理论力学练习题(静力学)
理论力学练习题(静力学)
A.1kN
B.0.5kN
A
B
C. 2 kN
D.2 kN
L
L
题 21 图
22 已知图示斜面的倾角为θ,若要保持物块A静止,则物块与斜
面之间的摩擦因数fs所应满足的条件为:
A.tanθ ≤ f s
B.tanθ ≥ f s
C.cotθ ≤ f s
D.cotθ ≤ f s
23 物块重力为Q,放在粗糙的水平面上,其摩擦角ϕ =200,若力
D.无法判断
B
D
G
C
E
H
题5图
6 已知F1、F2、F3、F4为作用于刚体上的平面汇交力系,
F4
其力矢关系如图所示为平行四边形。由此可知:
F3
A.力系可合成为一个力偶
B.力系可合成为一个力
F1
C.力系简化为一个力和一个力偶 D.力系合力为零,力系平衡
题6图
F2
7 某平面任意力系向O点简化后,得到如图所示的一个主 矢FR′和一个主矩MO,则该力系的最后简化结果为:
P作用于摩擦角之外,并已知α=300,P = Q,物体是否能保持平衡: A.能 B.不能 C.处于临界状态 D.P 与 Q 的值比较小时能保持静止,否则不能
A θ
题 22 图
P α
Q
题 23 图
24 已知 W=100kN,P=80kN,摩擦因数 f = 0.2,物块将: A.向上运动 B.向下运动 C.静止不动 D.无法判断
h
P l
θ B
A
题3图
4 平面汇交力系(F1,F2, F3,F4,F5,)的力多边形如图
所示,则该力系的合力FR等于:
F2
F4
F1
华南理工-理论力学(静力学)随堂练习
理论力学(静力学)一基本概念1.一物体是否被看作刚体,取决于。
(A)变形是否微小(B)变形不起决定因素(C)物体是否坚硬(D是否研究物体的变形答案:B2.平衡是指。
(A)物体相对任何参考体静止不动(B)物体相对任何参考体作匀速直线运动(C)物体只相对地球作匀速直线运动(D物体相对地球静止不动或作匀速直线运动答案:D3.参考答案:BC4.力有两种作用效果:力可以使物体的运动状态发生变化,也可以使物体发生变形。
答案:√5.悬挂的小球静止不动是因为小球对绳向下的拉力和绳对小球向上的拉力相互抵消的缘故。
答案:×6.在任何情况下,体内任意两点的距离保持不变的物体叫刚体。
√7.凡是合力都大于分力。
()答案:×8.二力平衡条件中的两个力作用在同一物体上;作用力和反作用力分别作用在两个物体上。
()答案:√9.理论力学的任务是研究物体作机械运动一般规律的科学。
()答案:√·1.2 静力学公理。
1.参考答案:B2.参考答案:A3.三力平衡定理是。
(A)共面不平行的三个力互相平衡必汇交于一点(B)共面三力若平衡,必汇交于一点(C)三力汇交于一点,则这三个力必互相平衡。
(D)此三个力必定互相平行答案:A4.作用和反作用定律的适用范围是。
(A)只适用于刚体(B)只适用于变形体(C)只适用于处于平衡状态的物体(D)适用于任何物体答案:D5.力的可传性原理。
(A)适用于刚体(B)适用于刚体和弹性体(C)适用于所有物体(D)只适用于平衡的刚体答案:A6.如图所示的三铰刚架,支座A、B处的约束力一定通过。
(A) C 点(B) D点(C) E点(D) F点答案:C7.下列说法正确的是。
(A) 作用力反作用力既可以作用于同一物体,也可以作用于两个不同物体(B) 作用力反作用力肯定作用于两个不同物体(C) 作用反作用定律只适用于平衡刚体(D)作用反作用定律适用于所有刚体答案:BD8.刚体受汇交于一点的三个力作用,肯定能平衡。
理论力学(静力学) 随堂练习
7.(单选题) 如图所示的三铰刚架,支座A、B处的约束力一定通过 ( )。
(A)C点
(B)D点
(C)E点
(D)F点
参考答案:C
8.(单选题) 下列各式中,表示正确的是( )。
(A) (B)
(C) (D)
参考答案:D
9.(单选题) 图示用羊角锤拔钉子,下面四图所示的作用力中,( )是最省力的。
(C)必为一合力偶 (D)为一合力偶或平衡
参考答案:D
5.(单选题) 在刚体上作用3个大小相等的力,其力三角形如图所示,则该力系的简化结果( )。
(A)必为一个力
(B)必为一个力和一个力偶
(C)必为一个力偶
(D)可能平衡或简化为一力偶
参考答案:D
6.(单选题) 平面任意力系简化时若取不同的简化中心,则( )
参考答案:B
3.(单选题) 如图所示,在刚体上的四个点上各作用一个大小相等的力,则该力系的简化结果为 ( )。
(A)一个力
(B)一个力和一个力偶
(C)一个力偶
(D)平衡
参考答案:C
4.(单选题) 某平面力系,其简化结果与简化中心无关,则该力系的简化结果( )。
(A)必为一合力 (B)必平衡
(A)静止 (B)临界平衡
(C)滑动 (D)无法判断
参考答案:A
6.(单选题) 如图所示若尖劈两侧与槽之间的摩擦角均为,则欲使尖劈被打入后不致自动滑出,角应为( )。
(A) (B)
(C) (D)
参考答案Байду номын сангаасC
.(单选题) 圆轮绕固定轴O转动,某瞬时轮缘上一点的速度和加速度如下图所示,则不可能产生的运动情况为( )。
华南理工网络教育理论力学(静力学)随堂练习
参考答案:D5.(单选题) 图示系统受力F作用而平衡。
欲使A支座约束力的作用线与AB成60º角,则斜面的倾角应为()。
(A)0º(B)30º(C)45º(D)60º参考答案:B6.(单选题) 力的可传性原理()。
7.(单选题) 如图所示的两个楔块A、B在m-m处光滑接触,现在其两端沿轴线各加一个大小相等、方向相反的力,则两个楔块的状态为()。
(A)A、B都不平衡(B)A平衡、B不平衡(C)A不平衡、B平衡(D)A、B都平衡参考答案:A8.(单选题) 三力平衡定理是()。
1.(单选题) 如图所示,带有不平行的两条矩形导槽的三角形平板上作用一个力偶M,在槽内各有一个固连于地面、可沿槽滑动的销钉E和H,不计摩擦,则()。
(A)平板保持平衡状态(B)在力偶矩较小时,平板才能平衡(C)平板不可能保持平衡(D)条件不够,无法判断平衡与否参考答案:C2.(单选题) 如图所示,均质杆AB的重为P,D处用绳索悬挂,A端与光滑墙壁接触,现在B端作用一水平力F,则杆AB()。
(A)在力P 很大时才能平衡(B)当力P 大于零时就能平衡(C)当力P为任何值时都能平衡(D)力P为任何值时都不能平衡参考答案:D3.(单选题) 如图所示,带有不平行的两个导槽的矩形平板上作用一力偶,今在槽内插入两个固连于地面的销钉,若不计摩擦,则()。
(A)板必保持平衡状态(B)板不可能保持平衡状态(C)在矩M较小时,板可保持平衡(D)条件不够,无法判断板平衡与否参考答案:B4.(单选题) 均质杆AB长为L,重为P,用一绳索悬吊于光滑槽内,则杆在A、B处受到的约束力的关系为()。
(A)(B)(C)(D)5.(单选题) 已知杆AB和CD的自重不计,且在C处光滑接触,若作用在AB杆上的力偶的矩为m1,则欲使系统保持平衡,作用在CD杆上的力偶的矩m2的转向如图示,其矩值应为()。
(A)m2 = m1 (B)m2 = 4 m1 / 3 (C)m2 = 2 m1 (D)m2 = m1 / 2参考答案:A6.(单选题) 如图结构由O1A、O2B、CD和EF四根杆铰接而成。
《理论力学》静力学典型习题+答案
1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。
试求二力F1和 F2之间的关系。
解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。
F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。
试求 A 和 C 点处的拘束力。
解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。
曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。
AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。
对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。
2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。
《理论力学》静力学典型习题+答案00
1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知:0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan =θ。
对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。
2-4FF解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。
理论力学课外习题
理论⼒学课外习题静⼒学习题1.光滑⾯对物体的约束反⼒,作⽤在接触点处,其⽅向( )。
2.图⽰结构属于静定问题的是()。
3.某简⽀梁AB 受载荷如图所⽰,现分别⽤R A 、R B 表⽰⽀座A 、B 处的约束反⼒,则它们的⼤⼩关系为( )。
3题图 4题图4.结构如图所⽰,⼒F 与杆1和杆2平⾏,不计各构件⾃重,则图⽰结构中不受⼒的杆为:()5.已知桁架,不计各杆⾃重,则杆1、2、3的内⼒分别为、(拉⼒为正)。
杆DH 、DE 、CD 的内⼒分别为、(拉⼒为正)。
6.所⽰三铰拱架中,若将作⽤于构件AC 上的⼒偶M 平移⾄构件BC 上,则A 、B 、C 三处的约束反⼒是否改变?6题图 7题图7. 图⽰,已知A 重150 kN ,B 重25 kN ,物体A 与地⾯间滑动摩擦系数为,定滑轮处摩擦不计。
则物体A 与地⾯间的摩擦⼒为。
8.⼀重W 的物体置于倾⾓为α的斜⾯上,若摩擦因数为f ,且tg αA .静⽌不动;B .向下滑动;C .运动与否取决于平衡条件。
9.空间⼒偶矩是( )⽮量。
10.已知空间⼒系Q 及正⽅体边长a , Q ⼒对X 、Y 轴的⼒矩为=X M ,=Y M10题图 11题图11.已知⼀正⽅体,各边长a ,沿对⾓线BH 作⽤⼀个⼒F ,则该⼒在X 1轴上的投影为()。
12.正⽴⽅体的顶⾓上作⽤着六个⼤⼩相等的⼒,此⼒系向任⼀点简化的结果是()。
12题图 13题图13.重P 的均质圆柱放在V 型槽⾥,考虑摩擦柱上作⽤⼀⼒偶,其矩为M 时(如图),圆柱处于极限平衡状态。
此时按触点处的法向约束⼒N A 与N B 的关系为()。
14.边长为2a 的均质正⽅形簿板,截去四分之⼀后悬挂在A 点,今欲使BC 边保持⽔平,则点A 距右端的距离X=( )。
14题图 15题图 16题图15.如图所⽰,⼩物块重G=20N ,⽤F 1=40N 的⼒按图⽰⽅向把物块压在铅直墙上,物块与墙之间的摩擦因数5.0=s f ,则作⽤在物块上的摩擦⼒⼤⼩为。
华南理工-理论力学静力学 客观题
(C) 选取不同的坐标系,刚体的重心坐标是不同的
(D) 对均质刚体而言,重心与形心一定重合
答题: A. B. C. D.
参考答案:A
18.形状规则的物体,其重心和形心(几何中心)一定重合。( )
答题: 对. 错.
参考答案:×
19.用同一种材料加工成立方体、棱锥体等大小和形状不一的物体,并置于斜面上,发现有的滑动,有的不滑动,其原因是 。
答题: 对. 错.
参考答案:√
9.平面任意力系简化时若选取不同的简化中心,则 __ __。
(A)力系的主矢、主矩都会改变
(B)力系的主矢不会改变,主矩一般会改变
(C)力系的主矢会改变,主矩一般不改变
(D)力系的主矢、主矩都不会改变
答题: A. B. C. D.
参考答案:B
10.平面汇交力系和平面平行力系独立的平衡方程数为
理论力学·静力学、运动学与动力学习题
1.一物体是否被看作刚体,取决于 。
(A) 变形是否微小
(B) 变形不起决定因素
(C) 物体是否坚硬
(D) 是否研究物体的变形
答题: A. B. C. D. E. F.>>
参考答案:B
2.二力平衡条件中的两个力作用在同一物体上;作用力和反作用力分别作用在两个物体上。( )
(D)只有外力才能改变质心的运动
答题: A. B. C. D. E. F.>>
参考答案:BD
46.质点系对某轴的动量矩是一个代数量。( )
答题: 对. 错.
参考答案:√
47.质点系对某轴的动量矩保持不变的条件是 。
(A)外力的主矩为零
(B)外力与内力的主矩为零
《理论力学》静力学典型习题+答案
1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知: 0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan=θ。
对BC 杆有:aM F F F A B C 354.0===A ,C 两点约束力的方向如图所示。
2-4FF解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。
理论力学第二章静力学作业
1、图示平面力系,已知:F1=8kN,F2=3kN,M=10kN·m,R=2m,θ=120º。
试求:(1)力系向O点简化的结果;(2)力系的最后简化结果,并示于图上。
2、结构如图,自重不计,已知:F P=4kN,AD=DB,DE段绳处于水平。
试求:A、B处的约束力。
3、图示多跨梁,自重不计。
已知:M、F P、q、L。
试求支座A、B的约束反力及销钉C 对AC梁的作用力。
kN⋅,F =2kN 4、图示多跨梁由AC和CD铰接而成,自重不计。
已知:q =10kN/m,M=40m作用在AB中点,且θ=450,L=2m。
试求支座A、B、D的约束力。
5、图式机构,AB=BC,BD=BE,不计各杆自重,D、E两点用原长为L=0.5m,弹簧常数k=1/6(kN/m)的弹簧连接,设在B处作用一水平力F,已知:F=20N,L1=0.4m,L2=0.6m。
求机构处于平衡时杆AB 与水平面的夹角θ。
6、在图所示机构中,曲柄OA 上作用一力偶,其力偶矩大小为M ,另在滑块D 上作用水平F ,机构尺寸如图所示,各秆重量不计。
求当机构平衡时,力F 与力偶短M 的关系。
7、在如图所示物块中,已知斜面的倾角为θ,接触面间的摩擦角为ϕ f 。
试问:(1)拉力F r 与水平面间的夹角β 等于多大时拉动物块最省力; (2)此时所需拉力F r 的大小为多少?8、两长度相同的均质杆AB ,CD 的重力大小分别为P = 100 N ,P 1 = 200 N ,在点B 用铰链连接,如图所示。
杆BC 的C 点与水平面之间的静滑动摩擦因数f s = 0.3。
已知:θ = 60º,试问:(1)系统能否平衡?并加以证明。
(2)若系统能够平衡,求C 点摩擦力的大小和方向。
理论力学静力学部分
静力学部分小题:简单计算题考点:力偶系平衡问题1. 如图所示平面结构,已知杆AB 和杆CD 的重量不计,且DC 杆在C 点靠在光滑的AB杆上,若作用在杆AB 上的力偶的力偶矩为1m ,则欲使系统保持平衡,求作用在CD 杆上的力偶的力偶矩2m 的大小。
2. 在图示平面结构中,杆AC 和杆BD 为无重杆,在C 处作用一力偶矩为M 的力偶,求A和B 处的约束反力。
3. 如图所示,在三铰拱结构的两半拱上,作用两个等值、反向、力偶矩为M 的力偶,如两半拱的重量不计,试求A 、B 处的约束力。
4. 如图所示平面结构,杆AC 、BC 为无重杆,其上作用两个等值、反向、力偶矩为M 的力偶,试求A 、B 处的约束反力。
A605. 外伸梁AC 的尺寸及受力如图所示,已知Q =Q ’=1200N ,M =400m N ,a =1m ,梁的自重不计,求支座A 、B 的约束反力。
6.A 、C 的约束反力。
7. 如图所示平面结构,一力偶矩为M 的力偶作用在直角曲杆ADB 上。
不计杆重,求支座A 、B 对杆的约束反力。
8. 如图所示平面结构,一力偶矩为M 的力偶作用在直角曲杆ADB 上。
不计杆重,求支座A 、B 对杆的约束反力。
9. 在图示平面结构中,已知力偶矩为M ,AC =L,构件自重不计,求支座A ,C 处的约束反力。
Q '10. 如图所示,已知P =P ’=3.96KN ,构件自重不计,求支座A 、C 的约束反力(AC =1m )。
11. 如图所示平面刚架,已知:123kN m 1kN m m m =⋅=⋅, ,转向如图。
a =1m ,试求图示刚架A 及B 处的约束反力。
12. 平面四连杆机构,在图示位置平衡,3090αβ=,=。
已知:O 1A =6a ,O 2B =8a 。
求此时12/m m 的值。
13. 在图示平面结构中,已知力偶矩M =4KN m ,AC =1m ,构件自重不计,求支座A ,C 的约束反力。
14. 如图所示平面刚架,已知:40kN m M =⋅,F =10kN,q =5kN/m 。
理论力学静力学部分
一、判断题:1. 力系的合力一定比各分力大。
( )2. 作用与反作用定律只适用于刚体。
〔 〕3. 在同一平面的两个力偶,只要这两个力偶的力偶矩大小相等,那么这两个力偶必然等效。
〔 〕4. 力对于一点的矩不因力沿其作用线移动而改变。
〔 〕5、作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,那么此力系必然平衡。
〔 〕6、二力构件的约束反力,其作用线是沿二受力点连线,指向可任意假设。
( )7、一平面力系的主矢不为零,那么此力系分别向A 、B 两点简化,结果一样。
( )8、由于零力杆不承受力,所以它是无用杆,它的存在与否对桁架构造没有影响。
( )9、作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线一样,大小相等,方向相反。
〔 〕10、在有摩擦的情况下,全约束力与法向约束力之间的夹角称为摩擦角。
〔 〕 11、假设两个力的大小相等,其在同一轴上的投影也一定相等。
( ) 12、力偶无合力,就是说力偶的合力等于零。
( ) 13、但凡两点受力的构件都是二力构件。
( )14、光滑铰链类约束反力,可以用任意两个相互垂直的分力表示。
( )15、在保持力偶矩不变的前提下,力偶可在同一平面,或相互平行的平面任意移动,不改变力偶对刚体的作用效果。
( )16、加减平衡力系原理不但适用于刚体,而且适用于变形体。
〔 〕 17、一力F,沿某一轴的投影是唯一的;沿该方向的分力也是唯一的。
( ) 18.平面任意力系平衡的充要条件是力系的合力等于零。
〔 〕19.假设某力系在任意轴上的投影都等于零,那么该力系一定是平衡力系。
〔 〕 20.不管什么物体,其重心和形心总是在同一点上。
〔 〕 21、力偶只能使刚体转动而不能使刚体移动。
( )22、在任何情况下,摩擦力的大小总等于摩擦系数与正压力的乘积。
〔 〕 23、处于平衡状态的三个力必须共面 〔 〕 24、只要两力大小相等,方向相反,该两力就组成一力偶。
〔〕25、摩擦力是未知约束反力,其大小和方向完全可以平衡方程来确定。
理论力学 静力学 习题答案
习题:1-1(b)、(c)、(d),1-2(a)、(l)1-1 画出下列各图中物体A,ABC 或构件AB,AC 的受力图。
未画重力的各物体的自重不计,所有接触处均为光滑接触。
1-2 画出下列每个标注字符的物体的受力图。
题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。
习题:2-3,2-5,2-6,2-8,2-12,2-14,2-18,2-10,2-402-3 如图示刚架的点B 作用一水平力F,刚架重量略去不计。
求支座A,D 的约束力F A和F D。
解:一、取刚架为研究对象,画受力图,如图(b)。
二、列平衡方程,求支座 A,D 的约束力 F A 和F D。
由三力平衡汇交定理,支座A 的约束力F A 必通过点C,方向如图(b)所示。
取坐标系Cxy ,由平衡理论得式(1)、(2)联立,解得2-5 图所示为一拨桩装置。
在木桩的点 A上系一绳,将绳的另一端固定在点C,在绳的点B 系另一绳BE,将它的另一端固定在点 E。
然后在绳的点 D 用力向下拉,使绳的 BD 段水平,AB 段铅直,DE 段与水平线、CB 段与铅直线间成等角θ= 0.1 rad(当 θ很小时,tanθ≈θ)。
如向下的拉力 F =800 N,求绳 AB 作用于桩上的拉力。
解:一、研究节点D,坐标及受力如图(b)二、列平衡方程,求 F DB解得讨论:也可以向垂直于F DE 方向投影,直接得三、研究节点 B ,坐标及受力如图(c) 四、列平衡方程,求 F AB0xF =∑,'sin 0BC DB F F θ-=0yF=∑,cos 0BC AB F F θ-=解得 80kN AB F =2-6 在图示结构中,各构件的自重略去不计,在构件BC 上作用一力偶矩为M 的力偶,各尺寸如图。
求支座A 的约束力。
解:一、研究对象:BC ,受力如图(b ) 二、列平衡方程,求F B 、F C 为构成约束力偶,有三、研究对象:ADC ,受力如图(c ) 四、列平衡方程,求 F A(方向如图)2-8 已知梁AB 上作用一力偶,力偶矩为M,梁长为l ,梁重不计。
理论力学练习册及答案同济
理论力学练习册及答案同济一、静力学基础1. 题目:一个均匀的木杆,长度为2m,重量为50kg,一端固定在墙上,另一端自由。
求木杆的重心位置。
答案:木杆的重心位于其几何中心,即木杆的中点。
由于木杆均匀,其重心距离固定端1m。
2. 题目:一个质量为10kg的物体,受到三个力的作用:F1=20N向右,F2=30N向上,F3=15N向左。
求物体的合力大小和方向。
答案:合力F = F1 + F2 + F3 = (20N, 0) + (0, 30N) + (-15N, 0) = (5N, 30N)。
合力大小F = √(5² + 30²) = √(25 + 900) = √925 ≈30.41N。
合力方向与水平线的夹角θ满足tanθ = 30N / 5N = 6,所以θ ≈ 80.53°。
二、动力学基础1. 题目:一个质量为2kg的物体,从静止开始沿直线运动,加速度为5m/s²。
求物体在第3秒末的速度和位移。
答案:速度v = at = 5m/s² × 3s = 15m/s。
位移s = 0.5at² = 0.5 × 5m/s² × (3s)² = 22.5m。
2. 题目:一个质量为5kg的物体,以20m/s的初速度沿直线运动,受到一个恒定的阻力,大小为10N。
求物体在第5秒末的速度。
答案:加速度a = F/m = -10N / 5kg = -2m/s²。
速度v = v0 + at = 20m/s - 2m/s² × 5s = 0m/s。
三、转动动力学1. 题目:一个半径为0.5m的均匀圆盘,质量为10kg,绕通过其中心的轴旋转。
若圆盘的角加速度为10rad/s²,求圆盘的转动惯量。
答案:转动惯量I = mr² = 10kg × (0.5m)² = 2.5kg·m²。
理论力学静力学典型习题+答案
1-3试画出图示各结构中构件AB的受力图1-4试画出两结构中构件ABCD勺受力图1-5试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD勺铰链B和C上分别作用有力F i和F2,机构在图示位置平衡。
试求二力F1和F2之间的关系。
解:杆AB BC CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B和C为研究对象,受力如图所示:由共点力系平衡方程,对B点有:F x 0 F2F BC COS45°0对C点有:F x 0 F BC F1COS300 0解以上二个方程可得:F12 6F 1.63F2解法2(几何法)分别选取销钉B和C为研究对象,根据汇交力系平衡条件,作用在B和C点上的力构成封闭的力多边形,如图所示。
对B点由几何关系可知:F2F BC COS450对C点由几何关系可知:F BC F1 COS300解以上两式可得:F1 1.63F22-3在图示结构中,二曲杆重不计,曲杆AB上作用有主动力偶M试求A和C 点处的约束力。
解:BC为二力杆(受力如图所示),故曲杆AB在B点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB受到主动力偶M的作用,A点和B点处的约束力必须构成一个力偶才能使曲杆AB保持平衡。
AB受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):M 0 F A 10a sin(450) M 0 F A 0.354M其中:tan -。
对BC杆有:F C F B F A 0.354M3 aA,C两点约束力的方向如图所示。
2-4解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下 刚体的平衡条件,点 0,C 处的约束力方向也可确定,各杆的受力如图所示。
对1313 -6aFFi FjF 2 FiF 3- F i - —Fj2 222F RFi3Fj M A■-3 Fak F R M A V3 d a F R2Fi24d3 a F X 0 PsinFB X0 F y 0 F By P P cos0 F X 04F A X F B X 0F y 0F AyF By0 M A 0 MA F Byl 0求解以上三式可得:M 1 3N m , F ABF OF C 5N ,方向如图所示Psi nAF BxF AxBC 杆有:M 0对AB 杆有: F B F AF B BC sin300 M 2对OA 杆有:M 0 M i F AOA 0F By , MFA X,FAy, FBX, M A 0 N D aG -cos F l coscos2F y 0 N D cosG F 0N D ,arccosf 2(F (2FG)a 卡G)l ]F Ay F By P(1 COS ) M A P(1 cos )1M y O p eta n F BC cos c F BC sin eta n 0 F BC60.6N 2M x' 0 P 1 aF B c F BC S in2a 0 F B100N F y 0 F Z0F Ay,F A;z M x 0 M DE 0 F2COS4500 F20 M AO 0 F6COS45° a F COS450 COS450 a 0 F6 2 F M BH 02F4COS450 a F6COS450 a 0 F4 2F M AD 02F1 a F6COS450 a F sin450 a 0 £ 1 2 F M CD 02F1 a F3 a F sin45°a 0 F3 1F M BC 02F x 0F3 a F5 a F4COS450 a 0 F50 M 1500N cm Fy 0M O0以下几题可看一看!FA , F NA , FB , F NB ,tan3( f sif s2)FNB 0ta n 6002aM cf s2f si2 3F By 2a 0 F ByM H 0 F D y a Fa 0 F Dy FM BF DX a F 2a 0 F DX2FF y 0F AyF DyF By 0F AyF M A0 FD X a FB X 2aFB XFM BF AX 2aFD Xa0 FA XFM c 0 F D bF XF D-F M A0 F B bF XbF i F 2 (F i2Mpcos45° psin45° F 2)DF N 2 N iF i F 2f s N i f s N 2F i ,N i ,F 2,N 2, f s:s 2p D F e f 2M0 f siF By0.223, f s2 4.49 FB x N iP(i _f s2) _2( i —f ;2)f s%.223450F xF yM AT cosAC sinF N T sinF s T cos pT sin AC cosAB . sin 2FN , F s , T, fsf s 0.646a l . a几F NB a Pcos-Psi n 022 3F NA a P cos-Psin a 小 —— 02 2、3 F AF BPsi nM A 0M B 0 F x 0F A F Bf si F NAS 2F NBS24.49 i2MF D )b F ACAyD 2MF (bF 2x)F B F I F AAa b F A F 3 FxAy F i F 3 cos450F 1M2qa F yF 2aF2 Z M r ( 2qa) F x 0 FAXF 3 cos45(F AX(MaaF AyF 2 F 3si n450 P 4qa 0F AyP 4qa M A F 2 a P 2a 4qa 2a F 3S in450 '3aMM A 24qa 2 Pa M M A0 F By 2a F2a 0 F ByF Ay 2a F 2a 0 F A 『FF x 0 F AXFBx FF 32qa) F 0 F EF2 M C 0 F Bx a F By aV 2(MF AX2q x a) a F E sin450 a 0 F BxM eM BF By FF NDF 3 sin450F yM AM B0F BXM AN 13r P 3rcos60020 N i 6.93(N)F xFA XN 1 sin 60°F AX 6(N) F y 0F AyN 1cos600P 0 F Ay 12.5'(N) FN 1cos300 Tcos300 6.93(N)M A F N 2Lsin2P -cos2 M BF N LsinP Lcos F s Lcos2F S P F SFNtan100 F RC ,F RD F RC , F RD F RC , F RD2 2M A 0 F ND aI 0F ND44M A0F NC a F l 0F NC -FF NDaM O 0 F SC R F SD R 0FNCF X 0sinF — ----------- F----- FS D NCN D1 cos 1 cossin 1 costan —, f SD tanFRC,F2 221 cosF RCSDF NDF SD 0tan — 2 I FaFla cos —2PF RCsi n[180°(1800 2,sin ] ftanFl sinISD (Pa Fl )(1 cos )F yF NDP F SC sin F ND PFl ( (cosasin tan —)2f SD tanFl sin(Pa Fl )(1 cos )F B F ACFBF AC tan1 F3(F ND P) R MDF B \M E (P F NE )1RtanF NDM D M E!FRM DF NDBPL FaM AM EF yF x 4 f sP 4f sP } f s ,1 3f s }F SC%F X0 F NC costa nFl sin (Pa Fl )(1 cos )F NCsinF SC cos F SD 0FNDFSDM E 1FFNE F NE F SD tan2FNDF min{ —P,」 P,R R 3 1 F SD F NE F SE F 02P R M DF SE RF SD 3FFSDf s F ND M FM GF SE;FF SE f s F NEF max 0.362.该系统的位置可通过杆OA 与水平方向的夹角B 完全确定,有一个自由度。
理论力学习题
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
( )4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体)- 1 -)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触.多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体- 2 -- 3 -第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体- 4 -- 5 -第二章 平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F = — F ',所以力偶的合力等于零。
( )2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
理论力学(静力学)复习题(2014 -5)
理论力学(静力学)复习题(2014-5)一. 选择题1. 绳索约束的约束力方向总是()受约束物体。
A.铅垂指向;B.沿绳索指向;C.沿绳索背离;D.水平指向。
2.光滑面约束的约束力总对受力物体形成()作用。
A.压力;B.拉力;C.牵引力;D.摩擦力3. 物体在一个力系作用下,此时只能( )不会改变原力系对物体的外效应。
A.加上由二个力组成的力系B.去掉由二个力组成的力系C.加上或去掉由二个力组成的力系D.加上或去掉另一平衡力系4. 简单起重设备如图所示,AB为摆杆,CD为绳索。
在以下四种表述中,错的应是( )。
A. CD只能承受拉力B. AB是三力平衡杆件C. 由三力平衡必定汇交于一点可知,反力R A的方向是确定的D. CD既能承受拉力,也能承受压力5. 图示结构中,AD杆D端作用水平力F,支座B 对折杆BC的约束力方向应为( )A.水平方向B.沿BC连线C.铅垂方向D.沿BD连线6. 三直角折杆AB、BC、BD连接如图示,不计自重。
其中属二力杆的杆件是()A. AB杆B. BC杆C. AB杆和BC杆D .BD杆7. 如图所示,刚架在C点受水平力P作用,则支座A的约束反力N A的方向应( )A. 沿水平方向B. 沿铅垂方向C. 沿AD连线D. 沿BC连线8. 图示三铰刚架上作用一力偶矩为m的力偶,则支座B的约束反力方向应为()A.沿BC连线B.沿AB连线C.平行于AC连线D.垂直于AC连线9. 以下受力方式中,有三个选项对刚体的作用效果相同,仅有一个的作用效果不同,这个选项是()10. 平面一般力系向其所在作用平面内任意一点简化的最终结果可能是()A. 一个力,一个力偶,一个力与一个力偶,平衡B. 一个力偶,平衡C. 一个力,一个力与一个力偶,平衡D.一个力,一个力偶,平衡11. 一平面任意力系向O点简化后,得到如图所示的一个力F 和一个矩为M O的力偶,则该力系的R最后合成结果是()A.一个合力偶B.作用在O点的一个合力C.作用在O点右边某点的一个合力D.作用在O点左边某点的一个合力12. 一个不平衡的平面汇交力系,若满足∑X=0的条件,则其合力的方位应是()A. 与x轴垂直B. 与x轴平行C. 与y轴垂直D. 通过坐标原点O13. 平面汇交力系、平面任意力系、空间汇交力系、空间任意力系的独立的平衡方程的数目分别为( )A . 2,3,3,6 B. 3,3,4,6C. 3,4,3,6D. 2,3,4,514. 图示结构为( )A. 静定结构B. 一次超静定结构C. 二次超静定结构D. 三次超静定结构15. 图示桁架中,杆1的内力为( )= PA. F1=- PB. F1C. F= P cos1=0D. F1二.填空题1. 已知力F=10kN和力偶m=5000N·m作用在某刚体的同一平面内,如图所示,为将其简化为一个力,须将力F向右平移_______米。
理论力学练习册(静力学)
文档南昌工程学院工程力学练习册(理论力学静力学部分)姓名:学号:年级、专业、班级:土木与建筑工程学院力学教研室第一章静力学公理和物体的受力分析一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.作用于刚体上的三个力,若其作用线共面且相交于一点,则刚体一定平衡。
( ) 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①1-2;②2-1;③1+2;2.作用在一个刚体上的两个力A、B,满足A=-B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知1、2、3、4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是:。
2.已知力沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 图示结构在斜杆CD的中点作用一铅垂向下的力
F,杆AB水平,各杆的自重不计,铰支座A的约束力FA的 作用线应该是:
A.沿水平方向
A
B.沿铅垂方向
C.沿A、D连线
D.无法判断
O FR′ MO
2L
2L
M的力偶,则图(a)中B处约束力比图(b)中B处
约束力: A.大 B.小
L B
MA
B
ML
A
C.相等 D.无法判断
(a)
(b)
题 16 图
17 图示一等边三角形板,边长为a,沿三边分
别作用有力F1、F2和F3,且F1 = F2 = F3。 则此三角形板处于:
A.平衡状态
B.移动状态
F1
C.转动状态
B.合成为一合力
C.相平衡
D.合成为一力螺旋
z 27 一空间平行力系如图示,该力系的最终简化结果是:
A.一合力
F4
B.一合力偶 C.一力螺旋
F1
O
F2
D.平衡 28 图示力 F,已知 F = 2 kN,力 F 对 x 轴之矩为:
x
题 27 图
z
F3 y
A. 3 2 kN ⋅ m C. 8 kN ⋅ m
FN′ 题1图
2 力F1,F2共线如图示,且F1 = 2F2,方向相反,其合力FR可表示为:
A.FR = F1 - F2
B.FR = F2 - F1
C.
FR
=
1 2
F1
F2 O
F1
D.FR = F2
题2图
3 作用在刚架上的力P如图示,力P对固定端A点的 力矩MA(P)为:
A.Phcosθ - Plsinθ B.Phsinθ - Phcosθ C.Phsinθ - Plcosθ D.Plcosθ - Phsinθ
O
A
B
A. 6π a
B. a C. a
2π
3π
D. 2a 3π
E a D aC
题 30 图
a
A.1kN
B.0.5kN
A
B
C. 2 kN
D.2 kN
L
L
题 21 图
22 已知图示斜面的倾角为θ,若要保持物块A静止,则物块与斜
面之间的摩擦因数fs所应满足的条件为:
A.tanθ ≤ f s
B.tanθ ≥ f s
C.cotθ ≤ f s
D.cotθ ≤ f s
23 物块重力为Q,放在粗糙的水平面上,其摩擦角ϕ =200,若力
B. 2 kN ⋅ m D. 4 2 kN ⋅ m
5m F
O 4m
y 3m
29 一空间平行力系,各力均平行于 y 轴。则此力系的
x
题 28 图
独立平衡方程组为:
∑ ∑ ∑ A. Fx = 0, M y (F ) = 0, M z (F ) = 0
∑ ∑ ∑ B. Fy = 0, M x (F ) = 0, M z (F ) = 0
h
P l
θ B
A
题3图
4 平面汇交力系(F1,F2, F3,F4,F5,)的力多边形如图
所示,则该力系的合力FR等于:
F2
Байду номын сангаас
F4
F1
F5
A.F3; C.F2;
B.-F3; D.-F2。
F3
题4图
5 图示结构受一水平力F作用,铰支 F
座A的约束力FA作用线应该是: A.沿水平线
B.沿铅垂线
A
C.沿AB连线
10 平面平行力系处于平衡,应有独力平衡方程的个数为:
A.1 个
B.2 个
C.3 个
D.4 个
11 平面力系不平衡,其简化的最后结果为:
A.合力
B.合力偶
C.合力或合力偶
D.合力和合力偶
12 在示系统中,绳 DE 能承受的最大拉力为 10 kN,杆自重不计。则力 F 的最大值为:
A.5 kN; B.10 kN; C.15 kN ; D.20 kN。
∑ ∑ ∑ C. Fz = 0, M x (F ) = 0, M y (F ) = 0
∑ ∑ ∑ D. Fx = 0, M x (F ) = 0, M y (F ) = 0
30 均质梯形薄板 ABCE,在 A 处用细绳悬挂,今欲使 AB 边保持水平,则需正方形 ABCD 的中心挖去一个圆形 薄板,其半径应为:
a
a A
F C
D
E
B
2a
2a
题 12 图
13 图示结构受到一对等值、反向、共线
的力作用,各构件的自重略去不计。铰支座B
的约束力FB的作用线应该是:
A.沿 B、C 所连水平线
B.沿铅垂方向
A 30º
D
E
FB
F′
G 30º
3a C
C.沿B、D连线
3a
a
2a
D.与 B、C 连线间的夹角为 60º
题 13 图
P作用于摩擦角之外,并已知α=300,P = Q,物体是否能保持平衡: A.能 B.不能 C.处于临界状态 D.P 与 Q 的值比较小时能保持静止,否则不能
A θ
题 22 图
P α
Q
题 23 图
24 已知 W=100kN,P=80kN,摩擦因数 f = 0.2,物块将: A.向上运动 B.向下运动 C.静止不动 D.无法判断
题7图
FD
C
B
题8图
9 各 力 交 于 O 点 的 汇 交 力 系 的 平 衡 方 程 若 写 成 一 矩 式 : ∑ Fx = 0(或∑ Fy = 0) , ∑ mA (F ) = 0 ,则必须附加条件是:
A.O、A 两点连线垂直于 x 轴(或 y 轴);
B.A 点与 O 点重合;
C.O、A 两点连线不垂直于 x 轴(或 y 轴); D.A 点可任选。
14 图示三铰刚架受力 F 作用,则 B 处约束力的
大小为:
A. F 2
B. 1 F 2
C. 2F
D.2F
F A
C a
B
a
a
题 14 图
15 若将图示三铰刚架中 AC 杆上的力偶移至 BC 杆上,则 A、B、C 处的约束力:
A.都改变
C m
B.都不改变
A
B
C.仅C处改变
D.仅C处不变
题 15 图
16 曲杆自重不计,其上作用一力偶矩为
W
P
600
25 图示物块重力W的大小为100 N,接触面处的摩擦角φm =
30º,在大小为100 N的水平力P作用下,该物块将:
A.向右加速滑动
B.向右匀速成滑动
C.保持静止
D.处于临界平衡状态
题 24 图
W P
题 25 图
26 某平面内由一非平衡共点力系和一非平衡力偶系构成的力系最后可能是:
A.合成为一合力偶
理论力学练习题
静力学部分
1 一重物放在地面上,如图所示,P是重物的重力,FN是电机对地面的压力, FN′ 是地
面对电机的约束力,作用力和反作用力及组成平衡的二力分别是:
A. FN和 FN′ ; P和 FN′
B. P 和FN; FN和 FN′
P
C. P和 FN′ ; FN和 FN′ D. FN和 FN′ ; P+ FN和 FN′
D.既移动又转动状态
F3
a
a
a
题 17 图
F2
a
18 图示三铰支架上作用两个转向相反、大小相等 且不为零的力偶m1和m2,支架自重不计。则支座B的约 束力为:
A.FB = 0 B.FB的作用线沿水平方向 C.FB的作用线平行于D、B连线 D.FB的作用线平行于C、B连线
m1
C
D
A
B
a
a
题 18 图
D.无法判断
B
D
G
C
E
H
题5图
6 已知F1、F2、F3、F4为作用于刚体上的平面汇交力系,
F4
其力矢关系如图所示为平行四边形。由此可知:
F3
A.力系可合成为一个力偶
B.力系可合成为一个力
F1
C.力系简化为一个力和一个力偶 D.力系合力为零,力系平衡
题6图
F2
7 某平面任意力系向O点简化后,得到如图所示的一个主 矢FR′和一个主矩MO,则该力系的最后简化结果为:
E
示。今在 AF 杆上作用一力偶(P,P′),若不计各杆
自重,则 A 处约束力的方向为:
A.过A点平行力F C.沿AG连线
B.过A点平行BG连线
C
D.沿AH直线
B
H
D A
C B
F
题 19 图
F
G
D
P
P′
A
题 20 图
21 力 F 作用在 BC 杆的中点,且垂直 BC, 若
C F
P = 2 kN,杆重不计。则杆 AB 的内力的大小为: L
m2 E
a
19 均质杆 AB 重力为 F,用铅垂绳 CD 吊在天花板上,A、B 两端分别靠在光滑的铅垂墙面上,则 A、B 两端约束力的大小是:
A. A、B 两点约束力相等 B.B 点约束力大于 A 点约束力 C.A 点约束力大于 B 点约束力 D. 无法判断
20 杆 AF、BE、EF、CD 相互铰接并支承如图所