专题拓展5.1:柯布——道格拉斯生产函数

合集下载

柯布道格拉斯函数拓展分析.

柯布道格拉斯函数拓展分析.

一定历史时期的生产函数是反映当时的社会生产力 水平的。只有明确一定历史阶段的社会生产力特征才能 构造出最能反映当时生产力发展水平的生产函数。在工 业时代,生产力水 平是以单位量的资本和劳动力的投入所能获得的产成品 的数量来衡量的。柯布——道格拉斯生产函数正是在 工业经济时代所构造出的反映工业经济时代生产力特征 的函数模型。当人类 进入到信息经济时代,由于信息资源的加入、技术的不 断进步,导致生产力发展的特征和能发生了根本变化, 信息时代的经济发展特征是以性能、质量、产品的差异 性组合,客户服务和信息管理等为主要竞争手段的。如 果我们仍然以工业时代测算生产力的方法去考察信息时 代中信息技术对生产力的作用的话,肯定无法对其做出 准确的判断。所以,原有的柯布——道格拉斯生产函 数已经不能再适应新的经济发展形态。
柯布——道格拉斯生产函 数
戚瓅丹 154
从三方面介绍C-D函数
• 传统的柯布——道格拉斯生产函数及其性质 • 对柯布——道格拉斯生产函的质疑 • 对柯布——道格拉斯生产函数所做的改进
传统的柯布——道格拉斯生产函数及其性质
柯布——道格拉斯生产函数是经济学中使用最为广泛 的生产函数,通常简称为C—D生产函数。它是由美国 数学家柯布(c.w.Cobb)和经济学家道格拉斯 (P.H.Douglas)根据1899年~1922年间美国制造业部 门的有关数据构造出来的。两人共同探讨投入和产出 的关系时,在生产函数的一般形式上引入了技术资源 因素,于1928年提出了这一函数形式。他们认为,在 技术经济条件不变的情况下,产出与投入的劳动力和 资本的关系可以表示为:
• 索洛经济增长速度方程表明产出增长率为技术进步速度和资本、劳动投入的 增长率的加权和。其表现形式为:
• 其中,P、a、k和1分别表示产出量、技术进步、资本投入和劳动投入的增长 速度,α、β分别表示资本和劳动的产出弹性。

cobb-douglas生产函数名词解释

cobb-douglas生产函数名词解释

cobb-douglas生产函数名词解释
Cobb-Douglas生产函数是一种经济学模型,用于描述一个经
济系统中的生产活动。

它于1927年通过经济学家Charles
Cobb和Paul Douglas提出。

Cobb-Douglas生产函数的一般形
式如下:
Y = A * K^α * L^β
其中,Y代表产出,A代表全要素生产率(即一定量的投入可
以创造出的产出),K代表资本投入(如机器、设备),L代
表劳动力投入(如工人),α和β是技术参数。

Cobb-Douglas生产函数的主要特点有:
1. 常见的导数形式解析求得
2. 双分类器描述了劳动和资本在产出中的相对比例,α和β决
定了生产函数的比例效应,反映了产出的弹性特征。

3. 具有规模收益不变的性质,即当投入成倍增加时,产出也会成倍增加。

4. 具有递增边际产出的性质,即每增加一单位的投入将使边际产出更高。

Cobb-Douglas生产函数通常用于衡量生产效率和经济增长等
经济现象,并被广泛应用于宏观经济学和微观经济学的研究中。

道格拉斯函数

道格拉斯函数

固定投入比例生产函数:
柯布-道格拉斯生产函数 - 应用
柯布—道格拉斯生产函数模型是广泛应用的一种 生产函数。美国科学家道格拉斯和数学家柯布合作, 研究了劳动投入与资本投入和产出之间的关系,得 出如下柯布—道格拉斯生产函数模型: Y=ax1b1x2b2 柯布—道格拉斯生产函数模型广泛应用于经济数量 分析,对于农业技术经济数量分析具有特殊意义。 柯布—道格拉斯生产函数模型具有以下的特点: 1、柯布—道格拉斯生产函数模型中,a,b1,b2是 固定参数。 2、可线性化。

பைடு நூலகம் 应用
3、参数估计和其它代数方程相比,计算比较
方便。 4、运用柯布—道格拉斯生产函数模型进行技 术经济分析,由于数据特性,计算分析结论 更准确。 正是由于这些特点,该模型在农业生产的技 术经济分析中得到了广泛的应用。
谢谢!
根据柯布-道格拉斯生产函数可以得到下列经济参 数(设μ=1): ①劳动力边际生产力 表示在资产不变时 增加单位劳动力所增加的产值。 ②资产边际生产力 表示在劳动力不变时 增加单位资产所增加的产值。 ③劳力对资产的边际代换率 表示 产值不变时增加单位劳动力所能减少的资产值。 ④劳动力产出弹性系数 ,表示劳动力投入的 变化引起产值的变化的速率。 ⑤资产产出弹性系数 ,表示资产投入的变化 引起产值变化的速率。 国际上一般取α=0.2~0.4,β=0.8~0.6。中国根据 国家计委测算一般可取α=0.2~0.3,β=0.8~0.7。 "

三种类型
从这个模型看出,决定工业系统发展水平的主 要因素是投入的劳动力数、固定资产和综合技术水 平(包括经营管理水平、劳动力素质、引进先进技 术等),根据α 和β的组合情况,它有三种类型: ①α+β>1, 称为递增报酬型,表明按现有技术用扩 大生产规模来增加产出是有利的。 ②α+β<1, 称为递减报酬型,表明按现有技术用扩大 生产规模来增加产出是得不偿失的。 ③α+β=1, 称为不变报酬型,表明生产效率并不会 随着生产规模的扩大而提高,只有提高技术水平, 才会提高经济效益。

柯补道格拉斯生产函数的成本函数

柯补道格拉斯生产函数的成本函数

柯布-道格拉斯(Cobb-Douglas)生产函数是描述生产过程中输入与产出关系的数学模型。

在经济学中,柯布-道格拉斯生产函数广泛应用于描述企业的生产过程,并且对于企业的成本分析具有重要的意义。

本文将深入探讨柯布-道格拉斯生产函数的成本函数,分析其在企业经济中的应用和意义。

1. 柯布-道格拉斯生产函数简介柯布-道格拉斯生产函数最初由美国经济学家查尔斯·柯布和保罗·道格拉斯提出,用于描述输入与产出之间的关系。

其一般形式为:Q = A * L^a * K^b,其中Q表示产出,L表示劳动力输入,K表示资本输入,A为总要素生产率(Total Factor Productivity,TFP),a和b分别为劳动力和资本的弹性系数。

该函数表明产出与劳动力和资本的投入量成正比,同时与总要素生产率的影响呈现指数关系。

2. 柯布-道格拉斯生产函数的成本函数在企业经济中,成本是企业经营活动的核心指标之一。

柯布-道格拉斯生产函数可以通过对数变换后转化为成本函数形式,描述企业的生产成本与输入要素之间的关系。

成本函数的一般形式为:C = wL + rK,其中C表示总成本,w表示单位劳动力的工资,L表示劳动力投入量,r表示单位资本的租金,K表示资本投入量。

该成本函数表明总成本与劳动力和资本的投入成本成正比。

3. 柯布-道格拉斯生产函数的应用柯布-道格拉斯生产函数的成本函数在企业经济中具有重要的应用价值。

通过成本函数可以对企业的成本进行有效的管理和控制。

企业可以根据成本函数分析各项要素成本的相对重要性,通过控制劳动力和资本的投入量来实现成本最小化,从而提高生产效率和经济效益。

成本函数还可以为企业的产量规划和定价提供重要依据。

通过成本函数分析企业的生产要素价格和产出水平,可以有效制定合理的产量规划和产品定价策略,以实现企业利润最大化。

4. 柯布-道格拉斯生产函数的意义在现代经济学理论中,柯布-道格拉斯生产函数的成本函数对企业经济管理具有深远的意义。

柯布-道格拉斯(Cobb-Douglas)生产函数模型

柯布-道格拉斯(Cobb-Douglas)生产函数模型

柯布-道格拉斯(Cobb-Douglas )生产函数模型齐微辽宁工程技术大学理学院,辽宁阜新(123000)E-mail: qiwei1119@摘 要:柯布-道格拉斯生产函数(Cobb-Douglas production function )用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数.本文对大量的生产数据进行处理,建立多项式拟合模型和线性规划模型对数据进行处理完成问题,对生产数据分析我们建立了多项式拟合,通过误差分析,多项式拟合模型是完全符合数据的.但通过使用线性回归方法求得的柯布-道格拉斯生产函数,通过对其进行误差分析我们知道柯布-道格拉斯生产函数与原始数据的误差比多项式拟合模型下的误差小的多.关键词:柯布-道格拉斯生产函数;多项式拟合;线性回归柯布-道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家道格拉斯(P.H.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作了改进,引入了技术资源这一因素.他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:Y AK L αβ=其中: Y —— 产量;A —— 技术水平;K —— 投入的资本量;L —— 投入的劳动量;,αβ——K 和L 的产出弹性.经济学中著名的柯布-道格拉斯(Cobb-Douglas )生产函数的一般形式为 (,),0,1Q K L aK L αβαβ=<< (1-1)其中,,Q K L 分别表示产值、资金、劳动力,式中,,a αβ要由经济统计数据确定.现有《中国统计年鉴(2003)》给出的统计数据如表(其中总产值取自“国内生产总值”,资金 取自“固定资产投资”,劳动力取自“就业人员”)[3].问题1:运用适当的方法,建立产值与资金、劳动力的优化模型,并做出模型的分析与检验.问题2:建立Cobb-Douglas 优化模型,并给出模型中参数,αβ的解释.问题3:将几个模型做出比较与分析.表0-1 经济统计数据年份 总产值/万亿元 资金/万亿元 劳动力/亿人1984 0.7171 0.0910 4.8179 1985 0.8964 0.2543 4.9873 1986 1.0202 0.3121 5.1282 1987 1.1962 0.3792 5.2783 1988 1.4928 0.4754 5.4334 1989 1.6909 0.4410 5.5329 1990 1.8548 0.4517 6.4749 1991 2.1618 0.5595 6.5491 1992 2.6638 0.8080 6.6152 1993 3.4634 1.3072 6.6808 1994 4.6759 1.7042 6.7455 1995 5.8478 2.0019 6.8065 1996 6.7885 2.2914 6.8950 1997 7.4463 2.4941 6.9820 1998 7.8345 2.8406 7.0637 1999 8.2068 2.9854 7.1394 2000 9.9468 3.2918 7.2085 2001 9.7315 3.7314 7.3025 2002 10.4791 4.3500 7.37401.问题一求解1.1 模型建立假设:有()()()t L t K t Q ,,分别表示产值,资金和劳动力,并假设()t Q 仅与()()t L t K ,有关[1]..由表0-1中的数据拟合出()()()t L t K t Q ,,的关系:用Matlab 画出表1-1中数据的关系图,应用Matlab 中的plot 画出图形如图1-1.图1-1产值、资金和劳动力数据关系图由图1-1可知:选定()t Q 看作是()()t L t K +的一元多项式的优化模型.从而建立模型()()()()t L t K G t Q +=.1.2 模型的求解通过Matlab 计算出()t Q 和()()t L t K + 数据之间拟合误差如表1-1.表1-1 数据拟合次数误差拟合次数 1 2 3 4 5 6 误差 3.0313 2.4294 1.5141 1.2366 1.0898 1.0887由上表得知五次拟合和六次拟合误差已经达到很接近,和四次拟合误差相差很大,所以本文选择五次拟合来求解模型()()()()t L t K G t Q +=.本文选用的是Matlab 中的plotfit 来五次拟合数据求解模型并用rcoplot 来误差分析. 得到的拟合多项式系数p 如表1-2.表1-2 多项式系数多项式次数5 4 3 2 1 0 相应系数 0.0062 -0.2711 4.6074-37.6090 148.3464 -226.4984这样就知道了模型多项式为:()()()()()()()()()()()()()()()54320.00620.2711 4.607437.6090148.3464226.4984Q K t L t K t L t K t L t K t L t K t L t =×+−×++×+−×++×+−(1-1) 多项式模型下,新的产值预测值如表1-3.表1-3 多项式模型的产值预测值年份1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 预测值0.5962 1.0362 1.1860 1.2929 1.3800 1.4008 1.9636 2.1686 2.6129 3.6773年份1994 1995 1996 1997 1998 1999 2000 2001 2002 预测值 4.7428 5.6358 6.5850 7.28598.23048.65859.27909.920810.4620程序运行所得到的残差图如图1-2.图1-2 模型数据的残差图由图1-2可以看到除了第十七个数据点偏离了原点,其他的点均在原点附近.继而得出模型:()()()()()()()()()()()()()()()54320.00620.2711 4.607437.6090148.3464226.4984Q K t L t K t L t K t L t K t L t K t L t =×+−×++×+−×++×+− (1-2)1.3 模型的误差分析 本文在假设的前提下,确定(),()()K t L t Q t 与的关系,即()Q t 可看作是()()K t L t +的一元多项式,从而本文做分析得到,做五次的多项式拟合达到最佳拟合.能从S 的值知道拟合误差,S 中有R 类似于回归中的判别系数、df 自由度、normr 拟合算法中用到的范德孟系数.本文通过预测值Y 值可以看到和原始值y 存在着误差,但是这些误差都是在可接受范围之内的误差[2].2 问题二的线性回归模型2.1模型的建立本文假设的是在1=+βα的情况下,用)(t Q ,)(t K ,)(t L 分别表示某一地区或部门在时刻t 的产值、资金和劳动力,它们的关系可以一般地记作))(),(()(t L t K F t Q =(2-1) 其中F 为待定函数.对于固定的时刻t ,上述关系可写作),(L K F Q =(2-2)为寻找F 的函数形式,引入记号L Q z =,L K y = (2-3) z 是每个劳动力的产值,y 是每个劳动力的投资.如下的假设是合理的:z 随着y 的增加而增长,但增长速度递减.进而简化地把这个假设表示为()z ag y =,αy y g =)(,10<<α (2-4)显然函数)(y g 满足上面的假设,常数0a >可看成技术的作用.由(2-3),(2-4)即可得到(2-2)式中F 的具体形式为1Q aK L αα−=,10<<α(2-5)由(2-5)式容易知道Q 有如下性质 0,>∂∂∂∂L Q K Q ,0,2222<∂∂∂∂LQ K Q (2-6) 记L Q Q K ∂∂=,K Q 表示单位资金创造的产值;LQ Q L ∂∂=,L Q 表示单位劳动力创造的产值,则从(2-5)式可得α=Q KQ K ,α−=1QLQ L ,Q LQ KQ L K =+ (2-7) (2-7)式可解释为:α是资金在产值中占有的份额,α−1是劳动力在产值中占有的份额.于是α的大小直接反映了资金、劳动力二者对于创造产值的轻重关系.2.2模型的求解本文求解得出1Q aK L αα−=中的()1b 和α值为:0.7784和0.7833,这样能求得a 的值为:2.1780,β的值为:1-0.7833,即为:0.2167.这样得到模型如下:()()()2167.07833.01780.2t L t K t Q ×= (2-8)利用以上模型求解出一组新的预测值如表2-1.表2-1 多项式模型的产值预测值年份预测值0.5962 1.0362 1.1860 1.2929 1.3800 1.4008 1.9636 2.1686 2.6129 3.6773年份1994 1995 1996 1997 1998 1999 2000 2001 2002 预测值 4.7428 5.6358 6.5850 7.28598.23048.65859.27909.9208 10.4620程序运行所得的残差图如图2-1所示:图2-1 模型数据残差图由图2-1可以看到除了第一个数据点偏离了原点,其他的点均在原点附近,这样可以得到线性回归模型是符合题目的.继而模型可得:()()()0.78330.21672.1780Q t K t L t =× (2-9)程序计算得到的r 和rint 值见表2-2.表2-2 r 和rint 值 r rint 0.4259 0.2705 0.5814-0.1634 -0.4602 0.1334-0.2005 -0.4950 0.0940-0.2001 -0.4979 0.0976-0.1620 -0.4691 0.14510.0175 -0.2999 0.33490.0572 -0.2568 0.37120.0402 -0.2775 0.3580-0.0410 -0.3620 0.2799-0.1575 -0.4687 0.1537-0.0672 -0.3857 0.25130.0284 -0.2901 0.34690.0690 -0.2462 0.38410.0923 -0.2200 0.40470.0387 -0.2747 0.35210.0439 -0.2686 0.35640.1576 -0.1427 0.45780.0347 -0.2737 0.3431-0.0136 -0.3188 0.29172.3 模型α和β的解释通过对柯布-道格拉斯生产函数传递变形后,进行求解得出βα,的值,同样也进行预测数据和原始数据比较.从图上可以知道模型中参数βα,的解释:α是劳动力产出的弹性系数,β是资本产出的弹性系数,从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数、固定资产和综合技术水平(包括经营管理水平、劳动力素质、引进先进技术等).根据α和β的组合情况,它有三种类型:①1αβ+>称为递增报酬型,表明按现有技术用扩大生产规模来增加产出是有利的.②1<+βα称为递减报酬型,表明按现有技术用扩大生产规模来增加产出是得不偿失的.③1=+βα称为不变报酬型,表明生产效率并不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益.3 问题三:模型比较分析模型一是通过假设后进行拟合得到模型关系式,模型二是通过变形后线性回归运算得到模型.他们与实际之间都存在误差.五次多项式拟合模型的数据误差数是:1.0898.线性回归模型数据误差:r =[0.4259 -0.1634 -0.2005 -0.2001 -0.1620 0.0175 0.0572 0.0402 -0.0410 -0.1575 -0.0672 0.0284 0.0690 0.0923 0.0387 0.0439 0.1576 0.0347 -0.0136];m=sum(r)得到这个模型的误差数:m=1.0000e-004.可以看出1.0000e-004<1.0898,很明显柯布-道格拉斯(Cobb-Douglas )生产函数比假设的多项式拟合函数更接近实际数据,更加准确.在生产产值上的预测,柯布-道格拉斯(Cobb-Douglas )生产函数预测的结果近似就是准确生产值[4].4 评价和结论4.1 模型缺点一定历史时期的生产函数是反映当时的社会生产力水平的.只有明确一定历史阶段的社会生产力特征才能构造出最能反映当时生产力发展水平的生产函数.在工业时代,生产力水平是以单位量的资本和劳动力的投入所能获得的产成品的数量来衡量的.也就是说工业时代的生产力是以产量、能耗、劳动生产率等针对物质、能量的生产和利用等概念构成的.而对工业时代生产力水平的衡量是以投入产出的数量为依据的,表现在:(1)工业时代的生产是在一个较为稳定的生产技术条件下形成的,是针对某一生产和设计都很成熟的产品进行物质性生产.(2)工业时代衡量生产技术水平的标志是在一定的时间范围内,单位量的资本和劳动力的投人所能获得的产成品的数量.(3)工业时代的生产力水平体现为以某一生产技术组织资本和劳动力的投入,从而获得最接近于该生产技术所能达到的产出极限.柯布—道格拉斯生产函数正是在工业经济时代所构造出的反映工业经济时代生产力特征的函数模型.当人类进入到信息经济时代,由于信息资源的加入、技术的不断进步,导致生产力发展的特征和性能发生了变化,信息时代的经济发展特征是以性能、质量、产品的差异性组合,客户服务和信息管理等为主要竞争手段的.这样也就决定了信息时代这种以非物质,非能量的信息经济的生产力的概念与工业时代截然不同.如果仍然以工业时代测算生产力的方法去考察信息时代中信息技术对生产力的作用的话,肯定无法对其做出准确的判断.同样,原有的柯布——道格拉斯生产函数已经不能再适应新的经济发展形态,在工业时代用以衡量生产力水平的产量,资本投入量和劳动力投入量已经不能完全适应信息时代的生产力发展水平了;在信息经济时代,所投入的生产要素的核心成分从资本、劳动力逐渐转变为以信息技术为代表的高新技术.当信息资源应用于生产中时,对生产人员、资本、流程等形成革命性的影响作用,极大地提高了生产要素生产率,促进了经济发展.综合上述原因,需要对柯布——道格拉斯生产函数做出了一定的修正,使之适用于信息时代的生产力发展水平.4.2 模型改进4.2.1 对投入量的计量对投入的计量应包含:信息技术设备的资本投入,如电脑、数控设备、信息化管理设备、网络设备和其他软件等等;信息技术的劳动力投入,如电脑软件编制人员、硬件安装维护人员、信息化管理人员等等;非信息技术设备的资本投入,如传统的工业技术装备、生产设备、厂房等其他在工业时代类似的资本投入;非信息技术的劳动力投入,比如生产线上的操作工、一般管理人员等,这里需要指出的是“非信息技术的劳动力”既包括一般意义上的蓝领工人,也包括其他一些白领管理人员.4.2.2 对产出量的计量对产出量的计量则不应仅包含单位生产成品数量,而是应该考虑到生产者的盈利水平是否提高.因为从工业时代过渡到信息时代,企业的竞争手段已经从“低成本生产”转向了“全方位的优质服务”.这其实也是竞争发展到一定阶段的必然结果.所以,考察信息技术对生产力具有怎样的影响务必要从一个新的视角出发,不能仅仅衡量其对产成品数量的影响,更应从信息技术是否对提高整体赢利水平,扩大市场份额和增强竞争实力等方面进行综合考察.4.2.3 改进后的模型改进后的柯布—道格拉斯生产函数的表现形式为:0011a b c d Y K L K L =式中: Y —— 产量;0K —— 非信息技术设备的资本投入;0L —— 非信息技术的劳动力投入;1K —— 信息技术设备的资本投入;1L —— 信息技术的劳动力投入;,,,a b c d —— 产出弹性.此模型较原来的模型增加了信息技术设备的资本投入1K 和信息技术的劳动力投入1L ,使得模型成为更贴近时代的生产模型,改进后的柯布—道格拉斯生产函数0011a b c d Y K L K L =是在现代信息工业经济时代构造出的反映了现代信息工业经济时代生产力特征的函数模型.改进后的柯布—道格拉斯生产函数模型更具有时代特色,适用性更广、更具时代感.参考文献[1]唐焕文,贺明峰.《数学模型引论》[M],北京:教育出版社,2005.[2]雷功炎.《数学模型讲义》[M],北京:京大学出版社,2002.[3]白其峰.《数学建模案例分析》[M],京:洋出版社,2000.[4]李庆杨,王能超,易大意.《数值分析》[M],京:华大学出版社,2005.Cobb-Douglas production function modelQiweiCollege of Science,Liaoning Technology University,Fuxin (123000)AbstractCobb-Douglas production function used to predict national and regional systems or large industrial enterprises in production and development of the means of production of an economic model, called the production function. In this paper, a large number of production data Process, the establishment of polynomial fitting model and the linear programming model for data processing is complete problems, the production data analysis We have established a polynomial fitting, through error analysis, polynomial fitting model is fully consistent with the data . But through the use of linear regression obtained O'Brien - Douglas production function, through its error analysis we know that O'Brien - Douglas production function with the raw data of error than polynomial fitting model of the small number of errors .Keywords: Cobb-Douglas production function; polynomial fitting; linear regression。

柯布--道格拉斯生产函数

柯布--道格拉斯生产函数

柯布--道格拉斯生产函数柯布-道格拉斯生产函数是一种用来描述产出与产出要素输入之间关系的经济学模型。

该模型是由美国经济学家柯布和道格拉斯在20世纪20年代提出的,被广泛应用于宏观经济学中的生产函数分析。

Y = A L^α K^β其中,Y表示产出, L表示劳动力输入量, K表示资本输入量, A表示全要素生产率, α和β是生产函数中劳动力因素和资本因素的弹性系数,而α+β的总和表示生产函数的规模收益。

所谓规模收益是指生产要素的总量增加一倍,能使产出增加的比例。

即α+β大于1时,存在递增规模收益;等于1时,存在恒等规模收益;小于1时,存在递减规模收益。

该生产函数的基本思想是,产出量可以用输入的各种生产要素数量来解释,而生产效率的提升可以通过升级技术和管理方法等手段来实现。

这一经济学模型通过科学地评估生产要素的投入和产出之间的关系,从而有效地指导产品生产的决策,同时也为企业实现成本最小化和效益最大化提供了理论基础。

优点:1.全要素生产率是该模型的核心概念,所包含的生产要素非常广泛,可以更全面地反映产出与产出要素之间的关系。

2.该模型能够帮助企业优化生产要素的投入,提高生产效率和效益。

3.对于某些复杂的生产运营系统,利用柯布-道格拉斯生产函数可以更加精细地建立生产模型,以便于深入分析和研究。

1.柯布-道格拉斯生产函数基于某一市场的生产数据,不适用于所有市场,无法复刻到所有不同形式的生产环境中。

2.该模型忽略了信息、技能和组织等非生产要素对企业产出的影响,对于这些影响因素的分析不够完备。

3.由于该模型只考虑单一生产函数,可能无法很好地解释某些特殊的产出情况。

专题拓展5.1:柯布——道格拉斯生产函数

专题拓展5.1:柯布——道格拉斯生产函数

专题拓展5.1:柯布——道格拉斯生产函数社会财富的生产过程是多种多样的。

几千年来,随着生产力水平的不断提高,人类生产活动的形式,已从刀耕火种的落后状态发展到电子计算机控制的大规模自动化生产。

然而,从经济学的角度来看,无论何种生产过程,都可以看成是在一定社会、经济、技术和自然条件下,一组技术要素转化为产出的过程。

生产函数就是在某些前提假设下,描述这一过程的经济数学模型。

它表示的是在一定的技术水平下各种生产要素投入量的某一组合同它所能产出的最大可能产出量之间的关系。

西方经济学家对生产函数的定义,以诺贝尔经济学奖获得者萨缪尔森教授为生产函数所下的定义为代表。

他认为生产函数是一种技术关系,被用来表明每一种具体数量的投入物(即生产要素)的配合所可能生产的最大产量。

一定历史时期的生产函数是反映当时的社会生产力水平的。

只有明确一定历史阶段的社会生产力特征才能构造出最能反映当时生产力发展水平的生产函数。

柯布——道格拉斯生产函数正是在工业经济时代所构造出的反映工业经济时代生产力特征的函数模型。

柯布——道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家道格拉斯(P.H.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作了改进,引入了技术资源这一因素。

他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:其中:Y——产量;A ——技术水平;K ——投入的资本量;L ——投入的劳动量;——K和L的产出弹性。

指数表示资本弹性,说明当生产资本增加1%时,产出平均增长%;是劳动力的弹性,说明当投入生产的劳动力增加1%时,产出平均增长%;A是常数,也称效率系数。

函数中把 A技术水平作为固定常数,难以反映出因技术进步而给产出带来的影响,为了克服这一不足之处,应该对柯布——道格拉斯生产函数作以改进。

柯布一道格拉斯生产函数

柯布一道格拉斯生产函数

柯布一道格拉斯生产函数格拉斯(Gresham)生产函数是英国经济学家托马斯·戈德堡·格拉斯(Thomas Gresham)在16初提出的一个经济供给方程,它涉及了多种因素,比如货币发行、供求状况、财政政策等。

格拉斯生产函数的理论认为,当政府发行某种新货币时,与原有货币相比,原有货币投资就会受到冲击,从而全面改变市场上货币价值的基本构成,应当注意的是,这种改变可能是正面的,也可能是负面的。

格拉斯生产函数的根本原理是,当政府发行一种新的货币时,新货币比原有货币升值,因此新货币可以迅速替代原有货币,而且新货币发行量不必完全取代旧货币发行量,这也是为什么有时新货币发行也会引发投机活动。

而新货币史蒂芬开始交易及经济活动之后,会有很多用新货币价格的产品出现,新旧货币的汇率也会随之调整。

格拉斯生产函数显示出政府发行某种新货币,对于经济的影响是相当大的,尤其是涉及到货币的金融服务行业,如银行、保险公司以及金融交易所等。

新货币可以给行业带来新的商机,这些利益群体在获得利益时也会受到政府的一定控制,所以新货币可以被认为是为经济服务的一种货币,新货币发行可以改变对其它经济系统所施加的影响,改变社会分配模式,因此新货币发行是带来经济影响的关键因素。

格拉斯生产函数可以帮助人们理解政府发行某种新货币时的经济影响,也可以帮助政府作出更加明智的货币发行政策。

如果经济体正发生重大变化,政府为了解决当前经济困境,应当更好的利用格拉斯生产函数的理论,作出正确的决策,以减轻经济的影响。

此外,格拉斯生产函数中表明的升值效应可以解释一些经济反应出现的原因,这有助于更好地全面应用经济学原理,制定出更有效的发行政策,以利于经济繁荣。

柯布-道格拉斯生产函数

柯布-道格拉斯生产函数

• 这就意味着边际生产率函数为零阶齐次 的。
– 如果一个函数是k 阶齐次的,那么其导数就 是k-1阶齐次的
29
规模报酬不变
• 任何投入的边际生产率取决于资本和劳 动之比(而不是这些投入的具体水平) • k 和 l 之间的边际技术替代率仅仅取决于 k 和 l之比,而不是运行规模
30
规模报酬不变
• 生产函数是位似的 • 从几何上看,所有的等产量线均是彼此的 射线扩展
31
规模报酬不变
• 沿着一条从原点出发的射线 ( k/l不变), 所 有等产量线上的RTS都是相同的
k 每期
随着产出扩张,等产量线 均匀排列
q=3 q=2 q=1
l 每期
32
规模报酬
• 规模报酬可被扩展为n 种投入的生产函数
q = f(x1,x2,…,xn)
• 如果所有的投入均乘以一个正常数t, 可以 得到
– 生产中劳动分工的进一步细化和专业化 – 效率降低,因为企业规模变大会导致管理难 度增加
26
规模报酬
• 如果生产函数给定为 q = f(k,l),所有的投 入都乘以某个正常数 (t >1), 则
对产出的影响 f(tk,tl) = tf(k,l) f(tk,tl) < tf(k,l) f(tk,tl) > tf(k,l) 规模报酬 不变 递减 递增
这一生产函数就意味着k 和 l 足够大时, 边际生产率递减
– fll 和 fkk < 0 如果 kl > 200
22
递减的边际技术替代率
• 对任一生产函数求二阶交叉导数得
fkl = flk = 2400kl - 9k 2l 2
仅当 kl < 266时,为正

柯布-道格拉斯生产函数

柯布-道格拉斯生产函数

柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。

用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。

是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。

柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。

他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。

在他们看来,在商品生产中起作用的资本,是不包括流动资本的。

这是因为,他们认为,流动资本属于制造过程的结果,而非原因。

同时,他们还排除了对土地的投资。

这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。

因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。

而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。

但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。

因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。

比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。

经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。

令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。

柯布--道格拉斯生产函数

柯布--道格拉斯生产函数

dQ d[cL(t) y (t)] cL(t)y 1 dy c dL(t) y 0
dt
d (t)
dt d (t)
整理得:
dQ dt

0

1

K0 K0
e(1 )t

1
1
因为 0 ,1所以上式右端恒大于1,因而当左端中 (0即
)e (1
) t
1 ]

知:
dy dt
0 1
K0 K0
e(1 ) t
0
显然,此式成立的条件为

K0 K0
1


K0 K0
此式含义为:劳动力相对增长率小于初始投资增长率
······数理学派在这时运用数学方法, 只对资本主义关系做数量上的说明,而抛开 对资本主义经济制度本质的研究,这样就更 有利于掩盖资本主义的剥削和矛盾。同时, 她运用数学方法,也企图用数学的精确性和 科学性,使资产阶级政治经济学具有一种高 度科学性的假象和外观。
/UploadFile
0
s/2009327144012527.swf
五、模型的改进与推广
1,探讨资金和劳动力的最佳分配(静态)
➢何为最佳分配? ➢成本包括哪些?
资金来自贷款,利率 r
劳动力付工资 w
资金和劳动力创造的效益 S Q rK wL
问题转化为K/L满足什么条件使得S最大
S K
0 QK
r
0
S L 0 QL W 0
QK QL

CK L 1 1 C(1)K L
r w
K w
L 1 r
由该式可知:当,w变大、r变小时,分配

柯布道格拉斯生产函数及其应用

柯布道格拉斯生产函数及其应用

柯布-道格拉斯生产函数及其应用考号:姓名:[内容提要]生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。

柯布—道格拉斯生产函数是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。

用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,它是经济学中使用最广泛的一种生产函数形式,采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。

柯布—道格拉斯生产函数模型广泛应用于经济数量分析,运用我国1990-2008年的相关数据,运用应用统计学的方法来验证我国经济增长方式是粗放式的,提出应该加大科技创新投入,进而加快促进技术进步,深化经济和政治体制改革来加快我国省经济增长方式的转变。

[关键词]生产函数柯布道格拉斯经济数量分析经济增长一、生产函数(一)简述生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。

它可以用一个数理模型、图表或图形来表示。

换句话说,就是一定技术条件下投入与产出之间的关系,在处理实际的经济问题时,生产函数不仅是表示投入与产出之间关系的对应,更是一种生产技术的制约。

例如,在考虑成本最小化问题时,必须要考虑到技术制约,而这个制约正是由生产函数给出的。

另外,在宏观经济学的增长理论中,在讨论技术进步的时候,生产函数得到了很大的讨论。

(二)常见生产函数1、固定投入比例生产函数固定投入比例生产函数是指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。

2、柯布-道格拉斯生产函数柯布-道格拉斯生产函数是由数学家柯布(C.W.Cobb)和经济学家道格拉斯(PaulH.Douglas)于20世纪30年代提出来的。

柯布—道格拉斯生产函数被认为是一种很有用的生产函数,因为该函数以其简单的形式具备了经济学家所关心一些性质,它在经济理论的分析和应用中都具有一定意义。

技术(柯布-道格拉斯生产函数)经济学解析

技术(柯布-道格拉斯生产函数)经济学解析

由于 df 0 ,故
Aax x dx1 Abx x dx2
b dx2 Aax1a 1 x2 a x2 0 a b 1 dx1 Abx1 x2 b x1
a 1 b 1 2
a b1 1 2
(a, b, x1 , x2 0)
上式表示:C-D生产函数等产量线的斜率,即劳 动对资本的边际技术替代率为负。
2、建筑业企业层次规模报酬 经济学意义上的企业与工厂的区别,在于企业 除了生产功能外,还具有经营功能,并且在法律上 具有独立的经营实体地位。所谓企业的规模经济主 要是指由企业经营规模扩大而给企业带来的经济上 的有利性。对于企业层次的规模经济来说,具有明 显的联合生产经营效应,形成的主要原因是生产流 通环节效率的提高、管理费用和市场交易费用的节 约。企业规模经济效益是建立在工厂规模经济基础 之上的,但是与工厂规模经济相比,企业规模经济 显然更多地由组织创新促成,也更多地体现于组织 效率和经营效率等非生产技术领域。
谢谢!
制作人:孙美琳、陈文浩、刘祎、
罗观长、刘文华、朱文福
2013. 10. 12
所有的投入和产出的组合叫做生产集生产集可以用表示的是在一定的投入下可以得到的最大产出x投入y产出生产集fx生产函惕夫生产函数
第18章 技术
柯布-道格拉斯生产函数的技术替代率
a b f ( x1, x 2 ) Ax1 x2
f ( x1 , x2 ) a 1 b MP Aax x2 , 1 ( x1 , x2 ) 1 x1 f ( x1 , x2 ) a b 1 MP2 ( x1 , x2 ) Abx 1 x2 x2
a 1 b 2
f (tx1, tx2 ) A(tx1 ) (tx2 ) At x x

柯布道格拉斯生产函数模型

柯布道格拉斯生产函数模型

柯布道格拉斯⽣产函数模型⽣产函数模型——经济增长分析柯布—道格拉斯⽣产函数的基本的形式为:式中Y是⼯业总产值A(t)是综合技术⽔平L是投⼊的劳动⼒数(万⼈/⼈)K是投⼊的资本,⼀般指固定资产净值(亿元/万元,但必须与劳动⼒数的单位相对应,劳动⼒:万⼈,固定资产净值:亿元)α是劳动⼒产出的弹性系数β是资本产出的弹性系数µ表⽰随机⼲扰的影响,µ≤1从这个模型看出,决定⼯业系统发展⽔平的主要因素是投⼊的劳动⼒数L、固定资产K 和综合技术⽔平A(t)(包括经营管理⽔平、劳动⼒素质、引进先进技术等)。

根据α和β的组合情况,它有三种类型:①α+β>1,递增报酬型,表明按现有技术⽔平扩⼤⽣产规模的来增加产出是有利的。

②α+β<1,递减报酬型,表明按现有技术⽔平扩⼤⽣产规模来增加产出是得不偿失的。

③α+β=1,不变报酬型,表明⽣产效率并不会随着⽣产规模的扩⼤⽽提⾼,只有提⾼技术⽔平,才会提⾼经济效益。

美国经济学家R.M.斯诺提出的中性技术模式即斯诺模型属于不变报酬型。

当µ=1时,斯诺模型为:根据柯布-道格拉斯⽣产函数可以得到下列经济参数(设µ=1):①劳动⼒边际⽣产⼒表⽰在资产不变时增加单位劳动⼒所增加的产值。

②资产边际⽣产⼒表⽰在劳动⼒不变时增加单位资产所增加的产值。

③劳⼒对资产的边际代换率表⽰产值不变时增加单位劳动⼒所能减少的资产值。

④劳动⼒产出弹性系数,表⽰劳动⼒投⼊的变化引起产值的变化的速率。

⑤资产产出弹性系数,表⽰资产投⼊的变化引起产值变化的速率。

国际上⼀般取α=0.2~0.4,β=0.8~0.6。

中国根据国家计委测算⼀般可取α=0.2~0.3,β=0.8~0.7。

(三)斯诺模型美国经济学家R.M.斯诺提出的中性技术模式即斯诺模型属于不变报酬型。

当µ=1时,斯诺模型为:Y = A(t)L1 ? εKε或,式中(1-ε)是劳动⼒产出的弹性系数。

柯布道格拉斯生产函数

柯布道格拉斯生产函数
递减的边际技术替代率
所以对于这一生产函数而言在k 和 l能保证边际生产率递减的区域内边际技术替代率均为递减 若k 和 l 较大则递减的边际生产率就足以抵消fkl 为负的影响以保证等产量线的凸性
规模报酬
产出会对所有投入的增加做何反应 假设所有投入都翻番产出是否会翻番 规模报酬从亚当斯密时代就进入了经济学家们的视野
替代弹性
如果 较高 RTS 的变动没有k/l大 等产量线会相对平坦 如果 较低 RTS 的变动会比 k/l 的变动大 等产量线会相对陡峭 沿着一条等产量线变动或随着生产规模变化而变动都是可能的
替代弹性
将替代弹性扩展至多投入情形会导致一些复杂的状况 如果我们将两种投入间的替代弹性定义为两种投入之比的百分比变化除以RTS 的百分比变化我们必须保持产出和其他投入不变
规模报酬不变
规模报酬不变的生产函数对于投入是一阶齐次的 ftktl = t1fkl = tq 这就意味着边际生产率函数为零阶齐次的 如果一个函数是k 阶齐次的那么其导数就是k-1阶齐次的
规模报酬不变
任何投入的边际生产率取决于资本和劳动之比而不是这些投入的具体水平 k 和 l 之间的边际技术替代率仅仅取决于k 和 l之比而不是运行规模
递减的边际技术替代率
假设生产函数为 q = fkl = 600k 2l 2 - k 3l 3 对于这种生产函数而言 MPl = fl = 1200k 2l - 3k 3l 2 MPk = fk = 1200kl 2 - 3k 2l 3 当kl < 400时 k 和 l 的边际生产率将为正
递减的边际技术替代率
规模报酬不变
生产函数是位似的 从几何上看所有的等产量线均是彼此的射线扩展
规模报酬不变
l 每期

计量经济学柯布道格拉斯ppt课件

计量经济学柯布道格拉斯ppt课件
③α+β=1,称为不变报酬型,表明生产效率并不会随着生产规模的扩大 而提高,只有提高技术水平,才会提高经济效益。规模报酬不变是指产 量增加的比例等于各种生产要素增加的比例。造成规模报酬不变的原因 是,在规模报酬递增阶段的后期,大规模生产的优越性已得到充分发挥, 厂商逐渐用完了种种规模优势,从而导致厂商规模增加的幅度与报酬增 加幅度相等。
5
应用
柯布—道格拉斯生产函数是现代经济增长实证分析的基础。在定量 分析经济增长各生产要素贡献率的研究中,应用极为广泛。 柯 布 — 道 格 拉斯生产函数模型具有以下的特点: 1、柯布—道格拉斯生产函数模型中,A,α,β是固定参数。 2、可线性化。 3、参数估计和其它代数方程相比,计算比较方便。 4、运用柯布—道格拉斯生产函数模型进行技术经济分析,由于数据
OLS估计:借助计量分析软件Eviews6.0,利用所选择的样本数据 对模型(2)进行OLS估计,得出结果如下表1:
得如下回归模型: LnY=-1.560+0.257LnK+0.682LnL+0.220Ln
8
模型的统计检验: 拟合优度检验。由估计结果可知可决系数 R2=0.998,拟合优度较高,可以认为被解释变量基本上可以用多元线性 回归方程中的解释变量来解释。因而,该回归方程通过模型拟合优度检 验。F检验。由估计结果F=3975.24,在显著性水平α=0.05下,F0.05 (3,25)=2.99,F>> F0.05(3,25)=2.99,可以认为在α=0.05的显 著性水平下,经济增长对物质资本、劳动力和科技进步投入有显著的线 性关系,即通过F检验。t检验。选择显著性水平α=0.05,临界值T0.025 ( 2 5 ) = 2 . 0 6 , 由 估 计 结 果 知 , | t α | = 5 . 6 5 4 > t 0 ·0 2 5 ( 2 5 ) = 2 . 0 6 , |tβ|=5.639>t0·025(25)=2.06,|tθ|=4.779>t0·025(25) =2.06,说明 资本存量、劳动力和科技进步投入三个解释变量在统计上都是显著的, 即对经济增长的影响是显著的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题拓展5.1:柯布——道格拉斯生产函数社会财富的生产过程是多种多样的。

几千年来,随着生产力水平的不断提高,人类生产活动的形式,已从刀耕火种的落后状态发展到电子计算机控制的大规模自动化生产。

然而,从经济学的角度来看,无论何种生产过程,都可以看成是在一定社会、经济、技术和自然条件下,一组技术要素转化为产出的过程。

生产函数就是在某些前提假设下,描述这一过程的经济数学模型。

它表示的是在一定的技术水平下各种生产要素投入量的某一组合同它所能产出的最大可能产出量之间的关系。

西方经济学家对生产函数的定义,以诺贝尔经济学奖获得者萨缪尔森教授为生产函数所下的定义为代表。

他认为生产函数是一种技术关系,被用来表明每一种具体数量的投入物(即生产要素)的配合所可能生产的最大产量。

一定历史时期的生产函数是反映当时的社会生产力水平的。

只有明确一定历史阶段的社会生产力特征才能构造出最能反映当时生产力发展水平的生产函数。

柯布——道格拉斯生产函数正是在工业经济时代所构造出的反映工业经济时代生产力特征的函数模型。

柯布——道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家道格拉斯(P.H.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作了改进,引入了技术资源这一因素。

他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:
其中:Y——产量;
A ——技术水平;
K ——投入的资本量;
L ——投入的劳动量;
——K和L的产出弹性。

指数表示资本弹性,说明当生产资本增加1%时,产出平均增长%;是劳动力的弹性,说明当投入生产的劳动力增加1%时,产出平均增长%;A是常数,也称效率系数。

函数中把 A技术水平作为固定常数,难以反映出因技术进步而给产出带来的影响,
为了克服这一不足之处,应该对柯布——道格拉斯生产函数作以改进。

当人类进入到信息经济时代,由于信息资源的加入、技术的不断进步,导致生产力发展的特征和性能发生了变化,信息时代的经济发展特征是以性能、质量、产品的差异性组合,客户服务和信息管理等为主要竞争手段的。

这样也就决定了信息时代这种以非物质,非能量的信息经济的生产力的概念与工业时代截然不同。

如果我们仍然以工业时代测算生产力的方法去考察信息时代中信息技术对生产力的作用的话,肯定无法对其做出准确的判断。

同样,原有的柯布——道格拉斯生产函数已经不能再适应新的经济发展形态,在工业时代用以衡量生产力水平的产量,资本投入量和劳动力投入量已经不能完全适应信息时代的生产力发展水平了;在信息经济时代,所投入的生产要素的核心成分从资本、劳动力逐渐转变为以信息技术为代表的高新技术。

当信息资源应用于生产中时,对生产人员、资本、流程等形成革命性的影响作用,极大地提高了生产要素生产率,促进了经济发展。

综合上述原因,需要对柯布——道格拉斯生产函数做出一定的修正,使之适用于信息时代的生产力发展水平。

最早对柯布——道格拉斯生产函数做出修正的有:美国国家经济研究署(BER)于 1983年作的研究报告“IT and Innovation”,以后有宾西法尼亚大学的劳林希提(1990)和麻省理工学院的恩里克布莱约森(1991)。

目前,国内外有很多学者都对柯布——道格拉斯生产函数的改进提出了意见。

相关文档
最新文档