数在现实生活中的应用,并展示研究成果。
3.鼓励学生互相评价,培养他们的团队合作意识。例如,让小组成员互相评价对方在合作过程中的表现,并提出建设性的意见。
(四)反思与评价
1.引导学生进行自我反思,检查自己的学习效果。例如,让学生回顾本节课所学的无理数知识,总结自己的学习心得,找出需要改进的地方。
2.设计评价量表,对学生的学习情况进行全面评价。例如,制定评价量表,从知识掌握、思考能力、团队合作等方面,对学生的表现进行评估。

初中数学教学课例《认识无理数》教学设计及总结反思

初中数学教学课例《认识无理数》教学设计及总结反思
初中数学教学课例《认识无理数》教学设计及总结反思
学科
初中数学
教学课例名
《认识无理数》

无理数的概念,会判断一个数是有理数还是无理 教材分析
数。
教学目标
让学生亲自感受无理数产生的实际背景。 能判断给出的数是否为有理数,并能说明理由。
学生学习能
培养学生的动手能力和合作精神,感受无理数存在
力分析 的必要性和合理性,训练学生的思维判断能力。
教学策略选
引导学生充分进行交流,讨论与探索教学活动,培
择与设计 养合作与钻研精神。
教学过程的发现的知识,鼓励学生大胆质
疑,培养学生为真理而奋斗的献身精神。同时提高学生 课例研究综
的解题技巧,方法与手段。 述
体会类比的方法,无理数有理数对比,,识别某些
数是否为有理数,训练学生的思维判断能力。

北师大版数学八年级上册2.1认识无理数第二课时教学设计

北师大版数学八年级上册2.1认识无理数第二课时教学设计
四、巩固练习
1.布置一些有关无理数的练习题,让学生独立完成。
2.选取部分题目进行讲解,分析解题思路,强调注意事项。
五、总结与反思
1.让学生回顾本节课所学内容,总结无理数的性质和表示方法。
2.引导学生反思学习过程,提高他们自主探究、合作交流的能力。
3.鼓励学生勇于探索、敢于创新,激发他们对数学的兴趣。
2.我们知道,圆的周长与直径的比值是一个固定的数,这个数是有理数还是无理数?
3.除了这些,还有哪些数是无理数?
(二)讲授新知,500字
1.无理数的定义:无法表示为两个整数之比的数称为无理数。例如,π、√2等。
2.无理数的性质:无理数具有无限不循环性、不可约性等特点。
3.无理数的表示方法:
-数轴:在数轴上表示无理数,如π在数轴上的位置。
3.实践应用,巩固知识:通过具体的例题和练习题,让学生将无理数知识应用于实际问题,巩固所学。
-设计具有层次性的练习题,从简单到复杂,帮助学生逐步掌握无理数的运算和应用。
-在解题过程中,强调数形结合思想,培养学生运用数学工具解决问题的能力。
4.总结反思,提升能力:在教学结束时,引导学生进行总结反思,提高他们的自主学习和思考能力。
3.无理数在实际问题中的应用:将无理数知识应用于解决实际问题,如圆的周长和面积计算,是教学的难点,需要培养学生的数学建模和解决问题的能力。
(二)教学设想
1.创设情境,激发兴趣:通过引入实际生活中的问题,如测量圆的直径和周长,激发学生对无理数的探究兴趣。
-利用多媒体展示圆的相关现象,引导学生思考圆的周长与直径之间的关系。
1.引导学生观察、分析,发现无理数的存在,如π、√2等。
2.学生自主探究无理数的性质,如无限不循环性、不可约性等。

北师大版八年级上册2.1认识无理数(第2课时)教学设计

北师大版八年级上册2.1认识无理数(第2课时)教学设计
(二)教学设想
1.针对无理数概念的教学,我设想通过以下步骤进行:
a.利用历史故事或实际情境引入无理数的概念,如通过讲述古希腊数学家希伯斯发现√2是无理数的故事,激发学生的好奇心。
b.通过数轴展示无理数和有理数的关系,让学生直观感受无理数的无限不循环性。
c.引导学生通过自我探索和小组讨论,总结无理数的特点,形成对无理数的深刻理解。
1.教学内容:设计具有代表性的练习题,涵盖无理数的概念、性质、运算等方面,让学生在实际操作中巩固所学知识。
2.教学方法:采用个别指导、集体讲解等方式,帮助学生解决练习中的问题。
3.教学实施:学生独立完成练习题,教师对学生的答题情况进行点评,指出错误原因,引导学生总结经验教训。
(五)总结归纳
1.教学内容:对本节课学习的无理数的概念、性质、运算和应用等方面进行总结。
b.教师对学生的作业进行及时批改和反馈,针对学生的个性化问题给予指导,帮助学生提高。
4.学生的学习兴趣:部分学生对数学学习可能存在恐惧心理,教师应通过生动的教学情境、有趣的教学活动,激发学生的学习兴趣,使他们愿意主动投入到无理数的学习中。
5.学生的合作交流能力:在教学过程中,教师应注重培养学生的合作交流能力,让他们在小组讨论、互帮互助中提高解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
b.通过数学建模的方式,让学生尝试将无理数应用于解决更复杂的数学问题,提高他们的问题解决能力。
4.为了突破教学难点,我设想采用以下策略:
a.利用多媒体教学资源,如动画、视频等,帮助学生形象理解无理数的性质和运算规则。
b.开展小组合作学习,让学生在交流讨论中互相启发,共同解决难题。
c.鼓励学生提出疑问,给予个别指导,针对学生的个性化问题进行针对性教学。

初中数学_第二章第1节第2课时 认识无理数教学设计学情分析教材分析课后反思

初中数学_第二章第1节第2课时  认识无理数教学设计学情分析教材分析课后反思

课时课题第二章第1节第2课时认识无理数课型新授课授课人授课时间星期三第4节教学目标1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.理解无理数的概念,会判断一个数是有理数还是无理数.3.让学生掌握估算的方法,发展学生的数感和估算能力.教法学法指导本节课是在上一节课知道存在无理数的基础上,借助于计算器,感知无理数的大小,从而发现无理数的无限不循环特征.在教学中要强调让学生探究概念形成的过程,鼓励学生自主探索与合作,以学生自主探索为主,自我归纳得出概念.课前准备计算器(每个学习小组3个)《认识无理数》教学过程一、创设情境,导入新课前面我们发现在勾股定理的运算中,出现了有理数无法表示的现象,因此出现了无理数.但无理数到底是什么样子,就让我们走进今天的旅程.(教师在黑板上画图)师:大家现在能计算一下面积为2的正方形的边长a究竟是多少吗?(不能)能不能估计大正方形的边长a在什么范围内呢?生:(观察后回答)通过图形可以看出1<a<2.因为112=,422=,而a的平方等于2,所以1<a<2.【设计意图】不经过研究的结论是缺少灵魂的,所以在此一定要让学生直观的感受到,面积为2的正方形边长是怎么样的,既使简单动脑的真实探究也会使学生有强烈的印象,又同时向学生传授了验证猜想的简单途径,体现教育的方法育人.二、探究研讨,质疑问难既然1<a<2,那么a是1点几呢?1、下面老师为大家提供了计算器,你们会怎样利用呢?(学生小组内思考,教师参与其中)生1:我们用计算器依次计算21.1、22.1……,通过比较,就能发现大约是1点几.生2:那样太慢,我发现面积2更接近1离4远,所以边长不会超过1.5,所以不要全验证.(教师竖起大拇指,学生给以掌声)2、应用计算器,探索小数位数.师:很棒,那我们就进行一场比赛,看哪一组精确的位数多,(学生跃跃欲试)开始.(学生活动,教师指导学生在活动中分工合作)师:时间到,哪一组说一说你们探索的结果?生:a在1.41与1.42之间.生:a在1.414与1.415之间.师:有算出具体是多少吗?生:没有.师:大家可以看一下小明同学的探索过程.(观看教材图表)师:如果继续探索下去,你会有什么发现?生:这个数不是循环小数.师:事实上,它是一个无限不循环小数.【设计意图】在探究研讨中,先以方法思考开始,是为了提高验证的效率,再有小数位数的探索,加快了课堂节奏.本环节主要意图让学生直观感受无理数的数的特性,打破学生思维中固化的有理数思维,将无理数真实的展现在学生面前.三、展示交流,建构知识那么,咱们给无理数来个描述吧.(学生思考,小组交流)1、概念描述交流生:无理数就是无限不循环小数.(学生都很同意)师:很棒,那么要是无理数,必须满足哪些条件?生:一是无限小数,二是不循环小数.(师板书)师:你们能举出几个实例吗?生:π,1.2578879…师:你们居然没忘了π这个老朋友,通过大家的举例,我忽然发现了“无理数”命名的原因.(师边指黑板上的数,边强调“无理”二字)生:奥,我知道了,无理数就是没有道理的数.(学生笑了)师:想到老师心里去了,你是老师的亲学生.(学生又笑了)2、例题强化理解例1:下列各数中,哪些是无理数?哪些是有理数?3.14,34-,••75.0, 0.1010010001…(相邻两个1之间0的个数逐次加1). 生:无理数有0.1010010001…(相邻两个1之间0的个数逐次加1).师:你们有没有不同意见?(没有)那0.1010010001…(相邻两个1之间0的个数逐次加1)中不也是有规律的吗?生:有规律也不是,它是无限不循环小数,所以是无理数.师:回答得很好,我明白了,无理数也不一定是没有道理啊.师:那你们判断无理数的时候,观察到什么特征就可以判断了呢?生:只要你抓住了无理数的两个特征,就能把它识别出来.(师在黑板上圈画重点) 那么,这个无理数是谁先发现的呢?3、无理数的理论论证.借助“读一读”,让学生了解数学史,认识严密的数学论证.师:数学是严谨的,但也是发展的,我们一定要有一个科学的头脑,实事求是的态度.【设计意图】教学中我有意弱化有理数的数类的区分,而一味强化无理数,因为过多的信息量必将影响数类的区分,当学生接受了无理数概念后,有理数的辨别就水到渠成了.在了解数学史的问题上,我认为是必不可少的,虽然学生会存在不理解,但学生会存下一个严谨论证意义的认识,会更加认识到无理数的存在. 四、运用拓展,收获讲评实事求是的说:了解什么是无理数了吗?(知道了)那我们实战一下.1、处理24页的随堂练习(要求学生思考后小组交流,由小组中的后进生发言)2、抢答训练:25页知识技能第1题3、师:通过本节课的学习你有哪些收获呢?你还存在疑问吗?生:我的主要收获是认识了无理数,并且能把无理数与有理数区别开.有理数包括整数和分数(有限小数和无限循环小数),而无理数是无限不循环小数.4、达标检测1.数学理解第3题,班内交流论坛判断下列说法是否正确:(1) 所有无限小数都是无理数; ()(2)所有无理数都是无限小数; ()(3)有理数都是有限小数; ()(4)不是有限小数的不是有理数. ()让学生充分交流个人想法,互相质疑,在争论中,辨明原因,以便观察学生的知识掌握情况.2. 填空:0.351,.68.4,-32, 3.14159, -5.2323332…,3π,0.1234567891011…(由相继的正整数组成).有理数有:无理数有:板书设计:§2.1(2)认识无理数看出1<a<2.因为112=,422=,而a 的平方等于2,所以1<a <2. 无限不循环小数称为无理数一是无限小数,二是不循环小数.边长a面积S1<a<2 1<S<4例讲你本节课的学习收获是什么?学情分析八年级学生已经在学习《有理数》的过程中体会到数不够用了,本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,在此基础上,学生能在“需要—探究—发现—论证”式的课堂中积极参与讨论问题,大胆发表自己的见解和看法,从非常直观的操作中发现问题,实现数的发展,发展学生的合情推理能力。

北师大版八年级数学上册2.1认识无理数2教案

北师大版八年级数学上册2.1认识无理数2教案

第二章实数2.1 认识无理数第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】【议一议】:已知22a=,请问:①a可能是整数吗?②a可能是分数吗?【释一释】:释1.满足22a=的a为什么不是整数?释2.满足22a=的a为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上 效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.。

《认识无理数》教学反思

《认识无理数》教学反思

《认识无理数》教学反思《认识无理数》教学反思身为一名到岗不久的老师,课堂教学是我们的任务之一,对学到的教学新方法,我们可以记录在教学反思中,怎样写教学反思才更能起到其作用呢?下面是小编收集整理的《认识无理数》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

本节课是借助寻找正方形边长这一现实生活中的实例,让学生体会数不够用的现实场景,通过讨论等途径,无限逼近的数学思想得到无理数的概念,从中体会数学学习的乐趣。

可能在教学实施过程中,对基础较薄弱的学生,探索时间和探索过程所需时间较长,会影响后面环节的进行,但感知过程是学生理解无理数这一抽象概念所必须的,所以不能淡化,让学生在数学学习中能将抽象的知识具体化、复杂知识体系化。

同时,引导学生回顾旧知识,探索新知,形成一定的数学探究能力,进一步培养学生的分类和归纳的思想,为今后的数学学习打下坚实基础。

但对概念的理解掌握,一些学生还不是很到位,只能在以后的教学过程中不断加深,另外,由于学生对有理数和无理数的'概念具体感知不够,所以在知识分类整理环节,学生自主整理和接受有一定困难。

其次,在学习时,需让学生注意有理数和无理数的分类,有的同学认为无限小数是一定是有理数,这是错误的。

事实上,无限小数由无限循环小数和无限不循环小数两部分组成,其中无限循环小数是有理数,无限不循环小数是无理数。

还有部分学生对有理数掌握不牢固,认为有限小数和无限循环小数不是分数,这是错误的,因为有限小数和无限循环小数可以化成分数,所以有限小数和分数也应划分到有理数中,总之,通过一系列讨论,使学生记住,整数、分数、有限小数、无限循环小数、百分数都是有理数;而在具体的实例中,无理数包含:1.一般地无限不循环小数;2.有规律但不循环的小数,如:0.1010010001……(每个1之间0的个数依次加1);3.某些含л的数;4.开方开不尽的数(后讲)。

总结这节课知识点不多,更需要同学们理解记忆,多做题,多见题型,多总结。

《认识无理数》经典第二课时 公开课一等奖 教案

《认识无理数》经典第二课时 公开课一等奖 教案

认识无理数(二)教学目标:(一)教学知识点1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练要求1.借助计算器进行估算,培养学生的估算能力,开展学生的抽象概括能力,并在活动中进一步开展学生独立思考、合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能区分出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观要求1.让学生理解估算的意义,掌握估算的方法,开展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点:1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点:1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学过程:Ⅰ.创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a ,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.Ⅱ.讲授新课1.导入[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1 ,2 ,4 ,而面积又等于边长的平方 ,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a 的大致范围呢 ? [生]因为a 2大于1且a 2小于4 ,所以a 大致为1点几.[师]很好.a 肯定比1大而比2小 ,可以表示为1<a <2.那么a 究竟是1点几呢 ?请大家用计算器进行探索 ,首|先确定十分位 ,十分位究竟是几呢 ?如2 ,2 ,2 ,2 ,2 ,而a 2 =2 ,故a 应比大且比小 ,可以写成<a < ,所以a 是1点4几 ,即十分位上是4 ,请大家用同样的方法确定百分位、千分位上的数字.请一位同学把自己的探索过程整理一下 ,用表格的形式反映出来.[生]我的探索过程如下.[师]还可以继续下去吗 ?[生]可以.[师]请大家继续探索 ,并判断a 是有限小数吗 ?[生]a =1.41421356… ,还可以再继续进行 ,且a 是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b 的值.边长b 会不会算到某一位时 ,它的平方恰好等于5 ?请大家分组合作后答复.(约4分钟)[生]b =2.236067978… ,还可以再继续进行 ,b 也是一个无限不循环小数.2.无理数的定义请大家把以下各数表示成小数.3 ,112,458,95,54 ,并看它们是有限小数还是无限小数 ,是循环小数还是不循环小数.大家可以每个小组计算一个数 ,这样可以节省时间.[生] ,54 ,95 =•5.0 ,•=71.0458 ,••=818.1112 [生]3 ,54是有限小数 ,112,458,95是无限循环小数. [师]上面这些数都是有理数 ,所以有理数总可以用有限小数或无限循环小数表示.反过来 ,任何有限小数或无限循环小数都是有理数.像上面研究过的a 2 =2,b 2 =5中的a ,b 是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a ,b 外 ,圆周率π =3.14159265…也是一个无限不循环小数 ,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数 ,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无限不循环小数 ,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式 ,而无理数那么不能.4.例题讲解以下各数中 ,哪些是有理数 ?哪些是无理数 ?,-34 ,••75.0 ,0.1010010001…(相邻两个1之间0的个数逐次加1). Ⅲ.课堂练习(一)随堂练习以下各数中 ,哪些是有理数 ?哪些是无理数 ? ,•7.3 ,-π ,-71 ,18. (二)补充练习:①判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.②以下各数中 ,哪些是有理数 ?哪些是无理数 ?,-••69.4,32 , ,-5.2323332… , …(由相继的正整数组成).在以下每一个圈里 ,至|少填入三个适当的数.Ⅳ.课时小结本节课我们学习了以下内容.1.用计算器进行无理数的估算.2.无理数的定义.3.判断一个数是无理数或有理数.Ⅴ.课后作业1.P25习题2.2.Ⅵ.探究与活动设面积为5π的圆的半径为a.(1)a是有理数吗?说说你的理由.(2)估计a的值(精确到十分位,并利用计算器验证你的估计).(3)如果精确到百分位呢?解:∵πa2=5π∴a2=5(1)a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.(2)估计a≈2.2.(3)a≈2.24.板书设计:。

2.1认识无理数第二课时 教案

2.1认识无理数第二课时 教案

第一环节:情境引入 导入:前面我们学习了有理数,有理数是如何分类的呢? 1.有理数是如何分类的? 【问题解决】有理数{整数(如−1,0,2,3,…)分数(如13,−25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a 2=2,b 2=5中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图] 通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.第二环节:新知构建 [过渡语] 上一节我们已经感受到数不够用了,下面我们继续探索用什么数来表示.1.数的小数表示面积为2的正方形的边长a 究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a 的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?边长a 面积S1<a <2 1<S <41.4<a <1.5 1.96<S <2.251.41<a <1.42 1.9881<S <2.01641.414<a <1.415 1.999396<S <2.0022251.4142<a <1.4143 1.99996164<S <2.00024449【思考】 a 的范围在哪两个数之间?左面的边长中,前面的数值和后面的数值相比,哪个更接近正方形的实际边长?【归纳总结】 a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a =1.41421356…,它是一个无限不循环小数.【做一做】 (1)请大家用上面的方法估计面积为5的正方形的边长b 的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b ≈2.2,精确到0.01,b ≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c =1.25992105…,它也是一个无限不循环小数.[设计意图] 让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,c =1.25992105…是无限不循环小数的过程,体会无限逼近的思想.2.有理数的小数表示,明确无理数的概念思路一:请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么?3,45,59,-845,211.【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况?思路二:回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数)【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.3.例题讲解 下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2).解:有理数有:3.14,-43,0.5·7·;无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2).【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q 的形式(q ≠0,p ,q 为整数且互质),而无理数不能. [设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类.[知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法:1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.第三环节:课堂小结数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数第四环节:检测反馈1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数答案:C2.以下各正方形的边长是无理数的是 ( )A .面积为25的正方形B .面积为425的正方形C .面积为8的正方形D .面积为1.44的正方形解析:52=25,(25)2=425,(1.2)2=1.44.故选C . 3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数. 4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n ,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n . (2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).【基础巩固】1.面积为3的正方形的边长为x ,则x ( )【拓展探究】4.设半径为a的圆的面积为20 π.(1)a是有理数吗?说说你的理由;(2)估计a的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?成功之处。

《认识无理数(第2课时)》教学设计

《认识无理数(第2课时)》教学设计

第二章实数1. 认识无理数(第2课时)一、学生起点分析学生在小学阶段已经学习了非负数,七年级又学习了有理数.本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.二、教学任务分析《认识无理数》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,借助计算器,感受无理数是无限不循环小数,会判断一个数是无理数,并能结合实际判别有理数和无理数.在活动中进一步发展学生独立思考的意识和合作交流的能力,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,而且对今后学习数学也有着重要意义.为此,本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.三、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数(如1-,0,2,3,…) 有理数分数(如31,52-,119,0.5,…)2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“认识无理数(2)”. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a面积s1<a<21<s<41.4<a<1.5 1.96<s<2.251.41<a<1.42 1.9881<s<2.01641.414<a<1.415 1.999396<s<2.0022251.4142<a<1.4143 1.99996164<s<2.00024449归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况?探究结论:分数只能化成有限小数或无限循环小数.即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力.第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数. 例1填空:0.351,4.96∙∙-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形; (D ) 面积为1.44的正方形.有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数有理数集合无理数集合… …例4一个直角三角形两条直角边的长分别是3和5,则斜边a 是有理数吗?解:由勾股定理得: 22235a =+,即2=34a .因为34不是完全平方数,所以a 不是有理数.强调:1. 无理数是无限不循环小数,有理数是有限小数或无限循环小数.2. 任何一个有理数都可以化成分数qp形式(q ≠0, p ,q 为整数且互质),而无理数则不能.练一练:1.课本P 24随堂练习.2.已知:在数43-,5, 1.42∙∙-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…中, (1)写出所有有理数; (2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.目的:通过例题的讲解、练习,让学生充分理解无理数、有理数的概念、区别,感受数的分类.效果:通过学生练习,更加明确了有理数、无理数的概念,及它们之间的区别与联系,激发学生学习兴趣,巩固了对概念的理解. 第五个环节:课堂小结内容:本节课你有哪些收获? 1.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的? 3.请把已学过的数怎样分类?目的:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成知识体系,培养学生良好的学习习惯,提高其归纳总结能力.效果:师生共同总结补充,形成完整的知识体系.35a第六个环节:布置作业习题2.2 1.2.3. 四、 教学反思本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估计、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念;可能在教学实施过程中,对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行,但感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.让学生在数学学习中能将抽象的知识形象具体化,复杂知识体系化.同时引导学生回顾旧知、探索新知,形成一定的数学探究能力,进一步培养学生的分类和归纳的思想,为今后的数学学习打下坚实基础. 但对概念的理解掌握一些同学还不很到位,只能在以后的教学过程中不断的加深.另外,由于学生对有理数和无理数的概念具体感知还不够,所以在第三环节:知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例1后再进行知识分类整理可能会更好.附:板书设计1 .认识无理数(2)一、导入 二、新课1.有理数的定义:有限小数或无限循环小数.2.无理数的定义:无限不循环小数.3.数分类:有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数三、例题讲述 四、小结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章实数2.1 认识无理数第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】a=,请问:①a可能是整数吗?②a可能是分数吗?【议一议】:已知22a=的a为什么不是整数?【释一释】:释1.满足22a=的a为什么不是分数?释2.满足22【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上 效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.7.3 平行线的判定第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔.教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.第二环节:探索平行线判定方法的证明活动内容:①证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a∥b.如何证明这个题呢?我们来分析分析.师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a∥b(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.②证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB.师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.教学效果:由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.第三环节:反馈练习活动内容:课本第231页的随堂练习第一题活动目的:巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.第四环节:学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第232页习题6.4第1,2,3题思考题:课本第233页习题6.4第4题(给学有余力的同学做)教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。

相关文档
最新文档