平方差和完全平方公式经典例题复习过程
平方差公式与完全平方公式(复习)
专题一平方差公式与完全平方公式(复习)学习目标掌握平方差公式和完全平方公式的特征,并能运用两个公式进行化简和运算。
学习重点利用平方差公式、完全平方公式进行化简和运算学习难点利用平方差公式、完全平方公式进行因式分解。
学习过程一、知识回顾1、识记两个公式平方差公式:。
文字叙述:两个数的与这两个数的等于完全平方公式:。
文字叙述:两数和的平方等于这两个数的加上2、因式分解的定义公因式确定:(1)(2)(3)因式分解的方法:(1)提法(2)套法因式分解的步骤:把一个多项式因式分解,一般先,再。
进行多项式因式分解时,必须把每一个因式都分解到注:怎样验证因式分解的正确性?练习:请你从下列各式中,任选两式作差,并将得到的式子进行因式分解。
24a,2)9b(yx ,1,2二、典型例题例1:计算(1)(2m-3)(2m+3)(2)(a-2b+3c)(a+2b+3c).(3)20052-2006×2004例2:因式分解(1)16-4a 4 (2)42242y y x x +-(3)22341ab b a a -+- (4)222224)(b a b a -+例3:已知,8=+n m ,15=mn 求22n mn m +-的值三:达标测试(一、选择题)1、下列两个多项式相乘,不能用平方差公式的是( )A 、)32)(32(b a b a ++-B 、)32)(32(b a b a --+-C 、)32)(32(b a b a --+D 、)32)(32(b a b a ---2、下列运算正确的是( )A 、a b a b a 2)(222++=+B 、222)(b a b a -=-C 、6)2)(3(2+=++x x xD 、22))((n m n m n m +-=+-+3、下列四个多项式是完全平方式的是( )A 、22y xy x ++B 、222y xy x --C 、22424n mn m ++D 、2241b ab a ++ 4、若22169y mxy x ++是完全平方式,则m =( )A 、12B 、24C 、±12D 、±245、已知5-=+y x ,6=xy ,则22y x +的值为( )A 、12B 、13C 、37D 、16(二、填空题)6、分解因式: x 2+y 2-2xy=7、已知x +y =1,那么221122x xy y ++的值为_______. 8、在多项式4x 2+1中添加 ,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是(三、计算)9、)53)(53(y x y x -+ 10、4(x+1)2-(2x+5)(2x-5)11、2275.7275.82⨯-⨯ 12、121211222112+⨯-(四、分解因式)13、2)2()2(---a a a 14、2241y x +-15、6xy 2-9x 2y-y 3 16、(2a-b)2+8ab17、先化简,再求值:223(2)()()a b ab b b a b a b --÷-+- 其中112a b ==-,.。
平方差公式与完全平方公式
平方差公式与完全平方公式 (a+b )2 = a 2+2ab+b 2(a -b )2=a 2-2ab+b 2(a+b )(a -b )=a 2-b 2应用1、平方差公式的应用:例1、利用平方差公式进行计算: (1)(5+6x )(5-6x ) (2)(x +2y )(x -2y ) (3)(-m +n )(-m -n ) 解:%,例2、计算:(1)(y x 41--)(y x 41+-) (2)(-m -n )(m -n )(3)(m +n )(n -m )+3m 2(4)(x+y )(x -y )(x 2-y 2)解:-例3、计算:(1)103×97 (2)118×122 (3)32203119⨯ ~解:~应用2、完全平方公式的应用: 例4、计算:(1)(2x -3)2(2)(4x+5y )2(3)(y x 21-)2 (4)(-x -2y )2(5)(-x+y 21)2解:》例5、利用完全平方公式计算:(1)1022 (2)1972 (3)199992-19998×20002解:—试一试:计算:9×7-82=_______________、应用3、乘法公式的综合应用: 例6、计算:(1)(x+5)2-(x+2)(x -2) (2)(a+b+3)(a+b -3) (3)(a -b+1)(b -a+1)(4)(a+b -c )2解:'例7、(1)若4ax x 412++是完全平方式,则:a=________________(2)若4x 2+1加上一个单项式M 使它成为一个完全平方式,则M=_______________?例8、(1)已知:3a1a =+,则:__________a 1a 22=+(2)已知:5a 1a =-,则:__________a 1a 22=+(3)已知:a+b=5,ab=6,则:a 2+b 2=_______(4)已知:(a+b )2=7,(a -b )2=3,则:a 2+b 2= ,ab=例9、计算:@(1))1011()411)(311)(211(2222---- (2))12()12)(12)(12)(12(32842+++++解:#例10、证明:x 2+y 2+2x -2y+3的值总是正的。
平方差公式和完全平方公式(习题及答案)
平⽅差公式和完全平⽅公式(习题及答案)平⽅差公式和完全平⽅公式(习题)例题⽰范例1:计算:23(1)(1)2(1)a a a -+---+.【操作步骤】(1)观察结构划部分:23(1)(1)2(1)a a a -+---+①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第⼀部分:a -和a -符号相同,是公式⾥的“a ”,1和-1符号相反,是公式⾥的“b ”,可以⽤平⽅差公式;第⼆部分:可以⽤完全平⽅公式,利⽤⼝诀得出答案.(3)每步推进⼀点点.【过程书写】解:原式2223()12(21)a a a ??=---++??223(1)242a a a =----2233242a a a =----245a a =--巩固练习1. 下列多项式乘法中,不能⽤平⽅差公式计算的是()A .()()x y y x ---+B .()()xy z xy z +-C .(2)(2)a b a b --+D .1122x y y x --- ??2. 下列各式⼀定成⽴的是()A .222(2)42x y x xy y -=-+B .22()()a b b a -=-C .2221124a b a ab b ??-=++D .222(2)4x y x y +=+3. 若2222(23)412x y x xy n y +=++,则n =__________.4. 若222()44ax y x xy y -=++,则a =________.5. 计算:①112233m n n m --- ??;②22()()()y x x y x y -++;③22(32)4x y y ---;④2()a b c +-;⑤296;⑥2112113111-?.6. 运⽤乘法公式计算:①2(2)(2)(2)x y x y x y -+-+;②22(1)2(24)a a a +--+;③(231)(231)x y x y +--+;④3()a b -;⑤222233m m +-- ? ?;⑥2210199-.思考⼩结1. 在利⽤平⽅差公式计算时要找准公式⾥⾯的a 和b ,我们把完全相同的“项”看作公式⾥的“_____”,只有符号不同的“项”看作公式⾥的“_____”,⽐如()()x y z x y z +---,_______是公式⾥的“a”,_______是公式⾥的“b ”;同样在利⽤完全平⽅公式的时候,如果底数⾸项前⾯有负号,要把底数转为它的______去处理,⽐如22()(_______)a b --=2. 根据两⼤公式填空:+(_______)+(_______)b )22(2【参考答案】巩固练习1. C2. B3. ±34. -25. ①22149n m - ②44x y -+ ③2912x xy +④222 222a ab b bc ac c ++--+ ⑤9 216⑥1 6. ①242xy y --②267a a -+- ③224961x y y -+- ④322333a a b ab b -+- ⑤83m ⑥400 思考⼩结1. a ,b ,(x -z ),y ,相反数,a +b2. 2ab ,2ab ,4ab。
平方公式考点总结及练习
平方差公式及完全平方公式一、知识点讲解 (一)平方差公式:1、概念及公式推导:两数和与这两数差的积,等于它们的平方差。
()()b a b a b a 22-=-+2、公式特点:(1)左边的两个二项式中,其中一项(a )完全相同,另一项(b 和b -)互为相反数(2)右边是相同项的平方减去符号相反项的平方(3)公式中的b a ,可以是具体数字,也可以是单项式或多项式3、变形归纳:(1)位置变化 ()()()()b a b a b a a b a b 22-=-+=++-(2)符号变化 ()()()b a b a b a b a 2222-=-=--+--(3)系数变化 ()()()()yx x x y x y x 943222223232-=-=-+(4)指数变化()()()()n m n m n m n m 4622232323-=-=-+(5)增项变化 ()()()c b a c b a c b a 22-=-++++(6)增因式变化()()()()()()b a b a b a b a b a b a 2222-⎥⎦⎤⎢⎣⎡-=+-+---- (7)连用公式变化()()()()()()()()()b a b a b a b a b a b a b a b a b a b a 8844444422224422-=+-=++-=++-+例1、计算:(1)()()b a b a 2323-+ (2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-21212222x x(4)()()12001200-+ (4)()()z y x z y x -+++(二)完全平方公式1、概念及公式推导:两数的和(或差)的平方,等于这两数的平方和加上(或减去)这两数的积的两倍。
()()bab a b a b ab a b a 22222222+-=++=-+2、公式特点:(1)只有一个符号不同(2)公式中的b a ,可以是数,也可以是单项式或多项式 (3)注意()b a ab 222=与(),2222b ab a b a ++=+()b a b a 222+=+(是错误的做法)3、变形归纳:(1)()ab b a b a 2222-=++(2)()ab b a b a 2222+=+-(3)()()b a b a ab 2222+-=+(4)()()b a b a ab --+=2222(5)()()ab b a b a 422+=-+ (6)()()ab b a b a 422-=+-例2、化简:(1)()b a +32(2)()y x 32+-(4)()n m --2(4)()()c b c b --+例3、已知:.3,4-==-ab b a 求(1)b a 22+ (2)()b a +2二、题型剖析题型一 平方差公式及完全平方公式的运用 例1、计算:(1)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-a b b a 313122 (2)6.94.10⨯(2)()()()3932++-x x x (4)()()a b b a ---33(5)()()z y x z y x 3232-++- (6)()c b a ++22(7)()()y x y x 323222+-题型二 利用公式简化计算 例2、计算:(1)2016220172015-⨯ (2)⎪⎭⎫ ⎝⎛601602(3)8.92 (4)29930122+题型三 推广公式的逆用 例3、计算:(1)()()z y x z x y 3232-----(2)⎪⎪⎭⎫⎝⎛-••⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2016432222211111111题型四 与完全平方公式有关的开放题例4、多项式192+x 加上一个单项式后,使它成为一个整式的完全平方,那么加上的单项式可以是例5、(1)求代数式的322++m m 的最小值(2)求代数式4332++-m m 的最大值题型五 解决实际问题例6、某住宅小区的花园,起初被设计成边长为a m 的正方形,后应道路的原因,设计修改为北边往南平移2.5m ,而东边往东平移2.5m ,则修改后的花园面积和原先设计的花园面积相差多少?巩固提升1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以 2.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a )3.下列计算中,错误的有( )A .1个B .2个C .3个D .4个 ①(3a+4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 2-b 2; ③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2. 4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-5 5.(a+b -1)(a -b+1)=(_____)2-(_____)2. 6.(-2x+y )(-2x -y )=______. 7.(-3x 2+2y 2)(______)=9x 4-4y 4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.9.下列展开结果是n m mn 222--的式子是( ) A. ()n m +2B.()n m +-2B. ()n m --2D.()n m +-210.下列计算:①()b a b a 222+=+ ②()b a b a 222-=-③()b ab a b a 2222+-=- ④()bab a b a 2222+----=.其中正确的有( )A.0个B.1个C.2个D.3个11. 小明在做作业时,不小心把一滴墨水滴在一道数学题上,题目变成了x 21+x ,看不清x 前面的数字是什么,只知道这个二次三项式能配成一个完全平方式,这个被墨水污染了的数字是12.计算 (1)2023×2113. (2)(a+2)(a 2+4)(a 4+16)(a -2)(3)9.1992 (4)7655.0469.27655.02345.122⨯++(5)2012(6)(3+1)(32+1)(34+1)…(32008+1)-40163212. 已知m 2+n 2-6m+10n+34=0,求m+n 的值13. 已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
平方差公式和完全平方公式
平方差公式:两个数的和乘两个数的差的乘积,等于这两个数的平方差 例1:(X+2)(X-2) (2x+21y) (2x-21y) (a+b-c)(a-b+c)(-3x-2y )(3x-2y) (2x+y-z+10)(2x-y+z+10)练习:1、计算(x-2y )(-2y-x)-(3x+4y)(-3x+4y) (x-2)(16+x 4)(2+x)(4+x 2)(2a+b-c-3d)(2a-b-c+3d) (m+n+p+q )(m-n-p-q )例2: 98×102 982(用平方差公式)练习:103×97 118×122 1032例3:(1+xy2)(1-xy2)(-1-x2y4) (x+2y)(x-2y)-(2x-y)(-2x-y),其中x=8. y=8练习:11、(1-2a)(1+2a)(1+4a2)(1+16a4),其中a=-22、(x-y)(x2+y2)(x4+y4)¨¨¨¨(x16+y16)3、(22+1)(24+1)(28+1)(216+1)完全平方公式:1、两个数和的平方,等于这两个数的平方和,加上这两个数积的2倍。
2、两个数差的平方,等于这两个数的平方和,减去这两个数积的2倍。
例4:(2a+3b)2 598 2 (-m-4n)2 (a-2b)2练习:102289.82 (-2a-b)2例5:()?, 2)()3(.,1,2)2(.)1(,51)1(222222222应为多少则如果的值求若的值求已知znmnmznmxyyxyxaaaa++=+-=+=-+=+练习:1、已知x+y=7,xy=2,求:①2x2+2y2的值;②(x-y)2的值.2、如果x+y=6, xy=7, 那么x2+y2=,(x-y)2=。
3、(09深圳)用配方法将代数式a2+4a-5变形,结果正确的是()A.(a+2)2-1B.(a+2)2-5C.(a+2)2+4D.(a+2)2-94、已知x-1÷x=3,求x2-1÷x25、已知x 2 – 4=0,求代数式x(x+1)2 –x(x 2+x)-x-7的值一、科学记数法:1、绝对值大于10的数:na 10⨯ (1≤a 〈10 ,n 是原数的整数位数减1〉 2、绝对值小于1的数:n a -⨯10 (1≤a 〈10,n 是有效数字前0的个数)1米=1000000微米=100万微米 1米=100000000010亿纳米例6:(1)用科学记数法表示下列各数: 696000000 300000000 0.146 -0.000000017例7:人体内的某种细胞中,每个细胞的面积约为1.9×10-12平方米,在一平方厘米的面积内,一层这样的细胞大约有多少万个? 练习:1、100张100元的新版人民币约0.9 cm 厚,则每张新版100元人民币的厚度为________cm(用科学记数法表示).2、人体内一种细胞的直径为 4.3微米,用科学记数法表示这种细胞的直径为 米。
初一奥数专题讲义——完全平方公式与平方差公式
完全平方公式与平方差公式一.知识要点1.乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式完全平方公式:(a±b)2=a2±2ab+b22 23(1(24由(由5(a+b(a-a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
二.例题精选例1.已知x、y满足x2+y2+54=2x+y,求代数式xyx y的值。
例2.整数x,y满足不等式x2+y2+1≤2x+2y,求x+y的值。
例3.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b; 乙商场:两次提价的百分率都是2a b+(a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. 例4.计算:(1)6(7+1)(72+1)(74+1)(78+1)+1;(2)1.345×0.345×2.69-1.3453-1.345×0.3452.例5222()例6例7例8数.12A.x 3A 45(2)19492-19502+19512-19522+……+19972-19982+19992=_________。
6.已知a+1a=5,则=4221a a a ++=_____。
7.已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.8.已知a 2+b 2+4a -2b+5=0,则a ba b +-=_____.9.若代数式b x x +-62可化为1)(2--a x ,则b ﹣a 的值是. 10.已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数. 参考答案: 一.例题精选例1.提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13例2.原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•10x -=11x -=±10x -=解得x y =⎧⎨⎩例3例4.(2)设例5. 例6.P <Q ;差值法:P -例7.例8因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=0二.同步练习9.121)(222-+-=--a ax x a x ,这个代数式于b x x +-62相等,因此对应的系数相等,即﹣2a =﹣6,解得a =3,b a =-12,将a =3代入得b =8,因此b ﹣a =5. 10.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a应为奇质数,c+b与c-b同奇同偶,b与c必为一奇一偶.(2)c+b=a2,c-b=1,两式相减,得2b=a2-1,于是2(a+b+1)=2a+2b+2=2a+a2-1+2=(a+1)2,为一完全平方数.。
8.3《平方差公式与完全平方公式》典型例题精析
8.3 完全平方公式与平方差公式1.了解乘法公式的几何背景,掌握公式的结构特征,并能熟练运用公式进行简单的计算.2.感受生活中两个乘法公式存在的意义,养成“观察—归纳—概括”的数学能力,体会数形结合的思想方法,提高学习数学的兴趣和运用知识解决问题的能力,进一步增强符号感和推理能力.1.完全平方公式(1)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.上式用语言叙述为:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(2)完全平方公式的证明:(a±b)2=(a±b)(a±b)=a2±ab±ab+b2(多项式乘多项式)=a2±2ab+b2(合并同类项).(3)完全平方公式的特点:①左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简单概括为“首平方,尾平方,积的2倍夹中央”.②公式中的a,b可以是单项式,也可以是多项式.③对于符合两数和(或差)的平方的乘法,均可用上述公式计算.【例1-1】用完全平方公式计算(1)(x+2y)2;(2)(2a-5)2;(3)(-2s+t)2;(4)(-3x-4y)2;(5)(2x+y-3z)2.分析:第(1)、(2)两题可直接用和、差平方公式计算;第(3)题可先把它变成(t-2s)2,然后再计算,也可以把-2s看成一项,用和平方公式计算;第(4)题可看成-3x与4y差的平方,也可以看成-3x与-4y和的平方;(5)可把2x+y看成一项,用差平方公式计算,然后再用和平方公式计算,也可以把它看成2x与y-3z的和平方,再用差平方公式计算.解:(1)(x +2y )2=x 2+2·x ·2y +(2y )2=x 2+4xy +4y 2;(2)(2a -5)2=(2a )2-2·2a ·5+52=4a 2-20a +25;(3)(-2s +t )2=(t -2s )2=t 2-2·t ·2s +(2s )2=t 2-4ts +4s 2;(4)(-3x -4y )2=(-3x )2-2·(-3x )·4y +(4y )2=9x 2+24xy +16y 2;(5)(2x +y -3z )2=[2x +(y -3z )]2=(2x )2+2·2x ·(y -3z )+(y -3z )2=4x 2+4xy -12xz +y 2-2·y ·3z +(3z )2=4x 2+y 2+9z 2+4xy -12xz -6yz .(1)千万不要与公式(ab )2=a 2b 2混淆,发生类似(a ±b )2=a 2±b 2的错误;(2)切勿把“乘积项”2ab 中的2漏掉;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形,使其具备公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.此外,在运用公式时要灵活,如第(4)题,由于(-3x -4y )2与(3x +4y )2是相等关系,故可以把(-3x -4y )2转化为(3x +4y )2,再进行计算,再如(5)题,也有许多不同的方法.(4)完全平方公式的几何解释.如图是对(a +b )2=a 2+2ab +b 2几何意义的阐释.大正方形的面积可以表示为(a +b )2,也可以表示为S =S Ⅰ+S Ⅱ+S Ⅲ+S Ⅳ,又S Ⅲ,SⅠ,S Ⅳ,S Ⅱ分别等于a 2,ab ,ab ,b 2,所以S =a 2+ab +ab +b 2=a 2+2ab +b 2.从而验证了完全平方公式(a +b )2=a 2+2ab +b 2.如图是对(a-b)2=a2-2ab+b2几何意义的阐释.正方形Ⅰ的面积可以表示为(a-b)2,也可以表示为SⅠ=S大-SⅡ-SⅣ+SⅢ,又S大,SⅡ,SⅢ,SⅣ分别等于a2,ab,b2,ab,所以SⅠ=a2-ab-ab+b2=a2-2ab+b2.从而验证了完全平方公式(a-b)2=a2-2ab+b2.【例1-2】下图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a,b的恒等式:__________________.解析:根据图中的面积写一个恒等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是由四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积减去四个矩形的面积,即(a+b)2-4ab,空白正方形的面积也等于它的边长的平方,即(a-b)2,根据面积相等有(a+b)2-4ab=(a-b)2.答案:(a+b)2-4ab=(a-b)22.平方差公式(1)平方差公式:(a+b)(a-b)=a2-b2.上式用语言叙述为:两个数的和与这两个数的差的积,等于这两个数的平方差.(2)平方差公式的证明:(a+b)(a-b)=a2-ab+ab+b2(多项式乘多项式)=a2-b2(合并同类项).(3)平方差公式的特点:①左边是两个二项式相乘,这两项中有一项完全相同,另一项互为相反数;②右边是乘式中两项的平方差(相同项的平方减去互为相反数项的平方);③公式中的a和b可以是具体的数,也可以是单项式或多项式.利用此公式进行乘法计算时,应仔细辨认题目是否符合公式特点,不符合平方差公式形式的两个二项式相乘,不能用平方差公式.如(a+b)(a-2b)不能用平方差公式计算.【例2-1】计算:(1)(3x+2y)(3x-2y);(2)(-m+n)(-m-n);(3)(-2x-3)(2x-3).分析:(1)本题符合平方差公式的结构特征,其中3x对应“a”,2y对应“b”;(2)题中相同项为-m,互为相反数的项为n与-n,故本题也符合平方差公式的结构特征;(3)利用加法交换律将原式变形为(-3+2x)(-3-2x),然后运用平方差公式计算.解:(1)(3x+2y)(3x-2y)=(3x)2-(2y)2=9x2-4y2.(2)(-m+n)(-m-n)=(-m)2-n2.(3)(-2x-3)(2x-3)=(-3+2x)(-3-2x)=(-3)2-(2x)2=9-4x2.利用公式计算,关键是分清哪一项相当于公式中的a,哪一项相当于公式中的b,通常情况下,为防止出错,利用公式前把相同项放在前面,互为相反数的项放在后面,然后套用公式.(4)平方差公式的几何解释如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式(a+b)(a-b)=a2-b2.【例2-2】下图由边长为a和b的两个正方形组成,通过用不同的方法,计算图中阴影部分的面积,可以验证的一个乘法公式是____________________.分析:要表示阴影部分的面积,可以从两个方面出发:一是观察阴影部分是由边长为a的正方形除去边长为b的正方形得到的,所以它的面积等于a2-b2;二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积之和.这两个梯形的面积都等于12 (b+a)(a-b),所以梯形的面积和是(a+b)(a-b),根据阴影部分的面积不变,得(a+b)(a-b)=a2-b2.因此验证的一个乘法公式是(a+b)(a-b)=a2-b2.答案:(a+b)(a-b)=a2-b23.运用乘法公式简便计算平方差公式、完全平方公式不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式、完全平方公式无关,但若根据数字的结构特点,灵活巧妙地运用平方差公式、完全平方公式,常可以使运算变繁为简,化难为易.解答此类题,关键是分析数的特点,看能否将数改写成两数和的形式及两数差的形式,若改写成两数和的形式乘以两数差的形式,则用平方差公式;若改写成两数和的平方形式或两数差的平方形式,则用完全平方公式.【例3】计算:(1)2 0132-2 014×2 012;(2)1032;(3)1982.分析:(1)2 014=2 013+1,2 012=2 013-1,正好符合平方差公式,可利用平方差公式进行简便运算;(2)可将1032改写为(100+3)2,利用两数和的平方公式进行简便运算;(3)可将1982改写为(200-2)2,利用两数差的平方公式进行简便运算.解:(1)2 0132-2 014×2 012=2 0132-(2 013+1)×(2 013-1)=2 0132-(2 0132-12)=2 0132-2 0132+1=1.(2)1032=(100+3)2=1002+2×100×3+32=10 000+600+9=10 613.(3)1982=(200-2)2=2002-2×200×2+22=40 000-800+4=39 204.4.利用乘法公式化简求值求代数式的值时,一般情况是先化简,再把字母的值代入化简后的式子中求值.在化简的过程中,合理地利用乘法公式能使整式的运算过程变得简单.在代数式化简过程中,用到平方差公式及完全平方公式时,要特别注意应用公式的准确性.【例4】先化简,再求值:5(m +n )(m -n )-2(m +n )2-3(m -n )2,其中m =-2,n =15. 解:5(m +n )(m -n )-2(m +n )2-3(m -n )2=5(m 2-n 2)-2(m 2+2mn +n 2)-3(m 2-2mn +n 2)=5m 2-5n 2-2m 2-4mn -2n 2-3m 2+6mn -3n 2=-10n 2+2mn .当m =-2,n =15时,原式=-10n 2+2mn =-10×⎝ ⎛⎭⎪⎫152+2×(-2)×15=-65. 5.乘法公式的运用技巧一些多项式的乘法或计算几个有理数的积时,表面上看起来不能利用乘法公式,实际上经过简单的变形后,就能直接运用乘法公式进行计算了.有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.在运用平方差公式时,注意以下几种常见的变化形式:①位置变化:(b +a )(-b +a )=a 2-b 2.②符号变化:(-a +b )(-a -b )=(-a )2-b 2=a 2-b 2.③系数变化:(0.5a +3b )(0.5a -3b )=(0.5a )2-(3b )2.④指数变化:(a 2+b 2)(a 2-b 2)=(a2)2-(b2)2=a4-b4.⑤增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,(a+b-c)(a-b+c)=a2-(b-c)2.⑥增因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2.⑦连用公式变化:(a-b)(a+b)(a2+b2)(a4+b4)=a8-b8.【例5-1】计算:(1)(a+b+1)(a+b-1);(2)(m-2n+p)2;(3)(2x-3y)2(2x+3y)2.解:(1)(a+b+1)(a+b-1)=[(a+b)+1][(a+b)-1]=(a+b)2-1=a2+2ab+b2-1.(2)(m-2n+p)2=[(m-2n)+p]2=(m-2n)2+2·(m-2n)·p+p2=m2-4mn+4n2+2mp-4np+p2.(3)(2x-3y)2(2x+3y)2=[(2x-3y)(2x+3y)]2=(4x2-9y2)2=(4x2)2-2×4x2×9y2+(9y2)2=16x4-72x2y2+81y4.在运用平方差公式时,应分清两个因式是否是两项之和与差的形式,符合形式才可以用平方差公式,否则不能用;完全平方公式就是求一个二项式的平方,其结果是一个三项式,在计算时不要发生:(a+b)2=a2+b2或(a-b)2=a2-b2这样的错误;当因式中含有三项或三项以上时,要适当的分组,看成是两项,从而应用平方差公式或完全平方公式.【例5-2】计算:(2+1)(22+1)(24+1)(28+1)…(22n+1)的值.分析:为了能便于运用平方差公式,观察到待求式中都是和的形式,没有差的形式,可设法构造出差的因数,于是可乘以(2-1),这样就可巧妙地运用平方差公式了.解:(2+1)(22+1)(24+1)(28+1)…(22n+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22n+1)=(22-1)(22+1)(24+1)(28+1)…(22n+1)=(24-1)(24+1)(28+1)…(22n+1)=…=(22n-1)(22n+1)=24n-1.6.乘法公式的实际应用在解决生活中的实际问题时,经常把其中的一个量或几个量先用字母表示,然后列出相关式子,进而化简,这往往涉及到整式的运算.解题时,灵活运用乘法公式,往往能事半功倍,使问题得到快速解答.【例6】一个正方形的边长增加3 cm,它的面积就增加39 cm2,这个正方形的边长是多少?分析:如果设原正方形的边长为x cm,根据题意和正方形的面积公式可列出方程(x+3)2=x2+39,求解即可.解:设原正方形的边长为x cm,则(x+3)2=x2+39,即x2+6x+9=x2+39,解得x=5(cm).故这个正方形的边长是5 cm.7.完全平方公式的综合运用学习乘法公式应注意掌握公式的特征,认清公式中的“两数”,注意为使用公式创造条件.(1)完全平方公式变形后可得到以下一些新公式:①a 2+b 2=(a +b )2-2ab ;②a 2+b 2=(a -b )2+2ab ;③(a +b )2=(a -b )2+4ab ;④(a -b )2=(a +b )2-4ab ;⑤(a +b )2+(a -b )2=2(a 2+b 2);⑥(a +b )2-(a -b )2=4ab 等.在公式(a ±b )2=a 2±2ab +b 2中,如果把a +b ,ab 和a 2+b 2分别看做一个整体,则知道了其中两个就可以求第三个.(2)注意公式的逆用不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,特别是完全平方公式的逆用——a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.【例7-1】已知a 2+b 2+4a -2b +5=0,则a +b a -b的值是__________.解析:原等式可化为(a 2+4a +4)+(b 2-2b +1)=0,即(a +2)2+(b -1)2=0,根据非负数的特点知a +2=0且b -1=0,从而可知a =-2且b =1.然后将其代入求a +b a -b的值即可. 答案:13【例7-2】已知a +b =2,ab =1,求a 2+b 2的值.分析:利用完全平方公式有(a +b )2=a 2+2ab +b 2,把2ab 移到等式的左边,可得(a +b )2-2ab =a 2+b 2,然后代入求值即可.解:∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2aB .∵a +b =2,ab =1,∴a 2+b 2=22-2×1=2.涉及两数和或两数差及其乘积的问题,就要联想到完全平方公式.本题也可从条件出发解答,如因为a+b=2,所以(a+b)2=22,即a2+2ab+b2=4.把ab=1代入,得a2+2×1+b2=4,于是可得a2+b2=4-2=2.。
第03讲 平方差和完全平方公式(知识解读+真题演练+课后巩固)(解析版)
第03讲平方差和完全平方公式1.掌握平方差和完全平方公式结构特征,并能从广义上理解公式中字母的含义;2.学会运用平方差和完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3.能灵活地运用运算律与乘法公式简化运算.4.能用平方差和完全平方公式的逆运算解决问题知识点1:平方差公式平方差公式:22()()a b a b a b+-=-语言描述:两个数的和与这两个数的差的积,等于这两个数的平方差.注意:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.知识点2:平方差公式的特征抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:①位置变化,(x +y )(-y +x )=x 2-y 2②符号变化,(-x +y )(-x -y )=(-x )2-y 2=x 2-y 2③指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④系数变化,(2a +b )(2a -b )=4a 2-b 2⑤换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2=x 2-2xy +y 2-z 2知识点3:完全平方公式完全平方公式:()2222a b a ab b+=++2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍注意:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab=-+()()224a b a b ab+=-+知识点4:拓展、补充公式2222222a b c ab ac bc=+++++(a+b+c)222112a a a±=+±(a )2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=± ;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++.【题型1平方差公式运算】【典例1】(2023春•渭南期中)计算(3a +2)(3a ﹣2)=9a 2﹣4.【答案】9a 2﹣4.【解答】解:(3a +2)(3a ﹣2)=9a 2﹣4.故答案为:9a 2﹣4.【变式1-1】(2023春•蕉城区校级月考)若a +b =1,a ﹣b =2022,则a 2﹣b 2=2022.【答案】2022.【解答】解:∵a +b =1,a ﹣b =2022,∴(a+b)(a﹣b)=a2﹣b2=1×2022=2022.故答案为:2022.【变式1-2】(2023春•双峰县期末)(4a+b)(﹣b+4a)=16a2﹣b2.【答案】16a2﹣b2.【解答】解:原式=(4a)2﹣b2=16a2﹣b2.故答案为:16a2﹣b2.【变式1-3】(2023春•埇桥区期末)计算:(2x﹣3y)(3y+2x)=4x2﹣9y2.【答案】4x2﹣9y2.【解答】解:(2x﹣3y)(3y+2x)=(2x)2﹣(3y)2=4x2﹣9y2.故答案为:4x2﹣9y2.【典例2】(2023春•佛冈县期中)19992﹣1998×2002.【答案】﹣3995.【解答】解:原式=(2000﹣1)2﹣(2000﹣2)×(2000+2)=20002﹣4000+1﹣20002+4=﹣3995.【变式2-1】(2023•皇姑区校级开学)简便运算:20222﹣2020×2024.【答案】4.【解答】解:20222﹣2020×2024=20222﹣(2022﹣2)×(2022+2)=20222﹣(20222﹣4)=20222﹣20222+4=4.【变式2-2】(2023春•安乡县期中)计算:20222﹣2021×2023.【答案】1.【解答】解:20222﹣2021×2023.=20222﹣(2022﹣1)×(2022+1)=20222﹣20222+1=1.【变式2-3】(2023春•渭滨区期末)用整式乘法公式计算:899×901+1.【答案】810000.【解答】解:899×901+1=(900﹣1)×(900+1)+1=9002﹣1+1=810000.【题型2平方差公式的逆运算】【典例3】(2023春•海阳市期末)已知x+2y=13,x2﹣4y2=39,则多项式x﹣2y的值是3.【答案】3.【解答】解:∵x+2y=13,x2﹣4y2=39,∴x2﹣4y2=(x+2y)(x﹣2y)=39,∴x﹣2y=3.故答案为:3.【变式3-1】(2023春•辽阳期末)若m2﹣n2=6,且m+n=3,则n﹣m等于﹣2.【答案】﹣2.【解答】解:∵(m+n)(m﹣n)=m2﹣n2,∴m﹣n=(m2﹣n2)÷(m+n)=6÷3=2,∴n﹣m=﹣2,故答案为:﹣2.【变式3-2】(2023春•广饶县期中)已知实数a,b满足a2﹣b2=40,a﹣b=4,则a+b的值为10.【答案】10.【解答】解:∵a2﹣b2=40,∴(a+b)(a﹣b)=40,∵a﹣b=4,∴a+b=10.故答案为:10.【变式3-3】(2023春•甘州区校级期末)若m2﹣n2=6,m+n=3,则=1.【答案】1.【解答】解:∵m2﹣n2=6,m+n=3,∴(m﹣n)(m+n)=6,则m﹣n的值是2,∴=1.故答案为:1.【题型3平方差公式的几何背景】【典例4】(2023春•东昌府区校级期末)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成垄一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:B.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)D.a2﹣b2=(a﹣b)2(2)应用你从(1)选出的等式,完成下列各题:①已知:a+b=7,a2﹣b2=28,求a﹣b的值;②计算:;【答案】(1)B;(2)a﹣b=4;(3).【解答】解:(1)第一个图形面积为a2﹣b2,第二个图形的面积为(a+b)(a ﹣b),∴可以验证的等式是:a2﹣b2=(a+b)(a﹣b),故答案为:B;(2)∵a+b=7,a2﹣b2=28,∴(a+b)(a﹣b)=28,即7(a﹣b)=28,∴a﹣b=4;(3)原式=(1﹣)×(1+)×(1﹣)×(1+)×(1﹣)×(1+)×...×(1﹣)×(1+)=××××××...××=×=.【变式4-1】(2023春•高明区月考)乘法公式的探究及应用.(1)如图1到图2的操作能验证的等式是D.(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2+ab=a(a+b)C.(a﹣b)2=(a+b)2﹣4abD.a2﹣b2=(a+b)(a﹣b)(2)当4m2=12+n2,2m+n=6时,则2m﹣n=2;(3)运用你所得到的公式,计算下列各题:①20232﹣2022×2024;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1.【答案】(1)D;(2)2;(3)①1;②332.【解答】解:(1)如图,图1中阴影面积为a2﹣b2,图2的阴影面积为(a+b)(a﹣b),∴图1到图2的操作能验证的等式是a2﹣b2=(a+b)(a﹣b),故答案为:D;(2)∵4m2=12+n2,∴4m2﹣n2=12即(2m+n)(2m﹣n)=12,∵2m+n=6,∴2m﹣n=2,故答案为:2;(3)①20232﹣2022×2024=20232﹣(2023﹣1)×(2023+1)=20232﹣20232+1=1;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)+1=(38﹣1)×(38+1)×(316+1)+1=(316﹣1)×(316+1)+1=332﹣1+1=332.【变式4-2】(2023春•清远期末)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)根据上述操作利用阴影部分的面积关系得到的等式:C(选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2;B.a2+ab=a(a+b);C.a2﹣b2=(a+b)(a﹣b),D.(a﹣b)2=(a+b)2﹣4ab(2)请应用(1)中的等式,解答下列问题:(1)计算:2022×2024﹣20232;(2)计算:3(22+1)(24+1)(28+1)…(264+1)+1.【答案】(1)C;(2)①﹣1,2128.=a2﹣b2.根据图2知:S阴影=(a+b)(a 【解答】解:(1)根据图1知:S阴影﹣b),∴a2﹣b2=(a+b)(a﹣b),故选:C.(2)①原式=(2023﹣1)(2023+1)﹣20232=20232﹣12﹣20232=﹣1.②原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(264+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(264+1)+1=(24﹣1)(24+1)(28+1)…(264+1)+1=(2128﹣1)+1=2128.【变式4-3】(2023春•屏南县期中)乘法公式的探究及应用:如图,在边长为a 的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2;(2)利用上述乘法公式计算:①1002﹣98×102;②(2m+n﹣p)(2m+n+p).【答案】(1)(a+b)(a﹣b)=a2﹣b2;(2)①4;②4m2+4mn+n2﹣p2.【解答】解:(1)两个图形中阴影部分面积一致,大小正方形面积之差等于等腰梯形的面积,且等腰梯形的高为大小正方形边长差,故;故答案为:(a+b)(a﹣b)=a2﹣b2;(2)①1002﹣98×102=1002﹣(100﹣2)(100+2)=1002﹣(1002﹣22)=1002﹣1002+22=4②(2m+n﹣p)(2m+n+p)=(2m+n)2﹣p2=4m2+4mn+n2﹣p2.【题型4完全平方公式】【典例5】(2023春•砀山县校级期末)计算:(x+4)2﹣x2=8x+16.【答案】8x+16.【解答】解:(x+4)2﹣x2=x2+8x+16﹣x2=8x+16,故答案为:8x+16.【变式5-1】(2023春•威宁县期末)已知x2+y2=10,xy=2,则(x﹣y)2=6.【答案】见试题解答内容【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.【变式5-2】(2023春•东港市期中)若(2x﹣m)2=4x2+nx+9,则n的值为±12.【答案】±12.【解答】解:∵(2x﹣m)2=4x2﹣4mx+m2,∴m2=9,∴m=±3,∴n=﹣4m=±12.故答案为:±12.【变式5-3】(2023春•未央区校级月考)计算:(x+2)2+(1﹣x)(2+x).【答案】3x+6.【解答】解:原式=x2+4x+4+2+x﹣2x﹣x2=3x+6.【题型5完全平方公式下得几何背景】【典例6】(2023秋•绿园区校级月考)为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:=(m﹣n)2;方法一:S小正方形=(m+n)2﹣4mn;方法二:S小正方形(2)(m+n)2,(m﹣n)2,4mn这三个代数式之间的等量关系为(m+n)2=(m﹣n)2+4mn;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a﹣=1,求:的值.【答案】(1)(m﹣n)2,(m+n)2﹣4mn;(2)(m+n)2=(m﹣n)2+4mn;(3)①1;②5.【解答】解:(1)方法1:;方法2:,故答案为:(m﹣n)2,(m+n)2﹣4mn;(2)∵(m+n)2=m2+2mn+n2,(m﹣n)2+4mn=m2﹣2mn+n2+4mn=m2+2mn+n2,∴(m+n)2=(m﹣n)2+4mn,故答案为:(m+n)2=(m﹣n)2+4mn;(3)①a﹣b=5,ab=﹣6,∴(a+b)2=(a﹣b)2+4ab,=52+4×(﹣6)=25+(﹣24)=1;②=12+4=1+4=5.【变式6-1】(2023春•甘州区校级期中)图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于x﹣y.(2)试用两种不同的方法求图2中阴影部分的面积.方法1:(x﹣y)2;方法2:(x+y)2﹣4xy.(3)根据图2你能写出下列三个代数式之间的等量关系吗?代数式:(x+y)2,(x﹣y)2,4xy.(x+y)2=(x﹣y)2+4xy(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,则(x﹣y)2=4.【答案】见试题解答内容【解答】解:(1)图②中的阴影部分的小正方形的边长=x﹣y;故答案为:(x﹣y);(2)方法①(x﹣y)2;方法②(x+y)2﹣4xy;故答案为:(x﹣y)2,(x+y)2﹣4xy;(3)(x+y)2=(x﹣y)2+4xy;故答案为:(x+y)2=(x﹣y)2+4xy;(4)(x﹣y)2=(x+y)2﹣4xy=42﹣12=4故答案为:4.【变式6-2】(2023•永修县校级开学)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:(m+n)2﹣4mn;方法二:(m﹣n)2.(2)根据(1)的结论,请你写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b =6,ab=5,求a﹣b的值.【答案】(1)(m+n)2﹣4mn,(m﹣n)2;(2)代数式(m+n)2,(m﹣n)2,mn之间的等量关系可表示为:(m+n)2﹣4mn=(m﹣n)2;(3)±4.【解答】解:(1)由题意得,图②中阴影部分的面积为(m+n)2﹣4mn或(m﹣n)2,故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由(1)题可得,(m+n)2﹣4mn=(m﹣n)2,∴代数式(m+n)2,(m﹣n)2,mn之间的等量关系可表示为:(m+n)2﹣4mn=(m﹣n)2;(3)由(2)题结果可得,(a+b)2﹣4ab=(a﹣b)2,∴a﹣b=±,∴当a+b=6,ab=5时,a﹣b=±=±==±4.【变式6-3】(2023春•湖州期中)阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b.则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80.解决问题:(1)若x满足(2021﹣x)2+(x﹣2018)2=2020.求(2021﹣x)(x﹣2018)的值;(2)如图,在矩形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x.分别以FC、CE为边在矩形ABCD外侧作正方形CFGH 和CEMN,若矩形CEPF的面积为160平方单位,求图中阴影部分的面积和.【答案】(1)﹣;(2)384.【解答】解:(1)设2021﹣x=a,x﹣2008=b.则a+b=3,而(2021﹣x)2+(x﹣2018)2=2020=a2+b2,∴(2020﹣x)(x﹣2018)=ab===﹣;(2)由AB=20,BC=12,BE=DF=x,则CE=12﹣x,CF=20﹣x,∵矩形CEPF的面积为160平方单位,∴(12﹣x)(20﹣x)=160,∴S=CE2+FC2=(12﹣x)2+(20﹣x)2,阴影部分设12﹣x=m,20﹣x=n,则mn=160,m﹣n=﹣8,∴S=CE2+FC2=(12﹣x)2+(20﹣x)2,阴影部分=m2+n2=(m﹣n)2+2mn=64+320=384,即阴影部分的面积为384.【题型6完全平方公式的逆运算】【典例7】(2023春•永丰县期中)已知:a2+b2=3,a+b=2.求:(1)ab的值;(2)(a﹣b)2的值;(3)a4+b4的值.【答案】(1);(2)2;(3).【解答】解:(1)∵a+b=2,∴(a+b)2=4,即a2+2ab+b2=4,∵a2+b2=3,∴3+2ab=4,∴ab=;(2)(a﹣b)2=(a+b)2﹣4ab=4﹣4×=2;(3)a4+b4=(a2+b2)2﹣2a2b2=(a2+b2)2﹣2(ab)2=32﹣2×()2=9﹣=.【变式7-1】(2023春•都昌县期末)已知实数m,n满足m+n=6,mn=﹣3.(1)求(m+2)(n+2)的值;(2)求m2+n2的值.【答案】(1)13;(2)42.【解答】解:(1)因为m+n=6,mn=﹣3,所以(m+2)(n+2)=mn+2m+2n+4=mn+2(m+n)+4=﹣3+2×6+4=13.(2)m2+n2=(m+n)2﹣2mn=62﹣2×(﹣3)=36+6=42.【变式7-2】(2023春•周村区期末)若x+y=2,且(x+3)(y+3)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【答案】见试题解答内容【解答】解:(1)∵(x+3)(y+3)=12,∴xy+3x+3y+9=12,则xy+3(x+y)=3,将x+y=2代入得xy+6=3,则xy=﹣3;(2)当xy=﹣3、x+y=2时,原式=(x+y)2+xy=22+(﹣3)=4﹣3=1.【变式7-3】(2022秋•大安市期末)已知m﹣n=6,mn=4.(1)求m2+n2的值.(2)求(m+2)(n﹣2)的值.【答案】(1)44;(2)﹣12.【解答】解:(1)因为m﹣n=6,mn=4,所以m2+n2=(m﹣n)2+2mn=62+2×4=36+8=44;(2)因为m﹣n=6,mn=4,所以(m+2)(n﹣2)=mn﹣2m+2n﹣4=mn﹣2(m﹣n)﹣4=4﹣2×6﹣4=﹣12.1.(2023•深圳)下列运算正确的是()A.a3•a2=a6B.4ab﹣ab=4C.(a+1)2=a2+1D.(﹣a3)2=a6【答案】D【解答】解:A,a3•a2=a3+2=a5,故A选项错误,不合题意;B,4ab﹣ab=3ab,合并同类项结果错误,故B选项错误,不合题意;C,(a+1)2=a2+2a+1,故C选项错误,不合题意;D,(﹣a3)2=a3×2=a6,故D选项正确,符合题意;故选:D.2.(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.5【答案】A【解答】解:(x+2)(x﹣2)﹣2x=1,x2﹣4﹣2x=1,x2﹣2x=5,所以2x2﹣4x+3=2(x2﹣2x)+3=2×5+3=10+3=13,故选:A.3.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b2【答案】A【解答】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.4.(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2【答案】A【解答】解:(x+2y)2=x2+4xy+4y2.故选:A.5.(2023•凉山州)已知y2﹣my+1是完全平方式,则m的值是±2.【答案】±2.【解答】解:∵y2﹣my+1是完全平方式,y2﹣2y+1=(y﹣1)2,y2﹣(﹣2)y+1=(y+1)2,∴﹣m=﹣2或﹣m=2,∴m=±2.故答案为:±2.6.(2023•雅安)若a+b=2,a﹣b=1,则a2﹣b2的值为2.【答案】2.【解答】解:∵a+b=2,a﹣b=1,∴a2﹣b2=(a+b)(a﹣b)=2×1=2.故答案为:2.7.(2023•江西)化简:(a+1)2﹣a2=2a+1.【答案】2a+1.【解答】解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+1.8.(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【答案】8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.9.(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=4.【答案】4.【解答】解:∵m2+n2+10=6m﹣2n,∴m2﹣6m+9+n2+2n+1=0,即(m﹣3)2+(n+1)2=0,∴m=3,n=﹣1,∴m﹣n=4,故答案为:4.10.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为或﹣..【答案】见试题解答内容【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t=或t=.故答案为:或﹣.11.(2022•滨州)若m+n=10,mn=5,则m2+n2的值为90.【答案】90.【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.12.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=4.【答案】4.【解答】解:∵(x+y)2=x2+y2+2xy=25,(x﹣y)2=x2+y2﹣2xy=9,∴两式相减得:4xy=16,则xy=4.故答案为:413.(2023•兰州)计算:(x+2y)(x﹣2y)﹣y(3﹣4y).【答案】x2﹣3y.【解答】解:原式=x2﹣4y2﹣(3y﹣4y2)=x2﹣4y2﹣3y+4y2=x2﹣3y.14.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积a2﹣M;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.【答案】(1)a2﹣M;(2)50.【解答】解:(1)A中能使用的面积=大正方形的面积﹣不能使用的面积,即a2﹣M,故答案为:a2﹣M;(2)A比B多出的使用面积为:(a2﹣M)﹣(b2﹣M)=a2﹣b2=(a+b)(a﹣b)=10×5=50,答:A比B多出的使用面积为50.1.(2023春•市南区校级期中)下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)【答案】D【解答】解:∵(2a+b)(2b﹣a)不符合平方差公式的特点,∴选项A不符合题意;∵(x+1)(﹣x﹣1)=﹣(x+1)2,∴选项B不符合题意;∵(3x﹣y)(﹣3x+y)=﹣(3x﹣y)2,∴选项C不符合题意;∵(﹣m+n)(﹣m﹣n)=(﹣m)2﹣n2,∴选项D符合题意;故选:D.2.(2022秋•睢阳区期末)如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是()A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2 C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)【答案】D【解答】解:∵图1中的阴影部分面积为:a2﹣b2,图2中阴影部分面积为:(2b+2a)(a﹣b),∴a2﹣b2=(2b+2a)(a﹣b),即a2﹣b2=(a+b)(a﹣b),故选:D.3.(2022秋•嵩县期末)已知x+y=8,xy=12,则x2﹣xy+y2的值为()A.42B.28C.54D.66【答案】B【解答】解:∵x+y=8,xy=12,∴原式=(x+y)2﹣3xy=82﹣3×12=64﹣36=28.故选:B.4.(2022秋•海口期末)等式(﹣a﹣1)()=a2﹣1中,括号内应填入.A.a+1B.﹣1﹣a C.1﹣a D.a﹣1【答案】C【解答】解:结合题意,可知相同项是﹣a,相反项是1和﹣1,∴空格中应填:1﹣a.故选:C.5.(2022秋•离石区期末)若二次三项式x2+kx+4是一个完全平方式,则k的值是()A.4B.﹣4C.±2D.±4【答案】D【解答】解:中间项为加上或减去x和2乘积的2倍,故k=±4.故选:D.6.(2023春•攸县期末)若x2﹣y2=3,则(x+y)2(x﹣y)2的值是()A.3B.6C.9D.18【答案】C【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,∴原式=32=9,故选:C.7.(2022秋•邹城市校级期末)已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4B.4或﹣2C.±4D.﹣2【答案】B【解答】解:∵x2+2(m﹣1)x+9是一个完全平方式,∴2(m﹣1)=±6,解得:m=4或m=﹣2,故选:B.8.(2022秋•渝北区校级期末)化简:(x+2y)2﹣(x+y)(3x﹣y).【答案】﹣2x2+2xy+5y2.【解答】解:原式=x2+4xy+4y2﹣(3x2﹣xy+3xy﹣y2)=x2+4xy+4y2﹣3x2+xy﹣3xy+y2=﹣2x2+2xy+5y2.9.(2023春•渭滨区期中)请你参考黑板中老师的讲解,用乘法公式进行简便计算:利用乘法公式有时可以进行简便计算.例1:1012=(100+1)2=1002+2×100×1+1=10201;例2:17×23=(20﹣3)(20+3)=202﹣32=391.(1)9992;(2)20222﹣2021×2023.【答案】(1)998001;(2)1.【解答】解:(1)原式=(1000﹣1)2=10002﹣2×1000×1+1=1000000﹣2000+1=998001;(2)20222﹣(2022﹣1)×(2022+1)=20222﹣20222﹣+1=1.10.(2022秋•龙湖区期末)请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简)(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14.求:①a+b的值;②a2﹣b2的值.【答案】见试题解答内容【解答】解:(1)两个阴影图形的面积和可表示为:a2+b2,(a+b)2﹣2ab,(2)a2+b2=(a+b)2﹣2ab,(3)①∵a2+b2=53,ab=14,∴(a+b)2=a2+b2+2ab=53+2×14=81,∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵(a﹣b)2=a2+b2﹣2ab=53﹣2×14=25∴a﹣b=±5又∵a>b>0,∴a﹣b=5∴a2﹣b2=(a+b)(a﹣b)=9×5=45.11.(2022秋•高安市期末)已知a+b=7,ab=﹣2.求:(1)a2+b2的值;(2)(a﹣b)2的值.【答案】(1)53.(2)57.【解答】解:(1)∵a+b=7,ab=﹣2,∴(a+b)2=a2+b2+2ab=a2+b2+(﹣4)=49.∴a2+b2=53.(2)∵a+b=7,ab=﹣2,∴(a﹣b)2=a2+b2﹣2ab=a2+b2﹣(﹣4)=53+4=57.12.(2022•荆门)已知x+=3,求下列各式的值:(1)(x﹣)2;(2)x4+.【答案】(1)5;(2)47.【解答】解:(1)∵=,∴===﹣4x•=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.13.(2022秋•阳城县期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是C;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.b2+ab=b(a+b)C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x的值.②计算:.【答案】(1)C;(2);(3).【解答】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故选:C;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y),得:x﹣2y=3,联立,①+②,得2x=7,解得:x=;②=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)==×=.14.(2023春•威海期中)利用简便方法计算:(1)501×499+1;(2)0.125×104×8×104.【答案】见试题解答内容【解答】解:(1)原式=(500+1)×(500﹣1)+1=5002﹣1+1=5002=250000;(2)原式=(0.125×8)×(104×104)=108.15.(2022秋•南昌期末)图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)求图2中的阴影部分的正方形的周长;(2)观察图2,请写出下列三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系;(3)运用你所得到的公式,计算:若m、n为实数,且mn=﹣3,m﹣n=4,试求m+n的值.(4)如图3,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=8,两正方形的面积和S1+S2=26,求图中阴影部分面积.【答案】答:(1)4a﹣4b;(2)(a﹣b)2=(a﹣b)2+4ab;(3)m+n=±2;=.(4)S阴影【解答】解:(1)阴影部分的正方形边长为a﹣b,故周长为4(a﹣b)=4a﹣4b,故答案为:4a﹣4b;(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab+(a ﹣b)2,大正方形边长为a+b,故面积也可以表达为:(a+b)2,因此(a+b)2=(a﹣b)2+4ab,故答案为:(a+b)2=(a﹣b)2+4ab;(3)由(2)可知:(m+n)2=(m﹣n)2+4mn,已知m﹣n=4,mn=﹣3,所以(m+n)2=16+4×(﹣3)=4,所以m+n=±2;故m+n的值为±2;(4)设AC=a,BC=b,因为AB=8,S1+S2=26,所以a+b=8,a2+b2=26,因为(a+b)2=a2+b2+2ab,所以64=26+2ab,解得ab=19,由题意:∠ACF=90°,=ab=.所以S阴影16.(2022秋•丹棱县期末)阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac =38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片.若干个长为a和宽为b的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a2+5ab+2b2=(2a+b)(a+2b).【答案】见试题解答内容【解答】解:(1)根据题意,大矩形的面积为:(a+b+c)(a+b+c)=(a+b+c)2,各小矩形部分的面积之和=a2+2ab+b2+2bc+2ac+c2,∴等式为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=112﹣2×38=45.(3)如图所示。
平方差、完全平方公式复习讲义精华部分)
题型4:完全平方公式变形的使用
常用的完全平方公式变形:
= —2
已知 求 与理解到
试说明不论x,y取何值,代数式 的值总是正数。
题型6:整体思想在整式运算中的运用:把题目已知的条件作为一个整体,用已知条件表示出未知条件,从而得出结果
两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
2.结构特点:左边是二项式(两数和(差))的平方; 右边是两数的平方和加上(减去)这两数乘积的两倍。
3.口诀(记忆方法):首尾先平方,两倍乘积放中央。
题型1: (a+b+3)(a+b-3)(a-2b+3c)2-(a+2b-3c)2;
(a+b-1)(a-b+1)
A.1个 B.2个 C.3个 D.4个
2.若x2-y2=30,且x-y=-5,则x+y的值是( )3.(a+b-1)(a-b+1)=(_____)2-(_____)2.
A.5 B.6 C.-6 D.-5
3.(2007,泰安,3分)下列运算正确的是( )
A.a3+a3=3a6B.(-a)3·(-a)5=-a8
当公式中的a或b 是多项式时,解题的时候要注意将这个多项式看成一个整体作为公式里的a或b,再利用平方差公式或完全平方公式.
题型2:利用平方差公式和完全平方差公式解决一些复杂数字相乘运算,一定要根据题目,仔细揣摩符合哪个公式。
计算20 ×21 计算 计算
题型3: 构造平方差及列项相消法
计算(3+1)(32+1)(34+1)…(332+1)-
C.(-2a2b)·4a=-24a6b3D.(- a-4b)( a-4b)=16b2- a2
完全平方公式和平方差公式
乘法公式1.平方差公式(1)平方差公式的推导:因为(a +b )(a -b )=a 2-ab +ab -b 2=a 2-b 2,所以(a +b )(a -b )=a 2-b 2.【例1】 利用平方差公式计算.(1)(2a +3b )(-2a +3b ); (2)503×497.2.完全平方公式(1)两数和的完全平方公式:(a +b )2=a 2+2ab +b 2;两数差的完全平方公式:(a -b )2=a 2-2ab +b 2.析规律 完全平方公式的特征 完全平方公式总结口诀为:首平方,尾平方,首尾二倍积,加减在中央.【例2】 计算:(1)(4m +n )2; (2)(y -12)2; (3)(-a -b )2; (4)(-2a +12b )2.3.添括号法则法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.警误区 添括号法则的易错点 添括号时,如果括号前面是负号,括到括号里面的各项都改变符号,不可只改变部分项的符号,如:a -b +c =a -(b +c ),这样添括号时只是改变了第一项的符号,而第二项的符号没有改变,所以这样添括号是错误的.【例3】 填空:(1)(x -y +z )(x +y -z )=[x -( )][x +( )];(2)(x +y +z )(x -y -z )=[x +( )][x -( )].【例4】 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式__________.【例6】 观察下列各式的规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;…写出第n 行的式子,并证明你的结论.类型一:巧用乘法公式 类型二:平方差与完全平方公式混用22114422x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭计算: ()()a b c a b c ++--计算:类型三:完全平方公式在三角形中的运用例3、已知△ABC 的三边长a,b,c 满足2220a b c ab bc ac ++---=,试判断△ABC 的形状类型四:利用乘法公式解方程(组)例4:()()()()222432x y x y x y x y ⎧+-+=+-⎪⎨-=-⎪⎩解方程组类型五:多项式的证明例5:证明无论a,b 为何值,多项式222612a b a b +--+的值恒为正类型六:灵活运用乘法公式解题例6、计算22222111111-1-1-11234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭拓展:三项完全平方公式:()2222222a b c a b c ab ac bc ++=+++++ 二次三项式:()()()2+x a x b x a b x ab +=+++ 立方和公式:()()3322a b a b a ab b +=+-+立方差公式:()()3322-+a b a b a ab b =++1、若()()234+,,x x x px q p q --=+那么的值分别是2、()()()224,b ax b x x ab ++=-+=若则3、()()3x m x ++如与的乘积中不含x 的一次项,则m 的值为4、已知()()250,3+2a a a a -+=-则的值是5、已知实数()()2222,1,25,a b a b a b b ab +=-=++=满足则a6、将代数式()2262x x x p q ++++化成的形式为7、若2+216x ax +是一个完全平方展开式,则a 的值是________-8、已知216x x k ++是个完全平方式,则常数k 的值为_______9、若()222560,x =x y xy y +-+-=+则___________- 10、已知2221114,x x x x x ⎛⎫+=+- ⎪⎝⎭求x 和的值 11、知实数()()2222,1,25,a b a b a b b ab +=-=++=满足则a课后练习1.下列各式中,相等关系一定成立的是( )A.(x -y)2=(y -x)2B.(x+6)(x -6)=x 2-6C.(x+y)2=x 2+y 2D.x 2+2xy 2-y 2=(x+y)22.下列运算正确的是( )A.(a+3)2=a 2+9B.(13x -y)2=16x 2-23xy+y 2 C.(1-m)2=1-2m+m 2 D.(x 2-y 2)(x+y)(x -y)=x 4-y 43.将面积为a 2的正方形边长增加2,则正方形的面积增加了( )A.4B.2a+4C.4a+4D.4a4.下列多项式乘法中,不能用平方差公式计算的是( )A.(a+1)(2a -2)B.(2x -3)(-2x+3)C.(2y -13)(13+2y) D.(3m -2n)(-3m -2n) 5.不等式(2x -1)2-(1-3x)2<5(1-x)(x+1)的解集是( )A.x >-2.5B.x <-2.5C.x >2.5D.x <2.56.计算:(1)(1.2x -57y)(-57y -1.2x); (2)1523×(-1413);(3)[2x2-(x+y)(x-y)][(z-x)(x+z)+(y-z)(y+z)];(4)(a-2b+3c)(a+2b-3c).7.(1)已知x+y=6,xy=4,求①x2+y2,②(x-y)2,③x2+xy+y2的值.(2)已知a(a-3)-(a2-3b)=9,求222a b-ab的值.1.计算:(1)(a2+1)(a2-1)-(-a2)·a2;(2)(2a-b)(2a+b)-(-3a-b)(-3a+b);(3)x2-(4-x)2;(4)(3x-2y)2-4(2x-y)(x-y).2.已知(a+b)2=7,(a-b)2=4,求a2+b2和ab的值.3.已知△ABC的三边a、b、c满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.4.解方程:(1)9x(4x-7)-(6x+5)(6x-5)+38=0;(2)(y2-3y+2)(y2+3y-2)=y2(y+3)(y-3).。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式和完全平方公式复习和拓展-2022年学习资料
2、运用完全平方公式计算:-13x-229x2-12x+42-2n-5216y2-1-35m2+n2-49 2-25m4+10m2n+1n2-9409-3、填空题:-13a-2b3a+2b=9a2-4b2-2x-6 =x2+-12x+36-3x2.4x+4=X-22
4、选择题-1下列各式中,是完全平方公式的是-C-AX2-X+1-B4x2+1-CX2+2X+1-Dx2+ x-1-2如y2+ay+9是完全平方公式,则a的值等于D-A3-B-6-C6-D6或-6-3下列计算正确的 C-A.X-2y2y-x)=4y2-x2-B.-x-1X+1=x2.1-C.m-n-m-n)=-m2+n2 D.x2+2y-2y=x3-4y2
小试牛刀-2.下列计算中正确的是(D-A.(x+22=x2+2x+4-B.(-3-x(3+x=9-x2-C (-3-x3+x=-x2-9+6x-D.(2x-3y2=4x2+9y2-12xy
小试牛刀-3.x2+kx+81是一个完全平方式,则k是(D-A.9-B.-9-C.±9-D.±18
小试牛刀-15+3q2;-25+30q+9q1-2-2a-52.4a2+20a+25-32x+32(2x2;16x4-72x2+81-4x+y-4x+y+4;x2+2xy+y2-16-5a-1a+1a2-1.a -2a2+1
5.完全平方式-1已知,x2+ax+16是完全平方式,-则a=8-己知,4x2-ky+25y2是完全平方式 -则k=-±20-3x2+12x+m是完全平方式,则m=36-4请把4x4+1添加一项后是完全平方式,-可 添加-±4x2或-1或-4x4或4x8或
平方差与完全平方公式专题复习
逸夫中学 李青雪
一、温故知新——公式理解
公式名称 公式表示 平方差公式 (a+b)(a-b)=a2-b2
①公式左边: 二项式×二项式,其中 一项相同,一项相反 ②公式右边:(相同项)2-(相反项)2 ③公式中的a,b既可以表示单项式, 也可以表示多项式 变位置(b+a)(-b+a)= b 2 a 2
巧与 注意 事 项, 要快而准!
2
(a c) 2 (2b) 2 a 2ac c 4b
2 2
2 2 2015 ( - 2015 -1 ) 2 2 2015 - 2015 1 1
二、举一反三——公式提升
① 若 x y 3 ( x y 5) 0 求 3x 2 3 y 2 的值
(对称轴)剪开,把它分成四块形状和大小都一样的 小长 方形,然后按图(2)那样拼成一个正方形,则中 间空的部分的面积是
(1) (2) b a
⑥(2015.辽宁)化简求值 (2x+y)2-4(x+y)(x-y),其中 x=-1,y=2
四、交流反思,触类旁通
2
由题得:x y 3, x y 5 x 2 y 2 ( x y )( x y ) 3 ( 5) 15 3 x 2 3 y 2 3 ( 15) 45
学会对习题进行变式, 才能做到举一反三, 做 一题而会一片, 你能针 对左边习题自己编一 道变式习题吗?
②若 a+b=5,ab=-3,求 3a2+3b2 的值
由题得: a b 5, ab 3 a 2 b 2 (a b) 2 2ab 25 2 (3) 31 3a 2 3b 2 3 31 93
平方差公式、完全平方公式
1平方差公式与完全平方公式1. 平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差。
这个公式叫做乘法的平方差公式()()22b a b a b a -=-+2. 公式的结构特征①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数 ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方) 一.基础部分【题型一】利用平方差公式计算 1. 位置变化:(1)()()x x 2525+-+(2)()()ab x x ab -+符号变化:(3)()()11--+-x x(4)⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-m n n m 321.01.032系数变化:(5)()()n m n m 3232-+(6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--b a b a 213213 指数变化:(7)()()222233x yy x ++-(8)()()22225252b aba --+-2.增项变化(1)()()z y x z y x ++-+- (2)()()939322+++-x x x x3.增因式变化(1)()()()1112+-+x x x(2)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2141212x x x【题型二】利用平方差公式判断正误 4.下列计算正确的是( )A .()()()()2222425252525y x y x y x y x -=-=-+B .22291)3()1()31)(31(a a a a +=+-=--+-C .()()()()222249232332x y x y x y y x -=-=--- D .()()8242-=-+x x x【题型三】运用平方差公式进行一些数的简便运算例 5.用平方差公式计算.2 (1)397403⨯ (2)41304329⨯(3)1000110199⨯⨯ (4)2008200620072⨯-【题型四】平方差公式的综合运用 6.计算:(1)))(()2)(2(222x y y x y x y x x +-++-- (2)()()()()111142+-++-x x x x【题型五】利用平方差公式进行化简求值与解方程7.化简求值:())32)(32()23(32a b a b b a a b +---+,其中2,1=-=b a .【题型六】逆用平方差公式8.已知02,622=-+=-y x y x ,求5--y x 的值.课堂练习 一、选择1、下列运算正确的是( )A 、223)3)(3(y x y x y x -=-+B 、229)3)(3(y x y x y x -=-- C 、229)3)(3(y x y x y x --=-+- D 、229)3)(3(y x y x y x -=--+- 2、下列算式可用平方差公式的是( )A 、(m+2m )(m-2m)B 、(-m-n )(m+n)C 、(-m-n )(m-n)D 、(m-n )(-m+n) 3、计算2)55)(5151(y y x y x -+-+的结果是( ) A 、x 2B 、-x 2C 、2y 2-x 2D 、x 2-2y 24.计算(a m+b n)(a 2m-b 2n)(a m-b n)正确的是 ( ) A.a 4m-2a 2m b 2n+b 4mB.a 4m-b 4C.a 4m+b 4nD.a 2m+b 2n+2a m b n二、填空题三、解答题7.计算:①)2)(2(b a b a --+- ②2009200720082⨯-③))()((22b a b a b a +-+ ④.,12,222的值求若b a b a b a +=-=-四、用完全平方公式计算:(1)4992 (2)9982 (3)532 (4)88245。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典例剖析
专题一:平方差公式
例1:计算下列各整式乘法。
①位置变化(73)(37)x y y x +- ②符号变化(27)(27)m n m n ---
③数字变化98102⨯ ④系数变化(4)(2)24n n m m +-
⑤项数变化(32)(32)x y z x y z ++-+
⑥公式变化2(2)(2)(4)m m m +-+
◆变式拓展训练◆
【变式1】2244()()()()
y x x y x y x y ---+++
【变式2】22
(2)(4)33b b a a ---
【变式3】22222210099989721-+-++-…
专题二:平方差公式的应用
例2:计算
22004200420052003
-⨯的值为多少?
◆变式拓展训练◆
【变式1】22()()x y z x y z -+-+- 【变式2】2301(3021)(3021)⨯+⨯+
【变式3】(25)(25)x y z x y z +-+-++ 【变式4】已知a 、b 为自然数,且40a b +=,
(1)求22a b +的最大值;(2)求ab 的最大值。
专题三:完全平方公式
例3:计算下列各整式乘法。
①位置变化:22()()x y y x --+
②符号变化:2(32)a b --
③数字变化:2197
④方向变化:2(32)a -+
⑤项数变化:2(1)x y +-
⑥公式变化22(23)(46)(23)(23)x y x y x y x y -+-+++
◆变式拓展训练◆
【变式1】224,2a b a ab b +=++则的值为( )
A.8
B.16
C.2
D.4 【变式2】已知221() 4.,()_____2
a b ab a b -==+=则 【变式3】已知225.6,x y xy x y +=-=+则的值为( )
A.1
B.13
C.17
D.25 【变式4】已知222(1)()32x x x y x y xy ---=-+-,求的值
专题四:完全平方公式的运用
例4:已知:4,2x y xy +==,求:①22x y +;
②44x y +; ③2()x y -
◆变式拓展训练◆
【变式1】2242411310,;x x x x x x -+=+
+已知求①②
【变式2】225,2,4xy x y x y x y x y ++
=++已知满足求的值。
三、创新探究
1.=-+=+-++b
a b b a b a ,0524a 22则
2.26(1)x x -+展开后得1211121110a x a x a x a ++++,则121086420_____a a a a a a a ++++++=
3.(1)(2)(3)(4)P x x x x =++++,(1)(2)(3)(4)Q x x x x =----,
则Q P -的结果为
4.如果41224|11|a -++-=--++b a c b ,那么=-+c b 32a
5.如果,则 ; .
6. =+++++++++++++++
n 432114321132112111
7.19971997199719972222,,b a y x
b a y x b a y x +=++=++=+求证:且若
8.方数。
,则证明是一个完全平若22221996199619951995+•+=a
9. 已知a =123456789,b =123456785,c=123456783,求a 2+b 2+c 2
-ab -b c-c a 的值.。