振动力学参考答案
《振动力学》习题集(含答案)【精选】精心总结
令 引起的静变形为 ,则有:
,即
令 + 引起的静变形为 ,同理有:
得:
则系统的自由振动可表示为:
其中系统的固有频率为:
注意到 与 方向相反,得系统的自由振动为:
1.9质量为m、长为l的均质杆和弹簧k及阻尼器c构成振动系统,如图E1.9所示。以杆偏角 为广义坐标,建立系统的动力学方程,给出存在自由振动的条件。若在弹簧原长处立即释手,问杆的最大振幅是多少?发生在何时?最大角速度是多少?发生在何时?是否在过静平衡位置时?
解:
(1)保持水平位置:
(2)微幅转动:
故:
2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。
图T 2-10答案图T 2-10
解:
m的位置:
, ,
,
,
2.11图T 2-11所示是一个倒置的摆。摆球质量为m,刚杆质量可忽略,每个弹簧的刚度为 。
(1)求倒摆作微幅振动时的固有频率;
(2)摆球质量m为0.9 kg时,测得频率 为1.5 Hz,m为1.8 kg时,测得频率为0.75 Hz,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?
图E1.2
解:
如图,令 为柱体的转角,则系统的动能和势能分别为:
利用 和 可得:
1.3转动惯量为J的圆盘由三段抗扭刚度分别为 , 和 的轴约束,如图E1.3所示。求系统的固有频率。
图E1.3
解:
系统的动能为:
和 相当于串联,则有:
以上两式联立可得:
系统的势能为:
利用 和 可得:
1.4在图E1.4所示的系统中,已知 ,横杆质量不计。求固有频率。
图E1.4答案图E1.4
解:
对m进行受力分析可得:
振动力学课后答案
1.8 图示为一周期性方波。
(1)将它展成傅里叶级数;(2)比较(1)的级数与例1.1中的级数,你观察到方波相位前移1/4周期时有什么效应? 解:一个周期内函数P(t)可以表示为()P P t P ⎧=⎨-⎩ 由于区间[0,T]内()P t 关于2T堆成,一周内面积为0,故0a =0。
()2cos t Tn t ta x n tdt T ω+=⎰320223022cos cos cos p n tdt n tdt n tdt πππωωωππωωωωωωπ⎡⎤=-+⎢⎥⎣⎦⎰⎰⎰322203022sin sin sin p n n n n n n πππωωωππωωωωωωπωωω⎡⎤⎢⎥=-+⎢⎥⎣⎦040Pn π⎧⎪=⎨⎪⎩ ()2sin t Tn t tb x n tdt T ω+=⎰320223022sin sin sin p n tdt n tdt n tdt πππωωωππωωωωωωπ⎡⎤=-+⎢⎥⎣⎦⎰⎰⎰322203022cos cos cos p n n n n n n πππωωωππωωωωωωπωωω⎡⎤⎢⎥=-+-⎢⎥⎣⎦= 0 ∴图示方波的傅里叶级数展开式为:()11,3,41sin()cos 2nt n n n P P a n t n t nπωωπ===+=∑∑ 0411(cos cos 3cos 5)35P t t t ωωωπ=+++ 比较例1.1,可以得到:相位前移1/4周期后,傅里叶级数的每一项函数由奇函数变为偶函数,但各分量的幅值不变。
320,22322t t t πππωωωππωω<<<<<<n n 为奇数为偶数2.8 求图所示的系统的固有频率,其中钢丝绳的刚度为k 1.滑轮质量忽略不计。
解:对于系统,钢绳等效为弹性系数为k 1的弹簧。
则每个弹簧的变形分别为:11mg k λ=224mg k λ= 334mgk λ=总变形12312344mg mg mgk k k λλλλ=++=++系统等效刚度为: 12323131244e k k k mgk k k k k k k λ==++系统的固有频率为:n ω==2.27 一个有阻尼的弹簧质量系统,质量是10Kg ,弹簧静伸长时1cm ,自由振动20个循环后,振幅从0.64cm 减至0.16cm ,求阻尼系数c 。
《振动力学》习题集(含答案)
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
振动力学习题集含答案
解:
,
动量守恒:
,
平衡位置:
,
,
故:
故:
2.4在图E2.4所示系统中,已知m, , , 和 ,初始时物块静止且两弹簧均为原长。求物块运动规律。
图E2.4答案图E2.4
解:
取坐标轴 和 ,对连接点A列平衡方程:
即:
(1)
对m列运动微分方程:
即:
(2)
由(1),(2)消去 得:
图E2.7
解:
,
s=1时共振,振幅为:
(1)
远离共振点时,振幅为:
(2)
由(2)
由(1)
, ,
故:
2.7求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是 及 ,悬臂梁的质量忽略不计。
图T 2-7答案图T 2-7
解:
和 为串联,等效刚度为: 。(因为总变形为求和)
和 为并联(因为 的变形等于 的变形),则:
图E1.9答案图E1.9
解:
利用动量矩定理得:
,
,
,
,
1.12面积为S、质量为m的薄板连接于弹簧下端,在粘性流体中振动,如图E1.12所示。作用于薄板的阻尼力为 ,2S为薄板总面积,v为速度。若测得薄板无阻尼自由振动的周期为 ,在粘性流体中自由振动的周期为 。求系数 。
图E1.12
解:
平面在液体中上下振动时:
和 为串联(因为总变形为求和),故:
故:
2.9如图T 2-9所示,一质量m连接在一刚性杆上,杆的质量忽略不计,求下列情况系统作垂直振动的固有频率:
(1)振动过程中杆被约束保持水平位置;
(2)杆可以在铅锤平面内微幅转动;
(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
振动力学答案
为 pd ,在简谐激振力作用下出现最大位移值的
激振频率为m ,求系统的无阻尼固有频率 pn 、
相对阻尼系数 及对数衰减率 。
解:m pn 1 2 2 , pd
三个方程联立,解得:
pn2 n2
,
n pn
;
pd 2 m2 2 pd 2 m2
pn 2 pd2 2m
2
k1
k1k 2 k1 k2
k 2 ,
k3
k1k 2 k1 k2
,
k
k1k2k4 k2k3k4 k1k2k4
k1k3 k2k3 k1k2 k1k4 k2k4
p2
k1k2k4 k2k3k4 k1k2k4
m(k1k3 k2k3 k1k2 k1k4 k2k4 )
word 文档 可自由复制编辑
2-4 求题 2-4 图所示的阶梯轴一圆盘系统扭 转振动的固有频率。其中 J1 、 J 2 和 J 3 是三个轴 段截面的极惯性矩,I 是圆盘的转动惯量,各个
轴段的转动惯量不 计,材料剪切弹性模 量为 G。 解:
k1 GJ 1 / l1
k2 GJ 2 / l2 k3 GJ 3 / l3 k23 GJ 2 J 3 /(J 2 l3 J 3 l2 )
的稳态响应。
解:由题意,可求出系统的运动微分方程为
x
p
2 n
x
2nx
360 cos3t m
得到稳态解
x B cos(3t )
B
0.45
0.45 1.103
(1 0.838)2 4 0.2232 0.8382 0.408
tg 2 0.223 0.838 0.374 1.255
振动力学习题集含答案
解:
利用动量矩定理得:
,
,
,
,
面积为S、质量为m的薄板连接于弹簧下端,在粘性流体中振动,如图所示。作用于薄板的阻尼力为 ,2S为薄板总面积,v为速度。若测得薄板无阻尼自由振动的周期为 ,在粘性流体中自由振动的周期为 。求系数 。
图
解:
平面在液体中上下振动时:
,
,
图所示系统中,已知m,c, , , 和 。求系统动力学方程和稳态响应。
(2)
若取下面为平衡位置,求解如下:
,
图T 2-17所示的系统中,四个弹簧均未受力,k1=k2=k3=k4=k,试问:
(1)若将支承缓慢撤去,质量块将下落多少距离?
(2)若将支承突然撤去,质量块又将下落多少距离?
图T 2-17
解:
(1) ,
(2) ,
如图T 2-19所示,质量为m2的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I,忽略绳子的弹性、质量及各轴承间的摩擦力,求此系统的固有频率。
因此有:
图所示阶梯杆系统中已知m,ρ,S,E和k。求纵向振动的频率方程。
图
解:
模态函数的一般形式为:
题设边界条件为:
,
边界条件可化作:
,
导出C2= 0及频率方程:
,其中
长为l、密度为ρ、抗扭刚度为GIp的的等直圆轴一端有转动惯量为J的圆盘,另一端连接抗扭刚度为k的弹簧,如图所示。求系统扭振的频率方程。
《振动力学》习题集(含答案)
质量为m的质点由长度为l、质量为m1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。求系统的固有频率。
图
解:
系统的动能为:
其中I为杆关于铰点的转动惯量:
振动力学习题集含答案
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+= 系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
振动习题答案
《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理:ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'mglll2121+=k2k1ml1l2()()()()()()()()()mgk k l l k l k l mgk k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mgk l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+=故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
《振动力学》习的题目集(含问题解释)
解:(1)
利用 ,
----------------------------------------------------------------------------------------------------------------------
(3)
故:
由(3)得:
2.5在图E2.3所示系统中,已知m,c,k, 和 ,且t=0时, , ,求系统响应。验证系统响应为对初值的响应和零初值下对激励力响应的叠加。
图E2.3
解:
,
求出C,D后,代入上面第一个方程即可得。
2.7由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图E2.7所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W= 125.5N,偏心距e=15.0cm,支承弹簧总刚度系数k= 967.7N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。
,
,
2.1图E2.2所示系统中,已知m,c, , , 和 。求系统动力学方程和稳态响应。
图E2.1答案图E2.1(a)答案图E2.1(b)
解:
等价于分别为 和 的响应之和。先考虑 ,此时右端固结,系统等价为图(a),受力为图(b),故:
(1)
, ,
(1)的解可参照释义(2.56),为:
(2)
其中:
,
,
代入各单元状态变量的第一元素,即:
得到模态:
,
5.10在图E5.10所示系统中,已知GIpi(i= 1 , 2),li(i= 1 , 2)和Ji(i= 1 , 2)。用传递矩阵法计算系统的固有频率和模态。
《振动力学》习题集(含答案)
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《振动力学》习题集(含答案).docx
《振动力学》习题集(含答案)质量为 m 的质点由长度为 l 、质量为 m 1 的均质细杆约束在铅锤平面内作微幅摆动,如图所示。
求系统的固有频率。
lxm 1m图解:系统的动能为:T1m xl 21 Ix 222其中 I 为杆关于铰点的转动惯量:l m 1 2lm 1 21 2Ildx xlx dxm 1l3则有:T1 ml2 x 2 1m 1l 2 x213m m 1 l 2 x 226 6系统的势能为:U mgl 1 cosx m 1gl 1 cosx21mglx 21m 1glx 2 1 2m m 1 glx 224 4利用 x n x 和T U 可得:n3 2m m 1 g 2 3m m 1 l质量为 m、半径为 R的均质柱体在水平面上作无滑动的微幅滚动,在CA=a的 A 点系有两根弹性刚度系数为k 的水平弹簧,如图所示。
求系统的固有频率。
k A kaCR图解:如图,令为柱体的转角,则系统的动能和势能分别为:T 1I B21mR2 1 mR2 23 mR2 2 2224U 21k R a2k R a 2 22利用n和 T U可得:4k R a2R a4kn3mR2R3m转动惯量为 J 的圆盘由三段抗扭刚度分别为k 1 , k 2 和 k 3 的轴约束,如图所示。
求系统的固有频率。
Jk 1 k 2图解:系统的动能为:T1 J2 2k 2 和 k 3 相当于串联,则有:k 323 ,k2 2k3 3以上两式联立可得:2k 3 ,3k 2k 3k 3k 2k 2系统的势能为:U1k 1 21k 2 221k 3 32 1 k 1 k 2 k 3 k 2k 3 2222 2k 2 k 3 利用n 和 TU 可得:nk 2k 3 k 1 k 2 k 3J k 2 k 3在图所示的系统中,已知k i i 1,2,3 , m, a 和 b ,横杆质量不计。
求固有频率。
x1k1k 2F1bmga a bbk3m图a x0bx2xmg aF2amgb答案图解:对 m进行受力分析可得:mg k3 x3mg ,即 x3k3如图可得:x1F1mgb,x2F2mgak1k2 a b k2a b k1a x2x1a2k1b2 k2x0 x1x x1 a b a b 2 k1k2mgx x0x3a2k1b2 k21mg1mg a b 2 k1k2k3k0则等效弹簧刚度为:2k1k2k3 k e a b2k1k3 b2k2k32a ab k1k2则固有频率为:k e k1k2k3 a b 2nm k1k2 a b 2k3 k1a2k2b2m质量 m1在倾角为的光滑斜面上从高h 处滑下无反弹碰撞质量m2,如图所示。
《振动力学》习题集(含答案)
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
振动力学参考答案
2-6
如题 2-6
图所示,刚性曲臂 绕支点的转动惯量 为
I0
盘在水平面上可作无滑动的滚动,鼓轮绕轴的转 动惯量为 I,忽略绳子的弹性、质量及个轴承间 的摩擦力,求此系统的固有频率。 解:此系统是一个保守系统,能量守恒 系统的动能为:
1 1 11 1 x x 2 m2 x 2 m2 r 2 I T m1 x 2 2 22 2 R2 r
两根长 h 的相同的铅垂线悬挂成水平位置,如题 2-2 图所示。试写出此杆绕通过重心的铅垂轴作 微摆动的振动微分方程,并求出振动固有周期。
p2
k1 k 2 k 4 k 2 k 3 k 4 k1 k 2 k 4 m(k1 k 3 k 2 k 3 k1k 2 k1k 4 k 2 k 4 )
k1 GJ1 / l1 k 2 GJ 2 / l 2
k 3 GJ 3 / l3 k 23 GJ 2 J 3 /( J 2 l3 J 3 l 2 )
(1) (2) (3) (4)
R1 3 I x m1 2 m2 R 2 k1 R k 2 x 0 2 2
解:由于两根杆都是弹性的, 可以看作是两根相同的弹簧的并联。 等效弹簧系数为 k 则
其中
sin cos 1 2 2 1 mg a 0 ml 2 12 4h 2 3ga 2 pn 2 l h 2π l 2h 2π l h T 2π 2 pn a 3g 3ga
n 0.797 0.223 p n 3.579 0.45 (1 0.838) 2 4 0.223 2 0.838 2 2 0.223 0.838 0.374 1.255 0.298 1 0.838 2 0.45 1.103 0.408
《振动力学》习题集(含答案)
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
振动力学参考答案
代入初始条件,得
kb ca 2 ml 4m 2l 4
2
2
4
C1 x0 0, C 2
1 4kmb 2l 2 c 2 a 4 2ml 2 2-10 如题 2-10 图所示,质量为 2000 kg 的重
物以 3 cm/s 的速度匀速运动, 与弹簧及阻尼器相 撞后一起作自由振动。已知 k =48020 N/m, c =1960 Ns/m,问重 物在碰撞后多少时 间达到 最大振 幅 ? 最大振幅是多少? 解:以系统平衡位置为坐标原点,建立系统运动 微分方程为
得
c 3ka 2 0 m ml 2 3ka 2 ml 2
1 1 1 k1 2 a 2 k 3 2 b 2 k 2 2 l 2 2 2 2
2 pn
所以,有 2-7
k1 a 2 k 3b 2 k 2 l 2 p I O m1 a 2 m2 l 2
2 n
2-6
如题 2-6
图所示,刚性曲臂 绕支点的转动惯量 为
I0
盘在水平面上可作无滑动的滚动,鼓轮绕轴的转 动惯量为 I,忽略绳子的弹性、质量及个轴承间 的摩擦力,求此系统的固有频率。 解:此系统是一个保守系统,能量守恒 系统的动能为:
1 1 11 1 x x 2 m2 x 2 m2 r 2 I T m1 x 2 2 22 2 R2 r
总能量
m
O
(F ) 0
,
k1 1a m1 ga k3 3b k 2 2 l 0
2-8
一长度为 l、 质量为 m 的均质刚性杆铰
(A) 由题意可知,系统势能为
V
接于 O 点并以弹簧和粘性阻尼器支承,如题 2-8 图所示。写出运动微分方程,并求临界阻尼系数
《振动力学》习题集(含答案解析)
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《振动力学》习题集(含标准答案)
《振动力学》习题集(含答案)————————————————————————————————作者:————————————————————————————————日期:《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T &&+=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T &&&+=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω=&和U T =可得: ()()lm m gm m n 113223++=ωml m 1 x1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ&&&mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn =&和U T =可得: ()mkR a R mR a R k n 343422+=+=ωkk A Ca R θ1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ&J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn =&和U T =可得: ()()3232132k k J k k k k k n +++=ωkk 2 kJ1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请打双面习题与综合训练第一章2-1一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m,视为一刚性杆;柱子高h,视为无质量的弹性杆,其抗弯刚度为EJ。
求该房屋作水平方向振动时的固有频率。
解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。
等效弹簧系数为k则其中为两根杆的静形变量,由材料力学易知=则=设静平衡位置水平向右为正方向,则有所以固有频率2-2一均质等直杆,长为 l,重量为W,用两根长h的相同的铅垂线悬挂成水平位置,如题2-2图所示。
试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θθ=hα2F=mg由动量矩定理:其中2-3求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是和,悬臂梁的质量忽略不计。
解:悬臂梁可看成刚度分别为k1和k3的弹簧,因此,k1与k2串联,设总刚度为k1ˊ。
k1ˊ与k3并联,设总刚度为k2ˊ。
k2ˊ与k4串联,设总刚度为k。
即为,,mg kδ=δδ324mghEJ=k324EJh"m x kx=-3n24mhEJp=2aahamgamgFaMmlIMI822cossin12122-=-≈⋅-====αθαθ12cossin≈≈θααhlgaphamgmln2222234121==⋅+θθghalgahlpTn3π23π2π222===1k3k21211kkkkk+='212132kkkkkk++='4241213231421432421kkkkkkkkkkkkkkkkkkkk++++++=θF sinα2θα F hmgθF2-4 求题2-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。
其中、和是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。
解:(1)(2) (3)(4)2-5 如题2-5图所示,质量为的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I ,忽略绳子的弹性、质量及个轴承间的摩擦力,求此系统的固有频率。
解:此系统是一个保守系统,能量守恒 系统的动能为:系统的势能为:总能量由于能量守恒消去得系统的运动方程为: 系统的固有频率为:2-6 如题2-6图所示,刚性曲臂绕支点的转动惯量为,求系统的固有频率。
解:设曲臂顺时针方向转动的角为广义坐标,系统作简谐运动,其运动方程为。
很小,系统的动能为所以,)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=1J 2J 3J 111/l GJ k =222/l GJ k =333/l GJ k =)/(23323223l J l J J GJ k +=)(/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知)由(2m 2222222212121212121⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++=R x I r xr m x m x m T 2222112121x k R x R k U =⎪⎪⎭⎫ ⎝⎛=22211222212121214321x k R R k xR I m m U T E ⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++=+= 0230d d 22112221=⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫⎝⎛++=x x k R R k x x R I m m tEx023********=⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫⎝⎛++x k R R k x R I m m ⎪⎪⎭⎫ ⎝⎛+++=2221221123R I m m k R Rk p 0I ϕ)sin(αϕ+Φ=t p n ϕ22212)(21)(2121ϕϕϕ l m a m I T O ++=)cos(αϕ+Φ=t p p n n取系统平衡位置为势能零点。
设各弹簧在静平衡位置伸长为,由,(A )由题意可知,系统势能为(B )将(A )式代入(B )式,可得系统最大势能为,由,得所以,有2-7 一个有阻尼的弹簧--质量系统,质量为10 kg ,弹簧静伸长是1cm ,自由振动20个循环后,振幅从0.64 cm 减至0.16cm ,求阻尼系数c 。
解:振动衰减曲线得包络方程为:振动20个循环后,振幅比为:代入,得:又= c = 6.9 N s /m ,2-8 一长度为l 、质量为m 的均质刚性杆铰接于O 点并以弹簧和粘性阻尼器支承,如题2-8图所示。
写出运动微分方程,并求临界阻尼系数和阻尼固有频率的表达式。
解:图(1)为系统的静平衡位置,画受力图如(2)。
由动量矩定理,列系统的运动微分方程为:当n =p n 时,c =c C2-9 如题2-9图所示的系统中,刚杆质量不计,试写出运动微分方程,并求临界阻尼系数及固有频率。
解:222222122max212121l p a p m p I T n n n O Φ+Φ+Φ=321,,δδδ∑=0)(F mO2233111=-++l k b k ga m a k δδδa g m l k b k a k V ϕδδϕδδϕδδϕ1222222323321211])[(21])[(21])[(21+--+-++-+=222223221max 212121l k b k a k V Φ+Φ+Φ=maxmax V T ==Φ+Φ+Φ222222122212121l p a p m p I n n n O 222223221212121l k b k a k Φ+Φ+Φ22212223212l m a m I l k b k a k p O n++++=ntX Ae -=200.640.16nTde =∴ln 420Td n =215T Td =-2222ln 44()20n n P N π=-10n stgP g d ==∴2ln 4()20n 224100g N π-∴32c mk la c =222n 3ml ka p =0220=++a k l c I ϕϕϕmcn ml ka p ml ka m c ml I n32303312222220==∴=+3+∴=ϕϕϕ 323232mkl a m p nm c n C ===∴OX OY O2-10 如题2-10图所示,质量为2000 kg 的重物以3 cm/s 的速度匀速运动,与弹簧及阻尼器相撞后一起作自由振动。
已知k =48020 N/m ,c =1960 Ns/m ,问重物在碰撞后多少时间达到最大振幅?最大振幅是多少?解:以系统平衡位置为坐标原点,建立系统运动微分方程为所以有 ++x =0其特征方程为:+r+=0 r =-0.494.875i所以:x =cos4.875t+sin4.875t 由于n < p n ,由已知条件,,,,m/s 。
故通解为其中,。
(代入初始条件,当t =0时,x =0, =0当t=0时,=0,=0.006x =0.006sin4.875t=0.006(-0.49) sin4.875t+0.0064.875cos4.875当=0时,振幅最大,此时t=0.03s 。
当t=0.03s 时,x =0.005m )代入初始条件,得,得物体达到最大振幅时,有既得t = 0.30 s 时,物体最大振幅为cm2-11 由实验测得一个系统的阻尼固有频率为,在简谐激振力作用下出现最大位移值的激振频率为,求系统的无阻尼固有频率、相对阻尼系数及对数衰减率。
解:, ,;三个方程联立,解得:22222222222222222422224222422224142n n n c d nI kb b ca a ml kb ca kb ca ml ml kb p ml b k p l ca n ml n p ca b kml l blc mka kbc a p p n ml m l kmb l c a ml ϕϕϕϕϕϕϕϕϕ=--=--∴++=∴=====∴==-=-=-m 当时m22=++x p x n x n x c m x km 2r 19602000480202000±1c 0.49t e -2c 0.49te -49.02000219602=⨯==m c n 01.242000480202===m k p n 00=x 03.00=x )sin cos (21t p C t p C e x d d nt +=-875.422=-=n p p n d 1cx2c 0.49te-x 0.49t e -⨯x 006.0,0000201==+===dd p xp x nx C x C tp e C x d nt sin 2-=0cos sin 22=+-=--t p p e C t p e nC xd d nt d nt 528.0)3.0875.4sin(006.03.049.0=⨯=⨯-e x dp mωnp ζδ221ζω-=n m p 22n p p n d -=np n=ζ22222md md p p ωωζ--=习题与综合训练 第二章2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为 1.8s ,相邻两振幅的比值,若质量块受激振力N 的作用,求系统的稳态响应。
解:由题意,可求出系统的运动微分方程为得到稳态解其中由又有所以 x =1.103 cos(3t -51︒27')2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率rad/s 时,系统发生共振;给质量块增加1 kg 的质量后重新试验,测得共振频率rad/s ,试求系统原来的质量及弹簧刚度。
解:设原系统的质量为m ,弹簧常数为k由,共振时 所以又由 当②①与②联立解出m =20.69 kgk =744.84 N/m2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为时电机在垂直方向上稳态强迫振动的振幅。
解:列出平衡方程可得:2m2n 2ω-=d p p 2221222⎪⎪⎭⎫ ⎝⎛-=-===d m m d dd nd p p p p p nT ωπωππζδ12.41=+i i A A t t F 3cos 360)(=t m xn x p x n 3cos 36022=++ )3cos(α-=t B x m kB B B 45.03604)1(022220==+-=λζλ222122tg λζλωωα-=-=n p n dnT i iA A e 2.41===+η489.3π2797.0ln 8.1ln ======dd dd d T p T n T nT ηη22n p p n d -=579.3222=+=n d n p n p p45.51255.1298.0374.0838.01838.0223.02tg 103.1408.045.0838.0223.04)838.01(45.0223.0579.3797.0838.0579.332222===-⨯⨯===⨯⨯+-=======ααζωλB p n p n n61=ω86.52=ωm kp n =m k p n ==1ωm k =686.512=+==m kp n ωstδω所以:又因为即为所求的振幅2-4如题2-4图所示,作用在质量块上的激振力,弹簧支承端有运动,写出系统的运动微分方程,并求稳态振动。