第7-2章-高光谱遥感图像分类教学教材

合集下载

高光谱遥感分解课件

高光谱遥感分解课件

端元提取的效果直接影响到后续的混合 像元分解和谱间关系分析的精度和可靠 性,因此是高光谱遥感分解中的关键步
骤。
混合像元分解方法
混合像元分解的方法包括基于物理模型的方法和基于 统计模型的方法等。这些方法通过建立地物光谱与像 元光谱之间的数学模型,利用优化算法对模型参数进 行求解,从而得到每个像元的纯组分和丰度信息。
高光谱遥感分解方法
端元提取方法
端元提取是高光谱遥感分解的基础,目 的是从高光谱数据中提取出纯净的地物 光谱,为后续的混合像元分解和谱间关
系分析提供基础。
端元提取的方法包括基于统计的方法、 基于空间的方法和基于变换的方法等。 这些方法通过不同的原理和算法,从高 光谱数据中提取出尽可能纯净的地物光
谱。
矿物与地质应用
总结词
高光谱遥感在矿物与地质应用中具有重要作用,可以用于矿产资源调查、地质构造分析 等。
详细描述
高光谱遥感能够通过分析地物的光谱特征差异,识别不同类型的矿物和地质构造。在矿 产资源调查中,高光谱遥感可以用于发现潜在的矿床和评估矿产资源的分布情况。同时 ,在地质构造分析中,高光谱遥感可以通过分析地物的光谱特征差异,揭示地质构造的
高光谱遥感分解课件
ቤተ መጻሕፍቲ ባይዱ
目录
CONTENTS
• 高光谱遥感概述 • 高光谱遥感技术原理 • 高光谱遥感分解方法 • 高光谱遥感应用实例 • 高光谱遥感技术展望
01
CHAPTER
高光谱遥感概述
高光谱遥感的定义
高光谱遥感是一种利用光谱信息对地球表面进行观测和监测 的技术。它通过卫星或飞机搭载的高光谱成像仪获取地物辐 射的连续光谱信息,进而分析地物的成分、结构和动态变化 。
高光谱遥感技术的挑战与问题

遥感数字图像处理教程遥感图像分类课件

遥感数字图像处理教程遥感图像分类课件
第四页,共95页幻灯片
B5
水 B7
地物与光谱特征空间的关系
第五页,共95页幻灯片
特征点集群在特征空间中的分布大致可
分为如下三种情况:
Bj
理想情况——不同类别 植被
的点的集群至少在一个
特征子空间中的投影是
完全可以相互区分开的。 Bi
第六页,共95页幻灯片
一般情况——无论在总的特征空间中,还是在 任一子空间中,不同类别的集群之间总是存 在重叠现象。这时重叠部分的特征点所对应 的地物,在分类时总会出现不同程度的分类 误差,这是遥感图像中最常见的情况。
分类过程
原始影像数据的准备 图像变换及特征选择
分类器的设计 初始类别参数的确定
逐个像素的分类判别
形成分类编码图像
输出专题图
第三十五页,共95页幻灯片
一判决函数和判决规则 判决函数:当各个类别的判别区域确定后, 用来表示和鉴别某个特征矢量属于哪个类别 的函数。 这些函数不是集群在特征空间形状的数 学描述,而是描述某一未知矢量属于某个类 别的情况,如属于某个类别的条件概率。一 般,不同的类别都有各自不同的判决函数。
哈达玛矩阵为一个对称的正 交矩阵,其变换核为 H’
由哈达玛变换核可知,哈达 玛变换实际是将坐标轴旋 转了45℃的正交变换
第二十页,共95页幻灯片
哈达玛矩阵的维数N总是2的倍数,即N=2m
(m=1
,2……)
其中m称为矩阵的阶,每个高阶哈达玛矩阵都由其低一阶
的哈达玛矩阵按如下
取二阶哈达玛变换矩阵
第二十一页,共95页幻灯片
分类目的:
将图象中所有像元自动地进行土地覆盖专题分类
原始遥感图像
分类的依据是什么?
对应的专题图像

高光谱遥感的发展PPT课件.ppt

高光谱遥感的发展PPT课件.ppt
(4)基于光谱数据库的地物光谱匹配识别算法; (5)混合光谱分解模型; (6)基于光谱模型的地表生物物理化学过程与参数的识别和反演算

24
高光谱影像分析技术:
国内外关于成像光谱仪的遥感应用研究中,所采用 的分析方法可归纳为两大类:
一、 基于纯像元的分析方法 (1)。。。 (2)。。。
二、基于混合像元的分析方法
14
历史:
• 20世纪80年代兴起的新型对地观测技术——高光谱遥感技 术,始于成像光谱仪(Imaging Spectrometer)的研究计划。 该计划最早由美国加州理工学院喷气推进实验室(Jet Propulsion Lab,JPL)的一些学者提出。
• 1983年,世界第一台成像光谱仪AIS-1在美国研制成功, 并在矿物填图、植被生化特征等研究方面取得了成功,初 显了高光谱遥感的魅力。
➢ 成像光谱仪为每个像元提供数十个至数百个窄波段的光谱信 息,每个像元都能产生一条完整而连续的光谱曲线。这就是 高光谱遥感与常规遥感的主要区别。
➢ 如一个TM波段内只记录一个数据点,而航空可见光/红外光 成像光谱仪(AVIRIS)记录这一波段范围内的光谱信息用10个 以上数据点。
7
8
• 成像光谱技术则把遥感波段从几个、几十 个推向数百个、上千个。高光谱遥感数据 每个像元可以提供几乎连续的地物光谱曲 线,使我们利用高光谱反演陆地细节成为 可能。
28
高光谱的应用
• 由于高光谱图像具有很高的光谱分辨率,因而能够提 供更为丰富的地物细节,有利于地物物理化学特性的 反演。
(1)海洋遥感方面。 • 由于中分辨率成像光谱仪具有光谱覆盖范围广、分辨
率高和波段多等许多优点,因此已成为海洋水色、水 温的有效探测工具。它不仅可用于海水中叶绿素浓度、 悬浮泥沙含量、某些污染物和表层水温探测,也可用 于海冰、海岸带等的探测。

高光谱遥感第二章ppt课件

高光谱遥感第二章ppt课件

第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
我校现有设备 Headwall
- 成像光谱仪的光谱与辐射定标技术
第二章 高光谱遥感成像机理与 成像光谱仪
- 成像光谱信息处理技术
海量数据非失真压缩技术 高速化处理技术 辐射量的定量化和归一性 图像特征提取及三维谱像数据的可视化
第二章 高光谱遥感成像机理与 成像光谱仪
5 成像光谱仪的空间成像方式 高光谱遥感成像包括空间维成像和光谱维成
第二章 高光谱遥感成像机理与 成像光谱仪
1 基本概念
光谱学 成像技术
成像 光谱学
第二章 高光谱遥感成像机理与 成像光谱仪
(1) 光谱分辨率 —指探测器在波长方向上的记录宽度,又称为
波段宽度。
第二章 高光谱遥感成像机理与 成像光谱仪
(2) 空间分辨率—对于成像光谱仪,其空间分辨率 是由仪器的角分辨力,即仪器的瞬时视场角 (IFOV)决定的。
第二章 高光谱遥感成像机理与 成像光谱仪
- 二元光学元件成像光谱技术
二元光学元件沿轴向色散,利用面阵CCD 探测器沿光轴方向对所需波段的成像范围进行 扫描,每一位置对应相应波长的成像区。
- 三维成像光谱技术
三维成像光谱仪是在光栅色散型成像光谱 仪的基础上改进而来的,其核心是一个像分割 器,将二维图像分割转换为长带状图像。
(3)仪器的视场角(FOV)—指仪器的扫描镜在空中 扫过的角度。
第二章 高光谱遥感成像机理与 成像光谱仪

遥感影像分类ppt课件

遥感影像分类ppt课件
(2)摄影像片的解译标志
解译标志又称判读标志,指能够反映和表 现目标地物信息的遥感影像各种特征,这 些特征能够帮助判读者识别遥感图像上目 标地物或现象。
编辑课件
39
• 直接判读标志
• 形状:人造地物具有规则的几何外形和清晰的边界,自然地物具有不 规则的外形和规则的边界。
• 大小:不知道比例尺时,可以比较两个物体的相对大小;已知比例尺, 可直接算出地物的实际大小和分布规模。
✓ 阴影:目标地物与背景之间的辐射差异造成
阴影
编辑课件
42
编辑课件
43
2.遥感扫描影像的判读
• 1、常见遥感扫描影像的主要特点及其应用
✓ MSS影象:
✓ 不同卫星上的波段对比; ✓ MSS各波段应用范围(重点)。
✓ TM影象:
✓ TM影象与MSS影象的对比 ✓ 波段设置 ✓ 主要应用
✓ SPOT影象:
植物含水量的影响,吸收
率大增,反射率大大下降,
绿叶的反射率
特别是在水的吸收带形成
低谷。
编辑课件
11
• 植物波谱具有上述的基本特征,但仍有细 部差别,这种差别与植物种类、季节、病 虫害影响、含水量多少等有关系。为了区 分植被种类,需要对植被波谱进行研究。
编辑课件
12
9月20日玉米、大豆
• 5月20日小麦、油菜
• 本质的区别 :电磁波在真空中也能传播 ; 机械波必须在弹性媒质中才能传播
• 两者在运动形式上都是波动。
• 基本的波动形式有两种:
横波:质点的振动方向与波的传播方向垂直。 如水波、电磁波。
纵波:质点的振动方向与波的传播方向相同。 如声波。
• 电磁波一定是横波,机械波却可以是横波

《遥感图像分类》课件

《遥感图像分类》课件
特征变换
将原始特征进行变换,生成新的特征,以更好地 反映地物类别之间的差异。
分类器设计
监督分类
利用已知样本的训练集设计分类器,对未知样本进行分类。
非监督分类
对未知样本进行聚类分析,将相似的样本归为同一类。
混合分类
结合监督分类和非监督分类的优势,提高分类精度和稳定性。
分类结果评价
精度评价
通过比较分类结果与实际地物类别, 计算分类精度、混淆矩阵等指标。
THANKS
感谢观看
分类器。
多源遥感数据融合问题
多源遥感数据融合可以提高分类精度和可靠性,但同时也带 来了数据匹配、融合算法选择等问题。
解决多源遥感数据融合问题的策略包括使用先进的融合算法 ,如基于深度学习的融合方法,以及优化数据匹配方法。
遥感图像分类技术的发展趋势
01
遥感图像分类技术正朝着高精度、高效率和自动化的方向发展 。
可靠性评价
评估分类结果的稳定性、可靠性以及 抗干扰能力。
应用价值评价
根据分类结果在实际应用中的价值, 如土地利用、资源调查、环境监测等
,对分类方法进行综合评价。
04
CATALOGUE
遥感图像分类的挑战与展望
数据质量问题
遥感图像常常受到噪声、失真和 模糊等影响,导致数据质量下降

数据质量问题还表现在不同传感 器获取的图像之间的差异,以及 不同时间获取的图像之间的变化
遥感图像分类的应用
遥感图像分类在多个领域有广泛应用,如环境保护、城市规划、资源调查、军事 侦察等。
通过遥感图像分类,可以快速获取大范围的地物信息,为相关领域的决策提供科 学依据。
02
CATALOGUE
遥感图像分类的方法

高光谱遥感课程-北大精品班

高光谱遥感课程-北大精品班

高光谱遥感课程讲课目录张兵中科院遥感所遥感科学国家重点实验室一、高光谱遥感的理论与技术基础二、高光谱图像光谱定标与反射率图像生成三、高光谱图像几何纠正四、光谱特征选择与特征提取五、混合光谱理论与光谱分解六、高光谱图像分类与地物识别七、高光谱数据与其它多源数据融合八、高光谱遥感专题应用第一章高光谱遥感的理论与技术基础1.1 电磁波理论与高光谱遥感(1)高光谱遥感:具有比较高的光谱分辨率,通常达到10-2λ数量级,高光谱遥感具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,因此高光谱遥感又通常被称为成像光谱(Imaging Spectrometry)遥感。

(2)高光谱图象立方体:成像光谱仪在空间成像的同时,以相同的空间分辨率记录下几十或者成百的光谱通道数据,它们叠合在一起,就构成了高光谱图像立方体,从高光谱图像立方体的每个像元均可提取一条连续的光谱曲线。

从每个像元均可提取一条连续的光谱曲线成像的同时记录下成百的光谱通道数据以先进可见光红外成像光谱仪AVIRIS为例,在400nm到2500nm的区间内,可以连续测量地物相邻的光谱信号。

1.2 典型地物的光谱特性1.2.1 植被的光谱特性光子与叶片的相互作用包括5种作用:z叶片光谱反射;z叶片的漫反射;z光合作用下的光能吸收;z来自叶片背面的透射光;z叶片背面的反射和散射光,它增加了叶片的透光率(Transmittance)。

对植被光谱特征影响的主要因素:z有限的一些光谱敏感成份(植物上皮组织、栅栏叶肉细胞、海绵状叶肉细胞、有叶孔的下皮组织);z这些植被组成部分的相对含量,包括水份,是植被自身生长及其环境变化的指示性标准;z植被的外形结构对其反射光谱特征有强烈的影响;z植被的光谱特征与光谱测量的空间尺度有很大的关系。

不同波段植被的光谱影响主导因素:z植被可见光和近红外(350-800nm)反射光谱特性差异主要来源于植物体内叶绿素和其它色素成份;z植被近红外(800-1000nm)反射光谱特性差异主要来源于植物细胞组织散射;z植被短波红外(1000-2500nm)光谱特性主要由植物细胞组织内的液态水吸收决定;z植被短波红外(800-2500nm)光谱的其它影响因子还包括与淀粉(Starches)、蛋白质(Proteins)、油质(Oils)、糖(Sugars)、本质素(Lignin)和纤维素(Cellulose)等。

《遥感图像分类》ppt课件

《遥感图像分类》ppt课件

训练样区的选择
准确性——确保选择的样区与实践地物的 一致性
代表性——思索到地物本身的复杂性,所 以必需在一定程度上反映同类地物光谱特 性的动摇情况
统计性——选择的训练样区内必需有足够 多的像元
选择训练区
训练区与特征空间的联络
选择样本区域
▪ 植被 老城区 耕地 水 新城区
将样本数据在特征空间进展聚类
分类的总目的是将图像 中一切的像元自动进展 土地覆盖类型或土地覆 盖专题的分类
计算机分类实例
原始遥感图像
对应的专题图像
光谱方式识别
空间方式识别
新方法
统计分类 构造分类 模糊分类 神经网络分类 小波分析 专家系统 遥感图像计算机分类
颜色、颜色、阴影、外形、纹理、大小、位置、图型、相关规划
基于光谱的
非监视分类方法的特点
优点: 不需求预先对待分类区域有广泛的了解 需求较少的人工参与,人为误差的时机减
少 小的类别可以被区分出来 缺陷: 盲目的聚类 难以对产生的类别进展控制,得到的类别
不一定是想要的类别
非监视分类与监视分类的结合
监视分类的缺陷在于,必需在分类前确定 样本,难度大、效率低
主要的非监视分类方法
K-均值法〔K-means Algorithm〕 迭代自组织数据分析技术方法〔
Iterative Self-Organization Data Analysis Techniques,ISODATA〕
K-均值法
经过自然的聚类,把它分成8类
K-均值法
K-均值算法的聚类准那么是使每一聚类中,像元 到该类别中心的间隔的平方和最小
最大似然分类法
最大似然分类法
地物类数据在特征空间中构成特定的点群 每一类的每一维数据都在本人的数轴上为正态分

第7-3章 高光谱遥感图像分类

第7-3章 高光谱遥感图像分类

3、神经网络分类算法
目前的多种先进而新颖的技术手段层出不穷, 人工智能,模糊理论,决策树,神经网络等都 被应用于遥感图像的理解和分析当中。
人工神经网络技术,黑匣子,能被用于多源数 据的综合分析被广泛用于遥感图像分类。
3.1 神经系统原理
神经网络是在生物功能启示下建立的信息 处理系统,摸仿了人脑的结构特征和信息处 理机制,表现出了许多与人脑相同的特征。
x2
o2
……
xn 输入层


隐藏层
… …… om
输出层
多级网——h层网络
x1
o1
x2
o2
W(1)
W(2)
W(3)
W(h)
……

…Leabharlann ………xn 输入层
隐藏层
om 输出层
3.4 学习规则与方式
学习规则:外部环境对系统的输出结果给出评 价,学习系统通过强化受奖的动作来改善自身 性能。
误差纠错学习(delta) Hebb学习 竞争学习
简单的神经元网络是对生物神经元的简化 和模拟,其模型如下图:
n
Si w ji x j i j 1
yi f (Si )
3.2 人工神经元的基本构成
x1 w1
x2 w2
… xn wn
∑ net=XW
人工神经元模拟生物神经元的一阶特性。
输入:X=(x1,x2,…,xn) 联接权:W=(w1,w2,…,wn)T 网络输入: net=∑xiwi 向量形式: net=XW
x1
o1
x2
o2
……
xn 输入层
…… 隐藏层
… ……
om 输出层

遥感图像分类分析PPT课件

遥感图像分类分析PPT课件
“Max stdev from Mean”文本框中输入用于限定相对于均值的标 准差的大小。 ➢要 为 每 一 类 别 设 置 不 同 的 阈 值 :
➢A. 在类别列表中,点击想要设置不同阈值的类别。 ➢B. 点击“Multiple Values”来选择它。 ➢C. 点击“Assign Multiple Values”按钮。 ➢D. 在出现的对话框中,点击一个类别选中它,然后在对话框底部的文本
➢选择Classification > Super vised > Maximum Likelihood ➢设 定 似 然 度 的 阈 值 , 范 围 0 - 1 ➢数 据 比 例 系 数 : 这 个 比 例 系 数 是 一 个 比 值 系 数 , 用 于 将 整 型 反 射 率 或 辐 射 率
多辅助方法,如上面的可以显示不同的假彩色合成窗口,也可以进行主成分分析后进行 假彩色合成,由于去除了波段间的相关性,不同地物区分的更加明显;还可以借助 Google Earth辅助解译。
第8页/共53页
ENVI/IDL
6.2 监督分类
➢第二种方法,在散点图上进行选择 ➢(1)在主图像上,选择tools > 2D scatter plots,将1波段作为X,4波段作为Y,原理
第2页/共53页
ENVI/IDL
6.1 分类类型
❖1、监督分类
❖监 督 分 类 : 又 称 训 练 分 类 法 , 用 被 确 认 类 别 的 样 本 像 元 去 识 别 其他未知类别像元的过程。它就是在分类之前通过目视判读和野 外调查,对遥感图像上某些样区中影像地物的类别属性有了先验 知识,对每一种类别选取一定数量的训练样本,计算机计算每种 训练样区的统计或其他信息,同时用这些种子类别对判决函数进 行训练,使其符合于对各种子类别分类的要求,随后用训练好的 判决函数去对其他待分数据进行分类。使每个像元和训练样本作

第7-2章 高光谱遥感图像分类

第7-2章 高光谱遥感图像分类



其精度直接影响分类

检验区

用于评价分类精度的训练样区
7
样区选择示例
训练样区与检验区的选择:相互独立、不能重叠
8
样区选择示例
9
监督算法介绍
1、平行管道分类算法
2、最小距离分类算法
3、最大似然分类算法
10
1、平行管道监督分类原理
对图像中每个像素的光谱响应曲线进行相似性 比较,如果落到某一类平行管道阈值范围内,则 划分到该类别;如果落到多个类中,则将这个像 元划分到最后匹配的类别;落不到任何管道中, 则标识为未分类像元每类的初始参数要在分类过 程中逐步建立。其分类判决过程如下:
Pwi 是每一类( wi )在图像中的概率,在事先不知道Pwi 1 是多少的情况下,可以认为所有的Pwi 都相同,即P wi
m
这些数据来源于由训练组所产生的分类统计文件。对于任何 g i x 一个像元值x,其在那一类中 最大,就属于哪一类。最大 似然法分类的基本前提是认为每一类的概率密度分布都是正 态分布(即高斯分布)。最大似然法分类的分类精度一般比 前几种方法要高,但分类过程更复杂,计算时间较长。
26
非监督分类(Unsupervised classification)
根据事先指定的某一准则,让计算机自动进行判 别归类,无需人为干预,分类后需确定地面类别。在非 监督分类中,先确定光谱可分的类别(光谱类)然后定 义它们的信息类
27
一、非监督分类算法

非监督分类,是指人们事先对分类过程不施加 任何的先验知识,仅凭据遥感影像地物的光谱 特征的分布规律,随其自然地进行盲目的分类。 其分类的结果,只是对不同类别达到了区分, 并不确定类别的属性,其属性是通过事后对各 类的光谱响应曲线进行分析,以及与实地调查 相比较后确定的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档