2020-2021学年重庆九十五中、珊瑚中学初三上学期数学试卷
2020-2021重庆市初三数学上期中试题(含答案)

2020-2021重庆市初三数学上期中试题(含答案)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个 2.﹣3的绝对值是( ) A .﹣3B .3C .-13D .133.用配方法解方程210x x +-=,配方后所得方程是( ) A .213()24x -=B .213()24x +=C .215()24x +=D .215()24x -=4.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( ) A .310B .925C .425D .1105.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1B .3C .5D .76.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h7.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( )A .B .C .D .8.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120°9.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .10.下列事件中,属于必然事件的是( ) A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上11.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .212.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .4二、填空题13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.如图,将Rt ABC V 绕直角顶点C 顺时针旋转90o ,得到DEC V ,连接AD ,若25BAC ∠=o ,则BAD ∠=______.15.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于D .若AC =6,BD =52,则BC 的长为_____.16.如图,五边形ABCD 内接于⊙O ,若AC=AD ,∠B+∠E=230°,则∠ACD 的度数是__________.17.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ; 18.关于x 的方程的260x x m -+=有两个相等的实数根,则m 的值为________.19.如图,正六边形ABCDEF 内接于⊙O,⊙O 的半径为6,则这个正六边形的边心距OM 的长为__.20.用半径为12cm ,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______cm .三、解答题21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.22.如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O 上,BD平分∠ABC交AC 于点E,DF⊥BC交BC的延长线于点F.(1)求证:FD是⊙O的切线;(2)若BD=8,sin∠DBF=35,求DE的长.23.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?24.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.25.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.C解析:C【解析】【分析】本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次项系数化为1,然后左右两边同时加上一次项系数一半的平方. 【详解】 解:2x +x=12x +x+14=1+14215()24x +=.故选C 【点睛】考点:配方的方法.4.A解析:A 【解析】 【分析】画树状图(用A 、B 、C 表示三本小说,a 、b 表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解. 【详解】画树状图为:(用A 、B 、C 表示三本小说,a 、b 表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6, ∴从中随机抽取2本都是小说的概率=620=310. 故选:A . 【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.5.C解析:C 【解析】 【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案. 【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称, ∴13m -=-,25n -=-,解得:2m =-,7n =, 则275m n +=-+= 故选C . 【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.6.D解析:D 【解析】 【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案. 【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D. 【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.7.C解析:C 【解析】 【分析】根据题意,利用分类讨论的方法,讨论k >0和k <0,函数y=kx 2与y=kx+k 的图象,从而可以解答本题. 【详解】 当k >0时,函数y=kx 2的图象是开口向上,顶点在原点的抛物线,y=kx+k 的图象经过第一、二、三象限,是一条直线,故选项A 、B 均错误, 当k <0时,函数y=kx 2的图象是开口向下,顶点在原点的抛物线,y=kx+k 的图象经过第二、三、四象限,是一条直线,故选项C 正确,选项D 错误,【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.C解析:C【解析】【分析】首先连接OA,OB,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由圆周角定理,即可求得∠APB的度数.【详解】连接OA,OB,∵⊙O是正方形ABCD的外接圆,∴∠AOB=90°,若点P在优弧ADB上,则∠APB=12∠AOB=45°;若点P在劣弧AB上,则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C.9.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.C【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】A. 任意数的绝对值都是正数是随机事件,错误;B. 两直线被第三条直线所截,内错角相等是随机事件,错误;C. 如果a 、b 都是实数,那么a +b =b +a 是必然事件,正确;D. 抛掷1个均匀的骰子,出现6点朝上是随机事件,错误; 故选D. 【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a =-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.12.B解析:B 【解析】分析:∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <0;故①错误。
2020-2021学年重庆市江北区九年级(上)期末数学试卷(解析版)

2020-2021学年重庆市江北区九年级第一学期期末数学试卷一、选择题(共12小题,每题4分).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.20212.下面图形是用数学家名字命名的,其中是中心对称图形但不是轴对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线3.下列事件中,必然事件的是()A.“NBA巨星”詹姆斯上篮100%得分B.抛掷一枚骰子,朝上的点数为6C.单项式加上单项式,和为多项式D.画一个三角形,其内角和为180°4.将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2 5.如图所示的图形都是由同样大小的实心圆点按一定的规律组成的,其中第①个图形一共有7个实心圆点,第②个图形一共有10个实心圆点,第③个图形一共有14个实心圆点,…,按此规律排列下去,第5个图形中实心圆点的个数为()A.19B.20C.25D.326.如图,△ABC是⊙O的内接三角形,∠A=45°,BC=8,则⊙O的半径为()A.4B.4C.8D.87.如图,△ABC与△DEF是位似图形,且位似中心为O,OB:BE=2:1,若△ABC的面积为4,则△DEF的面积为()A.2B.6C.8.D.98.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.若关于x的方程5☆x=6﹣4x,则代数式3﹣2x+10x2的值为()A.﹣11B.10C.11D.179.在平面直角坐标系xOy中,对于点P(a,b),若ab>0.则称点P为“同号点”,下列函数的图象上不存在“同号点”的是()A.y=﹣2x+3B.y=x2﹣2x C.y=﹣D.y=x2+10.若关于x的一元一次不等式组的解集为x≤5.且关于y的分式方程2﹣=有非负整数解,则符合条件的所有整数a的和为()A.12B.13C.15D.1611.如图,在矩形ABCD中,AD=3,将∠A向内翻折,点A落在BC上,记为A′,折痕为DE,若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则点B′到BC的距离为()A.B.C.D.12.已知反比例函数C1:y=(k<0)的图象如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是曲线C2上一点,点M在直线y=﹣x上,连接MN、ON,若MN=ON,△MON的面积为2,则k的值为()A.﹣2B.﹣2C.﹣4D.﹣4二、填空题:(本大题6个小题,每小题4分,共24分)13.对于中国而言,2020年是一个新的时间坐标,过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就,将数字820000000用科学记数法表示为.14.计算:(π﹣3.14)0+|﹣5|﹣()﹣1=.15.现有三张正面分别标有数字1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字.前后两次抽取的数字分别记为m,n.则点(m,n)在函数y=的图象上的概率是.16.如图,在菱形ABCD中,对角线AC和BD交于点O,∠ABD=30°,AB=4,分别以点A、点C为圆心,以OA的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,对称轴为直线x=1,且与x轴的一个交点在点(﹣1,0)和(0,0)之间.下列四个结论:①abc<0;②若点C(﹣3,y1)、D(,y2)在此抛物线上,则y1<y2;③2a+b+c<0;④对于任意实数m,总有a+b≥m(am+b);⑤对于a的每一确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).18.如图,正方形ABCD中,AB=,点M在边CD上,且DM=DC,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置. 19.(1)解方程:2x2﹣3x+1=0;(2)化简:÷(+m﹣1).20.如图,在平行四边形ABCD中,点E、F分别是边AD、BC上一点,且AE=CF,连接BE、DF.(1)求证:BE=DF;(2)若∠C=110°,∠ADF=35°,求∠ABE的度数.21.“文明江北,因为有您”!我区自2017年成功创建全国文明城区以来,牢固树立“文明建设为大家、建设文明靠大家”的工作理念,全区掀起了志愿服务的热潮,区教委也号召各校学生积极参与到志愿服务当中,为了解甲、乙两所学校学生一周志服务情况,从这两所学校中各随机抽取40名学生,分别对他们一周的志愿服务时长(单位:分钟)进行收集、整理、描述和分析,下面给出了部分信息:a.甲校40名学生一周的志愿服务时长的扇形统计图如图(数据分成6组:A.20≤x<40,B.40≤x<60,C.60≤x<80,D.80≤x<100,E.100≤x<120,F.120≤x<140);b.甲校40名学生一周志愿服务时长在60≤x<80这一组的是:60 60 62 63 65 68 70 72 73 75 7576 80 80c.甲、乙两校各抽取的40名学生一周志愿服务时长的平均数、中位数、众数如表:学校平均数中位数众数甲75m90乙757685根据以上信息,回答下列问题:(1)上面图表中的m=,扇形统计图中“C组”所对应的圆心角的度数为度;(2)根据上面的统计结果,你认为校学生志愿服务工作做得好(填“甲”或“乙”),理由是;(3)小江和小北两位同学都参加了观音桥街道的志愿者服务项目,该街道志愿者服务工作一共设置了三个岗位,请用列表或画树状图的方法,求小江、小北恰好被分配到同一岗位进行志愿者服务的概率.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究y=性质及其应用的部分过程,请按求完成下列各小题.x…﹣4﹣3﹣2﹣101234…y…a125b521…(1)列表,写出表中a、b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴;()②该函数在自变量的取值范围内,没有最大值,也没有最小值;()③当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.()(3)已知函数y=﹣x+4的图象如图所示,结合你所画的函数图象,直接写出不等式>﹣x+4的解集.23.如图,AB为⊙O的直径,点C在⊙O上,点D为线段BA的延长线上一点,连接DC,过点O作OE∥AC交DC延长线于点E,交BC于点F,且满足∠B=∠E.(1)求证:DC是⊙O的切线;(2)若AB=8,AC=4,求EF的长.24.作为巴渝文化的发源地,重庆在许多领域都首屈一指,而其中最具代表性的,当然还是它的美食,在无数美食中,最具地域特色的,非重庆火锅莫属,近年来,随着重庆市成为网红城市,许多游客到重庆来打卡麻辣鲜香的火锅,同时还会购买火锅底料作为伴手礼.11月,洪崖洞附近一特产店购进A、B两种品牌火锅底料共450袋,其中A品牌底料每袋售价20元,B品牌底料每袋售价30元,11月全部售完这批火锅底料,所得总销售额不低于11500元.(1)A品牌火锅底料最多购进多少袋?(2)为了促进销量,12月,该店开展了优惠活动,A品牌底料的售价比11月的价格优惠a%,B品牌底料的售价比11月的价格优惠a%,结果12月售出的A品牌底料数量比11月总销售额最低时售出的A品牌底料数量增加了a%,售出的B品牌底料数量比11月总销售额最低时售出的B品牌底料数量增加了a%,结果12月的总销售额比11月最低销售额增加了a%,求a的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形。
九年级数学上册2020-2021学年度第一学期九年级期末学业水平质量检测含答案

2020—2021学年第一学期九年级期末学业水平质量检测数学试卷一、选择题(本题共8个小题,每小题2分,共16分.每小题只有一个正确选项)1.如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②AE DEAB BC=;③AD AEAC AB=. 使△ADE与△ACB一定相似的是A.①②B.②③C.①③D.①②③2. 如图,A、B、C是半径为4的⊙O上的三点. 如果∠ACB=45°,那么AB的长为A.πB.2πC.3πD.4π3. 小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地. 如果他再抛第5次,那么硬币正面朝上的概率为A.1 B.12C.14D.154.如图,数轴上有A、B、C三点,点A、C关于点B对称,以原点O为圆心作圆,如果点A、B、C分别在⊙O外、⊙O内、⊙O上,那么原点O的位置应该在A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点5. 如图,P A和PB是⊙O的切线,点A和点B为切点,AC是⊙O的直径. 已知∠P=50°,那么∠ACB的大小是A.65°B.60°C.55°D.50°6. 如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C,测得∠α=30°,∠β=45°,量得BC长为80米.如果设河的宽度为x米,那么下列关系式中正确的是A.1802xx=+B.180xx=+C.802xx=+D.803xx=+cCBA7. 体育节中,某学校组织九年级学生举行定点投篮比赛, 要求每班选派10名队员参加.下面是一班和二班 参赛队员定点投篮比赛成绩的折线统计图(每人投 篮10次,每投中1次记1分),请根据图中信息判断:①二班学生比一班学生的成绩稳定;②两班学生成绩的中位数相同;③两班学生成绩的众数相同. 上述说法中,正确的序号是 A .①② B .①③C .②③D .①②③8. 运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线可以看作是一条抛物线,不考虑空气阻力,足球距离地面的高度y (单位:m )与足球被踢出后经过的时间x (单位:s )近似满足函数关系()20y ax bx c a =++≠.如图记录了3个时刻的数据,根据函数模型和所给数据,可推断出足球飞行到最高点时,最接近的时刻x 是 A .4 B .4.5C .5D .6二、填空题(本题共8个小题,每小题2分,共16分)9. 如图,线段BD 、CE 相交于点A ,DE ∥BC .如果AB =4,AD =2,DE =1.5, 那么BC 的长为_________.10.在平面直角坐标系xOy 中,二次函数()214y x =--+的图象如图,将二次函数()214y x =--+的图象平移,使二次函数()214y x =--+的图象的最高点与坐标原点重合,请写出一种平移方法:__________________________________________.11.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D 、E ,量出半径OC =5cm ,弦DE =8cm ,则直尺的宽度为____cm.12. “阅读让自己内心强大,勇敢面对抉择与挑战.”某校倡导学生读书,下面的表格是该校九年级学生本学期内阅读课外书籍情况统计表. 请你根据统计表中提供的信息,求出表中a 、b 的值:a = ,b = .13.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y 美元. 设2017年到2019年该地区居民年人均收入平均增长率为x ,那么y 与x 的函数关系式是________________________. 图书种类 频数 频率 科普常识 210 b 名人传记 204 0.34 中外名著 a 0.25 其他360.06x s ()y m ()182014O yx4O 1EDBCA二班一班成绩/分109876109876543201514. 如图,直角三角形纸片ABC ,90ACB ∠=︒,AC 边长为10 cm. 现从下往上依次裁剪宽为4 cm 的矩形纸条, 如果剪得第二张矩形纸条恰好是正方形,那么BC 的长 度是____cm .15. 已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出一组满足条件的a ,b 的值:a =______,b =________.16. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线a 和直线外一点P . 求作:直线a 的垂线,使它经过P . 作法:如图2.(1)在直线a 上取一点A ,连接P A ; (2)分别以点A 和点P 为圆心,大于12AP 的长为半径 作弧,两弧相交于B ,C 两点,连接BC 交P A 于点D ; (3)以点D 为圆心,DP 为半径作圆,交直线a 于点E (异于点A ),作直线PE .所以直线PE 就是所求作的垂线.请回答:该尺规作图的依据是_____________________________________________. 三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17.计算:(4cos30π1︒+--.18. 已知:如图,AB 为⊙O 的直径,OD ∥AC . 求证:点D 平分BC .19.如图,在□ABCD 中,连接DB ,F 是边BC 上一点,连接DF 并延长,交AB=∠A . (1)求证:△BDF ∽△BCD ;(2)如果BD =9BC =,求ABBE的值. 图1aaP20. 如图,菱形ABCD 的对角线交于点O ,点E 是菱形外一点,DE ∥AC ,CE ∥BD . (1)求证:四边形DECO 是矩形;(2)连接AE 交BD 于点F ,当∠ADB =30°,DE=2时,求AF 的长度.21.如图,直线2y x =+与反比例函数()00ky k x x=>>,的图象交于点A (2,m ),与y 轴交于点B .(1)求m 、k 的值;(2)连接OA ,将△AOB 沿射线BA 方向平移,平移后A 、O 、B 的对应点分别为A'、O'、B',当点O'恰好落在反比例函数()0ky k x=>的图象上时,求点O' 的坐标; (3)设点P 的坐标为(0,n )且04n <<,过点P 作平行于x 轴的直线与直线2y x =+和反比例函数()0ky k x=>的图象分别交于点C ,D ,当C 、D 间距离小于或等于4时,直接写出n 的取值范围.22.如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,连接CD ,过点C 作CE ⊥DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点. (1)求证:CF 是⊙O 的切线; (2)当185BD=,3sin 5F=时,求OF 的长.23. 为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每名被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有_______人,扇形统计图中α的度数是_______; (2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或画树状图法求出选中书法与乐器组合在一起的概率.24.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,30CAB ∠=︒,D 是直径AB 上一动点,连接CD 并过点D 作CD 的垂线,与⊙O 的其中一个交点记为点E (点E 位于直线CD 上方或左侧),连接EC .已知AB =6 cm ,设A 、D 两点间的距离为x cm ,C 、D 两点间的距离为1y cm ,E 、C 两点间的距离为2y cm . 小雪根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小雪的探究过程:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值,请将表格补充完整; x /cm 0 1 2 3 4 5 61y /cm5.20 4.36 3.60 2.65 2.65 2y /cm5.204.564.224.244.775.606.00 (2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y ),(x ,y ),并画出函数y 的图象;y 2cm6543学生选修课程条形统计图学生选修课程扇形统计图25. 在平面直角坐标系xOy 中,抛物线()240y ax ax m a =-+≠与x 轴的交点为A 、B ,(点A 在点B 的左侧),且AB =2. (1)求抛物线的对称轴及m 的值(用含字母a 的代数式表示);(2)若抛物线()240y ax ax m a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,求a 的取值范围;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接 写出a 的取值范围.26. 如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF ⊥BC ,且FE =FC (CE <CB ),连接CE 、AE ,点G 是AE 的中点,连接FG .(1)用等式表示线段BF 与FG 的数量关系是___________________;(2)将图1中的△CEF 绕点C 按逆时针旋转,使△CEF 的顶点F 恰好在正方形ABCD 的对角线AC 上,点G 仍是AE 的中点,连接FG 、DF .①在图2中,依据题意补全图形; ②求证:DF =.图2图127. 在平面直角坐标系xOy中,⊙C的半径为r,点P与圆心C不重合,给出如下定义:若在⊙C上存在一点M,使30MPC∠=︒,则称点P为⊙C的特征点.(1)当⊙O的半径为1时,如图1.①在点P1(-1,0),P2(1,P3(3,0)中,⊙O的特征点是______________.②点P在直线y b=+上,若点P为⊙O的特征点,求b的取值范围.(2)如图2,⊙C的圆心在x轴上,半径为2,点A(-2,0),B(0,.若线段AB上的所有点都是⊙C的特征点,直接写出圆心C的横坐标m的取值范围.2020—202021学年第一学期九年级期末学业水平质量检测数学试卷参考答案及评分标准一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 3 10. 向左平移1个单位,再向下平移4个单位(答案不唯一) 11. 312. 150,0.3513. ()23001y x =+ 14. 20 15. 1,2(答案不唯一) 16. 到线段两个端点距离相等的点在这条线段的垂直平分线上,直径所对的圆周角是直角,两点确定一条直线三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17. 解:原式=411+-, ………………… 4分 =11+-,=0. ………………… 6分18. 证明:连接CB . ………………… 1分∵AB 为⊙O 的直径,∴90ACB ∠=︒. ………………… 3分 ∵OD ∥AC ,∴OD ⊥CB ,. …………………5分 ∴点D 平分BC . ………………… 6分 另证:可以连接OC 或AD .19. (1)证明:∵四边形ABCD 是平行四边形,∴DC ∥AE ,A C ∠=∠,AB =DC . ………………… 1分 ∵EDB A ∠=∠,∴EDB C ∠=∠. ………………… 2分 ∵DBF CBD ∠=∠,∴△BDF ∽△BCD . ………………… 3分(2)解:∵△BDF ∽△BCD ,∴BF BDBD BC =. ………………… 4分9=.∴5BF=. …………………5分∵DC∥AE,∴△DFC∽△EFB.∴CF DCBF BE=.∴45ABBE=. …………………6分20. (1)证明:∵四边形ABCD是菱形,∴AC⊥BD. ………………1分∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形.∴四边形DECO是矩形. ………………2分(2)解:∵四边形ABCD是菱形,∴AO OC=.∵四边形DECO是矩形,∴DE OC=.∴2DE AO==. ………………3分∵DE∥AC,∴OAF DEF∠=∠.∵AFO EFD∠=∠,∴△AFO≌△EFD.∴OF DF=. ………………4分在Rt△ADO中,tanOAADBDO∠=.∴2DO=.∴DO=………………5分∴FO=∴AF===. ………………6分方法二:∴△AFO≌△EFD.在Rt △ACE 中,AC =4,CE =OD=∴AE=∴AF =12AE. 21. 解:(1)∵直线2y x =+过点A (2,m ),∴224m =+=. ……………… 1分 ∴点A (2,4). 把A (2,4)代入函数ky x=中, ∴42k =. ∴8k =. ……………… 2分 (2)∵△AOB 沿射线BA 方向平移,∴直线OO' 的表达式为y x =. ……………… 3分∴,8y x y x =⎧⎪⎨=⎪⎩.解得x =. ……………… 4分 ∴点O'的坐标为(. ……………… 5分(3)24n <≤. ……………… 6分22. (1)证明:连接OC .∵CB CB =,∴2BOC BAC ∠=∠. ……………… 1分 ∵∠ABD =2∠BAC , ∴BOC ABD ∠=∠.∴BD ∥OC . ……………… 2分 ∵CE ⊥DB ,∴CE ⊥OC . ……………… 3分 ∴CF 是⊙O 的切线.(2)解:连接AD .∵AB 为⊙O 的直径,∴BD ⊥AD . ∵CE ⊥DB , ∴AD ∥CF .在Rt △ABD 中, ∴3sin sin 5BD F=BAD AB ∠==. ∴18355AB =. ∴6AB =. ……………… 5分 ∴3OC =. 在Rt △COF 中, ∴3sin 5OC F OF ==. ∴335OF =. ∴5OF =. ……………… 6分 另解:过点O 作OG ⊥DB 于点G .23. 解:(1)40,108︒; ……………… 2分 (2)条形统计图补充正确; ……………… 4分 (3)列表法或画树状图正确: ……………… 5分∴P (AC )=126=. ……………… 6分 24. 解:(1)3,3 ……………… 2分(2) ……………… 4分 (3)4.5 或6 ……………… 6分25.解:(1)对称轴为直线422ax a-=-=. ……………… 1分 ∵AB =2,点A 在点B 的左侧,∴A ()10,,B ()30, 把A (1,0)代入()240y ax ax m a =-+≠中,y 2cm 65432∴3m a =. ……………… 2分(2)∵抛物线()2430y ax ax a a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,∴0a <. ……………… 3分当抛物线()2430y ax ax a a =-+≠经过点(0,-1)时,可得13a =-. ∴a 的取值范围是103a -<<. ……………… 4分 (3)32a -<-≤或2<3a ≤. ……………… 6分26. (1)BF =. ……………… 1分(2)①依据题意补全图形; ……………… 3分②证明:如图,连接BF 、GB .∵四边形ABCD 是正方形,∴AD =AB ,90ABC BAD ∠=∠=︒,AC 平分BAD ∠. ∴45BAC DAC ∠=∠=︒. 在△ADF 和△ABF 中,AD AB DAC BAC AF AF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△ABF . ……………… 4分∴DF BF =.∵EF ⊥AC ,90ABC ∠=︒,点G 是AE 的中点,∴AG EG BG FG ===. ……………… 5分 ∴点A 、F 、E 、B 在以点G 为圆心,AG 长为半径的圆上. ∵BF BF =,45BAC ∠=︒,∴290BGF BAC ∠=∠=︒. ……………… 6分 ∴△BGF 是等腰直角三角形.∴BF =.∴DF =. ……………… 7分27. 解:(1) P 1,P 2.……………… 2分②当0b >时,设直线y b =+与以2为半径的⊙O 相切于点C ,与y 轴交于点E ,与x 轴交于点F . ∴E (0,b ),F,0),OC ⊥EF .∴3tan OF FEO OE b ∠===. ∴30FEO ∠=︒. (3)∵1sin 2OC FEO OE ∠==,∴212b =. ∴4b =. ……………… 4分 当0b <时,由对称性可知:4b =-. ……………… 5分 ∴b 的取值范围是44b -≤≤. ……………… 6分 (2)∴m 的取值范围为22m -<≤. ……………… 7分。
《试卷3份集锦》重庆市2020-2021年九年级上学期期末检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4m AO =, 1.6m AB =,1m CO =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m【答案】C 【解析】分析:根据题意得△AOB ∽△COD ,根据相似三角形的性质可求出CD 的长.详解:∵AB BD ⊥,CD BD ⊥,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB ∽△COD , ∴AO AB CO CD= ∵AO=4m ,AB=1.6m ,CO=1m , ∴· 1.610.44AB CO CD m AO ⨯===. 故选C.点睛:本题考查了相似三角形的判定与性质,正确得出△AOB ∽△COD 是解题关键.2.把方程2830x x +-=化成2()x m n +=的形式,则,m n 的值分别是( )A .4,13B .-4,19C .-4,13D .4,19 【答案】D【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】解:∵x 2+8x-3=0,∴x 2+8x=3,∴x 2+8x+16=3+16,∴(x+4)2=19,∴m=4,n=19,故选:D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点【答案】D【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【详解】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知线段垂直平分线上的点到线段两个端点距离相等.4.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【答案】A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选A .【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.5.如图,在半径为13的O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .210C .211D .3【答案】C 【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出222OG OB BG =-=,证出EOG ∆是等腰直角三角形,得出45,22OEG OE OG ∠=︒==30OEF ∠=︒,由直角三角形的性质得出122OF OE ==11DF = 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,221392OG OB BG -=-=,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,222OE OG == ∵75DEB ∠=︒,∴30OEF ∠=︒, ∴122OF OE == 在Rt ODF ∆中,2213211DF OD OF =-=-=∴2211CD DF ==故选C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.6.如图,⊙O 外接于△ABC ,AD 为⊙O 的直径,∠ABC=30°,则∠CAD=( )A .30°B .40°C .50°D .60°【答案】D 【分析】首先由∠ABC=30°,推出∠ADC=30°,然后根据AD 为⊙O 的直径,推出∠DCA=90°,最后根据直角三角形的性质即可推出∠CAD=90°-∠ADC ,通过计算即可求出结果.【详解】解:∵∠ABC=30°,∴∠ADC=30°,∵AD 是⊙O 的直径,∴∠ACD=90°,∴∠CAD=90°-30°=60°.故选D .【点睛】本题主要考查圆周角定理,直角三角形的性质,角的计算,关键在于通过相关的性质定理推出∠ADC 和∠DCA 的度数.7.一个凸多边形共有 20 条对角线,它是( )边形A .6B .7C .8D .9 【答案】C 【分析】根据多边形的对角线的条数公式(3)2n n -列式进行计算即可求解. 【详解】解:设该多边形的边数为n ,由题意得:(3)202n n -=, 解得:128,5n n ==-(舍去)故选:C .【点睛】本题主要考查了多边形的对角线公式,熟记公式是解题的关键.8.如图,在ABC 中,AB BC =,90ABC ∠=︒,点D 、E 、F 分别在边AC 、BC 、AB 上,且CDE △与FDE 关于直线DE 对称.若2AF BF =,72AD =,则CD =( ).A .3B .5C .32D .52【答案】D 【分析】过点F 作FH ⊥AD ,垂足为点H ,设BF a =,根据勾股定理求出AC ,FH ,AH ,设EC x =,根据轴对称的性质知3BE a x =-,在Rt △BFE 中运用勾股定理求出x ,通过证明FHDEBF ∆∆,求出DH 的长,根据AD AH HD =+求出a 的值,进而求解.【详解】过点F 作FH ⊥AD ,垂足为点H ,设BF a =,由题意知,2AF a =,3BC AB a ==, 由勾股定理知,32AC a =,2FH AH a ==, ∵CDE ∆与FDE ∆关于直线DE 对称,∴EC FE =,45DFE DCE ︒∠=∠=,设EC x =,则3BE a x =-,在Rt △BFE 中,222(3)a a x x +-=, 解得,53x a =,即53EC a =,43BE a =, ∵45DFE DCE A AFH ︒∠=∠=∠=∠=,∴90DFH BFE ︒∠+∠=,90BEF BFE ︒∠+∠=,∴DFH BEF ∠=∠,∵90DHF FBE ︒∠+∠=,∴FHDEBF ∆∆, ∴DH FH BF BE=, ∴324DH a =,∵322724AD AH HD a a =+=+=, ∴解得,4a =, ∴1227252CD AC AD =-=-=,故选D .【点睛】本题考查了轴对称图形的性质,相似三角形的判定与性质,勾股定理,等腰直角三角形的性质等,巧作辅助线证明FHD EBF ∆∆是解题的关键.9.抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac -b 2<0;②2a -b =0;③a +b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2 .正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据二次函数图像与b 2-4ac 的关系、对称轴公式、点的坐标及增减性逐一判断即可.【详解】解:①由图可知,将抛物线补全,抛物线y =ax 2+bx +c(a≠0)与x 轴有两个交点∴b 2-4ac >0∴4ac -b 2<0,故①正确;②∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1∴12b a-=- 解得:2b a =∴2a -b =0,故②正确;③∵抛物线y =ax 2+bx +c (a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间, ∴此抛物线与x 轴的另一个交点在(0,0)和(1,0)之间∵在对称轴的右侧,函数y 随x 增大而减小∴当x=1时,y<0,∴将x=1代入解析式中,得:y=a+b+c<0故③正确;④若点(x1,y1),(x2,y2)在对称轴右侧时,函数y随x增大而减小即若x1<x2,则y1>y2故④错误;故选C.【点睛】此题考查的是二次函数图像及性质,掌握二次函数图像及性质和各系数之间的关系是解决此题的关键. 10.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则sin∠BDE的值是()A.15B.14C.13D.24【答案】C【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=12BC=12AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求sin∠BDE的值.【详解】∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=12BC=12AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴AF AD=EF BE=2∴AF=2EF,∴AE=3EF=DE,∴ sin∠BDE=EF1= DE3,故选C.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.11.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为12,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【答案】D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.12.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.54.9h t t=-(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.1.71s B.1.71s C.1.63s D.1.36s【答案】D【分析】找重心最高点,就是要求这个二次函数的顶点,应该把一般式化成顶点式后,直接解答.【详解】解:h=3.5t-4.9t2=-4.9(t-514)2+58,∵-4.9<1∴当t=514≈1.36s 时,h 最大. 故选D.【点睛】此题主要考查了二次函数的应用,根据题意得出顶点式在解题中的作用是解题关键.二、填空题(本题包括8个小题)13.在△ABC 中,AB=AC=5,BC=8,若∠BPC=12∠BAC ,tan ∠BPC=_______________.【答案】43【详解】试题分析:如图,过点A 作AH ⊥BC 于点H , ∵AB=AC ,∴AH 平分∠BAC ,且BH=12BC=4. 又∵∠BPC=12∠BAC ,∴∠BAH=∠BPC. ∴tan ∠BPC=tan ∠BAH.在Rt △ABH 中,AB=5,BH=4,∴AH=1.∴tan ∠BAH=43=BH AH . ∴tan ∠BPC=43.考点:1.等腰三角形的性质;2.锐角三角函数定义;1.转化思想的应用.14.已知一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中有一个交点的横坐标是2,则k 的值为_____.【答案】1.【解析】把x=2代入一次函数的解析式,即可求得交点坐标,然后利用待定系数法即可求得k 的值.【详解】在y=x+1中,令x=2,解得y=3,则交点坐标是:(2,3),代入y=k x得:k=1.故答案是:1.【点睛】本题考查了用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.15.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.【答案】1【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则2360n RSπ=扇由此构建方程即可得出答案.【详解】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=26 360nπ⋅,解得:n=1.∴该扇形的圆心角度数为:1°.故答案为:1.【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键.16.若3a=4b(b≠0),则a bb-=_____.【答案】1 3【分析】依据3a=4b,即可得到a=43b,代入代数式进行计算即可.【详解】解:∵3a=4b,∴a=43 b,∴a bb-=43b bb-=13bb=13.故答案为:13.【点睛】本题主要考查了比例的性质,求出a=43b是解题的关键.17.某农科所在相同条件下做某作物种子发芽率的试验,结果如下表所示:种子个数100 200 300 400 500 600 700 800 900 1000发芽种子个数94 187 282 338 435 530 621 781 814 901发芽种子频率0.940 0.935 0.940 0.845 0.870 0.883 0.891 0.898 0.904 0.901根据频率的稳定性,估计该作物种子发芽的概率为__________(结果保留小数点后一位).【答案】0.9【分析】选一个表格中发芽种子频率比较按近的数,如0.904、0.901等都可以.【详解】解:根据题意,由频率估计概率,则估计该作物种子发芽的概率为:0.9;故答案为:0.9;【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.18.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=,215x=舍去),(221565k x∴==+=+,故答案为625+三、解答题(本题包括8个小题)19.已知,关于x的方程(m﹣1)x2+2x﹣2=0为一元二次方程,且有两个不相等的实数根,求m的取值范围. 【答案】12m >且1m ≠ 【分析】由题意根据判别式的意义得到=22﹣4(m ﹣1)×(﹣2)>0,然后解不等式即可. 【详解】解:根据题意得=22﹣4(m ﹣1)×(﹣2)>0且m ﹣1≠0, 解得12m >且m≠1, 故m 的取值范围是12m >且m≠1. 【点睛】本题考查一元二次方程的定义以及一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 20.平行四边形ABCD 中,点E 为BC 上一点,连接DE 交对角线AC 于点F ,点G 为DE 上一点,AH DE ⊥于H ,2BC AG =且ACE GAC ∠=∠,点M 为AD 的中点,连接MF ;若75DFC ∠=︒.(1)求MFD ∠的度数;(2)求证:3GF GH +=【答案】(1)30° (2)证明见解析【分析】(1)通过平行四边形的性质、中点的性质、平行线的性质去证明()AFG AFM SAS ≅,可得,75FG FM AFG AFM DFC ︒=∠=∠=∠=,再根据180()MFD AFG AFM ︒∠=-∠+∠求解即可; (2)延长FE 至点N ,使GN FG =,连接AN ,通过证明()AGN DMF SAS ≅,可得30ANH DFM ︒∠=∠=,再根据特殊角的锐角三角函数值,即可得证3GN GH GF GH +=+=.【详解】(1)∵四边形ABCD 为平行四边形AD BC ∴=2BC AG =2AD AG ∴=∵M 为AD 的中点22AD AM DM ∴==AG AM DM ∴==//AD BCACE CAM ∴∠=∠即ACE FAM ∠=∠ACE GAC ∠=∠CAG FAM ∴∠=∠即FAG FAM ∠=∠AF AF =()AFG AFM SAS ∴≅,75FG FM AFG AFM DFC ︒∴=∠=∠=∠=180()30MFD AFG AFM ︒︒∴∠=-∠+∠=;(2)延长FE 至点N ,使GN FG =,连接AN ,由(1)知,,FG FM AGF AMF =∠=∠,GN FM AGN CMF ∴=∠=∠AG DM =()AGN DMF SAS ∴≅30ANH DFM ︒∴∠=∠=AH DE ⊥ 3HN AH ∴= 3GN GH GF GH AH ∴+=+=.【点睛】本题考查了平行四边形的综合问题,掌握平行四边形的性质、平行线的性质、全等三角形的性质以及判定定理、特殊三角函数值是解题的关键.21.如图,在平面直角坐标系中,直线111:2y x =与直线2l ,交点A 的横坐标为2,将直线1l ,沿y 轴向下平移4个单位长度,得到直线3l ,直线3l ,与y 轴交于点B ,与直线2l ,交于点C ,点C 的纵坐标为2-,直线2l ;与y 轴交于点D .(1)求直线2l 的解析式;(2)求BDC ∆的面积【答案】(1)y=﹣32x+4;(2)1【分析】(1)把x=2代入y=12x,得y=1,求出A(2,1).根据平移规律得出直线l3的解析式为y=12x﹣4,求出B(0,﹣4)、C(4,﹣2).设直线l2的解析式为y=kx+b,将A、C两点的坐标代入,利用待定系数法即可求出直线l2的解析式;(2)根据直线l2的解析式求出D(0,4),得出BD=8,再利用三角形的面积公式即可求出△BDC的面积.【详解】解:如图:(1)把x=2代入y=12x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=12x﹣4,∴x=0时,y=﹣4,∴B(0,﹣4).将y=﹣2代入y=12x﹣4,得x=4,∴点C的坐标为(4,﹣2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,﹣2),∴2142k bk b+=⎧⎨+=-⎩,解得324kb⎧=-⎪⎨⎪=⎩,∴直线l2的解析式为y=﹣32x+4;(2)∵y=﹣32x+4,∴x=0时,y=4,∴D(0,4).∵B(0,﹣4),∴BD=8,∴△BDC的面积=12×8×4=1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求直线的解析式,一次函数图象上点的坐标特征,三角形的面积,正确求出求出直线l2的解析式是解题的关键.22.如图,AB是⊙O的直径,点C、D在⊙O上,AD与BC相交于点E.连接BD,作∠BDF=∠BAD,DF 与AB的延长线相交于点F.(1)求证:DF是⊙O的切线;(2)若DF∥BC,求证:AD平分∠BAC;(3)在(2)的条件下,若AB=10,BD=6,求CE的长.【答案】(1)证明见解析;(2)证明见解析;(3)21 10.【分析】(1)如图,连结OD,只需推知OD⊥DF即可证得结论;(2)根据平行线的性质得到∠FDB=∠CBD,由圆周角的性质可得∠CAD=∠BAD=∠CBD=∠BDF,即AD 平分∠BAC;(3)由勾股定理可求AD的长,通过△BDE∽△ADB,可得DE BDBD AD,可求DE=92,AE=72,由锐角三角函数可求CE的长.【详解】(1)连接OD,CD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∵OA=OD,∴∠BAD=∠ADO,∵∠BDF=∠BAD,∴∠BDF+∠ODB=90°,∴∠ODF=90°,∴OD⊥DF,∴DF是⊙O的切线;(2)∵DF∥BC,∴∠FDB=∠CBD,∵CD CD=,∴∠CAD=∠CBD,且∠BDF=∠BAD,∴∠CAD=∠BAD=∠CBD=∠BDF,∴AD平分∠BAC;(3)∵AB=10,BD=6,∴AD=8AD==,∵∠CBD=∠BAD,∠ADB=∠BDE=90°,∴△BDE∽△ADB,∴DE BD BD AD=,∴6 68 DE=,∴DE=92,∴AE=AD﹣DE=72,∵∠CAD=∠BAD,∴sin∠CAD=sin∠BAD∴CE BD AE AB=∴6 710 2CE=∴CE=21 10【点睛】本题考查了圆的综合问题,掌握平行线的性质、圆周角的性质、勾股定理、相似三角形的性质以及判定定理、锐角三角函数的定义是解题的关键.23.计算:()1 46023045cos sin tan -︒--︒+︒.【答案】2【分析】首先计算各锐角三角函数值,然后进行计算即可.【详解】原式11142122-=⨯--⨯+ =2-1+1 2=【点睛】此题主要考查锐角三角函数的相关计算,牢记锐角三角函数值是解题关键.24.欢欢放学回家看到桌上有三个礼包,是爸爸送给欢欢和姐姐的礼物,其中A 礼包是芭比娃娃,B 和C 礼包都是智能对话机器人.这些礼包用外表一样的包装盒装着,看不到里面的礼物.(1)欢欢随机地从桌上取出一个礼包,取出的是芭比娃娃的概率是多少?(2)请用树状图或列表法表示欢欢随机地从桌上取出两个礼包的所有可能结果,并求取出的两个礼包都是智能对话机器人的概率.【答案】(1)13;(2)13【分析】(1)根据一共三个礼包,芭比娃娃的礼包占一种即可计算概率;(2)列出所有可能的结果,再找到符合要求的个数,即可得到概率.【详解】(1)根据题意,可知取出的是芭比娃娃的概率是13. (2)结果:(,)A B ,(A,C),(,)B A ,(,)B C ,(C,A),(,)C B ,由图可知,共有6种等可能的结果,而符合要求的是(,)B C ,(,)C B 两种,∴取出的两个礼包都是智能机器人的概率是2163P ==. 【点睛】本题考查了列表法或树状法求概率,正确列出所有可能结果是解题的关键.25.如图,在四边形ABCD 中,//AD BC ,B ACB ∠=∠,点,E F 分别在,AB BC 上,且EFB D ∠=∠.(1)求证:EFB ∆∽CDA ∆;(2)若20AB =,5AD =,4BF =,求EB 的长.【答案】 (1)证明见解析;(2)16.【解析】(1)根据相似三角形的判定即可求出答案.(2)根据△EFB ∽△CDA ,利用相似三角形的性质即可求出EB 的长度.【详解】(1)∵AB AC =,∴B ACB ∠=∠,∵//AD BC ,∴DAC ACB ∠=∠,∴B DAC ∠=∠,∵D EFB ∠=∠,∴EFB ∆∽CDA ∆;(2)∵EFB ∆∽CDA ∆, ∴BE BFAC AD =,∵20AB AC ==,5AD =,4BF =,∴16BE =.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定.26.如图,二次函数y =ax 2+bx ﹣3的图象与x 轴交于A 、B 与y 轴交于点C ,顶点坐标为(1,﹣4)(1)求二次函数解析式;(2)该二次函数图象上是否存在点M ,使S △MAB =S △CAB ,若存在,求出点M 的坐标.【答案】(1)y =x 2﹣2x ﹣3;(2存在,点M 的坐标为(,3),(1,3)或(2,﹣3)【分析】(1)二次函数y =ax 2+bx ﹣3的顶点坐标为(1,﹣4),可以求得a 、b 的值,从而可以得到该函数的解析式;(2)根据(1)中求得的函数解析式可以得到点C 的坐标,再根据S △MAB =S △CAB ,即可得到点M 的纵坐标的绝对值等于点C 的纵坐标的绝对值,从而可以求得点M 的坐标.【详解】解:(1)∵二次函数y =ax 2+bx ﹣3的顶点坐标为(1,﹣4), ∴1234b a a b ⎧-=⎪⎨⎪+-=-⎩,得12a b =⎧⎨=-⎩, ∴该函数的解析式为y =x 2﹣2x ﹣3;(2)该二次函数图象上存在点M ,使S △MAB =S △CAB ,∵y =x 2﹣2x ﹣3=(x ﹣3)(x+1),∴当x =0时,y =﹣3,当y =0时,x =3或x =﹣1,∵二次函数y =ax 2+bx ﹣3的图象与x 轴交于A 、B 与y 轴交于点C ,∴点A 的坐标为(﹣1,0),点B 的坐标为(3,0),点C 的坐标为(0,﹣3),∵S △MAB =S △CAB ,点M 在抛物线上,∴点M 的纵坐标是3或﹣3,当y =3时,3=x 2﹣2x ﹣3,得x 1=,x 2=1;当y =﹣3时,﹣3=x 2﹣2x ﹣3,得x 3=0或x 4=2;∴点M 的坐标为(,3),(13)或(2,﹣3).故答案为:(1)y =x 2﹣2x ﹣3;(2)存在,点M 的坐标为(,3),(1,3)或(2,﹣3).【点睛】本题考查了二次函数与方程,几何知识的综合运用. 将函数知识与方程,几何知识有机地结合起来,这类试题难度较大. 解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质,定理和二次函数的知识.27.(1)若正整数x 、y ,满足2224x y -=,求x 、y 的值;(2)已知如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 在边BC 上移动(不与点B ,点C 重合),将BDE 沿着直线DE 翻折,点B 落在射线BC 上点F 处,当AEF 为一个含30内角的直角三角形时,试求BD 的长度.【答案】(1)75x y =⎧⎨=⎩或51x y =⎧⎨=⎩;(2)232BD =-或623-. 【分析】(1)根据平方差公式因式分解,根据题意可得122x y x y +=⎧⎨-=⎩或64x y x y +=⎧⎨-=⎩; (2)根据翻折性质可证∠AEF=180°-∠BEF =90°,分两种情况:①如图a ,当∠EAF=30°时,设BD=x ,根据勾股定理222AE EF AF +=,即222(2)(422)(22)x x x +-=;②如图b ,当∠AFE=30°时,设BD=x ,根据勾股定理,222AE EF AF +=,222(2)(422)(8222)x x x +-=-;【详解】(1)解:∵22()()24x y x y x y -=+-=>0,且x ,y 均为正整数, ∴x y +与x y -均为正整数,且x y +>x y -,x y +与x y -奇偶性相同. 又∵24=124=212=38=46⨯⨯⨯⨯ ∴122x y x y +=⎧⎨-=⎩或64x y x y +=⎧⎨-=⎩解得:75x y =⎧⎨=⎩或51x y =⎧⎨=⎩. (2)解:∵∠ACB=90°,AC=BC ∴∠B=∠BAC=45°又∵将△BDE 沿着直线DE 翻折,点B 落在射线BC 上点F 处∴∠BDE=∠EDF=90°,且△BDE ≌△FDE∴∠BED=∠DEF=45°,∠BEF=90°,BE=EF∴∠AEF=180°-∠BEF =90°①如图a ,当∠EAF=30°时,设BD=x ,则:BD=DF=DE=x ,2BE EF x ==,422AE x =,∵∠EAF=30°,∴AF=2x ,在Rt △AEF 中,222AE EF AF +=, ∴222(2)(422)(22)x x x +-=,解得232x =-. ∴232BD =-.②如图b ,当∠AFE=30°时,设BD=x ,则:同理①可得:2BE EF x ==,422AE x =∵∠AFE =30°,∴AF=8222x在Rt △AEF 中,222AE EF AF +=, ∴2222)(422)(8222)x x x +=,解得623x =-.∴BD =623-.综上所述,232BD =或623-.【点睛】考核知识点:因式分解运用,轴对称,勾股定理.分析翻折过程,分类讨论情况是关键;运用因式分解降次是要点.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 为⊙O 的直径,弦CD AB ⊥于E ,则下面结论中不一定成立的是( )A .CE DE =B .BC BD = C .BAC BAD ∠=∠D .OE BE =【答案】D【分析】根据垂径定理分析即可. 【详解】根据垂径定理和等弧对等弦,得A. B. C 正确,只有D 错误.故选D.【点睛】本题考查了垂径定理,熟练掌握垂直于弦(非直径)的直径平分弦且平分这条弦所对的两条弧是解题的关键. 2.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( )A .摸出黑球的可能性最小B .不可能摸出白球C .一定能摸出红球D .摸出红球的可能性最大 【答案】D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是223, 摸出白球的概率是123, 摸出红球的概率是2023, ∵123<223<2023, ∴从中任意摸出1个球,摸出红球的可能性最大;故选:D .【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE EF⊥,则下列结论正确的有( )①30BAE∠=②2CE AB CF=③13CF CD=④ABE∆∽AEF∆A.1个B.2个C.3个D.4个【答案】B【分析】由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,进而又可得出△ABE∽△AEF,即可得出题中结论.【详解】∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴CE CF AB BE∵E是BC的中点,∴BE=CE∴CE2=AB•CF,∴②正确;∵BE=CE=12 BC,∴CF=12BE=14CD,故③错误;∵1 tan2BEBAEAB∠==∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴5,5,AF=5a,∴2525255555AE a BEAF a EF a====∴AE BE AF EF= ∴△ABE ∽△AEF ,故④正确.∴②与④正确.∴正确结论的个数有2个.故选:B .【点睛】此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用. 4.已知三点()()()1233, 1.5,,,,0y y y 在抛物线()222y x m =--+上,则123,,y y y 的大小关系正确的是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y <<【答案】B【分析】先确定抛物线的对称轴,然后根据抛物线的对称性求出点()13,y 关于对称轴对称的点的坐标,再利用二次函数的增减性判断即可.【详解】解:∵抛物线的对称轴是直线x=2,∴点()13,y 关于对称轴对称的点的坐标是()11,y , ∵当x<2时,y 随x 的增大而增大,且0<1<1.5,∴312y y y <<.故选:B.【点睛】本题考查了二次函数的性质,属于基本题型,熟练掌握二次函数的性质是解答的关键.5.已知一元二次方程x 2+kx ﹣5=0有一个根为1,k 的值为( )A .﹣2B .2C .﹣4D .4 【答案】D【分析】根据一元二次方程的解的定义,把x =1代入方程得到关于k 的一次方程1﹣5+k =0,然后解一次方程即可.【详解】解:把x =1代入方程得1+k ﹣5=0,解得k =1.故选:D .【点睛】本题考查一元二次方程的解. 熟记一元二次方程解得定义是解决此题的关键.6.如图所示的几何体的主视图为( )A .B .C .D .【答案】B 【分析】根据三视图的定义判断即可.【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【点睛】本题考查了三视图知识.7.如图,抛物线y =ax 2+bx+c (a≠0)与x 轴交于点A (1,0)和B ,与y 轴的正半轴交于点C ,下列结论:①abc >0;②4a ﹣2b+c >0;③2a ﹣b >0,其中正确的个数为( )A .0个B .1个C .2个D .3个【答案】C 【分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,进而判断①;根据x=﹣2时,y >1可判断②;根据对称轴x=﹣1求出2a 与b 的关系,进而判断③.【详解】①由抛物线开口向下知a <1,∵对称轴位于y 轴的左侧,∴a 、b 同号,即ab >1.∵抛物线与y 轴交于正半轴,∴c >1,∴abc >1;故①正确;②如图,当x=﹣2时,y >1,则4a ﹣2b+c >1,故②正确;③∵对称轴为x=﹣2b a>﹣1,∴2a <b ,即2a ﹣b <1,故③错误;故选:C .【点睛】本题主要考查二次函数的图象和性质,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.8.抛物线2-2(3)5y x =++的顶点坐标是( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)【答案】C【解析】由题意根据二次函数y=a (x-h )2+k (a ≠0)的顶点坐标是(h ,k ),求出顶点坐标即可.【详解】解:∵2-2(3)5y x =++; ∴顶点坐标为:(-3,5).故选:C .【点睛】本题考查二次函数的性质和二次函数的顶点式.熟悉二次函数的顶点式方程y=a (x-h )2+k 中的h 、k 所表示的意义是解决问题的关键.9.如图,PA .PB 分别与O 相切于A .B 两点,点C 为O 上一点,连接AC .BC ,若50P ∠=︒,则ACB ∠的度数为( ).A .60︒;B .75︒;C .70︒;D .65︒.【答案】D 【解析】连接OA .OB ,由切线的性质可知90OAP OBP ∠=∠=︒,由四边形内角和可求出AOB ∠的度数,根据圆周角定理(一条弧所对的圆周角等于它所对的圆心角的一半)可知ACB ∠的度数.【详解】解:连接OA .OB ,∵PA .PB 分别与O 相切于A .B 两点,∴OA PA ⊥,OB PB ⊥,∴90OAP OBP ∠=∠=︒,∴180********AOB P ∠=︒-∠=︒-︒=︒, ∴111306522ACB AOB ︒︒∠=∠=⨯=. 故选:D .【点睛】本题主要考查了圆的切线性质及圆周角定理,灵活应用切线性质及圆周角定理是解题的关键.10.常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率.若设人均收入的年增长率为x ,根据题意列方程为( )A .()212000115000x +=B .()120001215000x +=C .()215000112000x -=D .()212000115000x +=【答案】D【分析】根据“每年的人均收入=上一年的人均收入⨯(1+年增长率)”即可得.【详解】由题意得:2018年的人均收入为12000(1)x +元2019年的人均收入为212000(1)(1)12000(1)x x x ++=+元则212000(1)15000x +=故选:D .【点睛】本题考查了列一元二次方程,理解题意,正确找出等式关系是解题关键.11.已知反比例函数ky x =的图象经过点(3,2),小良说了四句话,其中正确的是() A .当0x <时,0y > B .函数的图象只在第一象限C .y 随x 的增大而增大D .点(3,2)-不在此函数的图象上【答案】D【分析】利用待定系数法求出k ,即可根据反比例函数的性质进行判断. 【详解】解:∵反比例函数ky x =的图象经过点(3,2),∴k=2×3=6, ∴6y x =,∴图象在一、三象限,在每个象限y 随x 的增大而减小,故A ,B ,C 错误,∴点(3,2)-不在此函数的图象上,选项D 正确;故选:D .【点睛】本题考查反比例函数图象上的点的特征,教育的关键是熟练掌握基本知识,属于中考常考题型. 12.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .7000(1+x 2)=23170B .7000+7000(1+x )+7000(1+x )2=23170C .7000(1+x )2=23170D .7000+7000(1+x )+7000(1+x )2=2317 【答案】C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x ,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x ,则2020年的投入为7000(1+x )2=23170 由题意,得7000(1+x )2=23170.故选:C .【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.二、填空题(本题包括8个小题)13.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为21y x 1040=-+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米.(精确到1米)【答案】85【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有21? 10840x -+=, 即280x =,145x =,245x =- .所以两盏警示灯之间的水平距离为:1245458518m x x -=-=≈()() 14.如图,⊙M 的半径为4,圆心M 的坐标为(6,8),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为____.。
2020-2021学年重庆市江北区九年级上学期期末数学试卷(含答案解析)

2020-2021学年重庆市江北区九年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.下列说法正确的是()A. 一定是正数,一定是负数B. −1是最大的负整数C. 0既没有倒数也没有相反数D. 若,则2.下列图形是中心对称图形的是()A. B. C. D.3.下列判断错误的是()A. 多项式是二次三项式B. 单项式的系数是−1,次数是9C. 式子,,,−2,都是代数式D. 当时,关于的代数式中不含二次项4.平移抛物线y=(x+3)(x−1)后得到抛物线y=(x+1)(x−3),则()A. 向左平移2个单位B. 向右平移2个单位C. 向左平移4个单位D. 向右平移4个单位5.用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A. 19B. 20C. 21D. 226.如图,正方形ABCD和正三角形AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,则EF的值为()GHA. √2B. 32C. √3D. 27.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为()A. (−a,−2b)B. (−2a,−b)C. (−2a,−2b)D. (−b,−2a)8.下列运算中正确的是()A. 3÷32×23=3 B. 2×32=36 C. −5−|−3|=2 D. −32=−99.如图,平面直角坐标系中,A点坐标为(2,2),点P(m,n)在直线上运动,设△APO的面积为S,则下面能够反映S与m的函数关系的图象是A.B.C.D.10.分式方程2x2−4−1x+2=0的解是()A. 1B. 3C. 4D. 无解11.2019年2月底某种疫苗的原价为80元/支,2019年两会后因实施医保新措施,4月份经过两次连续降价后该疫苗的价格为60元,求此疫苗的月平均降价率.设此疫苗的月平均降价率x,则可列方程为()A. 80(1−2x)=60B. 80(1−x)2=60C. 80(1+x)2=100D. 60(1−x)2=8012.在行程问题中,路程s(千米)一定时,速度v(千米/时)关于时间t(小时)的函数关系的大致图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)13.2019年国庆70周年阅兵式的全体受阅官兵包括人民解放军、武警部队和民兵预备役部队约15000人,其中15000用科学记数法表示为______.14.计算:√2cos45°=______.15.有四张正面分别标有数字−1,1,2,4的不透明卡片,除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任意抽取一张,将该卡片正面上的数字记为a;放回后再从中任意抽取一张,将该卡片正面朝上的数字记为b,则使关于x的一元二次方程ax2+bx+1=0有实根的概率为______ .16.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)图中△APD与哪个三角形全等:______.(2)猜想:线段PC、PE、PF之间存在什么关系:______.17.请你给出一个m值,当m=______ ,使方程x2+m=0有整数根.18.如图,在平面直角坐标系中,一次函数y=2x−4的图象分別交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是______.三、计算题(本大题共1小题,共10.0分)19.解下列方程:(1)x2−6x=16;(2)x(2x−3)=4x−6.四、解答题(本大题共7小题,共68.0分)20.如图,点A,B,C,D在一条直线上,且AB=CD,若∠1=∠2,EC=FB.求证:∠E=∠F.21.上海世博会自2010年5月1日开幕,到10月31日闭幕.共历时184天.根据统计图求5月11日〜5月20日毎天入园人数的众数和中位数.22.如图,一次函数y=x+2的图象交x轴于A点,交y轴于B点,直线AB绕A点旋转,交y轴于B′点;旋转后△AOB′的面积恰好等于△AOB面积的一半,求此时直线AB′的解析式.23.如图,AB是⊙O的直径,AB⊥BD,AC切⊙O于点A,点E为⊙O上一点,且AC=CE,连CE交BD于点D.(1)求证:CD为⊙O的切线;(2)连AD,BE交于点F,⊙O的半径为2,当点F为AD中点时,求BD.24.一个工程队原定在10天内至少要挖土600m3,在前两天一共完成了120m3,由于整个工程调整工期,要求提前两天完成挖土任务.以后6天内平均每天至少要挖土多少m3?25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(−1,0),C(0,−3).(1)求该抛物线的解析式;(2)在抛物线的对称轴x=1上找一点M,使点M到点A的距离与到点C的距离之和最小,并求出点M的坐标;(3)若直线y=kx−3与抛物线交于点P,且点P位于第四象限,当BP=CP时,直接写出k的值.26.阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=√5,PB=√2,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.请你参考小明同学的思路,解决下列问题:(1)如图2,△APP′为______,△BPP′为______;(填等腰三角形,直角三角形或等腰直角三角形)(2)如图2,∠BPC的度数为______;(3)如图3,若在正六边形ABCDEF内有一点P,且PA=2√13,PB=4,PC=2,则求:①∠BPC的度数;②正六边形ABCDEF的边长.参考答案及解析1.答案:B解析:本题考查有理数及其相关概念的应用、有理数平方的运算性质.解:A.a可以表示正数,也可以表示负数或0,所以−a不一定是负数,所以此选项不正确;B.最大的负整数是−1,所以此选项正确;C.0没有倒数,0的相反数是0,所以此选项不正确;D.当a=2,b=−2时,满足a≠b,但a2=b2,所以此选项不正确.故选B.2.答案:D解析:解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意.故选:D.根据中心对称图形的概念和各图的性质求解.此题主要考查了中心对称图形的概念.要注意,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.答案:C解析:根据多项式的次数和项,单项式的系数和次数的定义,代数式的定义,整式的加法对每个选项进行判断,然后作出选择即可.解:A.多项式是二次三项式,此说法正确,故本选项错误;B.单项式的系数是−1,次数是2+3+4=9,此说法正确,故本选项错误;C.式子,,,,,中不是代数式,故本选项正确;D.当k=2时,关于x,y的代数式可以化简成,不含二次项,此说法正确,故本选项错误;故选C.4.答案:B解析:解:y=(x+3)(x−1)=(x+1)2−4,顶点坐标是(−1,−4).y=(x+1)(x−3)=(x−1)2−4,顶点坐标是(1,−4).所以将抛物线y=(x+3)(x−1)向右平移2个单位长度得到抛物线y=(x+1)(x−3),故选:B.根据变换前后的两抛物线的顶点坐标找变换规律.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.5.答案:D解析:解:从图中可知:第(1)个图案有4个黑色瓷砖;第(2)个图案有7个黑色瓷砖;第(3)个图案有10个黑色瓷砖,以似类推,每个图案比前一个图案的黑色瓷砖数量增加3个;∴M(1)=1+3×1;M(2)=1+3+3=1+3×2;M(3)=1+3+3+3=1+3×3;…∴M(N)=1+3⋅N当N=7时,M(7)=1+3×7=22故选:D.题目要求找出第N个图案与黑色瓷砖的总数M之间的关系;先数图中给出的数量,然后从数量的变化中找N与M的关系;最后把N=7代入关系式中,求出M的值;这题主要考查学生分析总结规律的能力;另一种思路是:每增加一个图案,黑色瓷砖增加3,一直增加到第7个图案,就可以得出结果;6.答案:C解析:解:如图,连接AC、BD、OF,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r⋅sin60°=√32r,∴EF=√32r×2=√3r,∵AO=2OI,∴OI=12r,CI=r−12r=12r,∴GHBD =CICO=12,∴GH=12BD=r,∴EFGH =√3rr=√3.故选:C.首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH//BD,求出GH的值是多少,再用EF的值比上GH的值,求出EF:GH的值是多少即可.此题主要考查了正多边形与圆的关系、相似三角形的判断和性质以及特殊角的锐角三角函数值,要熟练掌握,解答此题的关键是要明确正多边形的有关概念.7.答案:C解析:解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(−10,−6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(−2a,−2b).故选:C.先找一对应点是如何变化,那么所求点也符合这个变化规律.此题主要考查了位似变换,解决本题的关键是找到所给图形中象限内的一对对应点的变化规律.8.答案:D解析:解:A、3÷32×23=3×23×23=43,故原题计算错误;B、2×32=2×9=18,故原题计算错误;C、−5−|−3|=−5−3=−8,故原题计算错误;D、−32=−9,故原题计算正确;故选:D.根据有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算进行计算即可.此题主要考查了有理数的混合运算,关键是掌握计算顺序.9.答案:B解析:解:∵点P(m,n)在直线y=−x+2上运动,∴当m=1时,n=1,即P点在直线AO上,此时S=0,点(1,0)应该为一个空点,故排除A,D选项,当0<m≤1时,不断减小,当m>1时,不断增大,且底边AO不变,故S与m是一次函数关系,图像不是抛物线的形式,故排除C选项.故选B.10.答案:C解析:解:去分母得:2−x+2=0,解得:x=4,经检验x=4是分式方程的解,故选:C.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.11.答案:B解析:解:设此疫苗的月平均降价率x,则可列方程为80(1−x)2=60,故选:B.降低后的价格=降低前的价格×(1−降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是80(1−x),那么第二次后的价格是80(1−x)2,即可列出方程求解.本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.12.答案:A解析:解:根据题意得,s=vt,v=s,t由于s一定,∴速度v(千米/时)是时间t(小时)的反比例函数,由于t>0.故选:A.根据路程=速度×时间列出函数关系式,根据相应的函数关系式画出图象.本题考查了反比例函数的应用及反比例函数的图象,要注意实际问题中自变量的取值范围.13.答案:1.5×104解析:解:15000=1.5×104.故答案是:1.5×104.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.答案:1=1解析:解:√2cos45°=√2×√22故答案为:1.;然后计算乘法,求出算式的值是多少即可.首先根据特殊角的三角函数值,可得:cos45°=√22此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.15.答案:12解析:解:根据题意画图如下:共有16种等可能的情况数,其中使关于x的一元二次方程ax2+bx+1=0有实根的有8种,则使关于x的一元二次方程ax2+bx+1=0有实根的概率为816=12;故答案为:12.根据题意列出图表得出所有等可能的情况数,找出使关于x的一元二次方程ax2+bx+1=0有实根的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.16.答案:(1)△CPD;(2)PC2=PE⋅PF.解析:解:(1)∵四边形ABCD为菱形,∴∠ADP=∠CDP,DC=DA,在△APD和△CPD中,{DC=DA∠ADP=∠CDP DP=DP∴△APD≌△CPD(SAS);(2)∵四边形ABCD为菱形,∴∠DCF=∠F,∵△APD≌△CPD,∴∠DCP=∠DAP,∴∠F=∠PAE,∴△PAE∽△PFA,∴PAPE =PFPA,即:PA2=PE⋅PF,∵P是菱形ABCD的对角线BD上一点,∴PA=PC,∴PC2=PE⋅PF.故答案为:(1)△CPD;(2)PC2=PE⋅PF.(1)根据菱形的性质得∠ADP=∠CDP,DA=DC,从而得到△APD与△CPD全等.(2)根据菱形的对边互相平行得∠DCF=∠F,再根据(1)题的结论得到∠DCP=∠DAP,从而证得△PAE∽△PFA,然后利用比例线段证得等积式即可.本题考查了菱形的性质、全等三角形的判定及相似三角形的判定及性质,是一道不错的综合题.17.答案:−1解析:解:把方程变形得:x2=−m,∵方程有整数根,∴−m必须是完全平方数且为正数.∴当m=−1时,方程x2+m=0有整数根.故答案为:−1.由于x2=−m,所以−m是完全平方数且为正数.本题考查了一元二次方程的解,属于开放题,注意答案的不唯一性,同时本题还考查了一元二次方程根的判别式的应用.x−418.答案:y=13解析:解:∵一次函数y=2x−4的图象分别交x、y轴于点A、B,∴令x=0,得y=−4,令y=0,则x=2,∴A(2,0),B(0,−4),∴OA=2,OB=4,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△FAE(AAS),∴AE=OB=4,EF=OA=2,∴F(6,−2),设直线BC的函数表达式为:y=kx+b,∴{6k+b=−2b=−4,解得{k=13b=−4,∴直线BC的函数表达式为:y=13x−4,故答案为:y=13x−4.根据已知条件得到A(2,0),B(0,−4),求得OA=2,OB=4,过A作AF⊥AB交BC于F,过F作FE⊥x 轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=4,EF=OA=2,求得F(6,−2),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.19.答案:解:(1)x2−6x=16,∴x2−6x−16=0,∴(x−8)(x+2)=0,∴x−8=0或x+2=0,∴x1=8,x2=−2;(2)x(2x−3)=4x−6,∴2x2−7x+6=0;∴(2x−3)(x−2)=0,∴2x−3=0或x−2=0,∴x1=32,x2=2.解析:(1)利用因式分解法求解可得答案;(2)利用因式分解法求解可得答案.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.答案:证明:∵∠1+∠DBF=180°,∠2+∠ACE=180°.又∵∠1=∠2,∴∠DBF=∠ACE,∵AB =CD ,∴AB +BC =CD +BC ,即AC =DB ,在△ACE 和△DBF 中,{EC =FB ∠ACE =∠DBF AC =DB∴△ACE≌△DBF(SAS),∴∠E =∠F .解析:本题考查了全等三角形的性质和判定,能求出△ACE≌△DBF 是解此题的关键.根据邻补角求出∠DBF =∠ACE ,根据等式性质求出AC =DB ,再根据SAS 推出△ACE≌△DBF ,根据全等三角形的性质得出即可.21.答案:解:∵24出现的次数最多,∴这组数据的众数为24万人;将这组数据从小到大排列得:18,18,22,24,24,24,26,29,30,34,则这组数据的中位数为24+242=24(万人);解析:由条形统计图得到24出现的次数最多,故这组数据的众数为24万人;将这组数据按照从小到大顺序排列,找出中间的两数,求出两数的平均数即可得到这组数据的中位数;此题考查了条形统计图,中位数及众数,熟练掌握各自的定义是解本题的关键.22.答案:解:∵一次函数y =x +2交x 轴于A 点,交y 轴于B 点,∴A(−2,2),B(0,2).∵△AOB′的面积恰好等于△AOB 面积的一半,∴12OA ⋅OB =12OA ⋅OB′,则OB′=12OB ,∴B′(0,1)或B′(0,−1).设直线AB′的解析式为y =kx +b(k ≠0).当B′的坐标是(0,1)时,{−2k +b =0b =1, 解得,{k =12b =1, ∴直线AB′的解析式为:y =12x +1.同理,当B′的坐标是(0,−1)时,直线AB′的解析式为:y =−12x −1.综上所述,直线AB′的解析式为:y =12x +1或y =−12x −1.解析:此题,分两种情况:直线AB 绕点A 顺时针旋转和逆时针旋转.根据三角形的面积公式知OB′=12OB ,所以利用待定系数法来求求旋转后的直线方程即可.本题考查了一次函数图象与几何变换.解题时,要分类讨论,以防漏掉另一个答案.23.答案:解:(1)连接OC ,OE ,∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠OAC =90°,在△ACO 与△ECO 中,{OA =OEOC =OC AC =CE,∴△ACO≌△ECO(SSS),∴∠OEC =∠OAC =90°,∴OE ⊥DC ,∴CD 为⊙O 的切线;(2)连接OF ,AE ,过点F 作FG ⊥BD 于点G ,∵AB ⊥BD ,∴∠ABD =∠FGD =∠FGB =90°,∴FG//AB ,∴∠EBA =∠BFG ,∵AB 是⊙O 的直径,∴∠AEB =∠FGB =90°,∴△ABE∽△BFG ,∴AB BF =BE FG ,∵点F 为AD 中点,O 为AB 中点,∴OF//BG ,∠FOB =∠OBG =∠FGB =90°,∴四边形OFGB 是矩形,AF =BF =DF ,∴FG =OB =2,∠FDB =∠FBD ,∵AB 是⊙O 的直径,AB ⊥BD ,∴BD 是⊙O 的切线,由(1)知CD是⊙O的切线,∴DB=DE,∴∠DEB=∠DBE,∴∠DEB=∠FDB,又∵∠FDB=∠FDB,∴△FBD∽△DBE,∴FBDB =BDBE,∴BD2=FB⋅BE,设BF=a,BD=n,∵ABBF =BEFG,∴4a =BE2,∴BE=8a,∵BD2=FB⋅BE,∴n2=a⋅8a,∴n2=8,∴n=2√2(取正值),∴BD的长为2√2.解析:(1)连接OC,OE,证明△ACO与△ECO全等即可得到∠OEC=90°,CD即为⊙O的切线;(2)连接AE,OF,过点F作BD的垂线FG,得出矩形,再通过证明△ABE与△BFG以及△FBD与△DBE 两次相似,用字母分别设出BF,BD等相关线段的长度即可求出结果.本题考查了切线的判定,切线长定理,三角线的中位线定理以及三角形相似等,解本题的关键是找准相似三角形及相关的线段.24.答案:解:设平均每天挖土xm3,由题意得:(10−2−2)x ≥600−120,解得:x ≥80.答:平均每天至少挖土80m 3.解析:设以后6内,平均每天要挖掘xm 3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600−120)m 3的土方,根据题意可得不等式,解不等式即可. 本题考查了一元一次不等式的应用,关键是弄清题意,清楚600m 3的土方到底要用几天干完. 25.答案:解:(1)∵抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,A(−1,0),C(0,−3)在抛物线上,∴{−b 2a =10=a −b +c −3=c ,解得{a =1b =−2c =−3,∴抛物线的解析式为y =x 2−2x −3;(2)连接BC 交直线x =1于M ,如图:∵A 、B 关于对称轴直线x =1对称,∴AM =BM ,而B 、C 、M 共线,∴此时AM +BM 最小,在y =x 2−2x −3中,令x =0得y =−3,令y =0得x =−1或x =3,∴C(0,−3),B(3,0),设直线BC 为y =kx +b ,则{−3=b 0=3k +b ,解得{k =1b =−3, ∴直线BC 为y =x −3,令x =1得y =−2,∴M(1,−2);(3)作BC 的中点Q ,直线OQ 交抛物线于P ,如图:由(2)知:OB =OC ,∴△BOC 是等腰直角三角形,∵Q 是BC 的中点,∴直线OQ 是线段BC 的垂直平分线,Q(32,−32),∵BP =CP ,∴P 在直线OQ 上,设直线OQ 为y =sx ,则−32=32s ,∴s =−1,∴直线OQ 为y =−x ,由{y =−x y =x 2−2x −3得{x =1+√132y =−1+√132或{x =1−√132y =−1−√132, ∵点P 位于第四象限,∴P(1+√132,−1+√132), 将P(1+√132,−1+√132)代入y =kx −3得:−1+√132=k ⋅1+√132−3, 解得k =√13−32.解析:(1)由抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,A(−1,0),C(0,−3)在抛物线上,用待定系数法可得,抛物线的解析式为y =x 2−2x −3;(2)连接BC 交直线x =1于M ,根据A 、B 关于对称轴直线x =1对称,可得此时AM +BM 最小,由直线BC 为y =x −3,即可得M(1,−2);(3)作BC的中点Q,直线OQ交抛物线于P,由△BOC是等腰直角三角形,可得直线OQ是线段BC的垂直平分线,Q(32,−32),故P在直线OQ上,且直线OQ为y=−x,由{y=−xy=x2−2x−3可得P(1+√132,−1+√132),代入y=kx−3即得:k=√13−32.本题考查二次函数综合应用,涉及待定系数法、“将军饮马”模型、等腰三角形等知识,解题的关键是熟悉“将军饮马”模型,求出P点坐标.26.答案:直角三角形等腰直角三角形135°解析:解:(1)如图2.∵△BPC绕点B逆时针旋转90°,得到了△BP′A,∴∠P′BP=90°,BP′=BP=√2,P′A=PC=1,∠BP′A=∠BPC,∴△BPP′为等腰直角三角形,∴PP′=√2PB=2,∠BP′P=45°,在△APP′中,AP=√5,PP′=2,AP′=1,∵(√5)2=22+12,∴AP2=PP′2+AP′2,∴△APP′为直角三角形.故答案为直角三角形.等腰直角三角形;(2)由(1)可知∠BP′P=45°,∠AP′P=90°,∴∠BP′A=45°+90°=135°,∴∠BPC=∠BP′A=135°;(3)如图3.∵六边形ABCDEF为正六边形,∴∠ABC=120°,∵把△BPC绕点B逆时针旋转120°,得到了△BP′A,∴∠P′BP=120°,BP′=BP=4,P′A=PC=2,∠BP′A=∠BPC,∴∠BP′P=∠BPP′=30°,过B作BH⊥PP′于H,∵BP′=BP,∴P′H=PH,在Rt△BP′H中,∠BP′H=30°,BP′=4,∴BH=1BP′=2,P′H=√3BH=2√3,2∴P′P=2P′H=4√3,在△APP′中,AP=2√13,PP′=4√3,AP′=2,∵(2√13)2=(4√3)2+22,∴AP2=PP′2+AP′2,∴△APP′为直角三角形,且∠AP′P=90°,∴∠BP′A=30°+90°=120°,∴∠BPC=120°,过A作AG⊥BP′于G点,∴∠AP′G=60°,在Rt△AGP′中,AP′=2,∠GAP′=30°,AP′=1,AG=√3GP′=√3,∴GP′=12在Rt△AGB中,GB=GP′+P′B=1+4=5,∴AB=√AG2+BG2=√(√3)2+52=2√7,即正六边形ABCDEF的边长为2√7.(1)由旋转的性质得出∠P′BP=90°,BP′=BP=√2,P′A=PC=1,∠BP′A=∠BPC,则得出△BPP′为等腰直角三角形,证出AP2=PP′2+AP′2,可得出△APP′为直角三角形.(2)由(1)可知∠BP′P=45°,∠AP′P=90°,则可求出答案;(3)把△BPC绕点B逆时针旋转120°,得到了△BP′A,根据旋转的性质得到∠P′BP=120°,BP′=BP= 4,P′A=PC=2,∠BP′A=∠BPC,则∠BP′P=∠BPP′=30°,得到P′H=PH,利用含30°的直角BP′=2,P′H=√3BH=2√3,得到P′P=2P′H=4√3,再利用勾股三角形三边的关系得到BH=12定理的逆定理可得到△APP′为直角三角形,且∠AP′P=90°,于是有∠BPC=∠BP′A=30°+90°=AP′=1,AG= 120°;过A作AG⊥BP′于G点,利用含30°的直角三角形三边的关系得到GP′=12√3GP′=√3,然后在Rt△AGB中利用勾股定理即可计算出AB长.本题属于四边形综合题,考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质、等腰直角三角形的判定与性质、勾股定理与逆定理以及含30°的直角三角形三边的关系,解题的关键是熟练掌握旋转的性质.。
2020-2021重庆珊瑚中学初三数学上期中试卷附答案

一、选择题 1.如图,BC 是半圆 O 的直径,D,E 是 BC 上两点,连接 BD,CE 并延长交于点 A,连接 OD,OE,如果 DOE 40 ,那么 A 的度数为( )
A.35°
B.40°
C.60°
D.70°
2.若 x1 是方程 ax2+2x+c=0(a≠0)的一个根,设 M=(ax1+1)2,N=2﹣ac,则 M 与 N 的大
∴从中随机抽取 2 本都是小说的概率= 6 = 3 . 20 10
故选:A. 【点睛】 本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.
7.D
解析:D 【解析】 【分析】 由﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3 可得:x≤﹣3. 【详解】 ∵x=﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3≤﹣3,∴不论 a 取何值,x≤﹣3. 故选 D. 【点睛】 本题考查了配方法的应用,熟练运用配方法解答本题的关键.
B. k 1 2
C. k 1 且 k≠1 2
D. k 1 2
10.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透
空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )
A.
B.
C.
D.
11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三
A. x 5
B. x 5
C. x 3
8.抛物线 y=2(x-3)2+4 的顶点坐标是(
)
D. x 3
A.(3,4)
B.(-3,4)
C.(3,-4)
D.(2,4)
9.若关于 x 的一元二次方程 (k 1)x2 2x 2 0 有两个不相等的实数根,则 k 的取值范
重庆市2021版九年级上学期数学期中考试试卷(II)卷

重庆市2021版九年级上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)方程 2 x 2 = 4 x 的解是()A . x= 0B . x= 2C . x 1 = 0 ,x 2 = 2D . x 1 =- 2 ,x 2 = 22. (2分)(2020·柘城模拟) 一元二次方程的根的情况是()A . 没有实数根B . 有两个相等的实数根C . 只有一个实数根D . 有两个不相等的实数根3. (2分)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分)下列图形对称轴最多的是()A . 正方形B . 等边三角形C . 等腰三角形D . 线段5. (2分)(2020·乾县模拟) 已知二次函数y=ax²-8ax(a为常数)的图象不经过第二象限,在自变量x的值满足2≤x≤3时,其对应的函数值y的最大值为3,则a的值为()A .B .C .D .6. (2分) (2019八上·吴江期末) 点(﹣2,5)关于坐标原点对称的点的坐标是()A . (2,﹣5)B . (﹣2,﹣5)C . (2,5)D . (5,﹣2)7. (2分)(2020·新乡模拟) 若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A . y=2(x+5)2﹣1B . y=2(x+5)2+1C . y=2(x﹣1)2+3D . y=2(x+1)2﹣38. (2分)某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A . 20(1+x)2=90B . 20+20(1+x)2=90C . 20(1+x)+20+(1+x)2=90D . 20+20(1+x)+20(1+x)2=909. (2分) (2017九上·芜湖期末) 函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A .B .C .D .10. (2分)(2019·福田模拟) 如图,抛物线y=ax2+bx+c和直线y=kx+b都经过点(﹣1,0),抛物线的对称轴为x=1,那么下列说法正确的是()A . ac>0B . b2﹣4ac<0C . k=2a+cD . x=4是ax2+(b﹣k)x+c<b的解11. (2分)(2017·兴庆模拟) 一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A .B .C .D .12. (2分)若点(2,0),(4,0)在抛物线y=x2+bx+c上,则它的对称轴是()A . x=﹣B . x=1C . x=2D . x=313. (2分) (2018九上·丰台期末) 已知抛物线上部分点的横坐标x与纵坐标y的对应值如下表:x…0123…y…30m3…有以下几个结论:①抛物线的开口向下;②抛物线的对称轴为直线;③方程的根为0和2;④当y>0时,x的取值范围是x<0或x>2.其中正确的是()A . ①④B . ②④C . ②③D . ③④14. (2分) (2016九上·东营期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)15. (1分) (2019九上·乌拉特前旗期中) 设,是方程x²+x-2020=0的两个实数根,则的值为________.16. (1分) (2019九上·台州开学考) y=x²过A(1,a),B(2,b),则 a________b (填>,<或=)17. (1分) (2016九下·赣县期中) 当x=m和x=n(m≠n)时,二次函数y=x2﹣2x+3的函数值相等,当x=m+n 时,函数y=x2﹣2x+3的值为________.18. (1分) (2016九上·兴化期中) 若抛物线y=x2﹣4x+t(t为实数)在0≤x≤3的范围内与x轴有公共点,则t的取值范围为________.19. (1分)二次函数6的最小值为________20. (1分) (2018八上·洛阳期末) 一个等腰三角形一边长为3cm,另一边长为7cm,那么这个等腰三角形的周长是________cm.三、解答题 (共6题;共56分)21. (10分) (2019九上·揭阳月考) 用配方法解方程:;22. (5分) (2018九上·洛宁期末) 已知关于x方程2x2﹣(3+4k)x+2k2+k=0,k为何值时,方程有两个不相等的实数根?23. (10分) (2019八上·沈阳月考) 在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A的坐标是(﹣3,﹣1).( 1 )将△ABC沿y轴正方向平移3个单位得到△A1B1C1 ,画出△A1B1C1 ,并写出点B1坐标;( 2 )画出△A1B1C1关于y轴对称的△A2B2C2 ,并写出点C2的坐标.24. (10分) (2020九下·卧龙模拟) 已知,如图,抛物线与轴交于A、B两点,与直线交于B、C两点,直线与y轴交于点E.(1)求直线BC的解析式:(2)若点M在线段AB.上以每秒1个单位长度的速度从点A向点B运动(不与点A、B重合),同时,点N在射线BC上以每秒2个单位长度的速度从点B向点C方向运动,设运动的时间为t秒,oMNB的面积为S,求S关于t的函数关系式,并求t取何值时,S最大?最大值是多少?25. (10分)(2020·黑山模拟) 如图,将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE.(2)若将图①中的△DBE绕点B按顺时针方向旋转α,且0°<α<60°,其他条件不变,请在图②中画出旋转后的图形,并直接写出(1)中的结论是否仍然成立.(3)若将图①中的△DBE绕点B按顺时针方向旋转β,且60°<β<180°,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请写出AF,EF与DE之间的关系,并说明理由.26. (11分)种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n分别是x(1≤x≤30,且x为整数)的一次函数,销售情况如表:(1)观察表中数据,分别直接写出m与x,n与x的函数关系式:________,________。
2020-2021重庆珊瑚中学初三数学上期末试卷附答案

2020-2021重庆珊瑚中学初三数学上期末试卷附答案一、选择题1.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .43.一元二次方程x 2+x ﹣14=0的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根C .无实数根D .无法确定 4.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( )A .13B .14C .15D .165.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .1126.关于下列二次函数图象之间的变换,叙述错误的是( )A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象 7.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件8.方程x 2=4x 的解是( )A .x =0B .x 1=4,x 2=0C .x =4D .x =29.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④ 10.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )A .36°B .54°C .72°D .108° 11.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .12.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 二、填空题13.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.14.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.15.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.16.一个等边三角形边长的数值是方程x 2﹣3x ﹣10=0的根,那么这个三角形的周长为_____.17.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.18.已知二次函数y =kx 2﹣6x ﹣9的图象与x 轴有两个不同的交点,求k 的取值范围_____.19.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.20.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题21.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;22.某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y (件)与销售单价x (元)之间存在如图的一次函数关系.(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?23.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?24.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?25.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A.【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.2.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3.A解析:A【解析】【分析】根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根.【详解】∵△=12﹣4×1×(﹣14)=2>0,∴方程x2+x﹣14=0有两个不相等的实数根.故选:A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.4.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 =.故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.6.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.故选D.【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.7.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.8.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.9.D解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.10.C解析:C【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.11.D解析:D【解析】【分析】【详解】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.12.D解析:D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 二、填空题13.6【解析】【分析】【详解】解:设方程另一根为x1把x =-2代入方程得(-2)2+2a -3a =0解得a =4∴原方程化为x2-4x -12=0∵x1+(-2)=4∴x 1=6故答案为6点睛:本题考查了一元二解析:6【解析】【分析】【详解】解:设方程另一根为x 1,把x =-2代入方程得(-2)2+2a -3a =0,解得a =4,∴原方程化为x 2-4x -12=0,∵x 1+(-2)=4,∴x 1=6.故答案为6.点睛:本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+ x 2=b a -,x 1·x 2=c a.也考查了一元二次方程的解. 14.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250,由于18>0,故其最小值为1250cm2,故答案为:1250cm2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.15.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.16.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.17.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20【解析】【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2b a=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10, 圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.18.k >﹣1且k≠0【解析】【分析】根据函数与方程的关系求出根的判别式的符号根据△>0建立关于的不等式通过解不等式即可求得的取值范围【详解】令y =0则kx2﹣6x ﹣9=0∵二次函数y =kx2﹣6x ﹣9的解析:k >﹣1且k ≠0.【解析】【分析】根据函数与方程的关系,求出根的判别式的符号,根据△>0建立关于k 的不等式,通过解不等式即可求得k 的取值范围.【详解】令y =0,则kx 2﹣6x ﹣9=0.∵二次函数y =kx 2﹣6x ﹣9的图象与x 轴有两个不同的交点,∴一元二次方程kx 2﹣6x ﹣9=0有两个不相等的解,()()206490k k ≠⎧⎪∴⎨=--⨯->⎪⎩, 解得:k >﹣1且k ≠0.故答案是:k >﹣1且k ≠0.【点睛】本题考查了一元二次方程与函数的关系,函数与x 轴的交点的横坐标就是方程的根,若函数与x 轴有交点说明方程有根,两者互相转化,要充分运用这一点来解题..19.-1【解析】由题意得ABBC 于DBC 于EBC 交BC 于FAB=勾股定理得AE=AD=1DB=-1 解析:2-1 【解析】由题意得, AB ⊥B’C’于D ,BC 'AC ⊥于E ,BC 交B’C’于F .AB =2,勾股定理得∴AE =AD=1,∴DB =2-122112122ABE DBF S S S AE BD =-=-=-阴影.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB 的度数然后根据勾股定理即可求得AB 的长详解:连接ADAEOAOB ∵⊙O 的半径为2△ABC 内接于⊙O ∠ACB=13解析:2【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题21.(1)12(2)当x=11时,y最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(30-2x)=-2x2+30x,根据二次函数的性质求解即可.解: (1)苗圃园与墙平行的一边长为(30-2x)米.依题意可列方程x(30-2x)=72,即x2-15x+36=0.解得x1=3(舍去),x2=12.(2)依题意,得8≤30-2x≤18.解得6≤x≤11.面积S=x(30-2x)=-2(x-152)2+2252(6≤x≤11).①当x=152时,S有最大值,S最大=2252;②当x=11时,S有最小值,S最小=11×(30-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.22.(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为6250元【解析】【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值.【详解】(1)设一次函数解析式为y =kx +b (k ≠0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得3040040300k b k b +=⎧⎨+=⎩, 解得:10700k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为y =﹣10x +700;(2)设利润为p 元,由(1)可知每天的销售量为y 千克,∴p =y (x ﹣20)=(﹣10x +700)(x ﹣20)=﹣10x 2+900x ﹣14000=﹣10(x ﹣45)2+6250.∵﹣10<0,∴p =﹣10(x ﹣45)2+6250是开口向下的抛物线,∴当x =45时,p 有最大值,最大值为6250元,即销售单价为45元时,每天可获得最大利润,最大利润为6250元.【点睛】本题考查了二次函数的应用,求得每天的销售量y 与x 的函数关系式是解答本题的关键,注意二次函数最值的求法.23.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.24.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.25.(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【解析】【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.。
2020-2021重庆市初三数学上期中试题及答案

A.-41
B.-35
C.39
D.45
12.如图,在⊙O 中,AB 是⊙O 的直径,AB=10, AC CD DB ,点 E 是点 D 关于
AB 的对称点,M 是 AB 上的一动点,下列结论:①∠BOE=60°;②∠CED= 1 ∠DOB; 2
③DM⊥CE;④CM+DM 的最小值是 10,上述结论中正确的个数是( )
降价 1 元,每天可多售出 50 千克,为了推广宣传,基地决定降价促销,同时减少库存,已
知该基地“早黑宝”的平均成本价为 12 元/千克,若使销售“早黑宝”每天获利 1750 元,
则售价应降低多少元?
25.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克 30 元.物价部
门规定其销售单价不高于每千克 60 元,不低于每千克 30 元.经市场调查发现:日销售量
A.1
B.2
C.3
D.4
二、填空题
13.如图,菱形 OABC 的顶点 O 在坐标原点,顶点 A 在 x 轴上,∠B=120°,OA=1,将
菱形 OABC 绕原点顺时针旋转 105°至 OA'B′C'的位置,则点 B'的坐标为_____.
14.已知 、 是方程
的两个根,则代数式
的值为
______. 15.若关于 x 的方程 x2+2x+m=0 没有实数根,则 m 的取值范围是_______.
C.如果 a、b 都是实数,那么 a+b=b+a D.抛掷 1 个均匀的骰子,出现 6 点朝上
8.一元二次方程 x2+2x+2=0 的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根 C.只有一个实数根
D.没有实数根
2020-2021重庆市九年级数学上期中一模试卷带答案

2020-2021重庆市九年级数学上期中一模试卷带答案一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.﹣3的绝对值是()A.﹣3B.3C.-13D.133.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°4.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④5.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上6.用配方法解方程210x x+-=,配方后所得方程是()A .213()24x -=B .213()24x +=C .215()24x +=D .215()24x -= 7.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .8 8.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A .310B .925C .425D .110 9.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且k ≠1B .12k >C .12k ≥且k ≠1D .12k < 10.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=0 11.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y x =B .2(12)y x =-C .(12)y x x =-D .2(12)y x =-12.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 二、填空题13.已知、是方程的两个根,则代数式的值为______.14.若关于x 的方程x 2+2x +m =0没有实数根,则m 的取值范围是_______.15.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.16.如图,从一个直径为1m 的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m .17.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________18.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是 .19.已知圆锥的母线长为5cm ,高为4cm ,则该圆锥的侧面积为_____ cm ²(结果保留π).20.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.三、解答题21.为响应市政府关于“垃圾不落地⋅市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为“A:非常了解;B :比较了解;C :了解较少;D :不了解.”四种,并将调查结果绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有______名;()3已知“非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.22.商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场 决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2 件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?23.解方程:2411231x x x -=+-- 24.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少? (3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)25.如图,△ABC 的顶点坐标分别为A (0,1)、B (3,3)、C (1,3).(1) 画出△ABC 关于点O 的中心对称图形△A 1B 1C 1(2) 画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2,直接写出点C 2的坐标为______.(3) 若△ABC 内一点P (m ,n )绕原点O 逆时针旋转90°的对应点为Q ,则Q 的坐标为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.B解析:B【解析】连接OC,∵CD是切线,∴∠OCD=90°,∵OA=OC,∴∠ACO=∠BAC=25°,∴∠COD=∠ACO+∠BAC=50°,∴∠D=90°-∠COD=40°,故选B.4.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.5.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.C解析:C【解析】【分析】本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次项系数化为1,然后左右两边同时加上一次项系数一半的平方.【详解】解:2x+x=12x+x+14=1+14 215()24x+=.故选C【点睛】考点:配方的方法.7.A解析:A【解析】【分析】根据根的判别式的意义得到16﹣4m>0,然后解不等式得到m<4,然后对各选项进行判断.【详解】根据题意得:△=16﹣4m>0,解得:m<4,所以m可以取3,不能取5、6、8.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.8.A解析:A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310. 故选:A .【点睛】 本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.9.A解析:A【解析】【分析】由根的判别式求出k 的取值范围,再结合一元二次方程的定义,即可得到答案.【详解】解:∵关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根, ∴224(1)(2)0k ∆=-⨯-⨯->, 解得:12k >, ∵10k -≠,则1k ≠, ∴k 的取值范围是12k >且k≠1; 故选:A .【点睛】本题考查了利用根的判别式求参数的取值范围,以及一元二次方程的定义,解题的关键是正确求出k 的取值范围.10.C解析:C【解析】【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.11.C解析:C【解析】【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm ,∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.12.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 二、填空题13.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a (a+3)+b+3+3(a+3)-11a-b+5整理解析:【解析】【分析】根据一元二次方程解的定义得到a 2-a-3=0,b 2-b-3=0,即a 2=a+3,b 2=b+3,则2a 3+b 2+3a 2-11a-b+5=2a (a+3)+b+3+3(a+3)-11a-b+5,整理得2a 2-2a+17,然后再把a 2=a+3代入后合并即可.【详解】∵a ,b 是方程x 2-x-3=0的两个根,∴a 2-a-3=0,b 2-b-3=0,即a 2=a+3,b 2=b+3,∴2a 3+b 2+3a 2-11a-b+5=2a (a+3)+b+3+3(a+3)-11a-b+5=2a 2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.14.【解析】【分析】根据方程没有实数根得出判别式小于0列出关于m 的不等式求解即可【详解】∵关于x 的方程x2+2x +m =0没有实数根∴解得:故填:【点睛】本题主要考查根的判别式和解一元一次不等式熟练运用根 解析:1m >【解析】【分析】根据方程没有实数根得出判别式小于0,列出关于m 的不等式求解即可.【详解】∵关于x 的方程x 2+2x +m =0没有实数根∴2=240m ∆-<解得:1m >故填:1m >.【点睛】本题主要考查根的判别式和解一元一次不等式,熟练运用根的判别式进行根的情况的判断是关键.15.12【解析】【分析】设长为x 步宽为(60-x)步根据长方形的面积公式列出方程进行求解即可得【详解】设长为x 步宽为(60-x)步x(60-x)=864解得x1=36x2=24(舍去)∴当x=36时60解析:12【解析】【分析】设长为x 步,宽为 (60-x) 步,根据长方形的面积公式列出方程进行求解即可得.【详解】设长为x 步,宽为(60-x) 步,x(60-x)=864 ,解得,x 1=36,x 2=24(舍去),∴当x=36 时,60-x=24 ,∴长比宽多:36-24=12 (步),故答案为:12.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.16.m 【解析】【分析】利用勾股定理易得扇形的半径那么就能求得扇形的弧长除以2π即为圆锥的底面半径【详解】解:易得扇形的圆心角所对的弦是直径∴扇形的半径为:m ∴扇形的弧长为:=πm ∴圆锥的底面半径为:π÷解析:8m . 【解析】【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【详解】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:2m ,∴扇形的弧长为:902180πm ,π÷2πm . 【点睛】 本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.17.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.18.;【解析】【分析】先求出小琳所在班级的女生人数再根据概率公式计算可得【详解】∵小琳所在班级的女生共有40×60=24人∴从小琳所在班级的女生当中随机抽取一名女生参加小琳被抽到的概率是故答案为 解析:124; 【解析】【分析】 先求出小琳所在班级的女生人数,再根据概率公式计算可得.【详解】∵小琳所在班级的女生共有40×60%=24人,∴从小琳所在班级的女生当中随机抽取一名女生参加,小琳被抽到的概率是1 24.故答案为1 24.19.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm母线长5cm根据勾股定理得圆锥的底面半径为3cm所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm,母线长5cm,根据勾股定理得圆锥的底面半径为3cm,所以圆锥的侧面积=π×3×5=15πcm².故答案为:15π.【点睛】本题考查圆锥的计算.20.9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1A1B=AB=6所以△A1BA是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S 阴影=S△A1BA+S△A1BC1﹣S△解析:9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.三、解答题21.(1)20(2)500(3)12【解析】【分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校“非常了解”与“比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校“非常了解”与“比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61122== 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.22.(1) 2x 50-x(2)每件商品降价20元,商场日盈利可达2100元.【解析】【分析】【详解】(1) 2x 50-x .(2)解:由题意,得(30+2x)(50-x)=2 100解之得x 1=15,x 2=20.∵该商场为尽快减少库存,降价越多越吸引顾客.∴x =20.答:每件商品降价20元,商场日盈利可达2 100元. 23.4x =-【解析】【分析】方程左右两边同时乘以(x+3)(x-1),将分式方程转化为整式方程,解出x 的值,并检验即可.【详解】 解:4(3)(1)x x +--1=11x -, 去分母,得:24(23)3x x x -+-=+,整理,得:x 2+3x -4=0,解得:x 1=-4,x 2=1.经检验:x 2=1是增根,舍去,∴原方程的解是4x =-.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.24.(1)21070010000w x x =-+-(20≤x≤32);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.【解析】【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;(3)根据抛物线的性质和图象,求出每月的成本.【详解】解:(1)由题意,得:w=(x ﹣20)•y=(x ﹣20)•(﹣10x+500)=21070010000x x -+-,即21070010000w x x =-+-(20≤x≤32);(2)对于函数21070010000w x x =-+-的图象的对称轴是直线x=7002(10)-⨯-=35. 又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W 随着X 的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,210700100002000x x -+-=解这个方程得:1x =30,2x =40.∵a=﹣10<0,抛物线开口向下,∴当30≤x≤40时,w≥2000.∵20≤x≤32,∴当30≤x≤32时,w≥2000.设每月的成本为P (元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P 随x 的增大而减小,∴当x=32时,P 的值最小,P 最小值=3600.答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.考点:1.二次函数的应用;2.最值问题;3.二次函数的最值.25.(1)作图见解析;(2)作图见解析,(﹣3,1);(3)(﹣n ,m ).【解析】【分析】(1)根据关于原点对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点连线即可; (2)利用网格特点和旋转的性质画出A 、B 、C 的对应点A 2、B 2、C 2,从而得到点C 2的坐标;(3)利用(2)中对应点的规律写出Q 的坐标.【详解】(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作,点C 2的坐标为(﹣3,1);(3)若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为(﹣n,m).故答案为:(﹣3,1),(﹣n,m).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。
2021年重庆初三数学试题(A卷)

重庆市2021年初中学业水平暨高中招生考试数 学 试 卷(A 卷)(全卷共五个大题,总分值150分,考试时刻120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一概用黑色..签字笔完成; 4.考试终止,由监考人员将试题和答题卡...一并收回。
参考公式:抛物线0)c(a bx ax y 2≠++=的极点坐标为(4a b 4ac ,2a b 2--),对称轴为2a b x -= 一、选择题(本大题12个小题,每题4分,共48分)在每一个小题的下面,都给出了代号为A ,B 、C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右边正确答案所对应的方框涂黑 1.-2的相反数是A 、-2B 、21-C 、21 D 、2 二、以下图形中必然是轴对称图形的是3.为调查某大型企业员工对企业的中意程度,以下样本最具代表性的是A 、企业男员工B 、企业年满50岁及以上的员工C 、用企业人员名册,随机抽取1/3的员工D 、企业新进员工4.把三角形按如下图的规律拼图案,其中第①个图案中有四个三角形,第②个图案中有六个三角形,第③个图案中有八个三角形,…,按此规律排列下去,第⑦个图案中三角形的个数为A 、12B 、14C 、16D 、185.要制作两个形状相同的三角形框架,其中一个三角形的三边长别离为5cm ,6cm 和9cm ,另一个三角形的最短边长为,那么它的最长边为A 、3cmB 、4cmC 、D 、5cm6.以下命题正确的选项是A 、平行四边形的对角线彼此垂直平分B 、矩形的对角线彼此垂直平分C 、菱形的对角线彼此平分且相等D 、正方形的对角线彼此垂直平7.估量61)24302(•-的值应在 A 、1和2之间 B 、2和3之间 C 、3和4之间 D 、4和5之间8.按如下图的运算程序,仍使输出的结果为12的是A 、x=3,y=3B 、x=-4,y=-2C 、x=2,y=4D 、x=4,y=2 9.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D ,过点B 作BD 的垂线,交BD 的延长线于点C ,假设⊙O 的半径为四,BC 等于6,那么PA 的长尾A 、4B 、2 3C 、3D 、10.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED 等于58º,升旗台底部到教学楼底部的距离DE =7米,升旗台坡面CD 的坡度i =1:,坡长CD =2米,假设旗杆底部到剖面CD 的水平距离BC =1米,那么旗杆AB 的高度约为(参考数据:sin58º≈,cos58º≈,tan58º≈)A 、米B 、米C 、米D 、米11.如图,在平面直角坐标系中,菱形ABCD 的极点A 、B 在反比例函数)0,0(>>=x k x k y 的图像上,横坐标别离为1,4,对角线BD ∥x 轴,假设菱形ABCD 的面积为245,那么k 的值为 A 、45 B 、415 C 、4 D 、512.假设数a 使关于x 的不等式组⎪⎩⎪⎨⎧+≥-+<-a x x x x 253121有且只有四个整数解,且使关于y 的方程y a y a y -+-+121的解为非负数,那么符合条件的所有整数a 的积为A 、-3B 、-2C 、1D 、2二、填空题(本大题6个小题,每题4分,共24分)请将每题的答案直接在答题卡...中对应的横线上。
人教版初中数学九年级上册期中数学试卷(2019-2020学年重庆市南岸区珊瑚中学

2019-2020学年重庆市南岸区珊瑚中学九年级(上)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3B.2C.0D.﹣42.(4分)通过努力考入一所好的大学是每一位学生的心愿,每一所大学的校徽都很漂亮.下列给出的四所高校校徽主体图案,其中是中心对称图形的是()A.B.C.D.3.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查重庆全市中小学生的课外阅读时间C.调查我市初中学生的视力情况D.调查“神州十一号”飞船零部件的安全性能4.(4分)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=62°,则∠ACB 的度数为()A.28°B.31°C.32°D.59°5.(4分)下列命题中,真命题是()A.内错角相等B.对角线相等且互相垂直的四边形是正方形C.一个内角为直角的平行四边形是矩形D.三角形的一个外角大于任何一个内角6.(4分)估计÷+2的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.(4分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里8.(4分)按如图所示的运算程序,能使输出的结果为﹣1的是()A.x=3,y=3B.x=2,y=﹣4C.x=﹣4,y=﹣2D.x=4,y=2 9.(4分)如图,将平行四边形ABCD绕点A顺时针旋转,其中B、C、D分别落在点E、F、G处,且点B、E、D、F在同一直线上,若∠CBA=115°,则∠CBD的大小为()A.65°B.55°C.50°D.40°10.(4分)如图,矩形OABC的顶点B(﹣7,6),顶点A、C在坐标轴上,矩形内部一点D在双曲线y=上,DE⊥AB于点E,DF⊥BC于点F.若四边形DEBF为正方形,则点D的坐标是()A.(﹣4,3)B.(﹣3,4)C.(﹣2,6)D.(﹣6,2)11.(4分)诗人卞之琳的代表作《断章》:“你站在桥上看风景,看风景的人在楼上看你,明月装饰了你的窗子,你装饰了别人的梦”.2019年国庆,重庆来福士广场开业,吸引了全国各地游客前来,重庆又有了一张新的名片.10月2日,游客小王从南滨路的A处,沿坡度i=1:0.75的斜坡上行20米到达B处,再往正前方水平走8米到达C处,对来福士广场拍照.同时,小王身后的一栋居民楼里面的重庆市民小张在D处测得C处的俯角为42°,若居民楼底端E处与A处的距离是45米,A、B、C、D、E在同一平面内,DE⊥AE于点E.则DE的长约为()米.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)A.74.5B.74.1C.61.2D.58.512.(4分)若关于x的不等式组无解,且关于y的分式方程有正整数解,则满足条件的所有整数a的个数为()A.2B.3C.4D.5二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:|﹣4|+()0=.14.(4分)2019年10月1日有126000群众参与了国庆阅兵庆典.数126000用科学记数法表示为.15.(4分)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为.16.(4分)某地高中学业水平实验操作考试,要求每名学生从物理、化学,生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是.17.(4分)快、慢两车同时从甲地出发,在甲、乙两地之间做一次匀速的往返运动.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示.当快车返回A地时,两车之间的距离为千米.18.(4分)商场购进A、B、C三种商品各100件、112件、60件,分别按照25%、40%、60%的利润率进行标价,其中商品C的标价为80元.“双11”期间,为了促销,商场进行优惠活动:如果同时购买A、B商品各两件,就免费获赠一件C商品.这个优惠活动,实际上相当于把这五件商品各打七五折.那么商场购进这三种商品一共花了元.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算(1)(a﹣3)2﹣a(a﹣6)(2)20.(10分)如图,在△ABC中,D、E为AB、BC上的点,且DE∥AC,EF平分∠DEB 交AB于F,若∠B=42°,∠A=76°,求∠DFE的度数.21.(10分)2019年3月15日,我国“两会”落下帷幕.13天时间里,来自各地的5000余名代表、委员聚于国家政治中心,共议国家发展大计.某校初三(3)班张老师为了了解同学们对“两会”知识的知晓情况,进行了一次小测试,测试满分100分.其中A组同学的测试成绩分别为:91 91 86 93 85 89 89 88 87 91B组同学的测试成绩分别为:88 97 88 85 86 94 84 83 98 87根据以上数据,回答下列问题:(1)完成下表:组别平均数中位数众数方差A组8989b cB组89a8826.2其中a=,b=,c=,(2)张老师将B组同学的测试成绩分成四组并绘制成如图所示频数分布直方图(不完整),请补全;(3)根据以上分析,你认为组(填“A”或“B”)的同学对今年“两会”知识的知晓情况更好一些,请写出你这样判断的理由(至少写两条):①②.22.(10分)阅读下列材料:解方程:x4﹣6x2+5=0.这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣6y+5=0…①,解这个方程得:y1=1,y2=5.当y=1时,x2=1,∴x=±1;当y=5时,x2=5,∴x=±所以原方程有四个根:x1=1,x2=﹣1,x3=,x4=﹣.在这个过程中,我们利用换元法达到降次的目的,体现了转化的数学思想.(1)解方程(x2﹣x)2﹣4(x2﹣x)﹣12=0时,若设y=x2﹣x,则原方程可转化为;(2)利用换元法解方程:=2.23.(10分)某数学学习小组在研究函数y=+1时,对函数的图象和性质进行了探究.探究过程如下:(1)x与y的几组对应值如表:x…﹣2﹣1013456…y…m0﹣1n532…其中m=,n=;(2)在平面直角坐标系xOy中,描出上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(3)观察图象,写出该函数的两条性质:①②(4)我们知道,函数y=a(x﹣h)2+k(a≠0,h>0,k>0)的图象是由二次函数y=ax2的图象向右平移h个单位,再向上平移k个单位得到的.类似地,我们可以认为函数y =+1的图象可由函数y=的图象向右平移个单位,再向上平移个单位得到;(5)根据函数图象,当y≥0时,自变量x的取值范围为.24.(10分)新学期开始,某文具店一共花费600元购进50本A款笔记本和60本B款笔记本进行试销.已知A款笔记本单价比B款笔记本单价贵20%.(1)求A,B两种文具的单价分别为多少元?(2)试销结束后,文具店决定第二次购进A、B两款笔记本.因“国庆”促销活动,文具店老板发现,A款笔记本的单价下降了m%(m>0),B款笔记本的单价反而上涨了0.1m%,文具店老板决定A款笔记本的购进数量比试销时的购进数量增加m%,B款笔记本的购进数量与试销时的购进数量一致,结果购进这两款笔记本所花费的总费用仍为600元.求m的值.25.(10分)已知:平行四边形ABCD中,∠ABC=45°,对角线AC⊥CD.(1)如图1,若AD=6,求平行四边形ABCD的面积.(2)如图2,连接BD交AC于O点,过点A作AE⊥BD于E,连接EC.求证:ED=AE+EC.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,抛物线y=﹣x2﹣2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为该抛物线的顶点.(1)如图1,点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC 于点E.当线段PE长取得最大值时,在直线AC上找一点Q,使得△PQD周长最小,求出这个最小周长;(2)把抛物线沿直线AC平移,抛物线上两点A、D平移后的对应点分别是A′、D′,在平面内是否存在一点M,使得以点A′、D′、M、B为顶点的四边形为菱形?若存在,直接写出M点的坐标;若不存在,请说明理由.2019-2020学年重庆市南岸区珊瑚中学九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3B.2C.0D.﹣4【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣4<﹣3<0<2,∴四个实数中,最大的实数是2.故选:B.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(4分)通过努力考入一所好的大学是每一位学生的心愿,每一所大学的校徽都很漂亮.下列给出的四所高校校徽主体图案,其中是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:B.【点评】本题考查了中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查重庆全市中小学生的课外阅读时间C.调查我市初中学生的视力情况D.调查“神州十一号”飞船零部件的安全性能【分析】直接利用利用全面调查与抽样调查的意义进而分析得出答案.【解答】解:A、调查一批新型节能灯泡的使用寿命,适合抽样调查,故该选项不符合题意;B、调查重庆全市中小学生的课外阅读时间,适合抽样调查,故该选项不符合题意;C、调查我市初中学生的视力情况,适合抽样调查,故该选项不符合题意;D、调查“神州十一号”飞船零部件的安全性能,适合全面调查,故该选项符合题意;故选:D.【点评】此题主要考查了全面调查与抽样调查,正确把握相关定义是解题关键.4.(4分)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=62°,则∠ACB 的度数为()A.28°B.31°C.32°D.59°【分析】利用圆周角定理计算即可.【解答】解:∵∠ACB=∠AOB,∠AOB=62°,∴∠ACB=31°,故选:B.【点评】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(4分)下列命题中,真命题是()A.内错角相等B.对角线相等且互相垂直的四边形是正方形C.一个内角为直角的平行四边形是矩形D.三角形的一个外角大于任何一个内角【分析】根据平行线的性质、正方形的判定定理、矩形的判定定理、三角形的外角性质判断.【解答】解:A、两直线平行,内错角相等,本选项说法是假命题;B、对角线相等且互相垂直的平行四边形是正方形,本选项说法是假命题;C、一个内角为直角的平行四边形是矩形,本选项说法是真命题;D、三角形的一个外角大于任何一个与它不相邻的内角,本选项说法是假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)估计÷+2的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】依据二次根式的除法法则以及无理数的大小,即可得到÷+2的值的范围.【解答】解:∵÷+2=+2,4<<5,∴6<+2<7,∴÷+2的值应在6和7之间,故选:D.【点评】本题主要考查了估算无理数的大小,估算无理数大小要用逼近法.7.(4分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里【分析】设第一天走了x里,则第二天走了x里,第三天走了×x…第六天走了()5x里,根据路程为378里列出方程并解答.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.【点评】本题考查了一元一次方程的应用.根据题意得到()5x里是解题的难点.8.(4分)按如图所示的运算程序,能使输出的结果为﹣1的是()A.x=3,y=3B.x=2,y=﹣4C.x=﹣4,y=﹣2D.x=4,y=2【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A.x=3,y=3时,输出结果为=1,不符合题意;B.x=2,y=﹣4时,输出结果为=﹣1,符合题意;C.x=﹣4,y=﹣2时,输出结果为=﹣,不符合题意;D.x=4,y=2时,输出结果为=,不符合题意;故选:B.【点评】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.9.(4分)如图,将平行四边形ABCD绕点A顺时针旋转,其中B、C、D分别落在点E、F、G处,且点B、E、D、F在同一直线上,若∠CBA=115°,则∠CBD的大小为()A.65°B.55°C.50°D.40°【分析】由旋转的性质得出AB=AE,∠AEF=∠CBA=115°,由等腰三角形的性质得出∠AEB=∠ABE=65°,即可得出答案.【解答】解:∵平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,∴AB=AE,∠AEF=∠CBA=115°,∴∠AEB=∠ABE=65°,∴∠CBD=∠CBA﹣∠ABE=115°﹣65°=50°;故选:C.【点评】本题考查了旋转的性质、平行四边形的性质、等腰三角形的性质;熟练掌握旋转的性质和等腰三角形的性质是解题的关键.10.(4分)如图,矩形OABC的顶点B(﹣7,6),顶点A、C在坐标轴上,矩形内部一点D在双曲线y=上,DE⊥AB于点E,DF⊥BC于点F.若四边形DEBF为正方形,则点D的坐标是()A.(﹣4,3)B.(﹣3,4)C.(﹣2,6)D.(﹣6,2)【分析】由点D在双曲线上可设点D的坐标为(m,﹣)(m<0),根据点B的坐标即可得出DE、DF的长度,根据正方形的性质即可得出关于m的分式方程,解之经检验后即可得出结论.【解答】解:∵点D在双曲线y=上,∴设点D的坐标为(m,﹣)(m<0),∵B(﹣7,6),∴DE=m+7,DF=6+,∵四边形DEBF为正方形,∴m+7=6+,解得:m=﹣4或m=3(舍去),经检验m=﹣4是方程m+7=6+的解,∴点D的坐标为(﹣4,3).故选:A.【点评】本题考查了反比例函数图象上点的坐标特征以及正方形的性质,根据正方形的性质找出关于m的分式方程是解题的关键.11.(4分)诗人卞之琳的代表作《断章》:“你站在桥上看风景,看风景的人在楼上看你,明月装饰了你的窗子,你装饰了别人的梦”.2019年国庆,重庆来福士广场开业,吸引了全国各地游客前来,重庆又有了一张新的名片.10月2日,游客小王从南滨路的A处,沿坡度i=1:0.75的斜坡上行20米到达B处,再往正前方水平走8米到达C处,对来福士广场拍照.同时,小王身后的一栋居民楼里面的重庆市民小张在D处测得C处的俯角为42°,若居民楼底端E处与A处的距离是45米,A、B、C、D、E在同一平面内,DE⊥AE于点E.则DE的长约为()米.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)A.74.5B.74.1C.61.2D.58.5【分析】根据仰角俯角和坡度坡角延长CB交DE于点F,过点B作BG⊥EA的延长线于点G,构造矩形和直角三角形即可求解.【解答】解:如图,延长CB交DE于点F,过点B作BG⊥EA的延长线于点G,得矩形BFEG,直角三角形CFD和AGB,∵A处沿坡度i=1:0.75的斜坡上行20米到达B处,∴设GB=4x,AG=3x,∴AB=5x,∴5x=20,x=4,∴GB=EF=16,AG=12,∴GE=AG+AE=BF=57,∴CF=CB+BF=8+57=65,在Rt△CFD中,tan∠DCF=,即DF=0.9×65=58.5,∴DE=DF+FE=74.5.故选:A.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,解决本题的关键是作辅助线构造直角三角形.12.(4分)若关于x的不等式组无解,且关于y的分式方程有正整数解,则满足条件的所有整数a的个数为()A.2B.3C.4D.5【分析】依据不等式组无解,即可得到a≤4;依据分式方程有正整数解,即可得到a>﹣12且a≠﹣4,进而得出﹣12<a≤4且a≠﹣4,根据y=+3是正整数,可得a=﹣8,0,4.【解答】解:由不等式组,可得,∵不等式组无解,∴a﹣≤,解得a≤4;由分式方程,可得y=+3,∵分式方程有正整数解,∴y>0且y≠2,即+3>0且+3≠2,解得a>﹣12且a≠﹣4,∴﹣12<a≤4且a≠﹣4,∵+3是正整数,∴a=﹣8,0,4,∴满足条件的所有整数a的个数为3个,故选:B.【点评】本题考查了一元一次不等式组的解、分式方程的解,解题的关键是根据不等式组以及分式方程求出a的范围.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:|﹣4|+()0=5.【分析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=4+1=5.故答案为:5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.(4分)2019年10月1日有126000群众参与了国庆阅兵庆典.数126000用科学记数法表示为 1.26×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12 6000=1.26×105.故答案为:1.26×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为2.【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.【解答】解:∵DE∥BC,∴=,∴=,∴CE=2.故答案为:2.【点评】本题考查了平行线分线段成比例定理的应用,能根据平行线分线段成比例定理得出比例式是解此题的关键.16.(4分)某地高中学业水平实验操作考试,要求每名学生从物理、化学,生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是.【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【解答】解:如图所示:一共有9种等可能的结果数,小华和小强都抽到物理学科的有1种,故小华和小强都抽到物理学科的概率是:.故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.(4分)快、慢两车同时从甲地出发,在甲、乙两地之间做一次匀速的往返运动.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示.当快车返回A地时,两车之间的距离为80千米.【分析】根据题意和函数图象,可以得到点A、B、C、D、E表示的含义,从而可以得到快车、慢车的速度和甲乙两地之间的距离,进而可以求得当快车返回A地时,两车之间的距离.【解答】解:由题意可得,点A代表快车到达乙地,点B表示快车返回时与慢车相遇,点C表示此时慢车到达乙地,点D表示此时快车返回甲地,点E表示此时慢车返回甲地,则点D的横坐标为4,点E的横坐标为6,设快车的速度为x千米/小时,慢车的速度为y千米/小时,甲乙两地之间的距离为S千米,,得,故当快车返回A地时,两车之间的距离为:40×(6﹣4)=40×2=80(千米),故答案为:80.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.(4分)商场购进A、B、C三种商品各100件、112件、60件,分别按照25%、40%、60%的利润率进行标价,其中商品C的标价为80元.“双11”期间,为了促销,商场进行优惠活动:如果同时购买A、B商品各两件,就免费获赠一件C商品.这个优惠活动,实际上相当于把这五件商品各打七五折.那么商场购进这三种商品一共花了12600元.【分析】先求出商品C的进价为50元.再设商品A、B的进价分别为x元,y元,表示出商品A的标价为x,商品B的标价为y元,根据“如果同时购买A、B商品各两件,就免费获赠一件C商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出100x+112y+60×50的值.【解答】解:由题意,可得商品C的进价为:80÷(1+60%)=50(元).设商品A、B的进价分别为x元,y元,则商品A的标价为(1+25%)x=x(元),商品B的标价为(1+40%)y=y(元),由题意,得2(x+y)=[2(x+y)+80]×0.75,∴x+y=120,∴100x+112y=9600,∴100x+112y+60×50=12600(元).答:商场购进这三种商品一共花了12600元.故答案为:12600.【点评】本题考查了二元一次方程的应用,设商品A、B的进价分别为x元,y元,分别表示出商品A与商品B的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x与y的具体值,这是本题的难点.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算(1)(a﹣3)2﹣a(a﹣6)(2)【分析】(1)先利用完全平方公式和单项式乘多项式法则计算,再合并即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=a2﹣6a+9﹣a2+6a=9;(2)原式=÷(+)=÷=•==.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.20.(10分)如图,在△ABC中,D、E为AB、BC上的点,且DE∥AC,EF平分∠DEB 交AB于F,若∠B=42°,∠A=76°,求∠DFE的度数.【分析】由∠B=42°,∠A=76°,根据三角形内角和定理可得∠C=62°,根据DE∥AC,可得∠DEB=∠C=62°,再根据角平分线定义即可求解.【解答】解:∵∠B=42°,∠A=76°,∴∠C=180°﹣∠B﹣∠A=62°,∵DE∥AC,∴∠DEB=∠C=62°,∵EF平分∠DEB,∴∠DEF=∠FEB=∠DEB=31°,∴∠DFE=∠B+∠BEF=73°.答:∠DFE的度数为73°.【点评】本题考查了三角形内角和定理、平行线的性质,解决本题的关键是掌握三角形内角和定理.21.(10分)2019年3月15日,我国“两会”落下帷幕.13天时间里,来自各地的5000余名代表、委员聚于国家政治中心,共议国家发展大计.某校初三(3)班张老师为了了解同学们对“两会”知识的知晓情况,进行了一次小测试,测试满分100分.其中A组同学的测试成绩分别为:91 91 86 93 85 89 89 88 87 91B组同学的测试成绩分别为:88 97 88 85 86 94 84 83 98 87根据以上数据,回答下列问题:(1)完成下表:组别平均数中位数众数方差A组8989b cB组89a8826.2其中a=87.5,b=91,c= 5.8,(2)张老师将B组同学的测试成绩分成四组并绘制成如图所示频数分布直方图(不完整),请补全;(3)根据以上分析,你认为A组(填“A”或“B”)的同学对今年“两会”知识的知晓情况更好一些,请写出你这样判断的理由(至少写两条):①A组的中位数大于B组②在两组平均数相同的情况下,A组的方差小于B组,A组波动小,成绩稳定.【分析】(1)根据题目中的数据可以将A组和B组的成绩按照从小到大排列,从而可以的到a、b、c的值;(2)根据题意和B组的数据,可以将频数分布直方图补充完整;(3)根据表格中的数据可以解答本题,注意写理由时,主要合理即可,本题答案不唯一.【解答】解:(1)A组同学的测试成绩按照从小到大排列是:85,86,87,88,89,89,91,91,91,93,B组同学的测试成绩按照从小到大排列是:83,84,85,86,87,88,88,94,97,98,则a=(87+88)÷2=87.5,b=91,c==5.8,故答案为:87.5,91,5.8;(2)∵B组同学的测试成绩按照从小到大排列是:83,84,85,86,87,88,88,94,97,98,∴90.5≤x<94.5的有1人,94.5≤x<98.5的有2人,补全的频数分布直方图如右图所示;(3)根据以上分析,你认为A组的同学对今年“两会”知识的知晓情况更好一些,理由:①A组的中位数大于B组;②在两组平均数相同的情况下,A组的方差小于B组,A组波动小,成绩稳定;故答案为:A;A组的中位数大于B组;在两组平均数相同的情况下,A组的方差小于B 组,A组波动小,成绩稳定.【点评】本题考查频数分布直方图、用样本估计总体、中位数、众数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.22.(10分)阅读下列材料:解方程:x4﹣6x2+5=0.这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣6y+5=0…①,解这个方程得:y1=1,y2=5.当y=1时,x2=1,∴x=±1;当y=5时,x2=5,∴x=±所以原方程有四个根:x1=1,x2=﹣1,x3=,x4=﹣.在这个过程中,我们利用换元法达到降次的目的,体现了转化的数学思想.(1)解方程(x2﹣x)2﹣4(x2﹣x)﹣12=0时,若设y=x2﹣x,则原方程可转化为y2﹣4y﹣12=0;(2)利用换元法解方程:=2.【分析】(1)直接代入得结果;(2)设y=把分式方程变形后求解,把解代入设中求出x的值.【解答】解:(1)设y=x2﹣x,原方程可变形为:y2﹣4y﹣12=0.故答案为:y2﹣4y﹣12=0(2)设y=,则=,原方程变形为:+y﹣2=0去分母,得y2﹣2y+1=0,即(y﹣1)2=0解得,y1=y2=1经检验,y=1是分式方程的根.所以=1即x2﹣2x﹣4=0解得:x1=1+,x2=1﹣.经检验,1±是分式方程的根.所以原分式方程的解为:x1=1+,x2=1﹣.【点评】本题考查了一元二次方程、分式方程的解法.看懂题例理解换元法是关键.换元法的一般步骤有:设元、换元、解元、还原几步.注意应用换元法解分式方程,注意验根.23.(10分)某数学学习小组在研究函数y=+1时,对函数的图象和性质进行了探究.探究过程如下:(1)x与y的几组对应值如表:x…﹣2﹣1013456…y…m0﹣1n532…其中m=,n=﹣3;(2)在平面直角坐标系xOy中,描出上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(3)观察图象,写出该函数的两条性质:①x>2时y随x的增大而减小②函数图象是中心对称图形(4)我们知道,函数y=a(x﹣h)2+k(a≠0,h>0,k>0)的图象是由二次函数y=ax2的图象向右平移h个单位,再向上平移k个单位得到的.类似地,我们可以认为函数y =+1的图象可由函数y=的图象向右平移2个单位,再向上平移1个单位得到;(5)根据函数图象,当y≥0时,自变量x的取值范围为x≤0或x>2.【分析】(1)求出x=﹣1和x=时的函数值即可;(2)利用描点法画出函数图象即可;(3)根据函数的图象,可得结论;(4)根据函数的图象可得结论;(5)利用函数的图象即求得.【解答】解:(1)x=﹣1时,y=+1=,∴m=.。
2020-2021重庆珊瑚中学初三数学下期末试卷附答案

2020-2021重庆珊瑚中学初三数学下期末试卷附答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( ) A .4B .5C .6D .72.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .3.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+4.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A .B .C .D .5.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108°B .90°C .72°D .60°6.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且7.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A .B .C .D .8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.89.如果关于x的分式方程11222axx x -+=--有整数解,且关于x的不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩的解集为x>4,那么符合条件的所有整数a的值之和是()A.7B.8C.4D.510.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD 的面积之和为,则k的值为()A.2B.3C.4D.11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm12.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .210C .211D .43二、填空题13.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .14.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.15.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)16.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.17.已知10a b b -+-=,则1a +=__.18.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.19.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___. 20.若式子3x +在实数范围内有意义,则x 的取值范围是_____.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 名市民,扇形统计图中,C 组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.解方程:x21 x1x-= -.23.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润电脑款式A B C D利润(元/台)160200240320表2:甲、乙两店电脑销售情况电脑款式A B C D甲店销售数量(台)2015105乙店销售数量(台)88101418试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.24.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全..表格.654 3.53 2.5210.5000.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.25.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).26.问题:探究函数y=x+的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x的取值范围是:____;(2)如表是y与x的几组对应值,请将表格补充完整:x…﹣3﹣2﹣﹣1123…y…﹣3﹣3﹣3﹣443…(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.B解析:B【解析】 【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解. 【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意; 故选B . 【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.D解析:D 【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.4.D解析:D 【解析】 试题分析:如图,过点C 作CD ⊥AB 于点D . ∵在△ABC 中,AC=BC ,∴AD=BD .①点P 在边AC 上时,s 随t 的增大而减小.故A 、B 错误; ②当点P 在边BC 上时,s 随t 的增大而增大;③当点P 在线段BD 上时,s 随t 的增大而减小,点P 与点D 重合时,s 最小,但是不等于零.故C 错误;④当点P 在线段AD 上时,s 随t 的增大而增大.故D 正确.故答案选D . 考点:等腰三角形的性质,函数的图象;分段函数.5.C解析:C 【解析】 【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案. 【详解】解:设此多边形为n 边形, 根据题意得:180(n-2)=540, 解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°. 故选C . 【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根, ∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D . 【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键7.C解析:C 【解析】从上面看,看到两个圆形, 故选C .8.B解析:B 【解析】 【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2)2, 解得,OA=4 ∴OD=OC-CD=3, ∵AO=OE,AD=DB, ∴BE=2OD=6 故选B 【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9.C解析:C 【解析】 【分析】解关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可. 【详解】由分式方程11222ax x x-+=--可得1﹣ax+2(x ﹣2)=﹣1 解得x =22a-, ∵关于x 的分式方程11222ax x x-+=--有整数解,且a 为整数 ∴a =0、3、4关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩整理得4x a x >⎧⎨>⎩ ∵不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩的解集为x >4∴a≤4于是符合条件的所有整数a 的值之和为:0+3+4=7 故选C . 【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.10.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.故选C.【点睛】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△OAC与△CBD的面积.11.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.12.C解析:C【解析】【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出222OG OB BG =-=,证出EOG ∆是等腰直角三角形,得出45,222OEG OE OG ∠=︒==,求出30OEF ∠=︒,由直角三角形的性质得出122OF OE ==,由勾股定理得出11DF =,即可得出答案. 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,221392OG OB BG =-=-=,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,222OE OG ==, ∵75DEB ∠=︒,∴30OEF ∠=︒,∴122OF OE ==, 在Rt ODF ∆中,2213211DF OD OF =-=-=,∴2211CD DF ==;故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.二、填空题13.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106 解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.14.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.15.2m【解析】【分析】延长AD交BC的延长线于点E作DF⊥CE于点F解直角三角形求出EFCF即可解决问题【详解】延长AD交BC的延长线于点E作DF⊥CE于点F在△DCF中∵CD=4mDF:CF=1:3解析:2m.【解析】【分析】延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.【详解】延长AD交BC的延长线于点E,作DF⊥CE于点F.在△DCF中,∵CD=4m,DF:CF=1:,∴tan∠DCF=,∴∠DCF=30°,∠CDF=60°.∴DF=2(m),CF=2(m),在Rt△DEF中,因为∠DEF=50°,所以EF=≈1.67(m)∴BE=EF+FC+CB=1.67+2+5≈10.13(m),∴AB=BE•tan50°≈12.2(m),故答案为12.2m.【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD =2xCF=3x∴∴tan∠DCF=故答案为:【点解析:52.【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-.∴tan∠DCF=DF5x5 CD=.故答案为:52.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.17.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.【详解】b﹣1|=0,≥,|1|0b-≥,∴a﹣b=0且b﹣1=0,解得:a=b=1,∴a+1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.18.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.19.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式解析:14.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)=416=14.故答案为14.考点:列表法与树状图法;概率公式.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.3x 在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.x .22.2【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x 2-2x+2=x 2-x ,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)310 (2)应对甲店作出暂停营业的决定 【解析】 【分析】(1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得. 【详解】 解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为1053201510510+=+++, 故答案为310; (2)甲店每售出一台电脑的平均利润值为160202001524010320550⨯+⨯+⨯+⨯=204(元),乙店每售出一台电脑的平均利润值为160820010240143201850⨯+⨯+⨯+⨯=248(元),∵248>204, ∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【点睛】本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.24.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是. 【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,,故答案为:,.(2)①当时,,当时,,故答案为2,6.②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为.性质2:函数图象在第一象限,随的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.26.(1)x≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.。
重庆市2021版九年级上学期数学期末考试试卷(II)卷

重庆市2021版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2019八上·凉州期末) 下列图形中不是轴对称图形的是()A .B .C .D .2. (1分) (2017九上·钦州月考) 把抛物线先向左平移1个单位,再向下平移2个单位长度后,所得的函数表达式为()A .B .C .D .3. (1分)抛掷一个均匀的正方体骰子两次,设第一次朝上的数字为x、第二次朝上的数字为y,并以此确定(x,y),那么点P落在抛物线上的概率为()A .B .C . 0.5D . 0.254. (1分)反比例函数y=( x<0)的图象在第()象限A . 一、三B . 一5. (1分) (2017八下·丰台期末) 如果一个多边形的每个内角都是120°,那么这个多边形是()A . 五边形B . 六边形C . 七边形D . 八边形6. (1分)下列说法中正确的个数共有()(1)如果圆心角相等,那么它们所对的弦一定相等.(2)弦的中垂线一定是这条弦所在圆的对称轴.(3)平分弦的直径一定垂直于这条弦.(4)两条边相等的两个直角三角形一定全等.A . 1个B . 2个C . 3个D . 0或4个7. (1分)(2018·南宁模拟) 已知圆O的半径是3,A,B,C 三点在圆O上,∠ACB=60°,则弧AB的长是()A . 2πB . πC . πD . π8. (1分) (2019九上·慈溪期中) 下列命题中,是真命题的是()A . 平分弦的直径垂直于弦B . 圆内接平行四边形必为矩形C . 任意三个点确定一个圆D . 相等圆心角所对的弧相等9. (1分)如图,已知圆锥侧面展开图的扇形面积为65πcm2 ,扇形的弧长为10πcm,则圆锥母线长是()C . 12cmD . 13cm10. (1分)已知方程x2-2x-5=0,有下列判断:①x1+x2=-2;②x1•x2=-5;③方程有实数根;④方程没有实数根;则下列选项正确的是()A . ①②B . ①②③C . ②③D . ①②④二、解答题 (共8题;共15分)11. (2分) (2018九上·邗江期中) 解下列方程:(1)(x﹣2)2=3(x﹣2)(2) x2+3x﹣2=0.12. (2分)(2017·钦州模拟) 如图所示,△ABC的外接圆⊙O的半径为2,过点C作∠ACD=∠ABC,交BA的延长线于点D,若∠ABC=45°,∠D=30°.(1)求证:CD是⊙O的切线;(2)求的长.13. (1分)如图,设A、B、C、D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?说明理由.14. (2分)(2017·渭滨模拟) 小明参加某网店的“翻牌抽奖”活动,如图,共有4张牌,分别对应5元,10元,15元,20元的现金优惠券,小明只能看到牌的背面.(1)如果随机翻一张牌,那么抽中20元现金优惠券的概率是________.(2)如果随机翻两张牌,且第一次翻的牌不参与下次翻牌,则所获现金优惠券的总值不低于30元的概率是多少?请画树状图或列表格说明问题.15. (2分)(2018·青羊模拟) 如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,4),点A为MN的中点,反比例函数y= (x>0)的图象过点A.(1)求直线l和反比例函数的解析式;(2)在函数y= (k>0)的图象上取异于点A的一点C,作CB⊥x轴于点B,连接OC交直线l于点P,若△ONP的面积是△OBC面积的3倍,求点P的坐标.16. (2分)(2018·吉林模拟) 水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是________斤(用含x的代数式表示);(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元?17. (1分) (2019七下·湖州期中) 如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.18. (3分)(2014·桂林) 如图,已知抛物线y=ax2+bx+4与x轴交于A(﹣2,0)、B两点,与y轴交于C 点,其对称轴为直线x=1.(1)直接写出抛物线的解析式:________;(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形?若存在,求出E、F的坐标;若不存在,请说明理由.三、填空题 (共8题;共8分)19. (1分) (2019九上·綦江月考) 一元二次方程(a+2)x2-2ax+a2-4=0的一个根为0,则a=________.20. (1分) (2018八上·如皋期中) 已知点A(m,3)与点B(2,n)关于x轴对称,则m+n=________.21. (1分)(2018·绍兴模拟) 如图,动点P在函数y= (x>0)的图象上移动,⊙P半径为2,A(3,0),B(6,0),点Q是⊙P上的动点,点C是QB的中点,则AC的最小值是________.22. (1分)在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是________ .23. (1分) (2020九上·温州期末) 抛物线y=x2-9与y轴的交点坐标为________。