整式的乘除专题

合集下载

专题04 整式的乘除(原卷版)

专题04 整式的乘除(原卷版)

专题04整式的乘除【热考题型】【知识要点】知识点一幂的运算同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

nm n m a a a +=·(其中m、n 为正整数)【注意事项】1)当底数为负数时,先用同底数幂乘法法则计算,再根据指数的奇偶来确定结果的正负,并且化简到底。

2)不能疏忽指数为1的情况。

例:a·a 2=a 1+2=a 33)乘数a 可能是有理数、单项式或多项式。

4)如果底数互为相反数时可先变成同底后再运算。

5)逆用公式:n m n m a a a ·=+(m,n 都是正整数)【扩展】三个或三个以上同底数幂相乘时,也具有这一性质,即pn m p n m a a a a ++=··(m,n,p 都是正整数)考查题型一同底数幂的乘法典例1.(2022·浙江嘉兴·中考真题)计算a 2·a ()A.aB.3aC.2a2D.a3变式1-1.(2022·河南·中考真题)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于()A.810B.1210C.1610D.2410变式1-2.(2022·内蒙古包头·中考真题)若42222m ⨯=,则m 的值为()A.8B.6C.5D.2变式1-3.(2022·湖南邵阳·中考真题)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是()A.0.11B.1.1C.11D.11000易错点总结:幂的乘方法则:幂的乘方,底数不变,指数相乘.mnnm a a =)((其中m,n 都是正整数).【注意事项】1)负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。

专题 整式的乘除(全章)(提升练)-2023-2024学年七年级数学下册专项突破讲与练(北师大版)

专题 整式的乘除(全章)(提升练)-2023-2024学年七年级数学下册专项突破讲与练(北师大版)

专题1.35整式的乘除(全章直通中考)(提升练)一、单选题(本大题共10小题,每小题3分,共30分)以下4组图形及相应的代数恒等式:①()2222a b a ab b +=++②()2222a b a ab b -=-+③22()()a b a b a b +-=-④22()()4a b a b ab-=+-其中,图形的面积关系能正确解释相应的代数恒等式的有()A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题4分,共32分)11.(2023·江西·统考中考真题)计算:(a+1)2﹣a 2=.12.(2020·广西·中考真题)计算:ab •(a +1)=.13.(2019·浙江衢州·统考中考真题)已知实数m ,n 满足13m n m n -=⎧⎨+=⎩,则代数式22m n -的值为.14.(2022·江苏泰州·统考中考真题)已知22222,2,()a m mn b mn n c m n m n =-=-=-≠用“<”表示a b c 、、的大小关系为.15.(2020·湖北宜昌·中考真题)数学讲究记忆方法.如计算()25a 时若忘记了法则,可以借助()25555510a a a a a +=⨯==,得到正确答案.你计算()5237a a a -⨯的结果是.16.(2012·山东菏泽·中考真题)将4个数,,,a b c a 排成2行、2列,两边各加一条竖直线记成a bc d,定义a b ad bc c d=-,上述记号就叫做2阶行列式.若11811x xx x +-=-+,则x =.17.(2012·辽宁阜新·中考真题)如图1,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影部分剪拼成一个长方形,如图2.这个拼成的长方形的长为30,宽为20.则图2中Ⅱ部分的面积是.18.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开)7,10三、解答题(本大题共6小题,共58分)19.(8分)(2023·江苏盐城·统考中考真题)先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.20.(8分)(2022·广西·统考中考真题)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.22.(10分)(2022·河北·统考中考真题)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.(2)一个“勾股和数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()9c dG M +=,()()()103a cb d P M -+-=.当()G M ,()P M 均是整数时,求出所有满足条件的M .24.(12分)(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.参考答案:1.B【分析】分别利用合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则分别计算即可.解:235a a a ⋅=,故选项A 不符合题意;532a a a ÷=,故选项B 符合题意;23a a +无法合并同类项,故选项C 不符合题意;5051a a a -=-,故选项D 不符合题意.故选B .【点拨】本题主要考查合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则,熟练掌握运算法则是解题的关键.2.D【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点拨】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.3.A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.解:A .()23236a a a ⨯==,故A 选项计算正确,符合题意;B .62624a a a a -÷==,故B 选项计算错误,不合题意;C .34347a a a a +==⋅,故C 选项计算错误,不合题意;D .2a 与a -不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .【点拨】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.4.D【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.解:∵325a a a ⋅=,故A 不符合题意;∵4=3ab ab ab -,故B 不符合题意;∵()22211a a a ++=+,故C 不符合题意;∵()236a a -=,故D 符合题意;故选:D .【点拨】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.5.B【分析】根据合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方法则逐项判断即可得.解:A 、2a a a -=,则此项错误,不符合题意;B 、325a a a ⋅=,则此项正确,符合题意;C 、()222ab a b =,则此项错误,不符合题意;D 、()428=a a ,则此项错误,不符合题意;故选:B .【点拨】本题考查了合并同类项、同底数幂的乘法、积的乘方与幂的乘方,熟练掌握各运算法则是解题关键.6.A【分析】先化简已知的式子,再整体代入求值即可.解:∵()()2221x x x +--=∴225x x -=∴222432(2)313x x x x -+=-+=故选:A .【点拨】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.7.D【分析】直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.③(b ﹣c )÷a =b÷a ﹣c÷a (a≠0),正确;④a÷(b+c )=a÷b+a÷c (a≠0),错误,无法分解计算.故选C .【点拨】本题考查的是去括号,熟练掌握乘法分配律,除法分配律是解题的关键.10.D【分析】观察各个图形及相应的代数恒等式即可得到答案.解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .【点拨】本题考查用图形面积解释代数恒等式,解题的关键是用两种不同的方法表示同一个图形的面积.11.2a+1解:【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果.解:(a+1)2﹣a 2=a 2+2a+1﹣a 2=2a+1,故答案为2a+1.【点拨】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.12.a 2b +ab .【分析】根据整式的运算法则即可求出答案.解:原式=a 2b +ab ,故答案为:a 2b +ab .【点拨】此题考查整式的乘法运算法则:单项式乘以多项式,等于单项式分别乘以多项式的每一项的和.13.3【分析】先利用平方差公式因式分解,再将m +n 、m -n 的值代入、计算即可得出答案.解:∵1m n -=,3m n +=,∴22()()313m n m n m n -=+-=⨯=.故答案为3【点拨】本题考查平方差公式,解题关键是根据平方差公式解答.解得:=2x .【点拨】本题考查了新定义,整式的混合运算,解一元一次方程,理解新定义是关键.17.100.解:由题意,得图2中Ⅱ部分长为b ,宽为a -b ,∴a+b=30{a b=20-,解得a=25{b=5.∴图2中Ⅱ部分的面积是()()a b b=2555=100-⋅-⋅.18.()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点拨】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.19.226a ab +,4-【分析】根据完全平方公式和平方差公式展开后化简,最后代入求值即可.解:()()()2333a b a b a b +++-2222699a ab b a b =+++-226a ab=+当2a =,1b =-时,原式()2226214=⨯+⨯⨯-=-.【点拨】本题考查整式混合运算的化简求值,解题的关键是根据完全平方公式和平方差公式展开.20.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然为整数,【点拨】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.。

专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题12.2整式的乘除法【十大题型】【华东师大版】【题型1由整式乘除法求代数式的值】【题型2由整式乘除法求字母的值】【题型3利用整式乘除法解决不含某项问题】【题型4利用整式乘除法解决与某个字母取值无关的问题】【题型5利用整式乘除法解决污染问题】【题型6利用整式乘除法解决误看问题】【题型7整式乘除法的应用】【题型8整式乘除法中的规律问题】【题型9整式乘除法中的新定义问题】【题型10 整式乘除法中的几何图形问题】知识点:整式的乘法、除法1.单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(1)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏.(2)单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用.(3)单项式乘单项式的结果仍然是单项式.【注意】(1)积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值.(2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.2.单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.用式子表示:m(a+b+c)=ma+mb+mc(m,a,b,c都是单项式).【注意】(1)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号.(3)对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果.3.多项式与多项式相乘(1)法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)多项式与多项式相乘时,要按一定的顺序进行.例如(m+n)(a+b+c),可先用第一个多项式中的每一项与第二个多项式相乘,得m(a+b+c)与n(a+b+c),再用单项式乘多项式的法则展开,即(m+n)(a+b+c)=m(a+b+c)+n(a+b+c)=ma+mb+mc+na+nb+nc.【注意】(1)运用多项式乘法法则时,必须做到不重不漏.(2)多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.4.单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式.【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性.5.多项式除以单项式多式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.【注意】(1)多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.(2)多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项.(3)多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.【题型1 由整式乘除法求代数式的值】【例1】(23-24九年级上·安徽铜陵·期中)1.已知210a a +-=,则代数式()()()222a a a a +-++值为 .【变式1-1】(23-24八年级·福建泉州·期中)2.若3a b -=,4ab =-,则()()22a b -+值为 .【变式1-2】(23-24八年级·山东聊城·期中)3.如果()()5612a a -+=,那么2228a a --+的值为 .【变式1-3】(23-24八年级·福建·期中)4.已知2310x x --=,则代数式3102019x x -+值为 .【题型2 由整式乘除法求字母的值】【例2】(23-24八年级·安徽合肥·期中)5.已知(x +a )(x +b )=2x +mx +12,m 、a 、b 都是整数,那么m 的可能值的个数为( )A .4B .5C .6D .8【变式2-1】(23-24八年级·江苏扬州·期中)6.若()()2133x x x mx +-=+-,则m 值是 .【变式2-2】(23-24八年级·浙江杭州·期中)7.不论x 为何值,()()()2222222x x a x ax x a x a x a ++=+++=+++,226()()x x a x kx ++=++,则k = .【变式2-3】(23-24八年级·浙江温州·期中)8.关于x 的整式21A x =+,它的各项系数之和为∶213+=(常数项系数为常数项本身).已知B 是关于x 的整式,最高次项次数为2,系数为1.若(3),B x C C ×+=是一个只含两项的多项式,则B 各项系数之和的最大值为 .【题型3 利用整式乘除法解决不含某项问题】【例3】(23-24八年级·山东聊城·期末)9.已知多项式236M x ax =-+,3N x =+,且MN A =,当多项式A 中不含x 的2次项时,a 的值为( )A .1-B .13-C .0D .1【变式3-1】(23-24八年级·河南商丘·期末)10.已知关于x 的多项式ax b -与232x x ++的乘积的展开式中不含x 的二次项,且一次项系数为5-,则a 的值为( )A .13-B .13C .-3D .3【变式3-2】(23-24八年级·全国·专题练习)11.小万和小鹿正在做一道老师留下的关于多项式乘法的习题:2(32)()x x x a +--.(1)小万在做题时不小心将x a -中的x 写成了2x ,结果展开后的式子中不含x 的二次项,求a 的值;(2)小鹿在做题时将232+-x x 中的一个数字看错成了k ,结果展开后的式子中不含x 的一次项,则k 的值可能是多少?【变式3-3】(16-17八年级·四川成都·期末)12.已知(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项.(1)分别求m 、n 的值;(2)化简求值:(m +2n +1)(m +2n ﹣1)+(2m 2n ﹣4mn 2+m 3)÷(﹣m )【题型4 利用整式乘除法解决与某个字母取值无关的问题】【例4】(23-24八年级·湖南常德·期中)13.知识回顾:七年级学习代数式求值时,遇到过这样一类题“代数式6351ax y x y -++-- 的值与x 的取值无关,求a 的值”,通常的解题方法是:把x y 、看作字母,a 看作系数合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为0,即原式()365a x y =+-+,所以30a +=,则3a =-.理解应用:(1)若关于x 的多项式()22335m x m x ---的值与x 的取值无关,求m 值;(2)已知()()()213153A x x x y =+--+,2324B x xy -=+,且26A B -的值与x 的取值无关,求y 的值.【变式4-1】(23-24八年级·陕西咸阳·阶段练习)14.已知23A x x a =+-,B x =-,3235C x x =++,若A B C ×+的值与x 的取值无关,当4x =-时,A 的值为( )A .0B .4C .4-D .2【变式4-2】(23-24八年级·四川成都·期中)15.若代数式()()()223236x x m x x ++-+的值与x 的取值无关,则常数m = .【变式4-3】(23-24八年级·浙江金华·期末)16.若代数式()()()2253334x kx xy k x y x ----的值与y 无关,则常数k 的值为( )A .2B .―2C .4-D .4【题型5 利用整式乘除法解决污染问题】【例5】(23-24八年级·贵州遵义·期末)17.小明作业本发下来时,不小心被同学沾了墨水:()()4322222246643x y x y x y x y xy y -+¸-=-+-■,你帮小明还原一下被墨水污染的地方应该是( )A .3218x y -B .3218x y C .322x y -D .3212x y 【变式5-1】(23-24八年级·湖北十堰·期末)18.右侧练习本上书写的是一个正确的因式分解.但其中部分代数式被墨水污染看不清了.(1)求被墨水污染的代数式;(2)若被污染的代数式的值不小于4,求x 的取值范围.【变式5-2】(23-24八年级·全国·课后作业)19.小明在做练习册上的一道多项式除以单项式的习题时,一不小心,一滴墨水污染了这道习题,只看见了被除式中第一项是338x y -及中间的“¸”,污染后习题形式如下:33(8x y -)¸,小明翻看了书后的答案是“22436x y xy x -+”,你能够复原这个算式吗?请你试一试.【变式5-3】(23-24八年级·上海奉贤·期中)20.小红准备完成题目:计算(x 2x +2)(x 2﹣x ).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x 2+3x +2)(x 2﹣x );(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?【题型6 利用整式乘除法解决误看问题】【例6】(23-24八年级·山东菏泽·期中)21.某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是( )A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【变式6-1】(23-24八年级·江西萍乡·期中)22.小颖在计算一个整式乘以3ac 时,误看成了减去3ac ,得到的答案是12333--bc ac ab ,该题正确的计算结果应是多少?【变式6-2】(23-24八年级·江西九江·阶段练习)23.已知A B 、均为整式,()()221222A xy xy x y =+--+,小马在计算A B ¸时,误把“¸”抄成了“-”,这样他计算的正确结果为22x y -.(1)将整式A 化为最简形式.(2)求整式B .【变式6-3】(23-24八年级·河南南阳·阶段练习)24.甲、乙二人共同计算一道整式乘法:()()23x a x b ++,由于甲抄错为()()23x a x b -+,得到的结果为261110x x +-;而乙抄错为()()2x a x b ++,得到的结果为22910x x -+.(1)你能否知道式子中的a ,b 的值各是多少?(2)请你计算出这道整式乘法的正确答案.【题型7 整式乘除法的应用】【例7】(23-24八年级·浙江杭州·阶段练习)25.有总长为l 的篱笆,利用它和一面墙围成长方形园子,园子的宽度为a .(1)如图1,①园子的面积为 (用关于l ,a 的代数式表示).②当10030l a ==,时,求园子的面积.(2)如图2,若在园子的长边上开了长度为1的门,则园子的面积相比图一 (填增大或减小),并求此时园子的面积(写出解题过程,最终结果用关于l ,a 的代数式表示).【变式7-1】(23-24八年级·重庆·期末)26.某农场种植了蔬菜和水果,现在还有两片空地,农场计划在这两片空地上种植水果黄瓜、白黄瓜和青黄瓜.已知不同品种的黄瓜亩产量不同,其中白黄瓜的亩产量是青黄瓜的12,如果在空地种植白黄瓜、青黄瓜和水果黄瓜的面积之比为2:3:4,则水果黄瓜的产量是白黄瓜与青黄瓜产量之和的2倍;如果在空地上种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为 .【变式7-2】(23-24八年级·黑龙江哈尔滨·期中)27.一家住房的结构如图所示,房子的主人打算把卧室铺上地板,卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果这种地砖的价格为a 元/平方米,地板的价格(10)a -元/平方米,那么购买地板和地砖至少共需要多少元?【变式7-3】(23-24八年级·全国·专题练习)28.某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、2a ;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【题型8 整式乘除法中的规律问题】【例8】(23-24八年级·四川成都·期中)29.观察:下列等式()()2111x x x -+=-,()()23111x x x x -++=-,()()324111x x x x x -+++=-…据此规律,当()()65432110x x x x x x x -++++++=时,代数式20242x -的值为 .【变式8-1】(23-24八年级·广东揭阳·期中)30.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年11月份的日历,我们任意用一个22´的方框框出4个数,将其中4个位置上的数交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规则,结果为 .(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.【变式8-2】(23-24八年级·福建宁德·期末)31.“九章兴趣小组”开展研究性学习,对两位数乘法的速算技巧进行研究.小明发现“十位相同,个位互补”的两个两位数相乘有速算技巧.例如:()24261002346´=´´+´,结果为624;()42481004528´=´´+´,结果为2016;小红发现“十位互补,个位为5”的两个两位数相乘也有速算技巧.例如:()456510046525´=´´++,结果为2925;()357510037525´=´´++,结果为2625;(1)请你按照小明发现的技巧,写出计算6367´的速算过程;(2)请你用含有字母的等式表示小明所发现的速算规律,并验证其正确性;(3)小颖发现:小红的速算技巧可以推广到“十位互补,个位相同”的两个两位数相乘.请你直接用含有字母的等式表示该规律.友情提示:如果两个正整数和为10,则称这两个数互补.友情提示:如果两个正整数和为10,则称这两个数互补.【变式8-3】(23-24八年级·福建宁德·期中)32.下图揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律.请观察并解决问题:今天是星期五,再过7天也是星期五,那么再过451天是星期 .……1()a b a b+=+ (222)()2a b a ab b +=++……()3322333a b a a b ab b +=+++……()4a b +=【题型9 整式乘除法中的新定义问题】【例9】(23-24八年级·陕西榆林·期末)33.【问题背景】现定义一种新运算“⊙”对任意有理数m ,n ,规定:()m n mn m n =-e .例如:()1212122=´´-=-e .【问题推广】(1)先化简,再求值:()()a b a b +-e ,其中12a =,1b =-;【拓展提升】(2)若()2p q q p x y x y x y x y =-e e ,求p ,q 的值【变式9-1】(23-24八年级·浙江宁波·期中)34.定义a bad bc c d =-,如131423224=´-´=-.已知21112x A nx x +=-,1111x x B x x +-=-+(n 为常数)(1)若4B =,求x 的值;(2)若A 中的n 满足12222n +´=时,且2A B =+,求3843x x -+的值.【变式9-2】(23-24八年级·湖南株洲·期末)35.定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi + (a 、b 为实数)的数叫做复数,其中a 叫做这个复数的实部,b 叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:()()()()253251372i i i i -++=++-+=+;()()()()()()2121212212213i i i i i i i ii i+´-=´+´-+´+´-=+-+-=+--=+根据以上信息,完成下列问题:(1)计算:3i , 4i ;(2)计算:()()134i i +´-;(3)计算:23452023i i i i i i ++++++L 【变式9-3】(23-24八年级·内蒙古乌兰察布·期末)36.定义:()L A 是多项式A 化简后的项数,例如多项式223A x x =+-,则()3L A =,一个多项式A 乘多项式B 化简得到多项式C (即C A B =´),如果()()()1L A L C L A ££+.则称B 是A 的“郡园多项式”如果()()L A L C =,则称B 是A 的“郡园志勤多项式”.(1)若2A x =-,3B x =+,则B 是不是A 的“郡园多项式”?请判断并说明理由;(2)若2A x =-,24B x ax =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,则a =_____;(3)若23A x x m =-+,2B x x m =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,求m 的值.【题型10 整式乘除法中的几何图形问题】【例10】(23-24八年级·辽宁辽阳·期中)37.教科书第一章《整式的乘除》中,我们学习了整式的几种乘除运算,学会了研究运算的方法.现定义了一种新运算“Ä”,对于任意有理数a ,b ,c ,d ,规定()(),,a b c d ad bc Ä=-,等号右边是通常的减法和乘法运算.例如:()()1,32,414232Ä=´-´=-.请解答下列问题:(1)填空:()()2,34,5-Ä=______;(2)若()()221,15,2x nx x +-Ä-的代数式中不含x 的一次项时,求n 的值;(3)求()()31,22,3x x x x +-Ä+-的值,其中2410x x -+=;(4)如图1,小长方形长为a ,宽为b ,用5张图1中的小长方形按照图2方式不重叠地放在大长方形ABCD 内,其中5AB =,大长方形中未被覆盖的两个部分(图中阴影部分),设左下角长方形的面积为1S ,右上角长方形的面积为2S .当122320S S -=,求()()2,63,36a b b b a b +-Ä--的值.【变式10-1】(23-24八年级·浙江温州·期中)38.小陈用五块布料制作靠垫面子,其中四周的四块由长方形布料裁成四块得到,正中的一块正方形布料从另一块布料裁得,靠垫面子和布料尺寸简图,如图所示∶(1)用含a ,b 的代数式表示图中阴影部分小正方形的面积.(2)当224592a b +=,48ab =时,求阴影部分面积.【变式10-2】(23-24八年级·广东佛山·期中)39.如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm .(1)小长方形的较长边为 cm (用代数式表示);(2)阴影A 的一条较短边和阴影B 的一条较短边之和为(24)x y -+cm ,是 的(填正确/错误);阴影A 和阴影B 的周长值之和与x (填有关/无关),与y (填有关/无关);(3)设阴影A 和阴影B 的面积之和为S 2cm ,是否存在x 使得S 为定值,若存在请求出x 的值和该定值,若不存在请说明理由.【变式10-3】(23-24八年级·上海青浦·期中)40.如图所示,有4张宽为a ,长为b 的小长方形纸片,不重叠的放在矩形ABCD 内,未被覆盖的部分为空白区域①和空白区域②. 2EF GH =(1)用含a、b的代数式表示:AD=______________;AB=______________.(2)用含a、b的代数式表示区域①、区域②的面积;(3)当a=12,92b=时,求区域①、区域②的面积的差.1.2-【分析】由已知得21a a +=,然后对所求式子展开后进行变形,再整体代入计算即可.【详解】解:∵210a a +-=,∴21a a +=,∴()()()()22222242242142a a a a a a a a a +-++=-++=+-=´-=-,故答案为:2-.【点睛】本题考查了整式的混合运算,代数式求值,熟练掌握相关运算法则是解题的关键.2.―2【分析】本题主要考查代数式的值及多项式乘以多项式,熟练掌握各个运算是解题的关键;因此此题先把所求整式进行展开,然后再代值求解即可.【详解】解:∵3a b -=,4ab =-,∴()()22a b -+()24ab a b =+--464=-+-2=-;故答案为:―2.3.28-【分析】本题主要考查了多项式乘以多项式,代数式求值,先根据多项式乘以多项式的计算法则求出218a a --=-,再根据()--+=--+2222828a a a a 进行求解即可.【详解】解:∵()()5612a a -+=,∴2306512a a a -+-=,∴218a a --=-,∴()--+=--+=-´+=-2222828182828a a a a ,故答案为:28-.4.2022【分析】由x 2−3x−1=0,变形x 2=3x+1,利用此等式进行降次,化简整体代入计算即可.【详解】由x 2−3x−1=0,变形x 2=3x+1,x 2-3x=1,x3−10x+2019,=x(3x+1)-10x+2019,=3x2-9x+2019,=3(x2-3x)+2019,=3+2019,=2022.故答案为:2022.【点睛】本题考查代数式的值,关键是把条件等式变形会降次,会整体代入求值.5.C【分析】根据多项式乘多项式的乘法法则,求得a+b=m,ab=12,再进行分类讨论,从而解决此题.【详解】解:(x+a)(x+b)=2x+bx+ax+ab=2x+(a+b)x+ab.∵(x+a)(x+b)=2x+mx+12,∴a+b=m,ab=12.∵m、a、b都是整数,∴当a=1时,则b=12,此时m=a+b=1+12=13;当a=-1时,则b=-12,此时m=a+b=-1-12=-13;当a=2时,则b=6,此时m=a+b=2+6=8;当a=-2时,则b=-6,此时m=a+b=-2-6=-8;当a=3时,则b=4,此时m=a+b=3+4=7;当a=-3时,则b=-4,此时m=a+b=-3-4=-7;当a=12时,则b=1,此时m=a+b=12+1=13;当a=-12时,则b=-1,此时m=a+b=-12-1=-13;当a=6时,则b=2,此时m=a+b=6+2=8;当a=-6时,则b=-2,此时m=a+b=-6-2=-8;当a=4时,则b=3,此时m=a+b=4+3=7;当a=-4时,则b=-3,此时m=a+b=-4-3=-7.综上:m=±13或±8或±7,共6个.故选:C.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则、分类讨论的思想是解决本题的关键.6.2-【分析】本题主要考查了多项式乘以多项式,正确计算出22323x x x mx -=+--是解题的关键.根据多项式乘以多项式的计算法则把等式左边去括号得到m 的值即可得到答案.【详解】解:∵()()2133x x x mx +-=+-,∴22333x x x x mx +--=+-,∴22323x x x mx -=+--,∴2m =-.故答案为:2-.7.5【分析】根据多项式乘以多项式的法则展开,求出a 的值以及a 与k 的关系,然后可得答案.本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.【详解】∵2222222()()()x x a x ax x a x a x a ++=+++=+++,又∵226()()x x a x kx ++=++,∴22226()x a x a x kx +++=++,2a k \+=,26a =,3a \=,325k \=+=.故答案为:5.8.7【分析】本题考查整式的定义,多项式乘多项式,解二元一次方程.根据题意对整式B 的表述,可设2(x ax b a B =++、b 为待求的常数),计算(3)B x ×+,整理后得到关于x 的三次四项式.由于条件说乘积是只有两项,故有两项的系数为0,需分3种情况讨论计算,列得关于a 、b 的方程组,据此求解即可.【详解】解:B Q 是关于x 的整式,最高次项次数为2,二次项系数为1,\设2b B x ax =++,a 、b 为常数,(3)B x \+2()(3)x ax b x =+++322333x ax bx x ax b=+++++32(3)(3)3x a x a b x b =+++++,Q 乘积是一个只含有两项的多项式,①3030a a b +=ìí+=î,解得:39a b =-ìí=î,239B x x \=-+,各项系数之和为1397-+=;②3030a b +=ìí=î,解得:30a b =-ìí=î,23x B x \=-,各项系数之和为132-=-;③3030a b b +=ìí=î,解得:00a b =ìí=î,2x B \=.各项系数之和为1;∵712>>-;则B 各项系数之和的最大值为7.故答案为:7.9.D【分析】本题考查的是整式的乘法—多项式乘多项式,正确进行多项式的乘法是解答此题的关键.根据题意列出整式相乘的式子,再计算多项式乘多项式,最后进行合并同类项,令二次项的系数等于0即可.【详解】解:∵()()2=363MN x ax x -++322=36+3918x ax x x ax -+-+()()32336918x a x a x =+-+-+∴()()32336918A MN x a x a x ==+-+-+∵多项式A 中不含x 的2次项时,∴330a -=∴1a =故选D .10.C【分析】本题考查多项式乘以多项式,解二元一次方程组,解题的关键是明确不含x 的二次项,则二次项的系数为0.根据多项式乘以多项式法则进行运算,再将计算结果中,利用二次项系数为零与一次项的系数为5-的要求建立方程组,即可求解.【详解】解:()()232ax b x x -++;3223232ax ax ax bx bx b =++---;()()323322ax a b x a b x b =+-+--;∵多项式ax b -与232x x ++的乘积的展开式中不含二次项,且一次项系数为5-;∴3025a b a b -=ìí-=-î;解得:31a b =-ìí=-î,∴3a =-;故选:C .11.(1)2a =-(2)1k =或6-【分析】本题主要考查多项式乘以多项式,熟练掌握多项式乘以多项式计算法则是解题的关键.(1)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令二次系数为0,即可求出答案,(2)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令一次系数为0,即可求出答案.【详解】(1)解:()()2232x x x a +--42323322x ax x ax x a =-+--+4323(2)32x x a x ax a =+-+-+Q 展开后的式子中不含x 的二次项,20a \+=,解得2a =-;(2)解:①若将232+-x x 中的3看成k ,2(2)(2)x kx x +-+3222224x x kx kx x =+++--32(2)(22)4x k x k x =+++--,Q 展开后的式子中不含x 的一次项,220k \-=,1k \=.②若将232+-x x 中的2-看成k ,2(3)(2)x x k x +++3222362x x x x kx k =+++++325(6)2x x k x k =++++,Q 展开后的式子中不含x 的一次项,60k \+=,解得6k =-.③若指数2看作k ,当0k =时,原式(132)(2)x x =+-+2352x x =+-不符合题意;④若指数2看作k ,当1k =时,原式(32)(2)x x x =+-+2464x x =+-,不符合题意;1k =或6-.12.(1)m 的值为2,n 的值为3(2)2mn +8n 2﹣1;83【分析】(1)先将题目中的式子化简,然后根据()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,可以求得m 、n 的值;(2)先化简题目中的式子,然后将m 、n 的值代入化简后的式子即可解答本题.【详解】解:(1)()()2212x mx x x n ++-+=4x ﹣23x +n 2x +m 3x ﹣2m 2x +mnx +2x ﹣2x +n=4x +(﹣2+m )3x +(n ﹣2m +1)2x +(mn ﹣2)x +n∵()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,∴20210m n m +=ìí+=î﹣﹣,解得23m n =ìí=î,即m 的值为2,n 的值为3;(2)(m +2n +1)(m +2n ﹣1)+(22m n ﹣4m 2n +3m )÷(﹣m )=[(m +2n )+1][(m +2n )﹣1]﹣2mn +42n ﹣2m =2m 2n +()﹣1﹣2mn +42n ﹣2m =2m +4mn +42n ﹣1﹣2mn +42n ﹣2m =2mn +82n ﹣1当m =2,n =3时,原式=2×2×3+8×23﹣1=83.【点睛】本题考查整式的混合运算—化简求值,熟练掌握整式混合运算法则是解题的关键.13.(1)35m =(2)23y =【分析】(1)先去括号,然后合并同类项,结合多项式的值与x 的取值无关,即可求出答案;(2)先把A 进行化简,然后计算26A B -,结合多项式的值与x 的取值无关,即可求出答案.【详解】(1)解:223(35)m x m x ---22335m x m mx=--+2(53)23m x m m =-+-,Q 其值与x 的取值无关,530m \-=, 解得:35m =, 即:当35m =时,多项式223(35)m x m x ---的值与x 的取值无关;(2)解:(21)(31)(53)A x x x y =+--+Q ,2324B x xy -=+,2262[(21)(31)(53)]6(24)3A B x x x y x xy \-=+---+-+222(623153)121824x x x x xy x xy =-+----+-2212826121824x x xy x xy =----+-12826xy x =--4(32)26x y =--;26A B -Q 的值与x 无关,320y \-=,即23y =.【点睛】本题考查了整式的加减乘混合运算,准确熟练地进行计算是解题的关键.14.B【分析】此题主要考查了整式的混合运算无关型题目,代数式求值,首先根据多项式乘多项式的方法,求出A B ×的值是多少,然后用它加上C ,求出A B C ×+的值是多少,最后根据A B C ×+的值与x 的取值无关,可得x 的系数是0,据此求出a 的值,最后代入求值即可.【详解】解:23A x x a =+-Q ,B x =-,3235C x x =++,A B C\×+()()()232335x x a x x x =+--+++3232335x x ax x x =--++++5ax =+,A B C ×+Q 的值与x 的取值无关,2233A x x a x x \=+-=+,当4x =-时,()()24344A =-+´-=,故选:B .15.3【分析】此题考查整式的混合运算,先运算多项式乘以多项式和单项式乘以多项式,然后合并,进而根据与x 的取值无关得到260m -=,解方程即可.【详解】解:()()()()222232366262612262x x m x x x mx x m x x m x m ++-+=+++--=-+,∵代数式的值与x 的取值无关,∴260m -=,解得3m =,故答案为:3.16.A【分析】本题考查整式的四则混合运算,先将题目中的式子化简,然后根据此代数式的值与y 的取值无关,可知关于y 的项的系数为0,从而可以求得k 的值.【详解】解:()()()2253334x kx xy k x y x ----2222225334912kx x y kx y kx x y x =--++-222239612kx y kx x y x =-++-()22236912k x y kx x =-++-∵关于y 的代数式:()()()2253334x kx xy k x y x ----的值与y 无关,∴360k -+=,解得2k =,即当2k =时,代数式的值与y 的取值无关.故选:A.17.B【分析】利用多项式乘单项式的运算法则计算即可求解.【详解】解: ( −4x 2y 2+3xy −y ) • (−6x 2y )=24x 4y 3−18x 3y 2+6x 2y 2,∴■=18x 3y 2.【点睛】本题主要考查的是整式的除法和乘法,掌握法则是解题的关键.18.(1)24x --;(2)4x £-.【分析】(1)根据题意,被墨水污染的代数式=()2()(252236)x x x x ++---,再结合整式的乘法法则及加减法则解题,注意运算顺序;(2)由(1)中结果列一元一次不等式,解一元一次不等式即可解题.【详解】解:(1)由已知可得,()2()(252236)x x x x ++---2224510236x x x x x =-+---+=24x -- ;(2)由已知可得,244x -³-28x ³-解得4x £-.【点睛】本题考查整式的混合运算、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.复原后的算式为()()3322286122x y x y x y xy -+-¸-【分析】先根据被除式的首项和商式的首项可求得除式,然后根据除式乘商式等于被除式求解即可.【详解】解:338x y -Q 对应的结果为:224x y ,\除式为:3322842x y x y xy -¸=-,根据题意得:()()223322243628612x y xy x xy x y x y x y -+×-=-+-,\复原后的算式为()()3322286122x y x y x y xy -+-¸-.【点睛】本题主要考查的是整式的除法和乘法,掌握运算法则是解题的关键.20.(1)43222x x x x +--;(2)1【分析】(1)根据多项式的乘法进行计算即可;(2)设一次项系数为a ,计算()()222x ax x x ++-,根据其结果不含三次项,则结果的三次项系数为0,据此即可求得a 的值,即原题中被遮住的一次项系数.【详解】解:(1)(x 2+3x +2)(x 2﹣x )433223322x x x x x x=-+-+-43222x x x x=+--(2)设一次项系数为a ,()()222x ax x x ++-4332222x x ax ax x x=-+-+-()()432122x a x a x x=+-+--Q 答案是不含三次项的10a \-=1a \=【点睛】本题考查了多项式的乘法运算,正确的计算是解题的关键.21.A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.【详解】解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .22.222-abc a bc【分析】本题主要考查了整式乘法运算,根据一个整数减去3ac ,得到的答案是12333--bc ac ab ,得出这个整式为123333bc ac ab ac --+,然后用3ac 乘这个整式得出结果即可.【详解】解:根据题意得:1233333æö--+ç÷èøac bc ac ab ac12333æö=-ç÷èøac bc ab 222=-abc a bc .故该题正确的计算结果应是222-abc a bc .23.(1)22x y xy --;(2)B xy =-.【分析】(1)根据整式混合运算的运算顺序和运算法则进行化简即可;(2)根据题意可得22A y B x -=-,根据整式混合运算顺序和运算法则进行计算即可;本题主要考查了整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则.【详解】(1)()()221222A xy xy x y =+--+,22222222x y xy xy x y =-+--+,22x y xy =--;(2)由题意,得22A yB x -=-由(1)知22A x y xy =--,∴2222x y xy B x y ---=-,∴B xy =-.24.(1)5a =-,2b =-(2)261910x x -+【分析】(1)按照甲、乙两人抄的错误的式子进行计算,得到2311b a -=①,29b a +=-②,解关于①②的方程组即可求出a 、b 的值;(2)把a 、b 的值代入原式求出整式乘法的正确结果.【详解】(1)根据题意可知,甲抄错为()()23x a x b -+,得到的结果为261110x x +-,那么()()()222362361110x a x b x b a x ab x x -+=+--=+-,可得2311b a -=①乙抄错为()()2x a x b ++,得到的结果为22910x x -+,可知()()()222222910x a x b x b a x ab x x ++=+++=-+可得29b a +=-②,解关于①②的方程组,可得5a =-,2b =-;(2)正确的式子:()()22041253265106191x x x x x x x --=+-=+--【点睛】本题主要是考查多项式的乘法以及二元一次方程组,掌握多项式乘多项式运算法则是正确解决问题的关键.25.(1)①()2a l a -;②1200(2)增大;22al a a-+【分析】本题考查了列代数式及代数式求值,正确列出代数式是解题的关键.(1)①先用l 和a 的代数式表示出园子的长,再表示出园子的面积;②把100l =,30a =代入①中的代数式进行计算即可;(2)由园子的宽不变,长增加了,即可判断出园子的面积增大了,表示出园子的长,即可求出园子的面积.【详解】(1)解:①Q 总长为l ,宽为a ,\园子的长为:()2l a -,\园子的面积为:()2a l a -;故答案为:()2a l a -;②当100l =,30a =时,()222a l a al a -=-230100230=´-´30002900=-´30001800=-1200=;(2)解:Q 园子的宽不变,长增加了,。

整式的乘除测试题练习8套(含答案)

整式的乘除测试题练习8套(含答案)

整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。

整式乘除知识点总结

整式乘除知识点总结

整式乘除知识点总结为了让大家更好的迎接中考,那么,整式的知识点是必不可少的。

下面是小编与大家分享的整式乘除知识点总结,欢迎大家参考借鉴!整式乘除知识点总结(一)1.单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。

这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。

2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。

3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到整式乘除知识点总结(二)单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:a)积的系数等于各因式系数积,先确定符号,再计算绝对值。

整式的乘除法专题训练(含答案)

整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4.同底数幂的除法;5.负整数指数幂;6.零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4.正确联系运算性质和法则一、计算1.4353x x x x x ••+•2.()()()()x 211x 21x 21x 2432-•-+-•-3.()()4n 31n 35x x x x -•+•--4.()()()()a b b a a b b a 432-•-+-•-5.()()()344321044x 5x 2x 2x 2x 2•+-•+-6.()()()()y x xy 2y 2x x 32332•-•+-••-7.()()()2222332x x x 3x 2•+-+-8.()()()72335m m m-••-9.()()36x -x -÷10.()()63243x x x 2÷÷-11.()()()223223x -x -x x x x •÷+÷÷12.()()[]()[]322313x 2-y y -x 2y -x 2÷÷类型二:幂的运算性质的灵活运用13.已知的值。

求b a b a2,72,42+==14.已知,a 3a x =+用含a 的代数式表示.3x15.已知,5.133,63n m ==求m+n 的值。

16.已知的值。

求2n m n m a ,2a ,3a ++==17.已知的值。

求b 3a 2b a 10,610,510+==18.若的值。

求y x 328,03y 5x 3•=-+19.已知486331x 22x 2=-++,求x 的值。

20.已知(),a a a 113m 5=•求m 的值。

21.已知的值。

求n 2-1m n m 9,43,23+==22.若的值。

整式的乘除

整式的乘除
A.n为奇数
B.n为偶数
C.n是整数
D.n是正整数
13.若2m=3,23m+n+1=270,求2n的值.
14.计算
(1)[(a-b)3]2-[(b-a)2]3;
(2)-x4·(-x3)2·(-x2)3;
(3)0.252012×42013-22013×0.52013.
15.比较大小:3555,4444,5333.
1.3
注:1.负整数指数幂的意义
2.用科学计数法表示绝对值较小的数
【基础练习】
1.下列计算正确的是()
A.(-y)7÷(-y)4=y3;B.(x+y)5÷(x+y)=x4+y4;
C.(a-1)6÷(a-1)2=(a-1)3;D.-x5÷(-x3)=x2.
2.计算: 的结果,正确的是()
A. ;B. ;C. ;D. .
A.a=2,b=-2,c=-1B.a=2,b=2,c=-1
C.a=2,b=1,c=-2D.a=2,b=-1,c=2
8.若6x2-19x+15=(ax+b)(cx+d),则ac+bd等于( )
A.36B.15C.19D.21
9. 计算:
(1)(2xy2)·( xy);(2)(-3a2b3)2·(-a3b2)5;
A.1 B. -1 C. 0 D. 1或-1
8.若把(m-2n)看作一个整体,则下列计算中正确的是( ).
A.
B.
C. (m-2n)
D.
9. (-a5)2+(-a2)5的结果是( ).
A. B.0 D.
10.若44×83=2x,则x的值等于( ).
A.7
B.12
C.13
D.17
11.有一道计算题(-a4)2,李老师发现全班有以下四种解法:

专题1.2 整式的乘除法【十一大题型】(举一反三)(北师大版)(解析版)

专题1.2 整式的乘除法【十一大题型】(举一反三)(北师大版)(解析版)

专题1.2 整式的乘除法【十一大题型】【北师大版】【题型1 利用整式乘法求值】 (1)【题型2 利用整式乘法解决不含某项问题】 (2)【题型3 利用整式乘法解决错看问题】 (5)【题型4 利用整式乘法解决遮挡问题】 (7)【题型5 整式乘法的计算】 (8)【题型6 整式乘法的应用】 (9)【题型7 整式除法的运算与求值】 (12)【题型8 整式除法的应用】 (16)【题型9 整式乘法中的新定义问题】 (18)【题型10 整式乘法中的规律探究】 (22)【题型11 整式乘法与面积的综合探究】 (26)【知识点 整式的乘法】单项式×单项式:系数相乘,字母相乘.()xy xy x y 22312æö2×=ç÷33èø单项式×多项式:乘法分配律.()m a b c ma mb mc ++=++多项式×多项式:乘法分配律.()()m n a b ma mb na nb++=+++【题型1 利用整式乘法求值】【例1】(2023春·江苏无锡·七年级期中)若(x−1)(x +b)=x 2+ax−2,则a +b 的值为 .【答案】3【分析】由多项式乘多项式计算得x 2+(b ﹣1)x ﹣b =x 2+ax ﹣2,根据对应系数相等即可得出答案.【详解】解:∵(x ﹣1)(x +b )=x 2+bx ﹣x ﹣b =x 2+(b ﹣1)x ﹣b ,∴x 2+(b ﹣1)x ﹣b =x 2+ax ﹣2,∴b ﹣1=a ,﹣b =﹣2,解得:b =2,a =1,∴a +b =3,故答案为:3.【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式的法则进行计算是解决本题的关键.【变式1-1】(2023·七年级单元测试)已知x2+x+1=0,则x3−x2−x+7=【答案】9.【分析】观察发现,对x3−x2−x+7的前三项可以提出公因式x,即可发现解答思路.【详解】解:∵x2+x+1=0,∴x3−x2−x+7=x3+x2+x−2x2−2x−2+9=x(x2+x+1)−2(x2+x+1)+9=9【点睛】本题考查了多项式乘法的逆用,解题的关键在于寻找所求多项式与已知等式的关系.【变式1-2】(2023春·上海松江·七年级校考阶段练习)已知:x2+3x=10,则代数式(x−2)2+x(x+10)−5=.【答案】19【分析】先把代数式(x−2)2+x(x+10)−5化简得2(x2+3x)−1,再把已知整式x2+3x=10整体代入其中即可求解.【详解】原式=x2−4x+4+x2+10x−5=2x2+6x−1=2(x2+3x)−1把x2+3x=10整体代入上式:2(x2+3x)−1=2×10−1=19故答案为19.【点睛】本题主要考查整体代入的数学思想.【变式1-3】(2023·七年级单元测试)如果a、b、m均为整数,且(x+a)⋅(x+b)=x2+mx+15,则所有的m的和为.【答案】0【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m的值.【详解】∵(x+a)⋅(x+b)=x2+(a+b)x+ab=x2+mx+15∴a+b=m,ab=15,∴{a=1b=15或{a=−1b=−15或{a=15b=1或{a=−15b=−1或{a=3b=5或{a=−3b=−5或{a=5b=3或{a=−5b=−3,∴m取值有16,-16,8,-8.则所有的m的和为0.故答案为0.【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.【题型2利用整式乘法解决不含某项问题】【例2】(2023春·浙江·七年级专题练习)已知将(x3+mx+n)(x2-3x+4)展开的结果不含x3和x2项,求m、n的值.【答案】m=-4,n=-12.【分析】先利用多项式乘法法则把多项式展开,那么原式=x5-3x4+4x3+mx3-3mx2+4mx+nx2-3nx+4n=x5-3x4+(4+m)x3+(-3m+n)x2+(4m-3n)x+4n.由于展开后不含x3和x2项,则含x3和x2项的系数为0,由此可以得到4+m=0,-3m+n=0,解方程组即可以求出m、n.【详解】解:原式=x5-3x4+4x3+mx3-3mx2+4mx+nx2-3nx+4n=x5-3x4+(4+m)x3+(-3m+n)x2+(4m-3n)x+4n.∵不含x3和x2项,∴4+m=0,-3m+n=0,解得m=-4,n=-12.【点睛】考查了多项式乘多项式,关键是根据多项式相乘法则以及多项式的项的定义解答.【变式2-1】(2023春·广东佛山·七年级校考阶段练习)如果(y+5)(y+m)的乘积中不含y的一次项.则m的值为()A.-5B.5C.0D.3【答案】A【分析】原式利用多项式乘多项式法则计算,根据结果不含y的一次项,确定出m的值即可.【详解】解:原式=y2+(m+5)y+5m,由结果不含y的一次项,得到m+5=0,解得:m=-5,故选:A.【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.【变式2-2】(2023春·四川资阳·七年级统考期末)已知a为任意实数,有多项式M=x2+3ax+6,N=x+3,且MN=A,当多项式A中不含2次项时,a的值为().D.1A.-1B.0C.−23【答案】A【分析】根据题意列出整式相乘的式子,再计算多项式乘多项式,最后进行合并同类项,令二次项的系数等于0即可.【详解】解:∵MN=(x2+3ax+6)(x+3)=x3+3ax2+6x+3x2+9ax+18=x 3+(3a +3)x 2+(9a +6)x +18∴A =MN =x 3+(3a +3)x 2+(9a +6)x +18∴3a +3=0∴a =-1故选A .【点睛】本题考查的是整式的乘法—多项式乘多项式,正确进行多项式的乘法是解答此题的关键.【变式2-3】(2023春·七年级课时练习)若x 2+x 2−3x +n )的积中不含有x 与x 3项.(1)直接写出m 、n 的值,即m =___________,n = ___________;(2)求代数式(−m 2n )3+(9mn )2+(3m )2014n 2016的值.【答案】(1)1,−13(2)9427【分析】(1)根据多项式乘多项式法则计算,然后根据积中不含有x 与x 3项可以求解m 、n 的值.(2)将m 、n 的值代入代数式求值即可.【详解】(1)解:x 2+x 2−3x +n ) =x 4−3x 3+n x 2+3m x 3−9m x 2+3mnx−13x 2+x−13n=x 4+(3m−3)x 3+(n−9m−13)x 2+(3mn +1)x−13n ,∵积中不含有x 与x 3项,∴3m−3=0,3mn +1=0,解得m =1,n =−13.故答案为:1,−13.(2)解:当m =1,n =−13时,(−m 2n )3+(9mn )2+(3m )2014n 2016=−12×−+9×1×−+32014×−=+(−3)2+3×−×−=127+9+19=9427.【点睛】本题考查多项式乘多项式以及代数式求值,解题关键是熟知多项式乘多项式的计算法则.【题型3利用整式乘法解决错看问题】【例3】(2023春·四川内江·七年级校考阶段练习)在数学课堂上,老师写出一道整式乘法题:(2y+a) (3y+b).王建由于把第一个多项式中的“+a”抄成了“−a”,得到的结果为6y2+5y−10;李楠由于漏抄了第二个多项式中y的系数,得到的结果为2y2−7y+10.(1)求正确的a,b的值;(2)计算这道乘法题的正确结果.【答案】(1)a=−3b=−2;(2)6y2−13y+6【分析】(1)先根据多项式乘以多项式展开,合并同类项,得出两个二元一次方程,组成方程组,求出方程组的解即可;(2)根据多项式乘以多项式法则求出答案即可.【详解】(1)根据王建的解法得:(2y−a)(3y+b)=6y2+2by−3ay−ab=6y2+(2b−3a)y−ab=6y2+5y−10,∴2b−3a=5①根据李楠的解法的:(2y+a)(y+b)=2y2+2by+ay+ab=2y2+(2b+a)y+ab=2y2−7y+10,∴2b+a=−7②联立①②得方程组解得:a=−3b=−2;(2)这道题的正确解法是:(2y−3)(3y−2)=6y2−4y−9y+6=6y2−13y+6.【点睛】本题考查了多项式乘以多项式,解二元一次方程组等知识点,能得出关于a、b的方程组是解此题的关键.【变式3-1】(2023春•潍坊期末)小明在进行两个多项式的乘法运算时,不小心把乘以(x﹣2y)错抄成除以(x﹣2y),结果得到(3x﹣y),则正确的结果是( )A.3x2﹣7xy+2y2B.3x2+7xy+2y2C.3x3﹣13x2y+16xy2﹣4y3D.3x3﹣13x2y+16xy2+4y3【分析】直接利用多项式乘多项式运算法则计算得出答案.【解答】解:∵小明在进行两个多项式的乘法运算时,不小心把乘以(x﹣2y)错抄成除以(x﹣2y),结果得到(3x﹣y),∴原式=(3x﹣y)(x﹣2y)=3x2﹣6xy﹣xy+2y2=3x2﹣7xy+2y2,则正确计算结果为:(3x2﹣7xy+2y2)(x﹣2y)=3x3﹣7x2y+2xy2﹣6x2y+14xy2﹣4y3=3x3﹣13x2y+16xy2﹣4y3.故选:C.【变式3-2】(2023春•云县期末)在计算(x+a)(x+b)时,甲错把b看成了6,得到结果x2+8x+12;乙错把a看成了﹣a,得到结果x2+x﹣6.你能正确计算(x+a)(x+b)吗?(a、b都是常数)【分析】根据甲的做法求出a的值,根据乙的做法求出b的值,代入原式中计算即可.【解答】解:∵(x+a)(a+6)=x2+(6+a)x+6a=x2+8x+12,∴6+a=8,∴a=2;∵(x﹣a)(x+b)=x2+(b﹣a)x﹣ab=x2+x﹣6,∴b﹣a=1,∴b=3,∴(x+a)(a+b)=(x+2)(x+3)=x2+5x+6.【变式3-3】(2023春•河源期末)甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2﹣7x+3,乙漏抄了第二个多项式中x的系数,得到的结果是x2+2x﹣3.(1)求(﹣2a+b)(a+b)的值;(2)若整式中的a的符号不抄错,且a=3,请计算这道题的正确结果.【分析】(1)按甲乙错误的说法计算得出的系数的数值求出a,b的值;(2)将a,b的值代入原式求出整式乘法的正确结果.【解答】解:(1)甲抄错了a的符号的计算结果为:(x﹣a)(2x+b)=2x2+(﹣2a+b)x﹣ab=2x2﹣7x+3,故:对应的系数相等,﹣2a+b=﹣7,ab=﹣3;乙漏抄了第二个多项式中x的系数,计算结果为:(x+a)(x+b)=x2+(a+b)x+ab=x2+2x﹣3.故:对应的系数相等,a+b=2,ab=﹣3,∴−2a+b=−7 a+b=2,解得:a=3b=−1,∴(﹣2a+b)(a+b)=[(﹣2)×3﹣1](3﹣1)=﹣7×2=﹣14;(2)由(1)可知,b=﹣1正确的计算结果:(x+3)(2x﹣1)=2x2+5x﹣3.【题型4利用整式乘法解决遮挡问题】【例4】(2023春•河南月考)今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣7xy(2y﹣x﹣3)=﹣14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□内应填写( )A.+21xy B.﹣21xy C.﹣3D.﹣10xy【分析】先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.【解答】解:﹣7xy(2y﹣x﹣3)=﹣14xy2+7x2y+21xy.故选:A.【变式4-1】(2023春•天津期末)在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x(﹣2x2+3x﹣1)=6x3+□+3x,“□”的地方被墨水污染了,你认为“□”内应填写( )A.9x2B.﹣9x2C.9x D.﹣9x【分析】根据单项式与多项式相乘的运算法则计算可得出答案.【解答】解:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+3x,故选:B.【变式4-2】(2023春•岳麓区校级期中)已知x3﹣6x2+11x﹣6=(x﹣1)(x2+mx+n),其中m、n是被墨水弄脏了看不清楚的两处,请求出m2+6mn+9n2的值.【分析】将(x﹣1)(x2+mx+n)展开求得m和n的值后代入代数式即可求得其值.【解答】解:∵x3﹣6x2+11x﹣6=(x﹣1)(x2+mx+n)=x3+(m﹣1)x2+(n﹣m)x﹣n,∴m﹣1=﹣6,n=6,∴m =﹣5,∴m2+6mn+9n2=(﹣5)2+6×(﹣5)×6+9×62=25﹣180+324=169.【变式4-3】(2023春•江都区期中)今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题3x 2y (2xy 2﹣xy ﹣1)=6x 3y 3 ﹣3x 3y 2 ﹣3x 2y ,空格的地方被钢笔水弄污了,你认为横线上应填写 ﹣3x 3y 3 .【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】解:∵3x2y (2xy2﹣xy ﹣1)=6x3y3﹣3x3y2﹣3x2y ,∴横线上应填写﹣3x3y2,故答案为:﹣3x3y2,﹣3x3y2.【题型5 整式乘法的计算】【例5】(2023春·重庆渝中·七年级校考期中)(1)计算:x ⋅2x +x(x−2);(2)(m +1)(m−5)−m(m−6)【答案】(1)3x 2−2x ;(2)2m-5【分析】(1)利用整式的混合运算法则求解即可.(2)根据单项式乘多项式,多项式乘多项式的运算方法计算即可.【详解】(1)x ⋅2x+x(x−2)=2x 2+x 2−2x=3x 2−2x.(2)(m+1)(m-5)-m (m-6)=m 2-5m+m-5-m 2+6m=2m-5;【点睛】此题考查整式的混合运算,解题关键在于掌握运算法则.【变式5-1】(2023春·上海·七年级期中)−12x 2y 2⋅2−8xy +【答案】15x 6y 2−2x 5y 3+112x 4y 2【分析】先计算积的乘方,再根据单项式乘以多项式法则进行计算即可.【详解】解:原式=14x 4y 2⋅(45x 2−8xy +13)=15x 6y 2−2x 5y 3+112x 4y 2.【点睛】本题考查整式的混合运算,能灵活运用知识点进行化简是解题的关键.【变式5-2】(2023春·七年级课时练习)先化简,再求值:x (x +2)+(1+x )(1−x ),其中x =-2.【答案】2x +1,-3【分析】原式根据单项式乘以多项式运算法则以及平方差公式去括号,合并同类项;再代入求值即可.【详解】解:x(x+2)+(1+x)(1−x)=x2+2x+1−x2=2x+1,当x=-2时,原式=2×(−2)+1=−3.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和运算法则是解题的关键.【变式5-3】(2023春·七年级课时练习)计算:(1)(a-1)(a2+a+1);(2)(2x+5)(2x-5)-(x+1)(x-4);(3)(3x-2)(2x+3)(x-2).【答案】(1) a3-1;(2) 3x2+3x-21;(3)6x3-7x2-16x+12.【分析】(1)利用多项式乘以多项式,去括号合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用多项式乘以多项式,去括号合并即可得到结果;(3)利用多项式乘以多项式,去括号合并即可得到结果.【详解】(1)原式=a·a2+a·a+a·1-a2-a-1=a3-1.(2)原式=4x2-25-x2+3x+4=3x2+3x-21.(3)原式=(6x2+9x-4x-6)(x-2)=(6x2+5x-6)(x-2)=6x3+5x2-6x-12x2-10x+12=6x3-7x2-16x+12.【点睛】此题考查了多项式乘以多项式,以及平方差公式,熟练掌握公式是解本题的关键.【题型6整式乘法的应用】【例6】(2023春·浙江宁波·七年级校考期中)长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少3厘米.新长方形的面积比原长方形的面积减少了多少平方厘米(用含的代数式表示)?【答案】3a+3b-9【详解】分析:根据题意表示出原来长方形与新长方形的面积,相减即可得到结果;详解:根据题意得,原长方形的面积为:ab平方厘米,新长方形的面积为:(a−2)(b−2)平方厘米,则新长方形的面积比原长方形的面积减少了:ab−(a−3)(b−3)=ab−ab+3a+3b−9=3a+3b−9(平方厘米).点睛:本题考查了长方形的面积和整式的混合运算,长方形的面积=长×宽,整式的混合运算是先算乘方,再算乘除,后算加减.【变式6-1】(2023春·上海静安·七年级新中初级中学校考期末)用长为24米的木条,做成一个“目”字形的窗框(如图所示,窗框外沿ABCD是长方形),若窗框的横条长度都为x米.(1)用代数式表示长方形ABCD的面积.(2)当x=3时,求出长方形ABCD的面积.【答案】(1)−2x2+12x;(2)18m2.【分析】(1)根据题意“目”字形的窗框,长有4段,总长为4AD=4x米,则AB=24−4x米,再根据长方形2面积计算公式即可得出答案;(2)把x=3代入(1)中关于面积的代数式中即可得出答案.=12−2x,【详解】(1)根据题意得AB=24−4x2∴S长方形ABCD=(12−2x)⋅x=−2x2+12x.(2)当x=3时,−2x2+12x=−2×9+12×3=−18+36=18m2.答:长方形ABCD面积为18m2.【点睛】本题主要考查了列代数及代数式的求值,根据题意列出合理的代数式是解决本题的关键.【变式6-2】(2023春·上海·七年级专题练习)如图,用一张高为30cm,宽为20cm的长方形打印纸打印文档,如果左右的页边距都为xcm,上下页边距比左右页边距多1cm.(1)请用x的代数式表示中间打印部分的面积.(2)当x=2时,中间打印部分的面积是多少平方厘米?【答案】(1)4x2-96x+560;(2)384cm2.【分析】(1)分别用含x的代数式表示出中间打印部分的高和宽,利用长方形面积公式即可得答案;(2)把x=2代入(1)中代数式,即可得答案.【详解】(1)∵左右的页边距都为xcm,上下页边距比左右页边距多1cm,∴中间打印部分的高为30-2(x+1)=28-2x,宽为20-2x,∴中间打印部分的面积为(28-2x)(20-2x)=4x2-96x+560.(2)由(1)得中间打印部分的面积为4x2-96x+560,∴当x=2时,中间打印部分的面积为4×22-96×2+560=384(cm2).答:当x=2时,中间打印部分的面积是384cm2.【点睛】本题考查了列代数式,正确理解题意,根据图示表示出中间打印部分的高和宽是解题关键.【变式6-3】(2023春·广东茂名·七年级校联考阶段练习)有一电脑程序:每按一次按键,屏幕的A区就会自动减去a,同时B区就会自动加上3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16(如图所示).例如:第一次按键后,A,B两区分别显示:25﹣a,﹣16+3a.(1)那么第二次按键后,A区显示的结果为______,B区显示的结果为______.(2)计算(1)中A、B两区显示的代数式的乘积,并求当a=1时,代数式乘积的值.【答案】(1)A区显示的结果为-2a+25;B区显示的结果为6a-16(2)−12a 2+182a−400;代数式乘积的值为−230【分析】(1)根据题意列出代数式即可;(2)根据多项式乘以多项式法则进行计算,然后将a =1代入求值即可.【详解】(1)第二次按键后,A 区显示的结果为25−2a ,B 区显示的结果为6a−16 故答案为:25−2a ,6a−16(2)(-2a+25)(6a -16)=−12a 2+182a−400 当a =1时原式=﹣12+182﹣400=−230【点睛】本题考查了列代数式、多项式乘以多项式,准确理解题意,并熟练掌握运算法则是解题的关键.【知识点2 整式的除法】单项式÷单项式:系数相除,字母相除.xy xy y21æö2¸=6ç÷3èø()多项式÷单项式:除法性质.()a b c m a m b m c m++¸=¸+¸+¸多项式÷多项式:大除法.()()x x x x23+3¸+1=3【题型7 整式除法的运算与求值】【例7】(2023春·河北承德·七年级统考期末)下列计算27a 2÷13a 3÷9a 2的顺序不正确的是( )A .27a 2÷(13a 3÷9a 2)B .(27a 2÷13a 3)÷9a 2C .(27÷13÷9)a 2−3−2D .(27a 2÷9a 2)÷13a【答案】A【分析】本题是单项式的连除运算,根据运算顺序、除法的性质及单项式除以单项式的法则即可求解.【详解】解:A 、∵27a 2÷(13a 3÷9a 2)=27a 2÷127a =729a ,27a 2÷13a 3÷9a 2=81a −1÷9a 2=9a −3,∴27a 2÷(13a 3÷9a 2)≠27a 2÷13a 3÷9a 2,故A 项错误;B 、根据运算顺序连续除以两个数即从左往右依次计算,可知27a 2÷13a 3÷9a 2=(27a 2÷13a 3)÷9a 2,故B 项正确;C 、根据单项式除以单项式的法则,可知27a 2÷13a 3÷9a 2=(27÷13÷9)a 2−3−2,故C 项正确;D 、根据运算顺序及除法的性质,可知27a 2÷13a 3÷9a 2=(27a 2÷9a 2)÷13a ,故D 项正确.故选∶A .【点睛】本题主要考查了连除的运算顺序及单项式除以单项式的法则.熟练掌握单项式除以单项式的运算法则是解题的关键.【变式7-1】(2023春·陕西咸阳·七年级统考期末)已知4m 2−7m +6=0,求代数式(3m 2−2m )÷m−(2m−1)2的值.【答案】3【分析】首先求出4m 2−7m =−6,再根据完全平方公式,多项式除以单项式化简代数式得出原式−4m 2+7m−3,代入即可得出答案.【详解】解:∵ 4m 2−7m +6=0∴ 4m 2−7m =−6∴ (3m 2−2m )÷m−(2m−1)2=3m−2−(4m 2−4m +1)=3m−2−4m 2+4m−1=−4m 2+7m−3=−(4m 2−7m )−3=6−3=3.【点睛】本题考查代数式求值,完全平方公式,多项式除以单项式,得出4m 2−7m =−6,正确化简代数式是解题的关键.【变式7-2】(2023·四川·石室佳兴外国语学校七年级阶段练习)已知多项式2x 2﹣4x ﹣1除以一个多项式A ,得商式为2x ,余式为x ﹣1,则这个多项式A =_____.【分析】根据“除式=(被除式-余式)÷商”列式,再利用多项式除单项式,先把多项式的每一项除以单项式,再把所得的商相加,计算即可.【解答】解:由题意可得:A =[(2x 2−4x −1)−(x −1)]÷2x =(2x 2−5x)÷2x =x −52故答案为:x−52【变式7-3】(2023春·江苏苏州·七年级统考期末)阅读理解:由两个或两类对象在某些方面的相同或相似,得出它们在其他方面也可能相同或相似的推理方法叫类比法.多项式除以多项式可以类比于多位数的除法进行计算.如图1:∴278÷12=232,∴(x3+2x2−3)÷(x−1)=x2+3x+3.即多项式除以多项式用竖式计算,步骤如下:①把被除式和除式按同一字母的指数从大到小依次排列(若有缺项用零补齐).②用竖式进行运算.③当余式的次数低于除式的次数时,运算终止,得到商式和余式.若余式为零,说明被除式能被除式整除.例如:(x3+2x2−3)÷(x−1)=x2+3x+3余式为0,∴x3+2x−3能被x−1整除.根据阅读材料,请回答下列问题:(1)多项式x2+5x+6除以多项式x+2,所得的商式为______ ;(2)已知x3+2x2−ax−10能被x−2整除,则a=______ ;(3)如图2,有2张A卡片,21张B卡片,40张C卡片,能否将这63片拼成一个与原来总面积相等且一边长为(a+8b)的长方形?若能,求出另一边长;若不能,请说明理由.【答案】(1)x+3(2)3(3)能,另一边长为(2a+5b)【分析】(1)列竖式进行计算即可得到答案;(2)列竖式计算,根据整除的意义,利用对应项的系数对应倍数即可得到答案;(3)根据题意,得到63张卡片的总面积为2a2+21ab+40b2,列竖式计算,根据2a2+21ab+40b2能被a+8b整除,即可得到答案.【详解】(1)解:列竖式如下:x+2x+3x2+2x3x+63x+6∴多项式x2+5x+6除以多项式x+2,所得的商式为x+3,故答案为:x+3;(2)列竖式如下:x−2x2+4x+(8−a)x3−2x24x2−ax−104x2−8x(8−a)x−10(8−a)x−2(8−a)2(8−a)−10∵x3+2x2−ax−10能被x−2整除,∴2(8−a)−10=0,解得:a=3,故答案为:3;(3)解:能,理由如下:根据题意,A卡片的面积是a2,B卡片的面积是ab,C卡片的面积是b2,∴2张A卡片,21张B卡片,40张C卡片的总面积为2a2+21ab+40b2,列竖式如下:a+8b2a+5b2a2+16ab5ab+40b25ab+40b2∵余式为0,∴2a2+21ab+40b2能被a+8b整除,商式为2a+5b,∴可以拼成与原来总面积相等且一边长为(a+8b)的长方形,另一边长为(2a+5b).【点睛】本题考查了利用竖式计算整式的除法,解题关键是注意同类项的对应,理解被除式=除式×商式+余式.【题型8 整式除法的应用】【例8】(2023春·七年级统考期末)某农场种植了蔬菜和水果,现在还有两片空地,农场计划在这两片空地上种植水果黄瓜、白黄瓜和青黄瓜.已知不同品种的黄瓜亩产量不同,其中白黄瓜的亩产量是青黄瓜的12,如果在空地种植白黄瓜、青黄瓜和水果黄瓜的面积之比为2:3:4,则水果黄瓜的产量是白黄瓜与青黄瓜产量之和的2倍;如果在空地上种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为 .【答案】5:8:12【分析】设青黄瓜的亩产量为x ,则白黄瓜的亩产量为12x ,白黄瓜的种植面积为2y ,青黄瓜的种植面积为3y ,水果黄瓜的种植面积为4y ,据此求出水果黄瓜的产量是8xy ,进而得到水果黄瓜的亩产量为2x ,再根据种植面积的比值即可得到答案.【详解】解:设青黄瓜的亩产量为x ,则白黄瓜的亩产量为12x ,白黄瓜的种植面积为2y ,青黄瓜的种植面积为3y ,水果黄瓜的种植面积为4y ,∴青黄瓜的产量为3xy ,白黄瓜的产量为xy ,∴水果黄瓜的产量是2(3xy +xy )=8xy ,∴水果黄瓜的亩产量为8xy4y =2x ,∴当种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为5×12x:4x:3×2x =5:8:12,故答案为:5:8:12.【点睛】本题主要考查了整式的加减计算,单项式除以单项式,正确根据题意求出水果黄瓜的亩产量为2x 是解题的关键.【变式8-1】(2023春•渝中区校级期中)某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、a2;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【分析】(1)先算出两个长方体的体积,再相加,即可得出配件①的体积,求出棱长为a 的正方体体积,即可得出配件②的体积;(2)根据题意列出算式1000a3÷(2×172a3+a3)×30,求出即可.【解答】解:(1)生产配件①需要的原材料的体积是:52a •2a •32a+2a •a •a2=172a3;生产配件②需要的原材料的体积是:a •a •a =a3;(2)根据题意得:1000a3÷(2×172a3+a3)×30=50003(元),答:1000a3体积的这种原材料可使该厂最多获利50003元.【变式8-2】(2023春•蜀山区期中)爱动脑筋的丽丽与娜娜在做数学小游戏,两人各报一个整式,丽丽报的整式A 作被除式,娜娜报的整式B 作除式,要求商式必须为﹣3xy (即A ÷B =﹣3xy )(1)若丽丽报的是x 3y ﹣6xy 2,则娜娜应报什么整式?(2)若娜娜也报x 3y ﹣6xy 2,则丽丽能报一个整式吗?若能,则是个什么整式?说说你的理由.【分析】根据A ÷B =﹣3xy ,可知:(1)B =(x 3y ﹣6xy 2)÷(﹣3xy )=−13x 2+2y ;(2)A =(x 3y ﹣6xy 2)(﹣3xy )=﹣3x 4y 2+18x 2y 3;【解答】解:(1)A =x 3y ﹣6xy 2,∴B =(x 3y ﹣6xy 2)÷(﹣3xy )=−13x 2+2y ;(2)A =(x 3y ﹣6xy 2)(﹣3xy )=﹣3x 4y 2+18x 2y 3【变式8-3】(2023·七年级单元测试)甲、乙两个同学从A 地到B 地,甲步行的速度为3千米/小时,乙步行的速度是5千米/小时,两人骑车的速度都是15千米/小时.现在甲先步行,乙先骑自行车,两人同时从A 地出发,走了一段路程后,乙放下自行车步行,甲到乙放自行车的地方处改骑自行车.后面不断这样交替进行,两人恰好同时到达B 地.那么,甲走全程的平均速度是多少?【答案】457千米/小时.【分析】根据题意甲、乙从A 地到B 地,即甲步行共走的路程恰好等于乙骑车共走的路程;甲骑车共走的路程恰好等于乙步行共走的路程.故首先设甲步行共走x千米,骑车共走y千米,则乙骑车共行x千米,步行共行y千米.再根据路程=速度×时间,且甲、乙两人行走过程中经过的时间相同,那么可列出方程x3+y15=x 15+y5,解方程可得y用x表示表达式.再根据平均速度=总路程总时间,在求解过程中约去x,即可甲走完全程的平均速度.【详解】解:设甲步行共走x千米,骑车共走y千米,则乙骑车共行x千米,步行共行y千米.则根据题意,得x3+y15=x15+y5,解得y=2x.故甲的平均速度为(x+y)÷+=457(千米/时);答:甲走完全程的平均速度457(千米/时).【点睛】考查了一元一次方程的应用.本题解决的关键是根据题意画出路线草图,明白甲步行共走的路程恰好等于乙骑车共走的路程,甲骑车共走的路程恰好等于乙步行共走的路程;再就是求解过程中能够约去未知数.【题型9整式乘法中的新定义问题】【例9】(2023春·江苏宿迁·七年级统考期中)海伦是古希腊数学家,约公元62年左右活跃于亚历山大,年青时海伦酷爱数学,他的代表作《量度论》主要是研究面积、体积和几何分比问题,其中一段探究三角形面积的方法翻译如下:如图,设三角形面积为S,以三角形各边为边向外作正方形,三个正方形的面积分别记作S1、S2、S3,定义:S=S1S2S32;S′1=S−S1;S′2=S−S2;S′3=S−S3;Fs=S′1×S′2+S′2×S′3+S′3×S′1,经研究发现,F s=4S2.如:三角形三条边分别为13、14、15,则S1=169,S2=196,S3=225,S=295,S′1=126;S′2=99;S′3=70;Fs=28224,所以S2=28224÷4=7056=842,故三角形的面积S=84.(1)若S 1=3,S 2=4,S 3=5,则S =_______.F s =_______.(2)当S ′1=x−3;S ′2=x +3;S ′3=5−x 时.①求F s 的表达式;②若S 1+S 2+S 3=20,求三角形的面积.【答案】(1)6,11(2)①−x 2+10x−9;②三角形的面积S =2.【分析】(1)根据定义计算即可求解;(2)①根据F s =S ′1×S ′2+S ′2×S ′3+S ′3×S ′1,利用整式乘法运算法则计算即可求解;②先求得S 的值,再根据定义分别求得S 1、S 2、S 3的值,根据S 1+S 2+S 3=20,求得x =5,代入①中即可求解.【详解】(1)解:∵S 1=3,S 2=4,S 3=5,∴S =S 1S 2S 32=3452=6,S ′1=S−S 1=6−3=3;S ′2=S−S 2=6−4=2;S ′3=S−S 3=6−5=1;∴F s =S ′1×S ′2+S ′2×S ′3+S ′3×S ′1=3×2+2×1+1×3=11;故答案为:6,11;(2)解:①∵S ′1=x−3;S ′2=x +3;S ′3=5−x ,∴F s =S ′1×S ′2+S ′2×S ′3+S ′3×S ′1=(x−3)(x +3)+(x +3)(5−x)+(5−x)(x−3)=x 2−9+5x−x 2+15−3x +5x−15−x 2+3x =−x 2+10x−9;②∵S 1+S 2+S 3=20,∴S =S 1S 2S 32=10,∴S1′=S−S1=10−S1=x−3,故S1=10−(x−3)=13−x;S2′=S−S2=10−S2=x+3,故S2=10−(x+3)=7−x;S3′=S−S3=10−S3=5−x,故S3=10−(5−x)=5+x;∴S1+S2+S3=13−x+7−x+5+x=25−x=20,∴x=5,∴F S=−x2+10x−9=−52+10×5−9=16,∴S2=F s÷4=16÷4=4,故三角形的面积S=2.【点睛】本题考查了整式的乘法的应用,掌握新定义的内容,整式乘法的运算法则是解题的关键.【变式9-1】(2023春·浙江衢州·七年级统考期中)定义新运算|a b c d|=ad+3b−2c,如|1537|=1×7+3×5−2×3=7+15−6=16.(1)计算|23−14|的值;(2)化简:|x+y7xy−x22xy−3x2+1−3x−y|.【答案】(1)19;(2)−y2+13xy−2.【分析】(1)根据定义的新运算,把相关数值代入计算即可;(2)把相关式子代入,进行整式运算即可.【详解】(1)|23−14|=2×4+3×3−2×(−1)=19.(2)|x+y7xy−x22xy−3x2+1−3x−y|=(x+y)(−3x−y)+3(7xy−x2)−2(2xy−3x2+1)=−3x2−4xy−y2+21xy−3x2−4xy+6x2−2=−y2+13xy−2.【点睛】本题考查了新定义下的实数运算、整式的混合运算,正确理解定义的新运算的含义,根据数(式)位置确定a、b、c、d的值是解题关键.【变式9-2】(2023春·安徽六安·七年级六安市第九中学校考期中)给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式a x2+bx+c的特征系数对,把关于x的二次多项式a x2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的二次多项式3x2+2x−1的特征系数对为__________;(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,−4,4)的特征多项式的乘积;(3)有序实数对(2,1,1)的特征多项式与有序实数对(a,−2,4)的特征多项式的乘积不含x2项,求a的值;【答案】(1)(3,2,-1);(2)x4−8x2+16;(3)-6【分析】(1)根据定义得到a,b,c的值即可得到答案;(2)根据特征多项式的定义得到两个多项式,根据多项式乘以多项式的计算法则计算可得答案;(3)根据定义得到特征多项式,计算乘积,根据特征多项式的乘积不含x2项得到x2项的系数等于0,由此求出a.【详解】(1)解:由定义得a=3,b=2,c=-1,∴二次多项式3x2+2x−1的特征系数对为(3,2,-1),故答案为:(3,2,-1);(2)有序实数对(1,4,4)的特征多项式为x2+4x+4,有序实数对(1,−4,4)的特征多项式为x2−4x+4,∴(x2+4x+4)(x2−4x+4)=(x+2)2(x−2)2=[(x+2)(x−2)]2=(x2−4)2=x4−8x2+16;(3)有序实数对(2,1,1)的特征多项式为2x2+x+1,有序实数对(a,−2,4)的特征多项式为a x2−2x+4,∴(2x2+x+1)(a x2−2x+4)=2a x4+(a−4)x3+(6+a)x2+2x+4,∵乘积不含x2项,∴6+a=0,解得a=-6.【点睛】此题考查了新定义,多项式乘以多项式的计算法则,以及多项式不含项的应用,正确理解新定义得到多项式是解题的关键.【变式9-3】(2023春·四川宜宾·七年级统考期中)阅读下列材料,解答下列问题:定义:如果一个数的平方等于−1,记为i2=−1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2−i)+(5+3i)=(2+5)+(−1+3)i=7+2i;(1+i)×(2−i)=1×2−i+2×i−i2=2+(−1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=________,i4=________;(2)计算:(2+3i)×(3-4i);(3)计算:i+i2+i3+ (i2019)【答案】(1) -i,1;(2) 18+i;(3)-1.【分析】(1)把i2=-1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i2=-1代入求出即可;(3)先根据复数的定义计算,再合并即可求解.【详解】解:(1)由题意可知,i3=i2×i=-1×i=-i,i4=(i2)2=(-1)2=1,故答案为-i,1;(2)(2+3i)×(3-4i)=6-8i+9 i -12i2=6+i-12×(-1)=18+i;(3)由i=i,i2=-1,i3=-i,i4=1,i5=i4•i=i,i6=i4×i2=1×(-1)=-1,i7=i4×i3=1×(-i)=-i,i8=i4×i4=1×1=1…且i+i2+i3+i4=i+(-1)+(-i)+1=0,同理:i5+i6+i7+i8=0,可以看出每隔4位相加都等于0,且第五项第于第一项,第六项等于第二项…∴i+i2+i3+…+i2019=504×0+i2017+i2018+ i2019 =i-1- i=-1.【点睛】本题考查了整式的混合运算,复数的定义,能读懂题意是解此题的关键.【题型10整式乘法中的规律探究】【例10】(2023春·广东梅州·七年级统考期末)若正整数a,b的和为10,则称a,b“互补”,如果两个两位数的十位数字相同,个位数字“互补”(如24与26,52与58,简称它们“首同尾补”);那么这两个数的积是三位数或四位数,其末尾的两位数等于两数的个位数字之积,其起始的一位或两位数等于两数的十位数字与比这个十位数字大1的数之积.例如:24×26=624(积中的6=2×(2+1),24=4×6)52×58=3016(积中的30=5×(5+1),16=2×8)(1)直接写出下列各式运算结果:95×95=______,81×89=______;(2)用ab和ac分别表示两个两位数,其中a表示十位数字,b和c表示它们的个位数字,且b+c=10,①依据题意,两位数ab表示为______,两位数ac表示为______;。

(完整版)整式的乘除法专题讲义

(完整版)整式的乘除法专题讲义

第151讲整式的乘除法专题一、知识框架二、本节重点1.幂的乘法运算:(1)同底数幂的乘法:同底数幂相乘底数不变指数相加.(注意当底数互为相反数时要化成同底数幂,再运用同底数幂乘法法则进行运算).表示:m n m na a a+⋅=(,m n都是整数)(2)幂的乘方:幂的乘方,底数不变指数相乘.表示:()n m mna a=(,m n都是整数);逆运算:()()n mmn m na a a==(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.表示:()n n nab a b=(n是整数);逆运用:()nn na b ab=2.同底数幂的除法:同底数幂相除,底数不变,指数相减.表示:m n m na a a-÷=(0,,a m n≠都是整数).3.整式的乘法运算:(1)单项式乘法法则:单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有字母,连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.4.整式的除法运算:(1)单项式除以单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;(2)多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数.三、学生笔记四、经典题型题型一:幂的乘法运算1. 计算(1)()()()3225a a a a -⋅-⋅-⋅ (2)()()()24s t t s s t -⋅-⋅-(3)()()3224233a b ab ⋅- (4)()()()()32232228x y x x y +⨯-⨯-(5)()()2003200231515530.12522135⎛⎫⎛⎫⋅+⋅ ⎪ ⎪⎝⎭⎝⎭ (6)()()23m n x y y x ⎡⎤⎡⎤-⋅-⎣⎦⎣⎦2. (1)如果1128164n n ⋅⋅=,则_________n =.(2)已知()()535,7x y x y +=+=,则()812x y +的值为_____________. (3)已知333,2m n a b ==,求()()332242m n m n m n a b a b a b +-⋅⋅⋅的值_________________. 3. 若()22nab -与29m a b -互为相反数,求m n 的值.4. (1)已知31416181,27,9a b c ===,则,,a b c 的大小关系____________________.(2)比较5554443333,4,5的大小______________________.题型二:同底数幂的除法5. (1)()()()()33323423a a a a ⎡⎤⋅-÷÷⎢⎥⎣⎦(2)1381x =6. 用科学记数法表示下列各数:(1)0.0000512(2)-0.00000717. 计算:(用科学记数法表示结果)(1)()()479101810⨯÷-⨯ (2)()()347210210---⨯÷-⨯8. 若34,97x y ==,则23x y -的值____________.9. 已知()321x x +-=,整数x 的值为________________.10. 计算21103,105αβ--==,求6210αβ+的值.题型三:整式的乘法运算11. (1)()()3252345a a a a -+-⋅-(2)()()2221354a b ab a b a ab b ⎡⎤+--⎣⎦(3)()()()3121x x x x +---+ (4)()()()()221124x x x x -+---12. (1)已知56x y +=,求2530x xy y ++的值.(2)已知+5,6x y xy ==,求22x y xy +的值.13. ()()222762x xy y x y x y A x y B -----=-+++.求__________,___________A B ==.14. 若多项式28x px ++和多项式23x x q -+的乘积中不含3x 和2x 项,求p 和q 的值.15. 先化简,再求值:()()()()122322x y x y x y x y ----+,其中22,5x y =-=.题型四:整式的除法运算16. (1)()35223123a b c a b -÷- (2)232443232113248a b c ab c a b ⎡⎤⎛⎫⎛⎫⎛⎫--÷÷-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦17. 化简求值:()()()2544545x y y x y x ⎡⎤+-+÷-⎣⎦,其中1,3x y =-=.18. 若x 取整数,则使分式6321x x +-的值为整数的x 值有___________个. 19. 若13x x+=,则2421x x x ++的值为_______________.。

专题1.5 整式的乘除全章五类必考压轴题(原卷版)

专题1.5 整式的乘除全章五类必考压轴题(原卷版)

专题1.5 整式的乘除全章五类必考压轴题【北师大版】1.已知4x =a,2y =b,8z =ab ,那么x ,y ,z 满足的等量关系是( )A .2x +y =zB .xy =3zC .2x +y =3zD .2xy =z 2.已知100a =20,1000b =50,则a +32b−32的值是( )A .0B .52C .3D .923.若x ,y 均为实数,43x =2021,47y =2021,则x y xy =_______.4.我们知道下面的结论,若a m =a n (a >0,且a ≠1),则m =n ,利用这个结论解决下列问题:设2m =3,2n =6,2p =24,现给出m ,n ,p 三者之间的三个关系式:①m +p =2n +1,②p +n =2m +4,③m 2−mp +3n =0,其中正确的是___________.(填编号)5.比较下列各题中幂的大小:(1)已知a =8131,b =2741,c =961,比较a 、b 、c 的大小关系;(2)比较255,344,533,622这4个数的大小关系;(3)已知P =999999,Q =119990,比较P 、Q 的大小关系;(4)(−2)234_______5100(填“>”“<”或“=”).6.由幂的运算法则逆向思维可以得到a m +n =a m ⋅a n ,a mn =(a m )n ,a m b m =(ab)m ,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解,收到事半功倍的效果.请解决以下问题:(1)计算:52020×(15)2018;(2)若3×9m ×27m =311,求m 的值;(3)比较大小:a =255,b =344,c =533,d =622,请确定a ,b ,c ,d 的大小关系.7.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),则x叫做以a为底N的对数,记作x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log(M·N)=log a M+log a N(a>0,a≠1,M>0,N>0).理由如下:设log a M=m,log a N=n,所以M=a m,N=a n,所以MN=a m a n=a m+n,由对数的定义得m+n=log a(M+N),又因为m+n=log a M+log a N,所以log a(MN)=log a M+log a N.解决以下问题:(1)将指数53=125转化为对数式:.=log a M-log a N(a>0,a≠1,M>0,N>0)(2)仿照上面的材料,试证明:log a MN(3)拓展运用:计算log32+log318-log34=.1.关于x的三次三项式A=5x3−6x2+10=a(x−1)3+b(x−1)2+c(x−1)+d(其中a,b,c,d均为常数),关于x的二次三项式B=x2+ex+f(e,f均为非零常数),下列说法中正确的个数有( )①当A+B为关于x的三次三项式时,则f=−10;②当多项式A与B的乘积中不含x⁴项时,则e=6;③a+b+c=9;A.0个B.1个C.2个D.3个2.已知(x2−ax2+bx+2)(2x2−3x+5)的展开式中不含三次项和四次项,则展开式中二次项和一次项的系数之和为______.3.若x2+2−3x+q的积中不含x项与x3项,(1)求p、q的值;(2)求代数式−2p2q2+(3pq)3+p2022q2024的值.4.(1)试说明代数式(s−2t)(s+2t+1)+4t t s、t的值取值有无关系;(2)已知多项式ax−b与2x2−x+2的乘积展开式中不含x的一次项,且常数项为−4,试求a b的值;(3)已知二次三项式2x2+3x−k有一个因式是(2x−5),求另一个因式以及k的值.5.给出如下定义:我们把有序实数对a,b,c叫做关于x的二次多项式ax2+bx+c的附属系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对a,b,c的附属多项式.(1)关于x的二次多项式3x2+2x−1的附属系数对为_________;(2)有序实数对2,a,1的附属多项式与有序实数对1,−2,4的附属多项式的差中不含一次项,求a的值.1.若一个只含a字母的多项式的项数是偶数,用该多项式去乘(a+1),若该多项式的项数是奇数,则用该多项式去乘(a−1),称这为第一次操作;若第一次操作后所得多项式的项数是偶数,用该多项式去乘(a+1),若该多项式的项数是奇数,则用该多项式去乘(a−1)称这为第二此操作,以此类推.①将多项式(a2−1)以上述方式进行2次操作后所得多项式项数是5;②将多项式(a2+2a)以上述方式进行3次操作后,多项式的所有系数和为0;③将多项式(a2+2a+1)以上述方式进行4次操作后,当a=2时,所得多项式的值为243;④将多项式(a−1)以上述方式进行n次操作后所得多项式为(a−1)(a+1)n−1;四个结论错误的有()A.0B.1C.2D.32.我国宋代数学家杨辉所著《详解九章算法》中记载了用如图所示的三角形解释了二项式的乘方展开式中的系数规律,我们把这种数字三角形叫做“杨辉三角”,请你利用杨辉三角,计算(a+b)6的展开式中,从左起第四项是____________.(a+b)0=1 (1)(a+b)1=a+b (11)(a+b)2=a2+2ab+b2 (121)(a+b)3=a3+3a2b+3ab2+b3 (1331)(a+b)4=a4+4a3b+6a2b2+4ab3+b4··146413.观察下列各式及其展开式:(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4,(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,⋯⋯请你猜想(2x−1)8的展开式中含x2项的系数是()A.224B.180C.112D.484.阅读下列材料,完成相应任务.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做“帕斯卡三角形”.帕斯卡是在1654年发现这一规律的,比杨辉迟393年,比贾宪迟600年.杨辉三角是我国古代数学的杰出研究成果之一,他把二项式乘方展开式系数图形化,如下图所示:(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b2(a+b)4=a4+4a3b+6a2b2+4ab3+b4…完成下列任务:(1)写出(a+b)5的展开式.(2)计算:75+5×74×(−6)+10×73×(−6)2+10×72×(−6)3+5×7×(−6)4+(−6)5.5.观察下列各式:(x−1)(x+1)=x2−1(x−1)(x2+x+1)=x3−1(x−1)(x3+x2+x+1)=x4−1(1)根据以上规律,则(x−1)(x6+x5+x4+x3+x3+x+1)=___________.(2)你能否由此归纳出一般规律(x−1)(x n+x n−1+⋯+x+1)=___________.(3)根据以上规律求32022+32021+32020+⋯+32+3+1的值.6.(1)计算并观察下列各式:第1个:(a−b )(a +b )= ;第2个:(a−b )(a 2+ab +b 2)= ;第3个:(a−b )(a 3+a 2b +ab 2+b 3)= ;……这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则(a−b )(a n−1+a n−2b +a n−3b 2+⋯+a 2b n−3+ab n−2+b n−1)= ;(3)利用(2)的猜想计算:2n−1+2n−2+2n−3+⋯+23+2+1= .(4)拓广与应用:3n−1+3n−2+3n−3+⋯+33+3+1= .1.已知:(x +y )2=12,(x−y )2=4,则x 2+3xy +y 2的值为_____.2.已知1b −1a =8−c ab ,ab +bc +2b +c 2+25=0,则b a 的值为______.3.已知a ,b ,c 满足:a 2+2b =7,b 2−2c =−1,c 2−6a =−17,则13a +b +3c 的值等于______.4.已知a−b =4时,多项式ab +c 2的值为−4,则ab a 2b 2c 2的值为( )A .−1B .−12C .−13D .05.已知有理数a ,b ,c 满足a−b +c−3=0,a 2+b 2+c 2−3=0,则a 3+b 3+c 3−2022=( )A .−2019B .−2020C .−2021D .−20226.已知a =2020m +2021n +2020,b =2020m +2021n +2021,c =2020m +2021n +2022,那么a 2+b 2+c 2−ab−bc−ca 的值为( )A .1B .3C .6D .10107.已知:x +y =5,xy =3.求:①x 2+5xy +y 2;②x 4+y 4.8.阅读下列材料,完成后面的任务.完全平方公式的变形及其应用我们知道,完全平方公式有:(a+b)2=a2+2ab+b2;(a−b)2=a2−2ab+b2.在解题过程中,根据题意,若将公式进行变形,则可以达到快速求解的目的,其变形主要有下列几种情形:①a2+b2=(a+b)2−2ab;②a2+b2=(a−b)2+2ab;③a2+b2a+b)2+(a−b)2;④ab a+b)2−(a−b)2.根据上述公式的变形,可以迅速地解决相关问题.例如:已知x+y=3,x−y=1,求x2+y2的值.×(32+12)=5.解:x2+y2x+y)2+(x−y)2=12任务:(1)已知x+y=5,x−y=3,则xy=______.(2)已知x+y=7,x2+y2=25,求(x−y)2的值.1.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:_________;方法2:__________.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m−n)2的值.②已知(x−2021)2+(x−2023)2=34,求(x−2022)2的值.2.两个边长分别为a和b的正方形如图放置(图①),其未叠合部分(阴影)面积为S1;若再在图①中大正方形的右下角摆放一个边长为b的小正方形(如图②),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a−b=8,ab=13,求S1+S2的值;(3)用a、b的代数式表示S3;并当S1+S2=34时,求出图③中阴影部分的面积S3.3.阅读理解,解答下列问题:利用平面图形中面积的等量关系可以得到某些数学公式.(1)例如,根据下图①,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2根据图②能得到的数学公式是__________.(2)如图③,请写出(a+b)、(a﹣b)、ab之间的等量关系是__________(3)利用(2)的结论,解决问题:已知x+y=8,xy=2,求(x﹣y)2的值.(4)根据图④,写出一个等式:__________.(5)小明同学用图⑤中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片,用这些纸片恰好拼出一个面积为(3a+b)(a+3b)长方形,请画出图形,并指出x+y+z的值.类似地,利用立体图形中体积的等量关系也可以得到某些数学公式.(6)根据图⑥,写出一个等式:___________.4.(1)【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:从边长为a的正方形中剪掉一个边长为b的正方形如图1,然后将剩余部分拼成一个长方形如图2.图1中阴影部分面积为__________,图2中阴影部分面积为__________,请写出这个乘法公式__________.(2)【知识应用】应用(1)中的公式,完成下面任务:若m是不为0的有理数,已知P=(m2+2m+1) (m2−2m+1),Q=(m2+m+1)(m2−m+1),比较P、Q大小.(3)【知识迁移】事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图3表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图3中图形的变化关系,写出一个代数恒等式:____________________.5.若x满足(7−x)(x−4)=2,求(x−7)2+(4−x)2的值:解:设7−x=a, x−4=b,则(7−x)(x−4)=ab=2,a+b=(7−x)+(x−4)=3所以(x−7)2+(4−x)2=(7−x)2+(x−4)2=a2+b2=(a+b)2−2ab=32−2×2=5请仿照上面的方法求解下面的问题(1)若x满足(8−x)(x−3)=3,求(8−x)2+(x−3)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=2,CF=5,长方形EMFD的面积是28,分别以MF、DF为边作正方形,求阴影部分的面积.6.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题(1)写出图2中所表示的数学等式(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形z张边长分别为a,b的长方形纸片拼出一个面积为(5a+7b)(9a+4b)长方形,则x+y+z=7.问题发现:若x满足(9﹣x)(x﹣4)=2,求(9﹣x)2+(x﹣4)2的值.小明在解决该问题时,采用了以下解法:解:设(9﹣x)=a,(x﹣4)=b,则ab=(9﹣x)(x﹣4)= ,a+b=(9﹣x)+(x﹣4)= .所以(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab= .(1)请补全小明的解法;(2)已知(30﹣x)(x﹣20)=﹣10,则(30﹣x)2+(x﹣20)2的值为 .类比研究(3)若x满足(2023﹣x)2+(x﹣2021)2=2022,求(2023﹣x)(x﹣2021)的值.拓伸延伸(4)如图,正方形ABCD的边长为x,AE=1,CG=3,长方形EFGD的面积是10,分别以DE、DG为边长作正方形MEDQ和NGDH,PQDH是长方形,求图中阴影部分的面积为 (结果必须是一个具体数值).。

第3章 整式的乘除——单项式与多项式乘法及化简题型归纳 2023—2024学年浙教版数学七年级下册

第3章 整式的乘除——单项式与多项式乘法及化简题型归纳 2023—2024学年浙教版数学七年级下册

专题:单项式的乘法、多项式乘法整式化简题型知识点1:单项式乘单项式单项式与单项式的乘法法则:把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。

1.计算y 2•(﹣2xy )的结果是( ) A .﹣2xy 3B .2x 2y 3C .﹣2x 2y 3D .2xy 32.计算2a 2•3a 4的结果是( ) A .5a 6B .5a 8C .6a 6D .6a 83.(2019•乐清市模拟)计算2a 3•3a 3的结果是( ) A .5a 3B .6a 3C .6a 6D .6a 94.计算(﹣3x 2)•2x 3的结果是( ) A .﹣5x 6B .﹣6x 6C .﹣5x 5D .﹣6x 55.计算2x •(﹣3xy )2•(﹣x 2y )3的结果是( ) A .18x 8y 5B .6x 9y 5C .﹣18x 9y 5D .﹣6x 4y 56.若□•3xy =27x 3y 4,则□内应填的单项式是( ) A .3x 3y 4B .9x 2y 2C .3x 2y 3D .9x 2y 37.若单项式﹣8x a y 和14x 2y b 的积为﹣2x 5y 6,则ab 的值为( ) A .2B .30C .﹣15D .158.长方形的长为3x 2y ,宽为2xy 3,则它的面积为( ) A .5x 3y 4 B .6x 2y 3C .6x 3y 4D .32xy 2二、填空题9.计算:2a 2b •(﹣3a 3b 2)=.10.计算:(2xy )2(﹣5x 2y )= . 11.计算(−12xy 3)2⋅6x 2y 的结果是 . 12.计算﹣3a 2b •(-4ab 2)•(-2a 3b )2的结果为 . 13.计算:x 4•2(﹣x 2)•(﹣x )2•[﹣(﹣x 2)3]4•2(﹣x )2的值为 . 14.若5a m +1b 2与3a n +2b n 的积是15a 8b 4,则n m = .三、解答题15.计算(1)(8xy3)4•14xy2z(2)(−23x3y2)3(-15xy)(3)-3ab•(-a2c)2•6ab2 (4)(-2a2b)•364ab2•(-8a3bc)2(5)(3a)2•a4+a•a5﹣(﹣a3)2.(6)7x4•x5•(﹣x)7+5(x4)4.知识点2:单项式乘多项式单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.1、化简(−3s+12t)⋅(−7st2)=()A.21s2t2﹣14st3B.21s2t2−72st3C.﹣21s2t2+14st3D.−21s2t2+7 2 st2.把2a(ab﹣b+c)化简后得()A.2a2b﹣ab+ac B.2a2﹣2ab+2acC.2a2b+2ab+2ac D.2a2b﹣2ab+2ac3.已知x2﹣4x﹣1=0,则代数式x(x﹣4)+1的值为()A.2B.1C.0D.﹣14.若□×xy=3x2y+2xy,则□内应填的式子是()A.3x+2B.x+2C.3xy+2D.xy+25.若2x(x﹣2)=ax2+bx,则a、b的值为()A.a=1,b=2B.a=2,b=﹣2C.a=2,b=4D.a=2,b=﹣46.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy (4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.17.已知xy2=﹣2,则﹣xy(x2y5﹣xy3﹣y)的值为()A.2B.6C.10D.148.已知,a +b =2,b ﹣c =﹣3,则代数式ac +b (c ﹣a ﹣b )的值是( ) A .5B .﹣5C .6D .﹣69、已知210m m --=,则322023m m m --+的值是( ) A .2021B .2022C .2023D .202410、代数式()()232236532a a ab a b a ab a a +-++-的值( )A .与字母a ,b 都有关B .只与a 有关C .只与b 有关D .与字母a ,b 都无关二、填空题10.﹣2xy (x 2y ﹣3xy 2)= .11.若x 2+7x +9=a (x +1)2+b (x +1)+c ,则a = ,b = ,c = 12.已知x 2+2x =﹣1,则代数式5+x (x +2)的值为 . 13.如果a ﹣b =6,ab =2019,那么b 2+6b +6= .14.对于任意的x 、y ,若存在a 、b 使得8x +y (a ﹣2b )=ax ﹣2b (x ﹣2y )恒成立,则a +b = . 15.一个多项式与﹣x 3y 的积为x 6y 2﹣3x 4y ﹣x 3y 4z ,那么这个多项式为 . 三、解答题 16.计算:(1)−6a ⋅(−12a 2−13a +2) (2)(5mn 2﹣4m 2n+1)(﹣2mn )(3)(25xy 2)2(54x - 32y + 2) (4)(34x 2y - 12xy 2−56y 3 )⋅(-4xy 2)17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(−12xy )=3x 2y ﹣xy 2+12xy(1)求所捂的多项式;(2)若x =23,y =12,求所捂多项式的值.18.已知:A =12x ,B 是多项式,王虎同学在计算A +B 时,误把A +B 看成了A ×B ,结果得3x 3﹣2x 2﹣x . (1)求多项式B . (2)求A +B .知识点3:多项式乘多项式多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 1.下列结果计算错误的是( )A.(x +2)(x −3)=x 2−x −6B.(x +4)(x −4)=x 2−16C.(2x +3)(2x −6)=2x 2−3x −18D.(2x −1)(2x +2)=4x 2+2x −22. (x −a)(x 2+ax +a 2)的计算结果是( ) A.x 3+2ax 2−a 3 B.x 3−a 3C.x 3+2a 2x −a 3D.x 3+2ax 2+2a 2−a 33.化简(2x −1)(x 2−3x +3)的结果中,二次项的系数是( ) A.−5B.−7C.5D.74.若x −3与多项式x +a 的乘积为x 2+x −12,则a 的值为( ) A.2B.4C.−2D.−45.若(x +4)(x −2)=x 2+mx +n ,则m ,n 的值分别是( ) A.2,8B.−2,−8C.−2,8D.2,−86.计算:(1)(3x −2y)⋅(2x −3y)=________. (2)(a + b )(a 2 – ab + b 2)=7.对于任何实数,我们规定符号|a cb d |=ad −bc .按照这个规定,当x 2﹣3x +1=0时,|x 2+x2x −4x +3|的值是 .8.新定义一种运算,其法则为|acbd |=a 3b 2÷bc ,则|−x 2x 2x 3x|= .题型01 (x+p )(x+q )型多项式乘法1.已知(x +m )(x +n )=x 2+ax +6,且m ,n ,a 都是整数,则a 的值是________.2.已知x 2+bx +c =(x −2)(x +5),则b +c 的值为________.3.多项式x 2−3x +a 可分解为(x −5)(x −b),则a ,b 的值分别为________.4.若x 3 - 6x 2 + 11x – 6 = (x - 1)(x 2 + mx + n ),则m= ,n= .5.若2x 3 – ax 2 – 5x + 5 = (2x 2 + ax - 1)(x - b )+ 3,其中a 、b 为整数,则a + b 的值为 6.若()3221(1)1ax bx ax x x ++=---,则b = .题型02 已知多项式乘积不含某项求字母的值1.若(x +a)(x −3)的积中不含x 的一次项,则a 的值是________.2.如果多项式(2)y a +与多项式(5)y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .25-3、已知()()242x ax x b +-+的展开式中不含2x 项,常数项是8-,则a b -= .4.已知多项式x ﹣a 与2x 2﹣2x +1的乘积中不含x 2项,则常数a 的值是5.已知将(x 3+mx +n )(x 2−3x +4)展开的结果中不含x 2项,并且x 3的系数为2. 则m +n =______.6.若(x 2+nx +3)(x 2−3x +m )的展开式中不含x 2项和x 3项,求m ,n 的值.7.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,求m ,n 的值题型03 整式化简运算1.先化简,再求值:(2x +3)(2x ﹣3)﹣(x ﹣2)2﹣3x (x ﹣1),其中x =1.y =﹣3.2.已知x 2﹣2x ﹣2=0,将下式先化简,再求值:(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1).3.先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x ,其中x =3,y =﹣3.4.先化简,再求值:()()()322222084x y x y xy x y xy +-+-÷,其中2023,2024x y ==.5.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.题型04多项式乘多项式与图形面积1.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有( ) ①()()2a b m n ++;①()()2a m n b m n +++;①()()22m a b n a b +++;①22am an bm bn +++.A .①①B .①①C .①①①D .①①①①2.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好分割为两个长方形,面积分别为1S 和2S .已知小长方形纸片的长为a ,宽为b ,且a b >.当AB 长度不变而BC 变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,1S 与2S 的差总保持不变,则a ,b 满足的关系是 .3.如图,某中学校园内有一块长为()32a b +米,宽为()2a b +米的长方形地块,学校计划在中间位置留出一块长为()2a b -米,宽为2b 米的小长方形地块修建一座雕塑,然后将阴影部分进行绿化.(1)求绿化部分的面积;(用含a 、b 的代数式表示) (2)当3a =,1b =时,求绿化部分的面积.题型05 多项式乘法中的规律性问题1.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和的乘方规律,即()na b + (0n =,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,()6a b +展开式的系数和是( ) A .32B .64C .128D .2562.观察以下等式①第1个等式:()()()22221122122⨯+=⨯+-⨯, 第2个等式:()()()22222134134⨯+=⨯+-⨯ 第3个等式:()()()22223146146⨯+=⨯+-⨯ 第4个等式:()()()22224158158⨯+=⨯+-⨯ ……按照以上规律,写出你猜想的第n 个等式(用含n 的式子表示): .3.在多项式乘法的学习中,我们发现具有某些结构特征的整式的乘法运算及结果都有规律.例如:()23(1)11a a a a +-+=+;()23(2)428y y y y +-+=+;()2233(3)3927m n m mn n m n +-+=+.(1)请观察上述整式的乘法及其运算结果的规律,用含a ,b 的等式表示该规律并证明;(2)一个水平放置的长方体容器,其容积为364(4)t t ->,底面积为2(2)t n +-,装满水时的高度为4t -.求n 的值.4.发现与探索你能求(x﹣1)(x2019+x2018+x2017+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;…由此我们可以得到:(x﹣1)(x2019+x2018+x2017+…+x+1)=.请你利用上面的结论,完成下面两题的计算:(1)32019+32018+32017+…+3+1;(2)(﹣3)50+(﹣3)49+(﹣3)48+…+(﹣3).5.解答下列问题:(1)已知a2+b2=10,a+b=4,求a﹣b的值.(2)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn=1,求5n2+9n+2的值.6.阅读理解:已知a+b=4,ab=3,求a2+b2的值.解:∵a+b=4,∴(a+b)2=42,即a2+2ab+b2=16.∵ab=3,∴a2+b2=(a+b)2﹣2ab=10.参考上述过程解答:(1)若x﹣y=﹣3,xy=﹣2,则x2+y2=,(x+y)2=;(2)若m+n﹣p=﹣10,(m﹣p)n=﹣12,求(m﹣p)2+n2的值.7.(1)计算:(a﹣1)(a+1)=;(a﹣1)(a2+a+1)=;(a﹣1)(a3+a2+a+1)=;(2)由此,猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=.(3)请你利用上式的结论,求2199+2198+…+22+2+1的值.。

专项一整式的乘除运算

专项一整式的乘除运算
将拆分后的单项式分别除 以单项式,得到商式。
合并同类项
将商式中的同类项进行合 并,得到最终结果。
复杂整式除法运算
多项式除以多项式
将除数和被除数都看作是 多项式,按照多项式除以 单项式的方法进行运算。
综合除法
对于较为复杂的整式除法, 可以采用综合除法进行运 算,简化计算过程。
余数处理
在整式除法中,如果除不 尽,需要保留余数或进行 约分等处理。
整式的乘法
包括单项式乘以单项式、单项式乘以多项式、多项式乘以 多项式,需熟练掌握分配律和结合律。
整式的除法
主要涉及单项式除以单项式、多项式除以单项式,要理解 并掌握除法运算法则。
幂的运算
整式乘除中常涉及幂的运算,需熟悉幂的性质及运算法则。
易错点回顾与强化训练
忽略符号
在整式乘除中,符号的 处理至关重要,需特别
缺乏检验环节导致错误
未进行结果检验
在整式的乘除运算中,得出结果后需 要进行检验以确认结果的正确性。如 果缺乏检验环节,就可能导致错误的 结果被接受。
检验方法不当
有时候,即使进行了结果检验,也可 能因为检验方法不当而导致错误的结 果被接受。因此,掌握正确的检验方 法非常重要。
06 总结与提高策略
关键知识点总结
单项式与多项式相乘
分配律应用
单项式与多项式中的每一项相乘。
系数与字母部分相乘
单项式的系数与多项式中每一项的系数相乘,字母部分也按同底数幂的乘法法 则进行。
多项式与多项式相乘
竖式乘法
01
按列展开,逐项相乘。
分配律应用
02
多项式中的每一项与另一个多项式中的每一项相乘。
合并同类项
03
将相乘后得到的同类项合并。

《整式的乘除——整式的除法》数学教学PPT课件(5篇)

《整式的乘除——整式的除法》数学教学PPT课件(5篇)
C. a2 b2 a b a b D. a2 b2 a b a b
(2)在① (6ab 5a) a 6b 5 ,② (8x2 y 4xy2 ) (4xy) 2x y, ③ (15x2 yz 10xy2 ) 5xy 3x 2 y , ④ (3x2 y 3xy2 x) x 3xy 3y2 中,不正确的个数有( C ). A.1个 B.2个 C.3个 D.4个
2a b2
4a2 4ab b2
例2.计算:
28 x4 y2 7 x3 y (28 7) x43 y21
4xy
典型例题
5a5b3c 15a4b =[( 5) 15] a54 b31c 1 ab2c
3
典型例题
例3.若a(xmy4)3÷(3x2yn)2=4x2y2,求a、m、n的值. 解:∵a(xmy4)3÷(3x2yn)2=4x2y2,∴ax3my12÷9x4y2n=4x2y2, ∴a÷9=4,3m-4=2,12-2n=2, 解得a=36,m=2,n=5.
第一章 整式的乘除
整式的除法
第1课时
学习目标
1.会进行简单的单项式除以单项式的运算(结果是整式); 2.经历探索单项式除以单项式法则的过程,理解单项式除 以单项式的算理; 3.在探索中体会类比方法的作用,发展有条理的思考与表 达能力和运算能力.
复习回顾
1.单项式与单项式相乘法则: 一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘, 对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因 式.
(1)2 ÷(-3xy)= 2 xy2 ; 3
错误 2 xy2 3
(2)10 ÷2 x2 y = 5xy2 ;
错误 5xy2 z
(3)4 ÷ 1 xy2 =2x; 2

第十四章整式的乘除 中档题专题提优2024-2025学年人教版八年级数学上册(无答案)

第十四章整式的乘除 中档题专题提优2024-2025学年人教版八年级数学上册(无答案)

第十四章整式的乘除专题一幂的运算核心考点一同底数幂的乘法(m,n都是正整数) ,即:同底数幂相乘,底数不变,指数相加.03. 若则n= .核心考点二幂的乘方(m,n都是正整数),即:幂的乘方,底数不变,指数相乘.06. 已知可变形为则a, b,c的大小关系是 .核心考点三积的乘方(其中a为正整数),即:积的乘方,每一个因数分别乘方.08. 已知则核心考点四逆用幂的运算法则09.已知: 则值为 ( )A. 17B. 36C. 48D. 7210. 已知: 则:11. 已知: 则12. 已知: 则m= , n= .13.已知:2"=a, 3"=b, n是正整数,则用含有a,b的式子表示( 的值为.14. 若则A. 2B. 3C. 6D. 1215.已知: 3"=a, 81"=b, m, n为正整数, 则3³ᵐ⁺¹²ⁿ的值为 ( )A. a³b³B. 27abC. 3a+12b16按一定规律排列的一列数: 2¹, 2², 2³, 2⁵,2⁸, 2¹³, …, 若x, y, z表示这列数中的连续三个数,猜想x,y,z满足的关系式是 .核心考点五幂的运算法则综合运用17. 已知求的值. 18. 已知求的值.19. 是否存在整数a, b, c满足若存在,求出a,b,c的值;若不存在,说明理由.专题二整式的乘除核心考点一单项式与单项式的乘法单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.01. 计算:1202. 计算:核心考点二单项式与多项式的乘法单项式与多项式相乘,就是根据分配律用单项式去乘以多项式的每一项,再把所得的积相加.核心考点三多项式与多项式的乘法多项式与多项式相乘,先用一个多项式的每一项去乘以另一个多项式的每一项,再把所得的积相加,即|①|②| ①②③④(a+b)(m+n)= am+ an+ bm+ bn|③↑④↑04. (1) (x+2)(x-4)= ,核心考点四整式的除法08. [(2x-y)(2x+y)+y(y-6x)]÷2x.核心考点五降次代换09. 若则10. 已知则代数式的值是 ( )A. 31B. -31C. 41D. -4111. 已知. 求(x-1)(x-3)(x-5)(x-7)的值.核心考点六多项式相乘展开后与待定参数12. 若的积中不含x的二次项,则常数m的值为 ( )A. 0 B13. 若的展开式中不含x³项和x²项,则m"的值= .14. 已知a, b, x, y满足a+b=x+y=3, ax+ by=7, 求的值.15. 已知将x=0代入这个等式中可以求出a₀=1.用这种方法可以求得的值为( )A. -16B. 16C. -1D. 116. 若则:(1) a+b+c+d+e+f= ; (2) f= .17已知, 若多项式. 被x+3整除,说明时,多项式的值为0,即当x=-3时,多项式为0,我们可以把x=-3代入多项式,值为0,可得方程,求出k的值为若多项式.去除以x+3时,余数为6,说明. 时,多项式的值为6,即当. 时,多项式为6,我们可以把x=-3代入多项式,值为6,可得方程,求出k的值为- 结合上述知识,解决下列问题:(1) 若能被x-2整除,则a的值为;(2) 若除以x+2时, 余数为4, 则a的值为 ;(3) 若能被x-2与x+3整除, 则a-b的值为 ;(4) 若去除以x-2时,余数为1去除以x+3时,余数为- 求a, b的值.核心考点一整式的运算与求值01 计算:02先化简, 再求值: 其中x=0.5, y=-1.核心考点二待定参数03.已知( 其中p,q为正整数,则04. 如果二次三项式中有一个因式是3a-2,那么k的值为 .05以下关于x的各个多项式中, a, b, c, m, n均为常数.(1) 根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)22(2x+1)(3x-2)6-2( ax+b)( mx+n) am bn(2) 已知既不含二次项,也不含一次项,求的值;(3)多项式M与多项式的乘积为则2a+b+c的值为.核心考点一整式的运算与图形01.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆.若a+b=4,求剩下的钢板的面积.02.如图将一个边长为a的小正方形与四个边长均为b的大正方形拼接在一起(其中a<b) , 则四边形ABCD的面积为 ( )03.在长方形ABCD内, 将两张边长分别为a和b(a>b) 的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S₁,图2 中阴影部分的面积为S₂.当AD-AB=2时, 的值为 ( )A. 2aB. 2bC. 2a-2bD. -2b核心考点二图形的拼接与整式的乘法04有足够多的如图所示的正方形和长方形的卡片.(1)选取1号,2号,3号卡片若干张,拼成一个正方形(不重叠无缝隙),并能运用拼图前后面积之间的关系说明公式( 成立,请画出这个正方形;(2) 小明想用类似(1) 的方法解释多项式乘法( 那么用2号卡片张,3号卡片张;(3)如果选取1号,2号,3号卡片分别为1张,2张,3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图.专题五平方差公式的应用及构造平方差公式: (核心考点一平方差公式的基本应用01. 计算: (2) (b+2a)(2a-b);(3) (-x+2y)(-x-2y);核心考点二平方差公式在多项式计算中的应用02. (1) (y+2)(y-2)-(y-1)(y+5);核心考点三平方差公式的构造03. 计算:04. 计算下列各式,完成所提出的问题:…计算:① ;05.若则(06. 已知实数a, b, x, y满足求的值.07. 设a, b, c, d都是自然数, 且求d-b的值.专题六 完全平方公式完全平方公式:核心考点一 完全平方公式的基本应用01. 计算:核心考点二 含参数的完全平方式02. 若是关于x ,y 的完全平方式,则03. 若 是一个完全平方式,则m 的值为 .核心考点三 完全平方公式的拓展应用04. 计算:(5) 求证: 1999×2000×2001×2002+1是一个整数的平方, 并求出这个整数.核心考点四完全平方公式补充公式的应用05. 已知且a=1, 试求( 的值.06. 设求的值.07. 已知求的最小值.专题七完全平方公式的变形与应用核心考点一利用完全平方公式求a+b, a-b, ab, a²-b²的值01.已知求 xy和x-y的值;02. 已知求和x+y的值;03.若(2026-a)(2025-a)=2024, 则(核心考点二利用完全平方公式求的值04.例: 已知求的值.解:因为所以则所以观察以上解答,解答以下问题:已知(1) 求下列各式的值:(2) 直接写出的值 .05. 已知:x²-3x+1=0, 则的值为 .06. 已知则的值为 ( )A. 136B. 169C. 194D. 19607. 若则专题八配方法与完全平方式的构造核心考点一配方构造完全平方式01. 将二次三项式进行配方,正确的结果是 ( )B. (x-2)²-1 D. (x-2)²+302.关于x的二次三项式有最小值-10, 则常数a= .03.a, b为实数, 整式的最小值是 ( )A. -13B. -4C. -9D. -504.已知, 则x+y+z= .05.已知a, b, c满足则a-b+c的值为 ( )A. -1B. 5C. 6D. -7核心考点二配方构造完全平方式求最值、比较大小06.简读以下材料井解决问题:①若a-b≥0,则a≥b;若a-b≤0,则a≤b;有最小值1;有最小值-9.(1)求的最小值;(2) 已知比较P与Q的大小.核心考点三配方法求最值应用题07.我们已学习了完全平方公式:观察下列式子:x并回答下列问题.则(2) 解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一块长方形花圃,为了设计一个面积尽可能大的花圃,按图设长方形一边长度为x米,回答下列问题:①列式:用含x的式子表示花圃的面积:;②请说明当x取何值时,花圃的最大面积是多少平方米?专题九 乘法公式的几何背景核心考点一 乘法公式与图形结合01如图1,在长为2b ,宽为b 的长方形中去掉两个边长为a 的小正方形. 然后将图2中的阴影部分剪下,并将剪下的阴影部分从中间剪开,得到两个形状,大小完全相同的小长方形. 将这两个小长方形与剩下的图形拼成如图3 中的长方形,上述操作能够验证的等式是( )02.四张长为a, 宽为b(a>b) 的长方形纸片, 按如图的方式拼成一个边长为 (a+b) 的正方形,图中空白部分的面积为阴影部分的面积为S₂, 若则a:b= .03. 探究:如图1,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿线剪开,如图所示,拼成图2的长方形.(1) 请你分别表示出这两个图形中阴影部分的面积 ; ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示);应用:请应用这个公式完成计算:04.(1) 用边长分别为a ,b 的两个正方形和长宽分别为a ,b 的两个长方形按如图摆放可拼成一个大正方形,用两种不同的方法可以表示图中阴影部分的面积和. 请你用一个等式表示( a²+b², ab 之间的数量关系 ;(2) 根据(1) 中的数量关系,解决如下问题:①已知 求m-n 的值;②已知(求的值.05. 我们知道,在学习了课本阅读材料:《综合与实践一面积与代数恒等式》后,利用图形的面积能解释得出代数恒等式,请你解答下列问题:(1)如图,根据3个正方形和6个长方形的面积之和等于大正方形ABCD 的面积. 可以得到代数恒等式:(2) 已知求 ab+ ac+ bc的值;(3) 若n, t满足如下条件:,求t的值.核心考点二杨辉三角与整式乘法06.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如下图所示) 就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)"(n为正整数) 的展开式(按a的次数由大到小的顺序排列) 的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着展开式中各项的系数等等.(1) 根据上面的规律,展开式的各项系数中最大的数为;(2) 直接写出式于的值为;(3)若求的值.专题十因式分解核心考点一因式分解的定义01. 下列各式从左到右的变形,是因式分解的是 ( )核心考点二提公因式法02. 把下列各式分解因式:(4) 2a(b+c)-3(b+c); (5)6(x-2)+x(2-x);核心考点三运用公因式法03. 把下列各式分解因式:(1) 1-25b²;(6) x⁴-y⁴;核心考点四分组分解法04. 分解因式:(2) 2ax-10ay+5by- bx;核心考点五 十字相乘法05. 把下列各式分解因式:核心考点六 配方法06. 分解因式:核心考点七 换元法07. 把下列各式分解因式:专题十一因式分解的应用核心考点一对因式分解结果的判断01.下列因式分解结果正确的是 ( )02.下列因式分解结果正确的是 ( )核心考点二多步骤因式分解03.因式分解:(2) (p-3)(p-1)+1.04. 因式分解:05.将下列多项式因式分解:06.因式分解:核心考点三利用因式分解求值07. 若则a-b= .08.若则a+b-c的值是 ( )A. 2B. 5C. 20D. 5009. 已知a, b满足则x, y的大小关系是 ( )A. x≤yB. x≥yC. x>yD. x<y10.已知( 则((x-2027)²的值是 .11. 已知a=2019x+2016, b=2019x+2017, c=2019x+2018, 求多项式( 的值.核心考点四利用图形理解因式分解12.如图,将下列四个图形拼成一个大长方形,再据此写出一个多项式的因式分解:核心考点五试根法因式分解13. 对于多项式我们把. 代入此多项式,发现. 能使多项式的值为0,由此可以断定多项式. 中有因式( (注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式( 于是我们可以把多项式写成:分别求出m,n后再代入就可以把多项式. 因式分解.(1) 求式子中m, n的值;(2) 以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式.。

完整版)整式的乘除典型例题

完整版)整式的乘除典型例题

完整版)整式的乘除典型例题1.若 $a=8$,$m+n=16$,则 $a=\frac{m+n}{n}=2$。

2.已知 $2m=3$,$2n=4$,则$23m+2n=23\times\frac{3}{2}+2\times2=19$。

3.若 $\frac{xy}{2x+5y}=4$,则 $xy=8x+20y$。

4.若 $a>5$,且 $a=2$ 或 $a=3$,则 $ax-y$ 的值为 $2^{x-y}$ 或 $3^{x-y}$。

5.已知 $x^8\times x^a=x^3a$,则 $a=5-3m$。

6.若 $a^{m+1}b^{n+2}\times a^{2n-1}b=a^5b^3$,则$m+n=3$。

7.若 $2a=5$,$2b=3$,$2c=45$,则 $a=\frac{5}{2}$,$b=\frac{3}{2}$,$c=15$。

8.若 $\frac{x-m}{x^2+x+a}=1$,则 $m=-\frac{a}{4}$,$a=12$。

9.若 $abc^2=5$,$2=3$,$2=30$,则$a=\frac{1}{\sqrt{15}}$,$b=\frac{\sqrt{5}}{3}$,$c=1$。

10.比较 $5$ 和 $\frac{24}{25}$ 的大小,$8$ 和$\frac{2514}{1000}$ 的大小。

11.计算$\frac{2011}{3}-\frac{1}{2}\times\frac{2012}{3}$。

12.计算 $\frac{-1}{8}\times2$,$1990\times\frac{3980}{825n}$。

13.若 $a+b=2013$,$a-b=1$,则 $a^2-b^2=2012\times2014$。

14.计算 $1232-\frac{124\times122}{2}$,$899\times901+1$。

15.计算 $\frac{2x+1}{2x-1}\times\frac{4x+1}{x^2+2x+1}\times\frac{2}{(x+2)^3}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除考点呈现一、幂的运算 例1 若.,,577512-===r q p m m m 求r q p m 243-+的值.b 二、整式的乘法例2新知识一般有两类:第一类是一般不依赖其他知识的新知识,如“数”,“字母表示数”这样的初始性知识,第二类是在某些旧知识的基础上联系.拓广等方式产生的知识,大多数知识是这样一类.(1)多项式乘以多项式的法则,是第几类知识?(2)在多项式乘以多项式之前,我们学习了哪些有关知识?(写出三条即可)(3)请用你已有的有关知识,通过数和形两个方面说明多项式乘以多项式法是则如何获得的?(用(a+b )(c+d)来说明)一、填空题1.计算(直接写出结果)①a ·a 3= . ③(b 3)4= .④(2ab )3= . ⑤3x 2y ·)223y x -(= . 2.计算:2332)()(a a -+-= .3.计算:)(3)2(43222y x y x xy -⋅⋅-= .4.(32a a a ⋅⋅)3=__________.5.1821684=⋅⋅nn n ,求n = .6.若524+=a a ,求2005)4(-a = .7.若x 2n =4,则x 6n = ___.8.若52=m ,62=n ,则n m 22+= .9.-12c b a 52=-6ab ·( ) .10.计算:(2×310)×(-4×510)= . 11.计算:10031002)1()16(-⨯-= .12.①2a 2(3a 2-5b )= . ②(5x +2y )(3x -2y )= . 13.计算:)1)(2()6)(7(+---+x x x x = .14.若._____34,992213=-=⋅⋅++-m m y x y x y x n n m m 则 二、选择题15.化简2)2()2(a a a --⋅-的结果是( )A .0B .22aC .26a -D .24a -16.下列计算中,正确的是( )A .ab b a 532=+B .33a a a =⋅C .a a a =-56D .222)(b a ab =-17.下列运算正确的是( )(A )xy y x 532=+ (B )36329)3(y x y x -=-(C )442232)21(4y x xy y x -=-⋅ (D )842x x x =⋅ 18.计算:20032)(-·200221)(等于( ). (A)-2 (B)2 (C)-21 (D)21 19. (-5x)2 ·52xy 的运算结果是( ). (A)10y x3 (B)-10y x 3 (C)-2x 2y (D)2x 2y20.下列各式从左到右的变形,正确的是( ).(A) -x -y=-(x -y) (B)-a+b=-(a+b)(C)22)()(y x x y -=- (D)33)()(a b b a -=-21.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是( )A .0B .5C .-5D .-5或522.若))(3(152n x x mx x ++=-+,则m 的值为( )(A )-5 (B )5 (C )-2 (D )223.若142-=y x ,1327+=x y ,则y x -等于( )(A )-5 (B )-3 (C )-1 (D )124.如果552=a ,443=b ,334=c ,那么( )(A )a >b >c (B )b >c >a (C )c >a >b (D )c >b >a三、解答题:25.计算:(1))311(3)()2(2x xy y x -⋅+-⋅-; (2))12(4)392(32--+-a a a a a ;26.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.(2)342)()(m m m -⋅-⋅-,其中m =2-27.解方程(3x -2)(2x -3)=(6x +5)(x -1)+15.28.①已知,2,21==mn a 求n m a a )(2⋅的值,②若的求n n n x x x 22232)(4)3(,2---=值.29.若0352=-+y x ,求y x 324⋅的值.30.说明:对于任意的正整数n ,代数式n (n +7)-(n +3)(n -2)的值是否总能被6整除.31.整式的乘法运算(x +4)(x +m ),m 为何值时,乘积中不含x 项?m 为何值时,乘积中x 项的系数为6? 你能提出哪些问题?并求出你提出问题的结论.例3 现规定一种运算:,a b ab a b ⊕=+-其中a ,b 为实数,则()a b b a b ⊕+-⊕等于 ( )A.2a b -B.2b b -C.2bD.2b a -三 、乘法公式 平方差公式专项练习题一、选择题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -bC .(13a+b )(b -13a ) D .(a 2-b )(b 2+a )3.下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5 B .6 C .-6 D .-5二、填空题5.(-2x+y )(-2x -y )=______.6.(-3x 2+2y 2)(______)=9x 4-4y 4.7.(a+b -1)(a -b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3, (1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

2.已知6,4a b a b +=-=求ab 与22a b +的值。

3、已知224,4a b a b +=+=求22a b 与2()a b -的值。

4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值B 组:5.已知6,4a b ab +==,求22223a b a b ab ++的值。

6.已知222450x y x y +--+=,求21(1)2x xy --的值。

7.已知16x x-=,求221x x +的值。

8、0132=++x x ,求(1)221x x +(2)441xx +9、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

10、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法(B 卷)一、请准确填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2a m -1=________.6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x=________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.1D.210.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5 B.51 C.-51 D.-5 11.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有A.0个B.1个C.2个D.3个12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 2+b 2)]2等于A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814.已知(a +b )2=11,ab =2,则(a -b )2的值是A.11B.3C.5D.1915.若x 2-7xy +M 是一个完全平方式,那么M 是 A.27y 2 B.249y 2 C.449y 2 D.49y 2 16.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n 、y n 一定是互为相反数B.(x1)n 、(y 1)n 一定是互为相反数 C.x 2n 、y 2n 一定是互为相反数 D.x 2n -1、-y 2n -1一定相等三、考查你的基本功17.计算(1)(a -2b +3c )2-(a +2b -3c )2; (2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×0.5100×(-1)2005÷(-1)-5; (4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值. “整体思想”在整式运算中的运用“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,有些问题局部求解各个击破,无法解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,思路清淅,演算简单,复杂问题迎刃而解,现就“整体思想”在整式运算中的运用,略举几例解析如下,供同学们参考:1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。

相关文档
最新文档