电抗率选择的一般原则

合集下载

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用在高压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。

因此,电抗器在无功补偿装置中的作用非常重要。

然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。

由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。

电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。

所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。

虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。

下面总结电容器串联电抗器时,电抗率选择的一般规律。

1. 电网谐波中以3次为主根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。

(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。

2. 电网谐波中以3、5次为主(1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。

干式空心电抗器技术培训讲议(SEC)

干式空心电抗器技术培训讲议(SEC)

X C /(2 X x ) ≤ n ≤ 2 X C / X x ,可见串
入电抗器后谐波严重放大区也缩小了, 串联电抗器的电感量越大, 谐波严重放大区缩小越多。 当 n<na 时,电容器支路呈容性,流入系统的谐波电流虽比谐波源电流大,但却放大不 多。 当β=0 即 n = n0 =
″ቤተ መጻሕፍቲ ባይዱ
X C / X L 时,电容器与串联电抗器发生串联谐振,n0``为谐振的
n = nb = 2 X C /(2 X L + X s ) 时, |Isn/In|=1, |ICn/In|=2; 当 na≤n≤nb 时, 同时有|Isn|≥|In|和|Isn|
≥|In|,这种情况称为谐波电流被严重放大。因此,应避免有谐波源的谐波次数处于该区域, na,nb 为谐波严重放大区的临界点,串联电抗 XL 值越大,na 和 nb 越接近,则严重放大区越 小。而未串电抗器时,谐波被严重放大的区域为
谐波次数,此时谐波电流完全流入电容器支路,即电容器支路处于对 n0``次谐波完全滤波的 状态。 当 nb<n<n0``时,电容器去路仍呈容性,谐波源的谐波电流仅有部分流入系统,大部分 流入电容器支路,故电容器支路仍起到滤波的作用。 当β=1,即 n = nc =
X C /( X L − X s ) 时,ICn=Isn=In/2。在 n0<n<nc 的范围内,电容器
支路呈感性,起分流作用。当 n>nc 时,电容器支路仍呈感性,但随着 n 增大,其分流作用 逐渐减弱,n 较大时,基本不起分流作用。 从以上分析可知,只要电容器回路对某次谐波呈感性,即 nXL>XC/n,就不会对系统该 次谐波电流产生放大作用。 定义 K=XL/XC,为电抗率,即对 n 次谐波不产生放大的条件为 K > 1

电容器组电抗率的选择

电容器组电抗率的选择

电容器组电抗率的选择机械工业第四设计研究院陈才俊摘要: 文章阐述如何根据背景谐波选择电容器组的电抗率关键词: 谐波电抗率串联谐波并联谐波一、什么叫电抗率非线性元件是产生谐波的根源,非正弦波的周期可利用傅里叶级数予以展开,谐波的危害人人皆知,这些就不在这里叙述。

治理谐波的方法是采用滤波器,滤波器大量吸收系统里由谐波源发生的谐波,抑制了谐波对系统的骚扰。

电容器是提高功率因数的,带电抗器的电容器组在汽车厂广泛应用,所以要串联电抗器,其目的之一是减少电容器组的合闸涌流,另一个目的是将电容器组作为滤波器来治理谐波。

目的不同,所串联电抗器的电抗率(又称相对电抗率),也是不同的。

前者电抗率一般为0.1%~1%,由制造厂选配,后者电抗率应由用户根据背景谐波的不同,从制造厂产品样本所示的标准规格选择。

所谓电抗率K ,就是所串联电抗器的感抗(ωL )和电容器容抗(Cω1)的百分比,即K=ω2LC 。

此处ω=2πf=314,f 即基波频率50Hz 。

对某次谐波,如n 次,感抗是n ωL ,或称nX L ,容抗是cn ω1或称nX c。

二、利用串联谐振激活谐波如果略去很多分支回路,某次谐波从谐波源出发,面临2个并联回路,其中一个回路是电网系统,另一个回路是串联电抗器的电容器组。

假设系统基波电抗是Xs ,串联电抗器的电容器组的基波电抗是X L —X c 。

既然CLX X K =,那么X L —X C =KX C —X C =X C (K —1)。

系统谐波电抗是nX S ,串联组谐波电抗是nX L —nX c=nKX c -nnK X n X c c 1(-=)。

设谐波源流出的n 次谐波电流为I n ,I n =I ns +I nc ,I ns 为流入系统的n 次谐波电流,I nc 为流入电容器组的n 次谐波电流。

根据定压原理和分流原理可分别得出:n Sc cnsI nX X n nK X n nK I ⋅+--=)1()1( n Sc SncI nX X nnK nX I ⋅+-=)1(作为滤波器,当然希望谐波电流I n 全部流入电容器组,即希望nK n1-=0,即K=21n。

无功补偿电抗率选7%还是14%,电抗率是越高越好么?

无功补偿电抗率选7%还是14%,电抗率是越高越好么?

无功补偿电抗率选7%还是14%,电抗率是越高越好么?1引言并联电容补偿装置由于容量组合灵活、安装维护简便、投资省等原因而广泛应用于电力系统。

作为无功电力的主要电源,对于电力系统调相调压、稳定运行、改善电能质量和降损节能具有重要作用。

随着电力事业的迅速发展,电容装置安装投运容量亦迅速增长。

同时随着电力电子技术的广泛应用,带整流器的设备如变频调速装置、UPS电源装置,以及软起动器、新型节能电光源等产生高次谐波电流的电气设备应用越来越多,给电网带来了严重的谐波污染,导致一系列的设备问题。

如电动机振动、发热,变压器产生附加损耗,使容性回路过电流,干扰通讯,电子设备误触发等等。

因此,对谐波的污染须予以重视。

抑制谐波的措施很多,常见技术措施如改变变压器的接线方式;加装滤波装置;加装静态(动态)无功补偿装置;在电容回路加装串联电抗器等等。

目前,国内很多用电单位使用传统的单纯电容器进行无功补偿,其补偿装置的运行受到严重威胁,电力电容器的故障率越来越高。

本文主要探讨给电容器加装串联电抗器以达到抑制谐波的对策,避免电容器与电网产生串联或并联谐振,从而改善系统的功率因数和保证补偿电容器的稳定运行。

2谐波对补偿系统的影响在无功补偿系统中,电网以感抗为主,电容器回路以容抗为主。

在工频条件下,并联电容器的容抗比系统的感抗大很多,补偿电容器对电网发出无功功率,对电网进行无功补偿,提高了系统的功率因数。

在有背景谐波的系统中。

非线性负荷会产生大量的谐波电流注入电网,引起电压及电流波形畸变。

影响电力电容器的正常运行。

2.1造成电容器过电流谐波分流原理图如图1所示:图1谐波分流示意图n次谐波下变压器阻抗:X S(n)=2πf(n)L(1)n次谐波下电容器阻抗:X C(n)=1/2πf(n)L(2)存在高次谐波时,由于f(n)的增大,从而导致X S(n)增大及X C(n)减少,从而导致谐波电流大量涌入电容器。

假设电容器工作运行在满载电流,若加上谐波电流后,电容器运行电流大于1.3倍的额定电流,电容器将出现故障。

电抗率选择的一般原则

电抗率选择的一般原则

电抗率选择的一般原则一、电容器装置接入处的背景谐波为3次(当接入电网处的背景谐波为3次及以上时,一般为12%;也可采用4.5%~6%与12%两种电抗率。

)(1) 3次谐波含量较小,可选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。

(2) 3次谐波含量较大,已经超过或接近国标限值,选择12%或12%与4.5%~6%的串联电抗器混合装设。

二、电容器装置接入处的背景谐波为3次、5次(1) 3次谐波含量很小, 5次谐波含量较大(包括已经超过或接近国标限值),选择4.5%~6%的串联电抗器,忌用0.1%~1%的串联电抗器。

(2) 3次谐波含量略大, 5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。

(3) 3次谐波含量较大,已经超过或接近国标限值,选择12%或12%与4.5%~6%的串联电抗器混合装设。

三、电容器装置接入处的背景谐波为5次及以上(1)5次谐波含量较小,应选择4.5%~6%的串联电抗器。

(2)5次谐波含量较大,应选择4.5%的串联电抗器。

(3)对于采用0.1%~1%的串联电抗器,要防止对5次、7次谐波的严重放大或谐振;对于采用4.5%~6%的串联电抗器,要防止对3次谐波的严重放大或谐振。

电容器回路的谐波阻抗特征:=X*(nk-1/n) n=谐波次数 k=电抗率(nk-1/n)>0时,即k>1/n2 电容器流入谐波小(nk-1/n)=0时,即k=1/n2 电容器滤波串联谐振k=1/n2-Xs1/Xc1时,电路发生并联谐振应避免 Xs1=电源系统基波电流3次谐波时 11%时,串联谐振,起滤波作用10.5%时,并联谐振,应避免5次谐波时 4%时,串联谐振3.5%时,并联谐振7次谐波时 2%时,串联谐振1.5时,并联谐振含有谐波源和电力电容器的回路的电力系统,发生n次谐波串联谐振条个k=1/n2 不发生n次谐波放大的条件是k>1/n2发生n次谐波并联谐振条件k=1/n2-Xs1/Xc15次中心点5.67% 3次中心点12.78%因实际运行中会出现K值逐步下降,为避免K值减小而进入谐波放大区,甚至导致并联谐振,实际K=1/n2+0.02 或K=1/n2+0.01 为好。

串联电抗器及其电抗率的选取

串联电抗器及其电抗率的选取

串联电抗器的作用及电抗率的选择1 前言随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。

产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。

这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。

电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。

在地区的配电和变电系统中,选择主要电能质量污染源和对电能质量敏感的负荷中心设立电能质量控制枢纽点,在这些点进行在线电能质量监测、采取相应的电能质量改善措施显得格外重要。

在并联电容器装置接入母线处的谐波“污染”暂未得到根本整治之前,如果不采取必要的措施,将会产生一定的谐波放大。

在并联电容器的回路中串联电抗器是非常有效和可行的方法。

串联电抗器的主要作用是抑制高次谐波和限制合闸涌流[1],防止谐波对电容器造成危害,避免电容器装置的接入对电网谐波的过度放大和谐振发生。

但是串联电抗器绝不能与电容器组任意组合,更不能不考虑电容器组接入母线处的谐波背景。

文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。

2 电抗器选择不当的后果2.1 基本情况介绍某110kV 变电所新装两组容量2400kvar 的电容器组,由生产厂家提供成套无功补偿装置,其中配置了电抗率为6%的串联电抗器,容量为144kvar。

电容器组投入运行之后,经过实测发现,该110kV 变电所的10kV 母线的电压总畸变率达到4.33%,超过公用电网谐波电压(相电压)4%的限值[2],其中 3 次谐波的畸变率达到 3.77%,超过公用电网谐波电压(相电压)3.2%的限值[2]。

电容器串联电抗率的选择

电容器串联电抗率的选择

电容器串联电抗率的选择中国航空工业规划设计研究院刘屏周抑制谐波采用无源滤波器,或为了降低供电设备容量,减少供电电压偏差,采用并联电容器提高负载的功率因数。

在电容器回路中串联适当电抗率的电抗器,防止谐波电流被放大,保护电容器过负荷。

若电容器回路中串联电抗器的电抗率不适当,发生电容器回路的串联谐振或电容器回路与电源系统的并联谐振,影响系统的安全运行。

以下提出电容器回路中串联电抗器的电抗率计算方法,仅供参考。

串联电抗器的电容器回路与谐波源并联主电路如图1所示。

图1的等值电路如图2所示。

根据图2谐波电流分流的等值电路,谐波电流I n流入供电系统电流I sn和电容器支路电流I cn 计算公式如下:图1 谐波源、串联电抗器的电容器主电路图2 计算谐波电流分流的等值电路nC1L1S11L1snInXnnnXnI)(-+-=XXX C(1)nC1L1S1S1cnInXnnnI)(-+=XXX(2)式中I sn-谐波电流流入供电系统电流;I cn-谐波电流流入电容器支路电流;I n-谐波电流;X S1-供电系统基波电抗;X C1-电容器基波容抗;X L1-电抗器基波电抗;n-谐波次数。

设S11L1nnXnXX C-=β,β称谐波电流的分流系数。

上述(1)、(2)式改为如下:nsnI1Iββ+=(3)n cn I 11I β+=(4) n sn I I 、ncn I I与β的关系曲线如图3所示。

图3n sn I I 、ncn I I与β的关系曲线 电容器支路与供电系统并联谐振发生在β=-1处,谐振谐波次数S1L1C10X X X +=n ,电容器支路串联电抗器的电感越大,谐振谐波次数越低。

当β=-2时,谐波次数S1L1C11X 2X X +=n ,2I I n sn =,1I I n cn =;当β=-0.5时,谐波次数S1L1C12X 5.0X X +=n ,1I I n sn =,2I I n cn =。

谐波源的谐波次数n ,在n 1与n 2范围内,即n 1≤n ≤n 2,同时有1I I n sn ≥和1I Incn ≥,谐波电流被放大。

串联电抗器抑制谐波作用与电抗率的选择

串联电抗器抑制谐波作用与电抗率的选择

串联电抗器抑制谐波作用与电抗率的选择福建福安市赛岐供电所(福建福安255001)金秋生0 引言并联电容器进行无功补偿是电力系统改善功率因素和跳崖的有效措施。

然而电力系统中大量非线性负载的投运,特别是以晶闸管作为换流元件的电力半导体器件,由于它以开关方式工作,将会引起电网电流、电压波形的畸变,产生大量高次谐波。

而电容器对高次谐波反应比较敏感,会对谐波电刘起到放大作用,严重时还会产生谐振,造成电容器自身的损坏或无法工作,还危及附近其他电器设备的安全。

在具有高次谐波背景中装设补偿电容器,一般采用在电容器回路中串联电抗器的措施,这既不影响电容器的无功补偿作用,又能抑制高次谐波。

但串联电抗器必须考虑电容器接入处电网的谐波背景,绝不可任意组合。

只有合理选择串联电抗器的电抗率,使之与电容器进行合理匹配,才能有效地起到抑制谐波的作用,并有限制合闸涌流的效果。

1 抑制高次谐波当无功补偿电容器接入电网存在有高次谐波时,电容器对n次谐波的容抗降为x c/n,系统电感对n次谐波的感抗升高为nx L。

在电网存在有n次谐波电流时,如果符合nx L=x c/n的条件,则将产生n次谐波的谐振现象。

其n次谐波电流与基波电流迭加后,使流过电容器的电流骤增,此时产生的过电流必将危及电容器自身安全或无法工作。

同时谐波电流在系统阻抗上产生的谐波电压与源电压迭加后产生过电压,此过电压也会威胁到电容器的安全运行。

采用并联电容器进行无功补偿而构成的电路中,若电容器支路与系统发生并联谐振,此时谐振点的谐振次数为:n0=√x c/(x L+x s)式中x s———系统等值基波短路电抗;x L———电抗器基波电抗;x c———电容器基波电抗;(x L=Ax c,A为电抗率)从上式看出,串入电抗器电感量越大,则谐波次数n0越低,因而可通过串入电抗器电感量的大小来控制并联谐振点,从而达到避开谐波源中的各次谐波。

由此可见,在补偿电容器回路中串联一定电抗率的电抗器,即能有效地避开谐振点。

(完整版)串联电抗器电抗率的选择

(完整版)串联电抗器电抗率的选择

串联电抗器电抗率的选择1.前言电力电容器和与之配套的串联电抗器在电力系统中的无功补偿、降低线损以及限制合闸涌流与高次谐波方面的作用已被国内外运行实践所证实。

由于电抗器高次谐波电流含量与电网谐波源状况、阻抗参数和电容器装置回路阻抗参数有关,因此在实际应用中电抗率的取值是不同的。

2.合闸涌流合闸涌流问题之所以引人注意,是因为它对电力系统和用户产生多方面的不利影响。

有时会造成设备损坏和系统事故。

电容器投运合闸时产生的合闸涌流一般分两种情况:第一种是单组电容器的合闸涌流,此种合闸涌流一般都小于开关设备允许的最大合闸涌流,故一般不采取限制涌流措施;第二种是已有一组或多组电容器在运行,再投入另一组时的合闸涌流。

实践证明,此合闸涌流可以达到电容器组的额定电流的20~250倍。

其放电电流值为:C L C LQ U I X X X == (1) 式中:X C -电容器的容抗;X L -电路的感抗;Q C -电容器的无功功率;由式(1)可知,在电容器回路中装设串联电抗器,增大电路的感抗,I 将减小。

如串联电抗器选择恰当,便可将涌流限制在允许的范围之内。

3.高次谐波及电抗率的选择在电力系统中,电气设备所产生的高次谐波电流将引起系统中电压波形的畸变,是对电网的一大公害,它将严重影响电容器组的正常运行。

由此也必须采取加装串联电抗器的办法对高次谐波加以抑制。

众所周之,传入电抗器后,对基波来讲不会有大的影响,但对谐波来说却有较大的影响。

这些非正弦波形可以用数学分析的方法分解成工频的基波和各种倍数频率的谐波。

但对电容器来讲,一般不存在偶次倍数的谐波。

因此主要考虑3、5、7、9、11、13等次谐波的影响。

在这些高谐波中以5次谐波最显著。

如某系统电压波形包括基波和5次谐波(其它高次谐波占的比例很小)。

基波电压与额定电压相等,而5次谐波电压值为额定电压的26.45%.在这种情况下经过计算可得出电容器组3.4%,过电流65.6%,电容器的无功出力过负荷35%。

高压无功补偿装置电抗率选择方法探析

高压无功补偿装置电抗率选择方法探析

高压无功补偿装置电抗率选择方法探析作者:田玉英蔡翠佳吴小峰来源:《中国科技纵横》2012年第20期摘要:串联电抗器是高压并联电容器装置的重要组成部分,其主要作用是抑制谐波和限制合闸涌流,因此,在并联电容器回路中要串联电抗器。

电抗率是串联电抗器的重要参数,合理选择电抗器的电抗率是无功电容补偿装置降低噪声及安全运行的基础。

本文就电抗器的作用进行了分析,并提出了电抗率的选择方法。

关键词:无功补偿电抗率高次谐波并联谐振1、前言随着石化行业电气管理不断深入,电网平均功率因数要求在0.95以上。

石化装置主要负载是电动机,大量感性负载使系统电网平均功率因数小于0.9,安装电容补偿装置可提高系统功率因数。

电容器投入时会产生较大合闸涌流,电容器具有频率升高阻抗降低的特性,对某些高次谐波容易产生谐振,使电气设备噪音过大过载甚至损坏。

因此,正确选择电抗器的电抗率,即可以起到限制电容合闸涌流作用,又可以抑制高次谐波,防止发生谐振。

但串联电抗器绝不能与电容器任意组合,更不能不考虑电容器组连接母线处的谐波成分。

3、串联电抗器电抗率选择原则高次谐波主要是3、5、7┉等奇次分量,因此主要考虑奇次谐波对电容器的影响。

电容补偿装置中串联电抗器的选择,必须考虑电容补偿装置接入处的谐波成分。

对于已投用的电容装置,其串联电抗器选择是否合理要进行核算,并组织对电网谐波含量进行实测。

一般原则如下:(1)当电容装置接入处电网次谐波含量较小,可选择电抗率为0.1%-1%的串联电抗器。

(2)当电容装置接入处电网为5次及以上谐波含量。

5次谐波较小,选择电抗率为6%的串联电抗器。

5次谐波含量较大,应选择电抗率为4.5%电抗器。

串联电抗器电抗率的选择还应防止谐振的产生。

4、串联电抗器电抗率选择应用按照上述方法分析对水气厂E31变电容补偿装置电抗器电抗率进行选择。

根据系统中含有5次及以上谐波,5次谐波含量较小,选择串联电抗器的电抗率为6%,有效抑制了系统中的高次谐波,抑制了系统发生谐振,装置保险时常熔断现象,电抗器的运行噪声也降了下来。

串联电抗器及其电抗率的选取

串联电抗器及其电抗率的选取

such factors
as
the main harmonic frequen- conditions of the de—
cy,capacitor capacity,short-circuit capacity of bus and permissible vice. Keywords:shunt capacitor devices;series reactor reactance plification;harmonic resonance
动,一般不宜超过母线电压的2.5%,而△∥c,*
Q。/S。,所以电容器组的分组容量不宜过大。 从表l可知,当Q。/Sd>0.02时,若lj}=O.06,
・60・
为x’。。,而电抗器电抗率k下降为k’,是否会出现
万方数据
第3l卷第3期 2010年6月
电力电容器与无功补偿
Power Capacitor&Reactive Power Compensation
2.Hefti Huawei automtizatian Co.,Ltd.,Hefei
230011,China)
se-
Abstract:In order to suppress the danger of harmonics,one effective measure is to put reactor in



5)五一方<o,Xe・+丘t(.|}一方)=0。这时,
图l供电系统示意图与等值回路图
L一一∞;屯-++∞
也就是谐波电流,^在电容器回路阻抗与系 统阻抗之间发生并联谐振,,^得到极大的放大,这 是绝对需要避免发生的。 从上述讨论可知,对同一系统,由于后值不 同,其运行状况截然不同,因此正确选择k值是十 分重要的。

串联电抗器的电抗率怎么选

串联电抗器的电抗率怎么选
配置6%的电抗器抑制5次谐波效果好,但有明显的放大3次谐波作用。它的谐振点(204HZ)远离5次谐波的频率(250HZ),裕量较大。
配置4.5%的电抗器对3次谐波放大轻微,因此在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大,在这种情况下是适宜的。但它的谐振点(235HZ)与5次谐波的频率间距较小。
串联电抗器的电抗率怎么选
上海昌日电子科技有限公司是专业制造高低压电抗器厂家,欢迎新老顾客来电咨询。种类有 输入电抗器,输出电抗器,直流电抗器,串联电抗器,高压串联电抗器等 厂家直销 价格低,品质优。现货供应,欢迎新老顾客咨询
1、如在系统中谐波含量很少而仅考虑限制合闸涌流时,则选K=(0.5~1)%即可满足标准要求。但这种电抗器对5次谐波电流放大严重,对3次谐波放大轻微。
2、如在系统中存在的谐波不可忽视时,应查明供电系统的背景谐波含量,然后再合理确定K值。为了达到抑制谐波的目的,电抗率的配置应使用电容器接入处综合谐波阻抗呈感性。
当系统中电网背景谐波为5次及以上时,这时应配置电抗率为(4.5~6)%。电网的一般情况是:5次谐波最大,7次次之,3次较小。因此在工程中,选用K=4.5%~6%的电抗器较多,国际上也通常采用。
当系统中背景谐波为3次及以上时,应配置电抗率为12%的电抗器。由于近年来不3次谐波源的电气设备不断增多,使系统中的3次谐波不断的增大,尤其是冶金行业这个现象不能忽视。
总之配置电抗器的原则是:一定要有限公司是专业制造高低压电抗器厂家,欢迎新老顾客来电咨询。种类有 输入电抗器,输出电抗器,直流电抗器,串联电抗器,高压串联电抗器等 厂家直销 价格低,品质优。现货供应,欢迎新老顾客咨询

电抗器规范

电抗器规范

第一章总则第1.0.1条并联电容器用串联电抗器(以下简称电抗器)的设计选择必须执行国家的技术经济政策,并应根据安装地点的电网条件、谐波水平、自然环境等,合理地选择其技术参数;做到安全可靠、经济合理。

第1.0.2条本标准适用于变电所和配电所中新建或扩建的6~63KV并联电容器装置中电抗器的设计选择。

第1.0.3条本标准所指电抗器是串联于高压并联电容器回路中的电抗器,该电抗器用于限制合闸涌流,减轻电网电压波形畸变和防止发生系统谐波谐振。

第1.0.4条电抗器的设计选择,除应符合本标准的规定外,尚应符合国家现行有关标准的规定。

第二章环境条件第2.0.1条电抗器的基本使用条件:一、安装场所:户外或户内;二、环境温度:-40℃~+40℃;-25℃~+45℃;三、海拔:不超过1000m;四、相对湿度:对于户内电抗器月平均相对湿度不超过90%,日平均不超过95%;五、地震裂度:设计地震基本裂度为8度;即水平加速度0.3g,垂直加速度0.15g;六、户外式最大风速为35m/s;七、电抗器的外绝缘泄漏比距不应小于2.5cm/KV。

对于重污秽地区可以取3.5cm/KV。

第2.0.2条选用电抗器时,应按当地环境条件校核,当环境条件超出其基本使用条件时,应通过技术经济比较分别采取下列措施:一、向制造厂提出补充要求,制造符合当地环境条件的产品;二、在设计中采取相应的防护措施,如采用户内布置、水冲洗、减震装置等。

第三章技术参数选择第一节电抗率的选择第3.1.1条电抗率的选择,应使装置接入处n次谐波电压含量和电容器上n次谐波电压值均不超过有关标准规定的限值。

第3.1.2条当仅需要限制合闸涌流时,宜选用电抗率为0.1%~1%的电抗器。

第3.1.3条为抑制5次及以上谐波电压放大,宜选用电抗率为4.5%~6%的电抗器;抑制3次及以上谐波电压放大,宜选用电抗率为12%~13%的电抗器。

第3.1.4条在电力系统谐波电压较大时,应由非线性用电设备所属单位负责采取限制谐波的措施,在采用交流滤波电容器装置时,电抗器应按滤波电抗器的要求选择。

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用

在高压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。

因此,电抗器在无功补偿装置中的作用非常重要。

然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。

由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。

电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。

所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。

虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。

下面总结电容器串联电抗器时,电抗率选择的一般规律。

1. 电网谐波中以3次为主根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。

(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。

2. 电网谐波中以3、5次为主(1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。

(整理)补偿电容器电抗率选择

(整理)补偿电容器电抗率选择

抑制谐波串联电抗器的选用天津市同德兴电气技术有限公司黄缉熙补偿用并联电容器对谐波电压最为敏感,谐波电压加速电容器老化,缩短使用寿命。

谐波电流将使电容器过负荷、出现不允许的温升,特别严重的是当电容器组与系统产生并联谐振时电流急速增加,开关跳闸、熔断器熔断、电容器无法运行。

为避免并联谐振的发生,电容器串联电抗器。

它的电抗率按背景谐波次数选取。

电网的背景谐波为5次及以上时,宜选取4.5% ~ 6%;电网的背景谐波为3次及以上时,宜选取12%一、电抗率K值的确定1. 系统中谐波很少,只是限制合闸涌流时则选K=0.5~1%即可满足要求。

它对5次谐波电流放大严重,对3次谐波放大轻微。

2. 系统中谐波不可忽视时,应查明供电系统的背景谐波含量,在合理确定K值。

电抗率的配置应使电容器接入处谐波阻抗呈感性。

电网背景谐波为5次及以上时,应配置K=4.5~6%。

通常5次谐波最大,7次谐波次之,3次较小。

国内外通常采用K=4.5~6%。

配置K=6%的电抗器抑制5次谐波效果好,但明显的放大3次谐波及谐振点为204Hz,与5次谐波的频率250Hz,裕量大。

配置4.5%的电抗器对3次谐波轻微放大,因此在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大是适宜的。

它的谐振点235Hz与5次谐波间距较小。

电网背景谐波为3次及以上时应串联K=12%的电抗器。

在电抗器电容器串联回路中,电抗器的感抗X LN与谐波次数虚正比;电容器容抗X CN与谐波次数成反比。

为了抑制5次及以上谐波。

则要使5次及以上谐波器串联回路的谐振次数小于5次。

这样,对于5次及以上谐波,电杭器电容器串联回路呈感性,消除了并联谐振的产生条件;对于基波,电抗器电容器串联回路呈容性,保持无功补偿作用。

如电抗器电容器串联回路在n次谐波下谐振,则:式中X CN/X LN为电抗率的倒数,不同的电抗率对应不同的谐振次数或不同的谐振频率,如表1所示。

电抗器的电抗率以取6%为宜,可避免因电抗器、电容器的制造误差或运行中参数变化而造成对5次谐波的谐振。

电抗器规范.

电抗器规范.

第一章总则第1.0.1条并联电容器用串联电抗器(以下简称电抗器)的设计选择必须执行国家的技术经济政策,并应根据安装地点的电网条件、谐波水平、自然环境等,合理地选择其技术参数;做到安全可靠、经济合理。

第1.0.2条本标准适用于变电所和配电所中新建或扩建的6~63KV并联电容器装置中电抗器的设计选择。

第1.0.3条本标准所指电抗器是串联于高压并联电容器回路中的电抗器,该电抗器用于限制合闸涌流,减轻电网电压波形畸变和防止发生系统谐波谐振。

第1.0.4条电抗器的设计选择,除应符合本标准的规定外,尚应符合国家现行有关标准的规定。

第二章环境条件第2.0.1条电抗器的基本使用条件:一、安装场所:户外或户内;二、环境温度:-40℃~+40℃;-25℃~+45℃;三、海拔:不超过1000m;四、相对湿度:对于户内电抗器月平均相对湿度不超过90%,日平均不超过95%;五、地震裂度:设计地震基本裂度为8度;即水平加速度0.3g,垂直加速度0.15g;六、户外式最大风速为35m/s;七、电抗器的外绝缘泄漏比距不应小于2.5cm/KV。

对于重污秽地区可以取3.5cm/KV。

第2.0.2条选用电抗器时,应按当地环境条件校核,当环境条件超出其基本使用条件时,应通过技术经济比较分别采取下列措施:一、向制造厂提出补充要求,制造符合当地环境条件的产品;二、在设计中采取相应的防护措施,如采用户内布置、水冲洗、减震装置等。

第三章技术参数选择第一节电抗率的选择第3.1.1条电抗率的选择,应使装置接入处n次谐波电压含量和电容器上n次谐波电压值均不超过有关标准规定的限值。

第3.1.2条当仅需要限制合闸涌流时,宜选用电抗率为0.1%~1%的电抗器。

第3.1.3条为抑制5次及以上谐波电压放大,宜选用电抗率为4.5%~6%的电抗器;抑制3次及以上谐波电压放大,宜选用电抗率为12%~13%的电抗器。

第3.1.4条在电力系统谐波电压较大时,应由非线性用电设备所属单位负责采取限制谐波的措施,在采用交流滤波电容器装置时,电抗器应按滤波电抗器的要求选择。

电容容量及电抗率选取(总结)

电容容量及电抗率选取(总结)

电容分组方式及电容容量计算1、电容分组方式及投切模式补偿电容器多采用电力电容器,运行中电容器的容性电流抵消系统中的感性电流,使传输元件,如变压器、线路中的无功功率相应减少,因而,不仅降低了由于无功的流动而引起的有功损耗,还减少了电压损耗,提高了功率因数。

补偿电容器是TSC 系统的关键部件,通过投入或切除电容器的方法可动态平衡电感性负载与电容性负载,从而将功率因数维持在较高的理想水准。

1) 分组方式。

在很多工业生产实践中,除了就地补偿的大电机外,大量分散的感性负载需要在低压配电室进行集中补偿,这时由于补偿容量是随时间变化的,为不出现过补偿或欠补偿,需要将电容器分成若干组,采用自动投切的方式。

电容器分组的具体方法比较灵活,常见的有以下几种:①等容量制,即把所需补偿的电容平均分为若干份;②1:2:4:8制,即每单元电容器值按大小倍增式设置,这样可获得15 级补偿值;③二进制,即采用 N—1 个电容值均为 C 的电容和一个电容值为 C/2 的电容,这样补偿量的调节就有2N 级。

对比上述方法可知,方法①的控制方式最简单,但相对较大的补偿级差限制了精度,而方法②与③虽采用多级差补偿的方法提高了效果,但均为繁琐,不便于自动化控制。

相比之下,方法③不乏为一种有益的折中式方案。

2) 投切模式。

由于动态无功补偿需要频繁投切电容器,因此为确保电容器的寿命和质量,需要考虑补偿电容的投切模式。

常见有下列 2 种模式:①循环投切模式,即将各组电容器按组号排成一个环形列队,然后按序号依次投入电容。

如需切除电容,则从已投入的电容队列的尾部切除。

这样,随功率因数的变化,已投入的电容队列在环形队列中逆时针移动,各组电容的使用几率均匀,可有效减少电容组的故障率。

通常这种方法用于等容量分组。

②温度计式投切模式,即将各组电容器按组号排成一个直线队列,投入或切除电容器使已投入的电容队列在直线队列中升高或下降,类似于温度计水银柱的升降。

这种方法常用于变容量分组。

限流电抗百分数的选择

限流电抗百分数的选择

限流装置电抗百分数的选择在各种电力系统事故中,短路是危及电力系统安全稳定运行、导致大面积停电事故最为常见的严重故障之一。

短路故障对电力系统破坏的严重程度,主要取决于短路电流的大小。

当然,这样的叙述会让大家感觉范围太广,不易抓住重点,对其危害性的理解可能还有一定的模糊性,那么,让我们先来了解下短路的出现的原因有哪些?近年来,随着我国电力建设的不断发展、用电负荷不断增加、发电厂及发电机单机容量的不断增加及各大区电网的互联等,使得电力系统中的短路电流不断提高,且短路电流水平已经直逼甚至超过电力规程所规定的最大允许水平的严重情况,给电力系统安全、稳定运行以及电力系统中各种电气设备(如断路器、变压器、变电站母线、线路构架、导线和支承绝缘子以及接地网等)提出了更为苛刻的要求,并已成为我国各大区电网安全、稳定运行的严重隐患和关键技术难题之一,同时成为制约电力建设和进一步发展的瓶颈。

如何治理短路成了重中之重!据了解,在线路上串入限流电抗器是最早的限流方案,电抗器安装在线路上除限制短路电流外,还能维持母线上的残压,若残压大于65%~70%U NS,这对非故障用户,特别是电动机用户是有力的;但是采用限流电抗器限制短路电流的方案也带来次生问题,如功率损耗、电压降落、漏磁场问题。

因此,20世纪70年代有人提出了短路限流器,或称故障电流限制器(fault current limiter,FCL ;或current limiting device,CLD )。

小编了解到安徽正广电公司研发生产的ZLB 型零损耗限流装置(限流电抗器与高速开关并联组成)既能限制短路电流,也解决了限流电抗器所带来的次生问题。

限流装置限制短路电流的大小,主要取决于电抗器的大小。

下面就为大家简介电抗器的电抗百分数的选择:ZLBK(a) (b)图1 计算电抗百分数示意图若要求将一馈线的短路电流限制到电流值I ′′,如图1,取基准电流I d ,则电源到短路点的总电抗的标幺值X ∗Σ=X ∗L +X ′∗Σ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电抗率选择的一般原则
一、电容器装置接入处的背景谐波为3次(当接入电网处的背景谐波为3次及以上时,一般为12%;也可采用4.5%~6%与12%两种电抗率。

)
(1) 3次谐波含量较小,可选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。

(2) 3次谐波含量较大,已经超过或接近国标限值,选择12%或12%与4.5%~6%的串联电抗器混合装设。

二、电容器装置接入处的背景谐波为3次、5次
(1) 3次谐波含量很小, 5次谐波含量较大(包括已经超过或接近国标限值),选择4.5%~6%的串联电抗器,忌用0.1%~1%的串联电抗器。

(2) 3次谐波含量略大, 5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。

(3) 3次谐波含量较大,已经超过或接近国标限值,选择12%或12%与4.5%~6%的串联电抗器混合装设。

三、电容器装置接入处的背景谐波为5次及以上
(1)5次谐波含量较小,应选择4.5%~6%的串联电抗器。

(2)5次谐波含量较大,应选择4.5%的串联电抗器。

(3)对于采用0.1%~1%的串联电抗器,要防止对5次、7次谐波的严重放大或谐振;对于采用4.5%~6%的串联电抗器,要防止对3次谐波的严重放大或谐振。

电容器回路的谐波阻抗特征:=X*(nk-1/n) n=谐波次数 k=电抗率
(nk-1/n)>0时,即k>1/n2 电容器流入谐波小
(nk-1/n)=0时,即k=1/n2 电容器滤波串联谐振
k=1/n2-Xs1/Xc1时,电路发生并联谐振应避免 Xs1=电源系统基波电流
3次谐波时 11%时,串联谐振,起滤波作用
10.5%时,并联谐振,应避免
5次谐波时 4%时,串联谐振
3.5%时,并联谐振
7次谐波时 2%时,串联谐振
1.5时,并联谐振
含有谐波源和电力电容器的回路的电力系统,发生n次谐波串联谐振条个k=1/n2 不发生n次谐波放大的条件是k>1/n2
发生n次谐波并联谐振条件k=1/n2-Xs1/Xc1
5次中心点5.67% 3次中心点12.78%
因实际运行中会出现K值逐步下降,为避免K值减小而进入谐波放大区,甚至导致并联谐振,实际K=1/n2+0.02 或K=1/n2+0.01 为好。

相关文档
最新文档