广东中考数学专题训练解答题压轴题
2021年广东省中考数学解答题压轴题练习及答案 (20)
2021年广东省中考数学解答题压轴题练习1.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设P A=x.(1)求证:△PF A∽△ABE;(2)当点P在线段AD上运动时,设P A=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x 满足的条件:x=或0≤x<1.【分析】(1)根据正方形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB 时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围.【解答】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠P AF=∠AEB,又∵PF⊥AE,∴∠PF A=90°=∠ABE,∴△PF A∽△ABE.…(4分)(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴P A=EB=3,即x=3.…(6分)②若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠P AF=∠AEB,∴∠PEF=∠P AF.∴PE=P A.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴,∴,∴PE=,即x=.∴满足条件的x的值为3或.…(9分)(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=6﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴AP=x=6﹣5=1,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或0≤x<1;故答案为:x=或0≤x<1.…(12分)。
2024广东中考数学压轴题
2024广东中考数学压轴题一、在直角坐标系中,抛物线y = ax2 + bx + c与x轴交于点A(-3,0)和B(1,0),且与y 轴交于点C(0,3)。
下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 抛物线的对称轴是直线x = -1(答案:D)二、已知三角形ABC的三边长为a,b,c,且满足a2 + b2 + c2 = 10a + 6b + 8c - 50。
则下列判断三角形ABC的形状中,正确的是:A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形(答案:D)三、函数y = (x - 1)/(x + 2)中,当x的值增大时,y的值会:A. 一直增大B. 一直减小C. 在某个区间内增大,在另一个区间内减小D. 保持不变(答案:C)四、已知四边形ABCD是平行四边形,且AB = 6,BC = 8,对角线AC与BD相交于点O,则下列关于O点到AB和BC的距离d1和d2的说法正确的是:A. d1 + d2 = 14B. d1 × d2 = 24C. d1/d2 = AB/BCD. d12 + d22 = AB2 + BC2(答案:B)五、圆O的半径为5,点P在圆O外,且OP = 8。
过点P作圆O的两条切线,分别与圆O 相切于点A和B。
则弦AB的长度为:A. 6B. 4√3C. 5√2D. 2√15(答案:A)六、在数轴上,点A表示的数为-2,点B表示的数为3。
若点C表示的数为x,且满足AC + BC = 8,则x的值为:A. -3或4B. -4或3C. -3或-1D. 2或-5(答案:B)七、已知二次函数y = ax2 + bx + c的图像经过点(1,0),(2,0)和(3,4)。
下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 函数的顶点在x轴上(答案:A)八、正方形ABCD的边长为4,点E在边AB上,且AE = 1。
广州中考数学压轴题(学生版)
1.如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线1交x 轴于点B 。
P 为线段上一动点,作直线⊥,交直线1于点C 。
过P 点作直线平行于x 轴,交y 轴于点M ,交直线1于点N 。
(1)当点C 在第一象限时,求证:△≌△;(2)当点C 在第一象限时,设长为m ,四边形的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段上移动时,点C 也随之在直线1上移动,△是否可能成为等腰三角形?如果可能,求出所有能使△成为等腰三角形的点P 的坐标;如果不可能,请说明理由。
说明:●考查字母运算能力 ● 分类讨论思想,取值范围内解的有效性 ●2.关于x 的二次函数y =2+(k 2-4)x +22以y 轴为对称轴,且与y 轴的交点在x 轴上方.(1)求此抛物线的解析式(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作垂直x 轴于点B,再过点A 作x 轴的平行线交抛物线于点D ,过D 点作垂直x 轴于点C, 得到矩形.设矩形的周长为C ,点A 的横坐标为x ,试求C 关于x 的函数关系式;(3)当点A 在y 轴右侧的抛物线上运动时,矩形能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.x 第1题图 第2题图说明:●考查字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,易错点为用字母表示边长时,注意边长的非负性3.如图所示, 在平面直角坐标系中, 矩形的边长、分别为12、6, 点A、C 分别在y轴的负半轴和x轴的正半轴上, 抛物线2经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿边以1的速度向终点B移动, 同时点Q由点B开始沿边以2的速度向终点C移动.①移动开始后第t秒时, 设△的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.②当S取得最大值时, 在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形如第3题图果存在, 求出R点的坐标, 如果不存在, 请说明理由.说明:●图形必须准确,存在性问题如果不会做,可通过画图判断(答存在得分的机会大得多)4.已知二次函数2++c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r 的⊙P ,且圆心P 在抛物线上运动,当⊙P 与两坐标轴都相切时,求半径r 的值.(3)半径为1的⊙P 在抛物线上,当点P 的纵坐标在什么范围内取值时,⊙P 与y 轴相离、相交?说明:●考查画图能力和字母运算能力 ●分类讨论思想,取值范围内解的有效性 ● 方法多样化,易错点为用字母表示边长时,注意边长的非负性5.如图示已知点M 的坐标为(4,0),以M 为圆心,以2为半径的圆交x 轴于A 、B ,抛物线c bx x y ++=261过A 、B 两点且与y 轴交于点C .(1)求点C 的坐标并画出抛物线的大致图象(2)过C 点作⊙M 的切线,求直线的解析式.说明:●图形必须准确,画切线后巧妙解法是利用两直线平行,K 相等 ●易错点为漏解(过圆外一点作圆的切线有两条) ● 两直线垂直,K 互为负倒数可以使用6.如图,在ABC ∆中,∠A 90=°,10=BC , ABC ∆的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .设x DE =以DE 为折线将△ADE 翻折,所得的DE A '∆与梯形DBCE 重叠部分的面积记为y.(1).用x 表示∆的面积;第5题图(2).求出0﹤x≤5时y与x的函数关系式;(3).求出5﹤x﹤10时y与x的函数关系式;(4).当x取何值时,y的值最大?最大值是多少?说明:●考查画图能力和字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,在设未知数或用字母表示未知量时,要充分发挥“勾股、相似、锐角三角函数”的作用,挖掘题目中的特殊角(特殊比值)来巧妙运算7.在△中,∠A=90°,=4,3,M是上的动点(不与A、B重合),过点M作∥交于点N. 以为直径作⊙O,并在⊙O内作内接矩形,令. 当x为何值时,⊙O与直线相切?8.如图,直线334y x=+和x轴y轴分别交与点B、A,点C是的中点,过点C向左方作射线⊥y轴,点D是线段上一动点,不和B重合,⊥于点P,⊥于点E,连接。
广东中考数学专题训练解答题 压轴题
广东中考数学专题训练(一):代数综合题(函数题)一、命题特点与方法分析以考纲规定,“代数综合题”为数学解答题(三)中的题型,一般出现在该题组的第1题(即试卷第23题),近四年来都是对函数图像的简单考察.近四年考点概况:由此可见,近年来23题考点范围趋向综合,命题主体可以是一次函数与反比例函数或者一次函数与二次函数,但难度基本都不太大.主要的命题形式有以下3种:1.求点的坐标或求直线解析式中的待定系数.这种题一般考查列方程解答,难度较低,在试题的前两问出现.2.考察图像的性质.如14年第(1)问和16年第(2)(3)问,都是对函数图象的性质来设问,要求对图像性质有清晰的记忆.3.考查简单的几何问题.考查简单的解析几何的内容,基本上出现在试题的第(3)问,一般都利用基本的模型出题,几何部分难度不会太大,可以尝试了解高中解析几何的基础知识.二、例题训练1.如图,在直角坐标系中,直线y =?x ?5与反比例函数y =b x(x >0)交于A ?1,4?、B 两点. (1)求b的值;(2)求点B 的坐标; (3)直线y =3与反比例函数图像交于点C ,连接AC 、CB ,另有直线y =m 与反比例函数图像交于点D ,连接AD 、BD ,此时△ACB 与△ADB 面积相等,求m 的值.2.如图,在直角坐标系中,直线y =x +b 与反比例函数y =?1x(x <0)交于点A ? m ,1?.直线与x 轴、y 轴分别交于点B 、C .(1)求m 的值;(2)求点B 、C 的坐标;(3)将直线y =x +b 向上平移一个长度单位得到另一条直线,求两直线之间的距离.3.如图,在直角坐标系中,抛物线y =?1?m ?x 2?mx ?m 2?4经过原点且开口向下,直线y =x +b 与其仅交于点A .(1)求抛物线的解析式;(2)求点A 的坐标;(3)求直线y =x +b 关于x 轴对称的直线的解析式.4.如图,在直角坐标系中,抛物线y =x 2?3x ??与x 轴交于点A 、B ,与y 轴交于点C ,连接BC .(1)求点A 、B 和C 的坐标;(2)求∠OBC 的度数;(3)将直线BC 向上平移5个单位,再向左平移m 个单位,得到的直线与原直线重合,求m 的值.三、例题解析答案:1.(1)b=4;(2)?4,1?;(3)m=43.【考点:一次函数、反比例函数,一元二次方程】2.(1)m=?1;(2)B?2,0?,C?0,2?;(3.【考点:一次函数、反比例函数、相似三角形】3.(1)y=?x2+2x;(2)A?12,34?;(3)y=?x?14.【考点:二次函数、一次函数、一元二次方程、轴对称】4.(1)A?1,0?,B?2,0?,C?0,2?;(2)45°;(3)m=5.【考点:二次函数、一次函数、等腰三角形】解析:主要的命题形式与例题对应:1.求点的坐标或求直线解析式中的待定系数.【题1(1)(2),题2(1)(2),题4(1)】2.考察图像的性质.【题3(1)】3.考查简单的几何问题.【题1(3),题2(3),题3(3),题4(2)(3)】广东中考数学专题训练(二):几何综合题(圆题)一、命题特点与方法分析以考纲规定,“几何综合题”为数学解答题(三)中出现的题型.一般出现在该题组的第2题(即试卷第24题),近四年来都是以圆为主体图形,考察几何证明.近四年考点概况:也相对复杂.难度也较高(尤其是14、15年),考查学生综合多方面知识进行几何证明的能力.本题除了常规的证明以外,主要的命题特点有以下两种:1.改编自常考图形,有可能成为作辅助线的依据.如16年的构图中包含弦切角定理的常用图,17年第(2)问则显然是“切线?垂直?半径相等”得出角平分线的考察,依此就不难判断出辅助线的构造,应该对常考图形有一定的识别能力.2.利用数量关系求出特殊角.如15年第(1)问,17年第(3)问,这常常是容易被遗忘的点,在做这类题目的时候,首先要通过设问推敲,其次在观察题干中是否有给出角度的条件,如果没有,一般就是通过数量关系求出特殊角.二、例题训练1.如图,⊙O 为∆ABC 外接圆,BC 为⊙O 直径,BC =4.点D 在⊙O 上,连接OA 、CD 和BD ,AC 与BD 交于点E ,并作AF⊥BC交BD于点G ,点G 为BE 中点,连接OG . (1)求证:OA ∥CD ;(2)若∠DBC =2∠DBA ,求BD 的长;(3)求证:FG =2DE .2.如图,⊙O为 ABC外接圆,AB为⊙O直径,AB=4.⊙O切线CD交BA延长线于点D,∠ACB平分线交⊙O于点E,并以DC 为边向下作∠DCF=∠CAB交⊙O于点F,连接AF.(1)求证:∠DCF=∠D+∠B;(2)若AF=32,AD=52,求线段AC的长;(3)若CE,求证:AB⊥CF.3.如图,⊙O为 ABC外接圆,BC为⊙O直径.作»AD=»AC,连接AD、CD和BD,AB与CD交于点E,过点B作⊙O 切线,并作点E作EF⊥DC交切线于点G.(1)求证:∠DAC=∠G+90°;(2)求证:CF=GF;(3)若EFBD=23,求证:AE=DE.4.如图,⊙O 为 ABC 外接圆,AB 为⊙O 直径.连接CO ,并作AD ∥CO 交⊙O 于点D ,过点D 作⊙O 切线DE 交CO 延长线于点E ,连接BE ,作AF ⊥CO 交BC 于点G ,交BE 于点H ,连接OG .(1)若CF =2,OF =3,求AC 的长;(2)求证:BE 是⊙O 的切线;(3)若2AF AH DE g =23,求证:OG ⊥AB .三、例题解析答案:1.(1)难度中等,关键是推出∠DBA=∠ACB ;(2)难度中等,关键是推出∠DBC=45°;(3)难度大,OA 与BD 交于点H ,关键是利用OG 为∆BEC 中位线推出GH=2DE ,再利用全等三角形推出FG=GH .【考点:圆的性质(垂径定理)、三角函数、三角形中位线、全等三角形】2.(1)难度中等,关键是推出∠DCA=∠B ;(2)难度中等,关键是推出∠F=∠B ,从而得出∆AFC ∽∆ACD ;(3)难度大,关键是通过作下角平分线的常规辅助线得到全等三角形,通过转化边长和∠ACE=45°的条件推出AB=4解出AC=2,推出30°.【考点:圆的性质、三角函数、相似三角形、全等三角形、角平分线的性质】3.(1)难度低,关键是推出∠G=∠DCB ;(2)难度中等,关键是推出BF=EF ,再推出三角形全等;(3)难度较大,利用平行截割推出2BF=FC ,再利用第(2)问结论转换边长推出∠G=30°,进而推出∠ADC=∠BAD=30°.【考点:圆的性质(切线)、三角函数、全等三角形、平行截割、等腰三角形】4.(1)难度中等,关键是推出∆AFC ∽∆ACB ;(2)难度中等,关键是利用AD ∥CO 得到∆DOE ≌∆BOE ;(3)难度大,关键是推出∆ A FO ∽∆ A BH ,进而推出AF ?AH=2OB 2OB=BE ,推出∠AOC=60°,利用∆ACG ≌∆AOG 得出OG ⊥AB .【考点:圆的性质(切线)、相似三角形、全等三角形、三角函数】解析:主要的命题特点与例题对应:1.改编自常考图形.【题1(1),题2(1),题4(2)】2.利用数量关系求出特殊角.【题1(2),题2(3),题3(3),题4(3)】广东中考数学专题训练(三):代数与几何综合题(动态压轴题)一、命题特点与方法分析以考纲规定,“代数与几何综合题”为数学解答题(三)中出现的题型.一般出现在该题组的第3题(即试卷压轴第25题),近四年都是以简单几何图形的动态问题作背景,综合考察几何证明与代数计算问题.题较为灵活,几何部分的难度一般比24题要低,重点在于对数形结合的考察.前些年的25题对计算量要求较高(尤其是15年),近两年有所降低.本题第(1)问近3年都是送分题,用于拉高平均分,基本没有讨论价值,而其余两问基本采取以下命题形式:1.最值问题,基本是必考问题,如14年第(2)问,15年第(3)问,16年第(3)问,17年第(3)问②.此处的最值问题基本是通过二次函数关系式求得,所以一般会先要求推出关系式.一般而言这类题是面积最值问题,用字母表示出面积的做法,无外乎作高现和割补,而17年求面积的思路则有较高要求.2.特殊时刻,如14年第(1)(3)问,17年第(2)问.对特殊时刻的设问无外乎某图形成为等腰、直角和相似三角形或者某点落在边上等.这类问题一般分两类做法:一是重代数,抓住各边的等量关系,列出式子解方程;二是重几何,寻找该时刻的特殊几何意义(全等,相似和特殊角),利用几何推理得出结果.第一种做法计算量大,第二种做法则更重视几何推理,两种做法没有绝对的界限,一般两种都有涉猎.3.纯几何证明,如16年第(2)问,17年第(3)问①.要注重几何证明与接下来的设问的关系,类似于17年第(3)问,①中的结论用于①,降低难度,几何证明的结论很可能对接下来的解答有所帮助.此类问题有以下命题特点:1.对基本图形的考察,而且常常需要作辅助线来补全基本图形.例如13年“触礁问题”,14年相似求高,15年面积割补,17年“一线三等角”,这些基本图形大多出自课本且常见,像“一线三等角”,即便考过也应该加强,很可能改头换面再出现.2.结合几何证明在近年来,动态问题中的构图慢慢复杂,比起类似于13、15年的纯计算动态问题,类似于16、17年的几何意义比较丰富的动态问题更加受到重视.16、17年都是改编自经典的正方形证明问题,平时应该重视这类问题的改编题.3.基本出现分类讨论,而且常有提示.特别是16、17年都配有两个图作为提示,在解答时二、例题训练1.如图,在平面直角坐标系中,四边形AOBC 为正方形,点A ?0,2?.点D 为OB 边上一动点,连接AD ,向上作DE ⊥AD 并在DE 上取DE=AD 交BC 于点F ,连接CD 、CE 和BE ,设点D 的坐标为?x ,0?.(1)填空:点C 的坐标为____;(2)设y=S ∆CDE ,求y 关于x 的关系式,并求y 的最小值;(3)是否存在这样的x 值,使∆CBE 为等腰三角形?若存在,求出对应的x 值;若不存在,请说明理由.2.如图,Rt ∆ABC 和Rt ∆CDE 全等(点B 、C 、E 共线),∠B=∠E=90°,AB=CE=6cm ,∠ACB=∠CDE=30°,连接CE ,并取CE 中点F .点M 、N 分别为BC 、CD 边上动点,和2cm/s 的速度以点B →C ,点C →D 的方向运动,连接FM 、MN 和FN ,设运动的时间为t ?s ??0≤t≤2?.(1)填空:∠CAD =____°;(2)设S=S ∆FMN ?cm 2?,求S 关于t 的关系式,并求S 的最大值;(3)是否存在这样的t 值,使FN 与CD 的夹角为75°?若存在,求出对应的t 值;若不存在,请说明理由.3.如图,在平面直角坐标系中,四边形OABC是矩形,点0),点C?0,2?.点D为BC边上一动点,将COD沿OD对折成EOD,将点B沿点O和BA边上一点F的连线对折使其落在射线DE上的点G处.(1)填空:∠ODF =____°;(2)设点D?x,2?,点F?y?,求y关于x的关系式,并求出当x从0增大到2时,点F的运动路程;(3)在(2)的条件下,当点G落在x轴上时:①求证:CD=AG;②求出此时x的值.图(1)图(2)4.如图,在等腰三角形ABC 中,BC=6cm ,.点M 、N 分别从点B 、C 出发,分别用1cm/s的速度在BA 、CD 边上运动到点A 、B 停止,以MN 为斜边以如图所示方式在其右上方作等腰直角三角形MNO ,设运动时间为t t ?s ??.(1)填空:∠BAC =____°;(2)设S=S ∆MNO ?cm 2?,求S 关于t 的关系式,并求S 的最大值;??????(?)是否存在这样的t 值,使点O 落在∆ABC 的边上?若存在,求出对应的t 值;若不存在,请说明理由.三、例题解析答案:1.(1)?2,2?;(2)把∆CDE 分割成∆CDF 和∆CFE ,分别作出CF 边上的高,把面积的变化转化为CF长度的变化,再利用∆AOD ∽∆DBF 表示BF 的长度;y=22x ?x+2=12?x ?1?2+32;(3)①当CE=BE 时,x=1;②当BC=BE 时,;③当BC=CE 时,x=2.【考点:正方形的性质、全等三角形、相似三角形、二次函数、等腰三角形】2.(1)45;(2)连接FC ,S ∆FMN =S ∆FCM +S ∆FCN ?S ∆MCN ,利用二次函数的性质求出S 的最大值;2t ?3S max(3)用含t 的式子表示FC 的长;①当∠FND=75°,②当∠FNC=75°,t=3【考点:全等三角形、三角函数、二次函数、解直角三角形】3.(1)90;(2)利用相似求出关系式,路程分开y 从2到最小值和从最小值到2两段;y=22x 12?x 2+12;运动路程长为3;(3)①连接BG ,四边形BGOD 为平行四边形;②利用①和相似得出结论,此时 【考点:矩形的性质、相似三角形、平行四边形、二次函数】4.(1)120;(2)把∆MNO 的面积用MN 2表示,而MN 2用勾股定理求得;S=74?x ? 2+243196;(3)①当落在AB 边上,;②当落在BC 边上,;③当落在AC 边上,过点M 、N 向AC 边做垂直,证出全等, 【考点:等腰三角形、三角函数、勾股定理、二次函数、全等三角形、解直角三角形】 解析:主要的命题形式与例题对应:1.最值问题.【题1(2),题2(2),题3(2),题4(2)】2.特殊时刻.【题1(3),题2(3),题3(3),题4(3)】【题1(2)过程,题3(3)①,题4(3)过程】。
2020年广东省中考数学压轴题专题训练(含解析)
2020年(广东)中考数学压轴题专题训练1.如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.2.已知:矩形ABCD内接于⊙O,连接BD,点E在⊙O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,⊙O上有一点N,连接CN分别交BD和AD于点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.3.如图,AB是⊙O的直径,CD⊥AB,交⊙O于C、D两点,交AB点E、F是弧BD上一点,过点F作一条直线,交CD的延长线于点G,交AB的延长线于点M.连结AF,交CD于点H,GF=GH.(1)求证:MG是⊙O的切线;(2)若弧AF=弧CF,求证:HC=AC;(3)在(2)的条件下,若tan G=,AE=6,求GM的值.4.如图,已知AC是半径为2的⊙O的一条弦,且AC=2,点B是⊙O上不与A、C重合的一个动点,(1)请计算△ABC的面积的最大值;(2)当点B在优弧上,∠BAC>∠ACB时,∠ABC的平分线交AC于D,且OD⊥BD,请计算AD的长;(3)在(2)条件下,请探究线段AB、BC、BD之间的数量关系.5.如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当四边形ABOF是菱形时,∠AEG=°;②若OC=2DC,△AGE为等腰直角三角形,则AB=.6.如图,△ABC内接于⊙O,AB=AC,AD是⊙O的弦,AD=BC,AD与BC相交于点E.(1)求证:CB平分∠ACD;(2)过点B作BG⊥AC于G,交AD于点F.①猜想AC、AG、CD之间的数量关系,并且说明理由;②若S△ABG=S△ACD,⊙O的半径为15,求DF的长.7.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,交y轴于点A,以AC为直角边作等腰Rt△ACD,连接BD分别交y轴和AC于E、F两点,连接AB.(1)求证:AB=AD;(2)若BF=4,DF=6,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D 三点的⊙O交AB于另一点E,连结AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连结EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,抛物线y=x2+mx+n与x轴交于A,B两点,与y轴交于点C,若A(﹣1,0),且OC=3OA.(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.10.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接P A,PC,试问△P AC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.11.如图,二次函数y=a(x2+2mx﹣3m2)(其中a,m是常数a<0,m>0)的图象与x轴分别交于A、B(点A位于点B的右侧),与y轴交于点C(0,3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)求a与m的关系式;(2)求证:为定值;(3)设该二次函数的图象的顶点为F.探索:在x轴的正半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+4ax+与x轴交于点A、B(A在B的左侧),过点A的直线y=kx+3k交抛物线于另一点C.(1)求抛物线的解析式;(2)连接BC,过点B作BD⊥BC,交直线AC于点D,若BC=5BD,求k的值;(3)将直线y=kx+3k向上平移4个单位,平移后的直线交抛物线于E、F两点,求△AEF的面积的最小值.13.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH ⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y 轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.15.如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)该二次函数图象上有一点P(x,y)使得S△BCD=S△ABP,求点P的坐标;(3)设F为线段BD上一点(不含端点),连接AF,求2AF+DF的最小值.16.二次函数y=x2﹣x﹣与x轴分别交于A、B两点,与y轴交于点C,点D 为抛物线的顶点,连接BD.(1)如图1,点P为抛物线上的一点,且在线段BD的下方(包括线段的端点),连接P A,PC,AC.求△P AC的最大面积;(2)如图2,直线l1过点B、D.过点A作直线l2∥l1交y轴于点E,连接点A、E,得到△OAE,将△OAE绕着原点O顺时针旋转α°(0<α<180)得到△OA1E1,旋转过程中直线OE1与直线l1交于点M,直线A1E1与直线l1交于点N.当△E1MN为等腰三角形时,直接写出点E1的坐标并写出相应的α值.17.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.18.如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B 两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,∠ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC≌△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC∽△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.20.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A(x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH 与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR 为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.参考答案一.解答题(共20小题)1.(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),∴AD=3,由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∠BAD=90°,∴∠BDC=∠DBA,BD是⊙O的直径,∴∠BED=90°,∵∠BFD=∠ABF+∠BAD,∠BFD=∠BDC+45°,∴∠ABF+90°=∠DBA+45°,∴∠DBA﹣∠ABF=45°,∴∠EBD=45°,∴△BED是等腰直角三角形,∴∠EBD=∠EDB;(2)证明:过点K作KS⊥BE,垂足为R,交AB于S,如图2所示:∵KG⊥AB,∴∠BGH=∠KRH=∠SRB=∠KGS=90°,∴∠SBR=∠HKR,∵∠BED=90°,∴∠RBK=∠RKB=45°,∴BR=KR,在△SRB和△HRK中,,∴△SRB≌△HRK(ASA),∴SB=HK,∵SB=BG+SG,HK=BG+AF,∴BG+SG=BG+AF,∴SG=AF,在△ABF和△GKS中,,∴△ABF≌△GKS(AAS),∴AB=KG;(3)解:过点O分别作AD与CN的垂线,垂足分别为Q和T,连接OC,如图3所示:∵∠APO=∠CPO,∴OQ=OT,在Rt△OQD和Rt△OTC中,,∴Rt△OQD≌Rt△OTC(HL),∴DQ=CT,∴AD=CN,∵四边形ABCD是矩形,∴AD=CN=BC,连接ON,在△NOC和△BOC中,,∴△NOC≌△BOC(SSS),∴∠BCO=∠NCO,设∠OBC=∠OCB=∠NCO=α,∴∠MOC=2α,过点M作MW⊥OC于W,在OC上取一点L,使WL=OW,连接ML,∴MO=ML,∴∠MOL=∠MLO=2α,∴∠LCM=∠LMC=α,∴ML=CL,设OM=ML=LC=a,则OD=a+8=OC,∴OL=8,OW=WL=4,∴CW=4+a,由勾股定理得:OM2﹣OW2=MW2=MC2﹣CW2,即a2﹣42=(3)2﹣(4+a)2,整理得:a2+4a﹣45=0,解得:a1=﹣9(不合题意舍去),a2=5,∴OM=5,∴MW=3,WC=9,∴OB=OC=OD=13,BD=26,∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW===,∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW=,设AB=b,则AD=3b,由勾股定理得:b2+(3b)2=262,解得b=,∴CD=GK=AB=,在Rt△GKB中,tan∠GKB==,∴GB=GK=×=.3.(1)证明:连接OF.∴AB⊥CD,∴∠AEH=90°,∴∠EAH+∠AHE=90°,∵GF=GH,∴∠GFH=∠GHF=∠AHE,∵OA=OF,∴∠OAF=∠OF A,∴∠OF A+∠GFH=90°,∴OF⊥GM,∴MG是⊙O的切线.(2)证明:∵=,∴OF垂直平分线段AC∵OF⊥MG,∴AC∥GM,∴∠CAH=∠GFH,∵∠CHA=∠GHF,∠HGF=∠GFH,∴∠CAH=∠CHA,∴CA=CH.(3)解:∵AC∥GM,∴∠G=∠ACH,∴tan∠CAH=tan∠G==,∵AE=6,∴EC=8,AC===10,设GF=GH=x,则CG=CH+GH=AC+GH=10+x,∵CD=2EC=16,∴GD=10+x﹣16=x﹣6,∵GF2=GD•GC,∴x2=(x﹣6)(x+10),解得x=15,∴EG=CG﹣CE=25﹣8=17,∵tan∠G==,∴EM=,∴GM===.4.解:(1)如图1中,当点B在优弧AC的中点时,△ABC的面积的最大,连接AB,BC,OB,延长BO交AC于H.∵=,∴BH⊥AC,∴AH=HC=,∴OH==1,∴BH=OB+OH=2+1=3,∴△ABC的最大面积=×AC×BH=×2×3=3.(2)如图2中,延长BD交⊙O于E,连结OE交AC于F,连结OC.由BD平分∠ABC可得,E为弧AC中点,∴OE⊥AC,∴AF=CF=∴OF===1=EF,∴DF垂直平分OE,又∵OD⊥BD,∴△ODE是等腰直角三角形,∴DF=OE=1,∴AD=.(3)如图3,连结AE、CE,由已知得AE=CE,∠AEC=120〫,将△EAB绕点E顺时针旋转120〫得△ECF,∵∠BAE=∠ECF,∠BAE+∠BCE=180〫,∴∠ECF+∠BCE=180〫,∴BF=BC+CF,∵AB=CF,∴BF=AB+BC,∵BE=FE,∠BEF=∠AEC=120〫,∴BF=BE,∵OD⊥BD,∴BE=2BD,∴BF=2BD,∴BA+BC=2BD.5.(1)证明:连接OA.∵OA=OC,∴∠OAC=∠OCA,∵GA=GE,∴∠GAE=∠GEA,∵DG⊥BC,∴∠EDC=90°,∴∠OCA+∠DEC=90°,∵∠CED=∠GEA=∠GAE,∴∠OAC+∠GAE=90°,∴∠OAG=90°,∴OA⊥AG,∴AG是⊙O的切线.(2)①如图2中,连接OA,AF,OF.∵四边形ABOF是菱形,∴AB=BO=OF=AF=OA,∴△ABO是等边三角形,∴∠B=60°,∵BC是直径,∴∠BAC=90°∴∠ACB=90°﹣60°=30°,∵ED⊥BC,∴∠DEC=90°﹣∠ACB=60°,∴∠AEG=∠DEC=60°.故答案为60.②如图3中,当AB=4时,△AGE是等腰直角三角形.理由:连接OA.∵△AGE是等腰直角三角形,∴∠AEG=∠DEC=∠DCE=45°,∴△EDC,△ABC都是等腰直角三角形,∵OB=OC,∴AO⊥OC,∴∠AOD=∠ODG=∠G=90°,∴四边形AODG是矩形,∴AG=OD=2,∴OC=2OD=4,∴BC=2OC=8,∴AB=AC=4,故答案为4.6.(1)证明:如图1中,∵AD=BC,∴=,∴=,∵AB=AC,∴=,∴=,∴∠ACB=∠BCD,∴CB平分∠ACD.(2)①结论:AC﹣2AG=CD.理由:如图2中,连接BD,在GC上取一点H,使得GH=GA.∵BG⊥AH,GA=GH,∴BA=BH,∴∠BAH=∠BHA,∵∠BAH+∠BDC=180°,∠BHG+∠BHC=180°,∴∠BDC=∠BHC,∵∠BCH=∠BCD,CB=CB,∴△BCH≌△BCD(AAS),∴CD=CH,∴AC﹣2AG=AC﹣AH=CH=CD.②如图3中,过点G作GN⊥AB于G,过点D作DM⊥AC交AC的延长线于M,连接AO,延长AO交BC于J,连接OC.∵=,∴∠BAD=∠ADC,∴AB∥CD,∴S△ACD=S△BCD,∵△BCH≌△BCD,∴S△BCH=S△BCD,∵AG=GH,∴S△ABG=S△BGH,∵S△ABG=S△ACD,∴S△ABG=S△BGH=S△BCH,∴AG=GH=CH,设AG=GH=HC=a,则AB=AC=3a,BG===2a,∵BG⊥AC,∴•BG•AG=•AB•GN,∴GN==a,在Rt△BGC中,BC===2a,∵AB=AC,∴=,∴AJ⊥BC,∴BJ=JC=a,∴AJ===a,在Rt△OJC中,∵OC2=OJ2+JC2,∴152=(a﹣15)2+(a)2,∴a=,∵S△ABG=S△ACD,AB=AC,GN⊥AB,DM∠AC,∴DM=GN=a=,∵BC=AD=2a=20,∴AM===,∵FG∥DM,∴=,∴=,∴AF=6,∴DF=AD=AF=20﹣6=14. 7.(1)证明:∵OA⊥BC,且OA过圆心点P,∴OB=OC,在△AOB和△AOC中,,∴△AOB≌△AOC(SAS),∴AB=AC,∵以AC为直角边作等腰Rt△ACD,∴AD=AC,∴AB=AD;(2)如图1,过点A作AM⊥BD于M,由(1)知,AB=AD,∴DM=BD,∵BF=4,DF=6,∴BD=10,∴DM=5,∵∠AMD=90°=∠DAF,∠ADM=∠FDA,∴△ADM∽△FDA,∴,∴,∴AD=,在等腰直角三角形ADC中,CD=AD=2;(3)的值是不发生变化,理由:如图2,过点D作DH⊥y轴于H,作DQ⊥x轴于Q,∴∠AHD=90°=∠COA,∴∠ADH+∠DAH=90°,∵∠CAD=90°,∴∠CAO+∠DAH=90°,∴∠ADH=∠CAO,∵AD=AC,∴△ADH≌△ACO(AAS),∴DH=AO,AH=OC,∵∠OHD=∠QOH=∠OQD=90°,∴四边形OQDH是矩形,DH=OQ,DQ=OH,又∵HO=AH+AO=OC+DH=OB+DH=OB+OQ=BQ,∴DQ=BQ,∴△DBQ为等腰直角三角形,∴∠DBQ=45°,∴∠DEH=∠BEO=45°,∴sin∠DEH=,∴=,∴,∴.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).10.解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点P(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点P(,);故点P的坐标为:(,)或(,)或(,)或(,).11.解:(1)将点C的坐标代入抛物线表达式得:﹣3am2=3,解得:am2=﹣1;(2)对于二次函数y=a(x2+2mx﹣3m2),令y=0,则x=m或﹣3m,∴函数的对称轴为:x=﹣m,∵CD∥AB,∴点D、C的纵坐标相同,故点D(﹣2m,3),故点A、B的坐标分别为:(m,0)、(﹣3m,0),设点E(x,y),y=a(x2+2mx﹣3m2),分别过点D、E作x轴的垂线,垂足分别为M、N,∵AB平分∠DAE,∴∠DAM=∠EAN,∴RtADM△∽Rt△ANE,∴,即,解得:y=,故点E(x,),将点E的坐标代入抛物线表达式并解得:x==﹣4m,则y==﹣5,故点E(﹣4m,﹣5),故===为定值;(3)存在,理由:函数的对称轴为x=﹣m,当x=﹣m时,y=a(x2+2mx﹣3m2)=4,即点F(﹣m,4),由点F、C的坐标得,直线FC的表达式为:y=﹣x+3,令y=0,则x=3m,即点G(3m,0),GF2=(3m+m)2+42=16m2+16,同理AD2=9m2+9,AE2=25m2+25,故AE2=AD2+GF2,GF、AD、AE的长度为三边长的三角形是直角三角形,点G的横坐标为3m.12.解:(1)∵直线y=kx+3k过点A,∴y=0时,0=kx+3k,解得x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得a=,∴抛物线解析式为y=x2+x+;(2)如图1,过点D作DF⊥x轴于F,过点C作CG⊥x轴于G,∴∠DFB=∠CGO=90°=∠DBC,∴∠DBF+∠BDF=90°,又∵∠DBF+∠CBG=90°,∴∠BDF=∠CBG,∴△BDF∽△CBG,∴,∵CB=5BD,∴CG=5BF,BG=5DF,联立方程组,解得:,(舍去),∴点C(4k﹣1,4k2+2k),∴CG=4k2+2k,OG=4k﹣1,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k=﹣(舍去)或k=0(舍去)或k=1,∴k的值为1;(3)∵将直线y=kx+3k向上平移4个单位,∴平移后解析式为y=kx+3k+4,∴kx+3k+4=x2+x+,∴x E+x F=4k﹣4,x E•x F=﹣12k﹣13,∴|x F﹣x E|==,∵△AEF的面积=×4×,∴当k=﹣时,△AEF的面积的最小值为16.13.解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).14.解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.15.解:(1)抛物线y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),∵点D(﹣5,3)在抛物线y=a(x+2)(x﹣4)上,∴a(﹣5+2)(﹣5﹣4)=3,∴a=.∴抛物线的函数表达式为:y=x2﹣x﹣.(2)如图1中,设直线BD交y轴于J,则J(0,).连接CD,BC.∵S△BDC=××9=10,∴S△P AB=10,∴×6×|y P|=10y P=±,当y=时,=x2﹣x﹣,解得x=1±,∴P(,)或(,),当﹣=x2﹣x﹣,方程无解,∴满足条件的点P的坐标为(,)或(,).(3)如图2中,过点D作DM平行于x轴,∵D(﹣5,3),B(4,0),∴tan∠DBA==,∴∠DBA=30°∴∠BDM=∠DBA=30°,过F作FJ⊥DM于J,则有sin30°=,∴HF=,∴2AF+DF=2(AF+)=2(AF+HF),当A、F、H三点共线时,即AH⊥DM时,2AF+DF=2(AF+HF)取最小值为=.16.解:(1)∵y=x2﹣x﹣=(x2﹣2x﹣3)=(x﹣1)2﹣2,∴顶点D的坐标为(1,﹣2),令y=0,则(x2﹣2x﹣3)=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0,则y=﹣,∴C(0,﹣),∴AC是定值,要△ACP的面积最大,则点P到AC的距离最大,即当点P在点B位置时,点P到AC的距离最大,∴S△ACP最大=S△ABC=AB•OC=(3+1)•=3;(2)由(1)知,B(3,0),D(1,﹣2),∴直线l1的解析式为y=x﹣3,∵l1∥l2,且l1过点A,∴直线l2的解析式为y=x+,∴E(0,),∴OE=,在Rt△AOE中,OA=1,∴tan∠AEO==,∴∠AEO=30°,∵l1∥l2,∴∠DBO=60°,由旋转知,OE1=OE=,∠A1E1O=∠AEO=30°,∴∠ME1N=30°如图,∵△E1MN为等腰三角形,∴①当E1N1=M1N1时,∴∠E1M1N1=∠A1E1O=30°,∴α=∠BOM=60°﹣30°=60°,过点E1作E1F⊥x轴于F,∴E1F=OE1=,∴OF=E1F=,∴E1(,),②当E2M2=E2N2时,∠E2N2M2=∠E2M2N2=(180°﹣30°)=75°,∴∠BOM2=75°﹣60°=15°,∴α=105°,过点E2作E2H⊥x轴,在OH上取一点Q,使OQ=E2Q,∴∠E2QH=30°,设E2H=a,则E2Q=2a,HQ=a,∴OQ=E2Q=2a,OH=(2+)a,在Rt△OHE2中,根据勾股定理得,[(2+)a]2+a2=3,∴a=(舍去负值),∴E2(,﹣).③当E3M3=M3N3时,∠E3N3M3=∠M3E3N3=30,∴∠E3M3N3=120°,∴∠BOM3=60°,∴α=150°,∵∠OBM3=60°,∠E3N3M3=30°,∴∠N3GB=90°,∴OG=,E3G=,∴E3(,﹣).17.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).18.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S△AEO=S△ACE=,∴AE=DE,∴S△AOD=2S△AOE=3;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,∵S△OEF=S△OAH=﹣,∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,∴S△OAH=S△ADO=3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).19.解:(1)理由:∵∠ACB=90°,∴∠ACD=∠BCE=90°,又∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,且∠ADC=∠BEC=90°,∴△ADC∽△CEB;(2)如图,过点O作ON⊥OM交直线CD于点N,分别过M、N作ME⊥x轴NF⊥x轴,由(1)可得:△NFO∽△OEM,∴,∵点M(2,1),∴OE=2,ME=1,∵tanα==,∴,∴NF=3,OF=,∴点N(﹣,3),∵设直线CD表达式:y=kx+b,∴∴∴直线CD的解析式为:y=﹣x+;(3)当∠CDP=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,∵∠ADC+∠CDP=180°,∴点A,点D,点P三点共线,∵∠BAP=∠B=∠H=90°,∴四边形ABHP是矩形,∴AB=PH=3,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠H=90°,AE=EP,∴△ABE≌△EHP(AAS),∴BE=PH=3,当∠CPD=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,∴CD=NH=3,DN=CH,设BE=x,则EC=5﹣x,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠EHP=90°,AE=EP,∴△ABE≌△EHP(AAS),∴PH=BE=x,AB=EH=3,∴PN=3﹣x,CH=3﹣(5﹣x)=x﹣2=DN,∵∠DPC=90°,∴∠DPN+∠CPH=90°,且∠CPH+∠PCH=90°,∴∠PCH=∠DPN,且∠N=∠CHP=90°,∴△CPH∽△PDH,∴,∴∴x=∵点P在矩形ABCD外部,∴x=,∴BE=,综上所述:当BE的长为3或时,△DPC为直角三角形.20.解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.。
2021年广东省中考数学解答题压轴题练习及答案 (99)
2021年广东省中考数学解答题压轴题练习1.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C的好点.等边△DEF的三个顶点刚好在坐标轴上,其中D 点坐标为(0,4).(1)求等边△DEF内切圆C的半径;(2)当⊙O的半径为2时,若直线DE上的点P(m,n)是⊙O的好点,求m的取值范围;(3)若线段EF上的所有点都是某个圆的好点,求这个圆的半径r的取值范围.【分析】(1)设⊙C与DE相切于点Q,如图1,易得∠DEO=30°,从而可以证到CE=2OC,只需利用三角函数求出OE的长,就可求出等边△DEF内切圆C的半径.(2)设P A、PB与⊙C分别相切于点A、B,连接BC,如图2,设⊙C的半径为r,⊙C的好点P到圆心C的距离为d,由新定义可推出0≤d≤2r.当⊙O的半径为2时,只需考虑临界位置(OP=2r=4)所对应m的值,就可得出m的取值范围.(3)若线段EF上的所有点都是某个圆的好点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点,如图4,只需考虑临界位置(KF=KE=2r)所对应的r的值,就可得到圆的半径r的取值范围.【解答】解:(1)设⊙C与DE相切于点Q,设⊙C的半径为r,如图1,则有CQ⊥DE,OC=CQ=r.∵⊙C是等边△DEF的内切圆,∴∠DEO=∠FEO=∠DEF=30°.∴CE=2CQ=2r.∵D点坐标为(0,4),∴OD=4.∵∠DOE=90°,∴tan∠DEO===.∴OE=4.∴OE=OC+CE=3r=4.∴r=.∴等边△DEF内切圆C的半径为.(2)设P A、PB与⊙C分别相切于点A、B,连接BC,如图2,则有P A=PB,∠APC=BPC=∠APB,∠PBC=90°.由题可知:若P刚好是⊙C的好点,则∠APB=60°,∴∠BPC=30°.∴PC=2BC.设⊙C的半径为r,⊙C的好点P到圆心C的距离为d,则有0≤d≤2r.由上述证明可知:若直线DE上的点P(m,n)是⊙O的好点,则0≤OP≤4.过点O作OH⊥DE于H,如图3所示,在Rt△DOE中,∵DO=4,∠DEO=30°,∴DE=8.∴OH===2.∴直线DE上必存在点P1、P2(P1在P2左边),使得OP1=OP2=4.∵OP1=OD=4,∴点D与点P1重合,此时m=0.过点P2作P2M⊥x轴于点M,∵OD=OP2,∠ODP2=60°,∴△DOP2是正三角形.∴∠DOP2=60°.∴∠P2OM=30°.∴OM=OP2•cos30°=4×=2.此时m=2.∵点P为⊙O的好点,∴P点必在线段P1P2上,∴0≤m≤2.(3)若线段EF上所有点都是某个圆的好点,则最小圆的圆心应在线段EF的中点,如图4.此时有KF=KE=EF=DE=4,KE=2r.则有r=2.所以若线段EF上的所有点都是某个圆的好点,则这个圆的半径r的取值范围是r≥2.。
2021年广东省中考数学解答题压轴题练习及答案 (7)
2021年广东省中考数学解答题压轴题练习1.如图,点B为长为5的线段AC上一点,且AB=2,过B作BE⊥BC于B,且BE=4,以BC、BE为邻边作矩形BCDE,将线段AB绕点B顺时针旋转,得到线段BF,优弧交BE于N,交BC于M,设旋转角为a(1)若扇形MBF的面积为π,则a的度数为200;(2)连接EC,判断CE与扇形ABF所在圆⊙B的位置关系,并说明埋由.(3)设P为直线AC上一点,沿EP所在直线折叠矩形,若折叠后DE所在的直线与扇形ABF所在的⊙B相切,求CP的长.【分析】(1)由扇形的面积公式得:=,则∠MBF=20°,即可求解;(2)过点B作BG⊥CE于点G,则CB×BE=CE×BG,求出BG=>2,即可求解;(3)分点Q在BE的左侧、点Q在BE右侧两种情况,分别求解即可.【解答】解:(1)由扇形的面积公式得:=,则∠MBF=20°,a=180°+20°=200°,答案为:200;(2)相离.如图1,∵BE⊥BC,∴∠EBC=90°,∵BE=4,BC=3,∴EC=5,过点B作BG⊥CE于点G,∴CB×BE=CE×BG,∴BG=>2,∴CE与扇形ABF所在圆⊙B相离;(3)①当折叠后DE所在的直线与扇形ABF所在的圆B相切时,切点为Q,如图2,当点Q在BE的左侧时,连接BQ,则∠BQE=90°,∵BQ=2,BE=4,sin∠QEB=,∴∠QEB=30°,∵四边形EBCD为矩形,∴∠DEB=90°,∴∠QED=120°,又由题意得:∠QEP=∠PED=60°,∴∠EPB=30°,∵BE=4,∴PB=,∴CP=3﹣;②如图3,当点Q在BE右侧时,同理可得:∠QEB=30°,又由题意得:∠QEP=∠PED=30°,∵BE=4,∴PB=4,∠BEP=60°,∴CP=4﹣3.③当D′E于圆相切时,如图3,由折叠知:∠1=∠2,在Rt△BQE中,∵BQ=BE,∴∠BEC=30°,又∠B′EC=90°,∴∠1=∠2=30°,在Rt△PBE中,PB=tan∠PEB•BE=×4=,PC=3+;④当D′E同左侧圆相切时,如图4,同理可得:PB=4,PC=4+3;综上,PC=3﹣或4﹣3或3+或4+3.。
2021年广东省中考数学解答题压轴题练习及答案 (49)
2021年广东省中考数学解答题压轴题练习1.如图,矩形ABCD的边AB=4,BC=3.一简易量角器放置在矩形ABCD内,其零度线即半圆O的直径与边AB重合,点A处是0刻度,点B处是180刻度.P点是量角器的半圆弧上一动点,过P点的切线与边BC、CD(或其延长线)分别交于点E、F.设点P的刻度数为n,∠P AB=α.(1)当n=136时,α=22°,求出α与n的关系式;(2)在P点的运动过程中,线段EB与EP有怎样的数量关系,请予证明;(3)在P点的运动过程中,F点在直线CD上的位置随着α的变化而变化,当F点在线段CD上时、在CD的延长线上时、在DC的延长线上时,对应的α值分别是多少?(参考数据:tan56.3°≈1.5)(4)连接BP,在P点的运动过程中,是否存在△ABP与△CEF相似的情况?若存在,求出此时n的值以及相应的EF的长;若不存在,请说明理由.【分析】(1)由∠AOP=136°可求出∠POB,进而求出∠P AB,用同样的方法就可求出α与n的关系.(2)运用切线长定理即可解决问题.(3)先考虑各种临界位置下α的值,就能得出点F分别在线段CD上、CD的延长线上、DC的延长线上时对应α的取值范围.(4)分点E在线段BC上和点E在线段BC的延长线上两种情况进行讨论,利用等边三角形和直角三角形的有关性质即可解决问题.【解答】解:(1)连接OP,如图1,由题可知:∠AOP=136°.∴∠POB=44°.∴∠P AB=22°.∵∠AOP=n°,∴∠POB=180°﹣n°.∴∠P AB=α=∠POB=(180°﹣n°)=90°﹣n°.故答案为:22°,α与n的关系式α=90°﹣n°.(2)EB=EP.理由如下:如图1,∵四边形ABCD是矩形,∴∠ABC=90°.∴EB与半圆O相切.又∵EP与半圆O相切,∴由切线长定理得:EB=EP.(3)①如图2,此时点F与点D重合,连接DO.由切线长定理得:DP=DA=3,∠ADO=∠PDO.∴DO⊥AP.∴∠DAP=90°﹣∠ADO=∠DOA.∵∠DAO=90°,AD=3,A0=2,∴tan∠DOA===1.5.∵tan56.3°≈1.5,∴∠DOA=56.3°.∴∠DAP=∠DOA=56.3°.∴α=90°﹣56.3°=33.7°.②如图3,当∠POB=90°时,显然过点P的切线与CD平行,此时,α=45°.③如图4,此时点E与点C重合.同①可得:α=56.3°.结合以上临界位置可得:当点F在线段CD上时,0°<α≤33.7°或56.3°≤α<90°;当点F在线段CD的延长线上时,33.7°<α<45°;当点F在线段DC的延长线上时,45°<α<56.3°.(4)存在△ABP与△CEF相似的情况.①当点E在BC上时,如图5所示,若△ABP与△CEF相似,则必有∠ABP=∠CEF.∵EF与半圆O相切,∴∠OPE=90°.∵四边形ABCD是矩形,∴∠ABC=90°.∴∠OPE=∠ABC=90°∵OP=OB,∴∠OPB=∠OBP.∴∠EPB=∠EBP.∴∠CEF=2∠EBP.∴∠ABP=2∠EBP.∵∠ABP+∠EBP=90°,∴∠ABP=60°.∴∠AOP=2∠ABP=120°.∴n=120°.此时,∠P AB=∠EPB=∠EBP=30°.过点E作EH⊥BP,垂足为H.∵EP=EB,EH⊥BP∴PH=BH=PB=×2=1.∴cos∠HBE===.∴BE=.∴CE=3﹣.∵∠CEF=∠ABP=60°,∴∠CFE=30°,∴EF=2CE=6﹣.②当点E在BC的延长线上时,如图6所示,若△ABP与△CEF相似,则必有∠ABP=∠EFC.∴∠E=90°﹣∠EFC=90°﹣∠ABP=∠EBP.∵EB=EP,∴∠EPB=∠EBP.∴∠EPB=∠EBP=∠E.∴△EPB是等边三角形.∴∠EPB=∠EBP=60°.∴∠OPB=∠OBP=30°.∴∠AOP=60°.∴n=60°.∵AB=4,∠PBA=30°,∴AP=2,PB=2.∴EB=PB=2.∴EC=2﹣3.∵∠EFC=90°﹣60°=30°,∴EF=2EC=4﹣6.综上所述:△ABP与△CEF相似时,n=60°,EF=4﹣6或n=120°,EF=6﹣.。
2021年广东省中考数学解答题压轴题练习及答案 (1)
2021年广东省中考数学解答题压轴题练习1.已知正方形ABCD内接于⊙O,点E为上一点,连接BE、CE、DE.(1)如图1,求证:∠DEC+∠BEC=180°;(2)如图2,过点C作CF⊥CE交BE于点F,连接AF,M为AE的中点,连接DM并延长交AF于点N,求证:DN⊥AF;(3)如图3,在(2)的条件下,连接OM,若AB=10,tan∠DCE=,求OM的长.【分析】(1)连接BD,OC,得出∠BEC=45°,由圆周角定理可得出结论(2)延长ED至G,使ED=DG,连接AG,证明△BFC≌△DEC,可得出BF=DE,证明△ABF≌△ADG,则∠BAF=∠DAC,证明DM∥AG,得出∠DNF=∠F AG=90°,则可得出结论;(3)连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT⊥AE于点T,设DE=x,则BE=7x,得出BD=5x,求出x=2,求出BK=KF=,由tan∠BCF=tan ∠DCE=,求出CF,可求出TB=7,AM=4,则可求出OM的长.【解答】(1)证明:连接BD,OC,∵四边形ABCD为正方形,∴∠A=90°,BC=CD,∴BD为⊙O的直径,∵OB=OD,∴OC⊥BD,∴∠BOC=90°,∴∠BEC=∠BOC=45°,∵正方形ABED是圆O的内接四边形,∴∠A+∠DEB=180°,∴∠DEB=90°,∴∠DEC+∠BEC=∠DEB+∠BEC+∠BEC=180°;(2)证明:如图2,延长ED至G,使ED=DG,连接AG,∵CE⊥CF,∴∠ECF=90°,∵∠CEF=45°,∴∠CEF=∠CFE=45°,∴CE=CF,∵∠BCD=∠ECF=90°,∴∠BCF=∠DCF,∵BC=CD,∴△BFC≌△DEC(SAS),∴BF=DE,∵DE=DG,∴BF=DG,∵四边形ABED为圆O的内接四边形,∴∠ABE+∠ADE=180°,∵∠ADE+∠ADG=180°,∴∠ABE=∠ADG,∵AB=AD,∴△ABF≌△ADG(SAS),∴∠BAF=∠DAC,∵∠BAF+∠F AD=∠BAD=90°,∴∠DAG+∠F AD=90°,∴∠F AG=90°,∵M为AE的中点,∴DM为△AEG的中位线,∴DM∥AG,∴∠DNF=∠F AG=90°,∴DN⊥AF,(3)解:如图3,连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT ⊥AE于点T,由(1)知∠BOC=90°,∴OB=OC=,由(1)知BD为⊙O的直径,在Rt△ABD中,BD=AB=10,∵,∴∠DBE=∠DCE,∴tan∠DCE=tan∠DBE=,∴,设DE=x,则BE=7x,在Rt△BDE中,BD==5x,∴,∴x=2,∴DE=2,∴BF=2,∵∠EFC=45°,∴∠BFK=∠EFC=45°,∴∠KBF=∠BFK=45°,∴,由(2)知∠BCF=∠DCE,∴tan∠BCF=tan∠DCE=,∴,∴,∴,在Rt△ECF中,EF=CF=12,∴BE=EF+BF=14,∵∠AEB=∠AEC﹣∠BEC=90°﹣45°=45°,∴∠TBE=∠TEB,∴TB=TE=,∴=,∴,∴,∵M为AE的中点,∴OM⊥AE,在Rt△OME中,OM==3.。
2023年广东中考数学压轴题23题解法探究,旋转,共圆,等腰直角,全等,相似,面积差
2023年广东中考数学压轴题23题解法探究,旋转,共圆,等
腰直角,全等,相似,面积差
23.综合运用
如题23-1 图,在平面直角坐标系中,正方形OABC 的顶点A 在x 轴的正半轴上如题23-2图,将正方形OABC绕点0逆时针转,转角为a (<a<45°),AB 交直线y=x于点E,BC交y轴于点F
(1)当旋转角∠ COF 为多少度时,OE =OF;(直接写出结果,不要求写解答过程)
(2) 若点A(4,3),求FC的长;
(3)如题23-3 图对角线AC 交y 轴于点M,交直线y=x于点N,连接FN,将△OFN 与△OCF 的面积分别记为S1 与S2设S= S1 -S2,AN=n,S关于n的函数表达式。
N
(3)(直接法:引参)(分析:要三角形的面积,找底和高,
从而得到∠FNO=∠FCO=90°,进而得到ΔFNO等腰直角三角形,只有CF未知,于是笔者设CF,尝试找出CF与BF的数量关系,但没等找出关系,在代入求面积时,竟然消去CF,关于求CF与BF的数量,欢迎联系笔者,谢谢!)。
2021年广东省中考数学解答题压轴题练习及答案 (83)
2021年广东省中考数学解答题压轴题练习1.如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC 上运动,当D到达A点后,D、E运动停止,运动时间为t(秒)(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C →B方向运动.当t≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M 点所经历的路径长.【分析】(1)①如图1,由题可得BD=CE=t,易证△BDC≌△CEA,则有∠BCD=∠CAE,根据三角形外角的性质可求得∠EFC=60°,即可得到∠AFC=120°;②延长FD到G,使得FG=F A,连接GA、GB,过点B作BH⊥FG于H,如图2,易证△F AG是等边三角形,结合△ABC是等边三角形可证到△AGB≌△AFC,则有GB=FC,∠AGB=∠AFC=120°,从而可得∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG 中运用三角函数可得BH=y,GH=y,从而有FH=x﹣y.在Rt△BHF中根据勾股定理可得BF2=x2﹣xy+y2,代入所求代数式就可解决问题;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得∠BEN=30°,BD=t,CE=2t ﹣6,从而有BE=12﹣2t,BN=6﹣t,进而可得DN=EC.由△DEM是等边三角形可得DE =EM,∠DEM=60°,从而可得∠NDE=∠MEC,进而可证到△DNE≌△ECM,则有∠DNE=∠ECM=90°,故M点运动的路径为过点C垂直于BC的一条线段.然后只需确定点M的始点和终点位置,就可解决问题.【解答】解:(1)如图1,由题可得BD=CE=t.∵△ABC是等边三角形,∴BC=AC,∠B=∠ECA=60°.在△BDC和△CEA中,,∴△BDC≌△CEA,∴∠BCD=∠CAE,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD到G,使得FG=F A,连接GA、GB,过点B作BH⊥FG于H,如图2,∵∠AFG=180°﹣120°=60°,FG=F A,∴△F AG是等边三角形,∴AG=AF=FG,∠AGF=∠GAF=60°.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠F AC.在△AGB和△AFC中,,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=120°,∴∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,BH=BG•sin∠BGH=BG•sin60°=y,GH=BG•cos∠BGH=BG•cos60°=y,∴FH=FG﹣GH=x﹣y.在Rt△BHF中,BF2=BH2+FH2=(y)2+(x﹣y)2=x2﹣xy+y2.∴==1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6.∴BE=6﹣(2t﹣6)=12﹣2t,BN=BE•cos B=BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°,∴∠NDE=∠MEC.在△DNE和△ECM中,,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sin B=6×=3;当t=6时,E在点C,D在点A,此时点M在点C.∴当3≤t≤6时,M点所经历的路径长为3.。
2021年广东省中考数学解答题压轴题练习及答案 (68)
2021年广东省中考数学解答题压轴题练习1.如图,△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=6,CF=8,求AD的长.【分析】(1)根据SAS,只要证明∠1=∠2即可解决问题;(2)结论:BD2+FC2=DF2.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题;(3)过点A作AG⊥BC于G,在Rt△ADG中,想办法求出AG、DG即可解决问题.【解答】(1)证明:如图,∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).(2)解:结论:BD2+FC2=DF2.理由如下:如图,连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF(SAS).∴DF=EF.∴BD2+FC2=DF2.(3)解:如图,过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=62+82=100.∴DF=10,∴BC=BD+DF+FC=6+10+8=24,∵AB=AC,AG⊥BC,∴BG=AG=BC=12,∴DG=BG﹣BD=12﹣6=6,∴在Rt△ADG中,AD===6.。
初中数学中考压轴题及答案详解(广东篇)
专题训练122. 如图,抛物线923212--=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC 。
(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合)。
过点E 作直线l 平行BC ,交AC 于点D 。
设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围; (3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π)。
参考答案: 解:(1)令y=0,即0923212=--x x , 整理得 01832=--x x , 解得:31-=x ,62=x , ∴ A (—3,0),B (6,0) 令x = 0,得y = —9, ∴ 点C (0,—9)∴ 9)3(6=--=AB ,99=-=OC , (2)281992121=⨯⨯=⋅=∆OC AB S ABC, ∵ l ∥BC ,∴ △ADE ∽△ACB , ∴22ABAE S S ABC=∆,即229281m S = ∴ 221m S =,其中90<<m 。
(3)88129212192122+⎪⎭⎫ ⎝⎛--=-⨯⨯=-=∆∆∆m m m S S S ADEACE CDE , ∵ 021<-∴ 当29=m 时,S △CDE 取得最大值,且最大值是881。
这时点E (23,0),yA OB xElCD题22图∴29236=-=-=OE OB BE ,133962222=+=+=OC OB BC , 作EF ⊥BC ,垂足为F ,∵∠EBF=∠CBO ,∠EFB=∠COB , ∴△EFB ∽△COB ,∴CB BEOC EF =,即133299=EF ∴132627=EF , ∴ ⊙E 的面积为:πππ5272913262722=⎪⎭⎫⎝⎛⨯=⋅=EF S 。
2020年广东省中考数学压轴题专题训练(含解析)
2020年(广东)中考数学压轴题专题训练1.如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.2.已知:矩形ABCD内接于⊙O,连接BD,点E在⊙O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,⊙O上有一点N,连接CN分别交BD和AD于点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.3.如图,AB是⊙O的直径,CD⊥AB,交⊙O于C、D两点,交AB点E、F是弧BD上一点,过点F作一条直线,交CD的延长线于点G,交AB的延长线于点M.连结AF,交CD于点H,GF=GH.(1)求证:MG是⊙O的切线;(2)若弧AF=弧CF,求证:HC=AC;(3)在(2)的条件下,若tan G=,AE=6,求GM的值.4.如图,已知AC是半径为2的⊙O的一条弦,且AC=2,点B是⊙O上不与A、C重合的一个动点,(1)请计算△ABC的面积的最大值;(2)当点B在优弧上,∠BAC>∠ACB时,∠ABC的平分线交AC于D,且OD⊥BD,请计算AD的长;(3)在(2)条件下,请探究线段AB、BC、BD之间的数量关系.5.如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当四边形ABOF是菱形时,∠AEG=°;②若OC=2DC,△AGE为等腰直角三角形,则AB=.6.如图,△ABC内接于⊙O,AB=AC,AD是⊙O的弦,AD=BC,AD与BC相交于点E.(1)求证:CB平分∠ACD;(2)过点B作BG⊥AC于G,交AD于点F.①猜想AC、AG、CD之间的数量关系,并且说明理由;②若S△ABG=S△ACD,⊙O的半径为15,求DF的长.7.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,交y轴于点A,以AC为直角边作等腰Rt△ACD,连接BD分别交y轴和AC于E、F两点,连接AB.(1)求证:AB=AD;(2)若BF=4,DF=6,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D 三点的⊙O交AB于另一点E,连结AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连结EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,抛物线y=x2+mx+n与x轴交于A,B两点,与y轴交于点C,若A(﹣1,0),且OC=3OA.(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.10.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接P A,PC,试问△P AC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.11.如图,二次函数y=a(x2+2mx﹣3m2)(其中a,m是常数a<0,m>0)的图象与x轴分别交于A、B(点A位于点B的右侧),与y轴交于点C(0,3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)求a与m的关系式;(2)求证:为定值;(3)设该二次函数的图象的顶点为F.探索:在x轴的正半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+4ax+与x轴交于点A、B(A在B的左侧),过点A的直线y=kx+3k交抛物线于另一点C.(1)求抛物线的解析式;(2)连接BC,过点B作BD⊥BC,交直线AC于点D,若BC=5BD,求k的值;(3)将直线y=kx+3k向上平移4个单位,平移后的直线交抛物线于E、F两点,求△AEF的面积的最小值.13.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH ⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y 轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.15.如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)该二次函数图象上有一点P(x,y)使得S△BCD=S△ABP,求点P的坐标;(3)设F为线段BD上一点(不含端点),连接AF,求2AF+DF的最小值.16.二次函数y=x2﹣x﹣与x轴分别交于A、B两点,与y轴交于点C,点D 为抛物线的顶点,连接BD.(1)如图1,点P为抛物线上的一点,且在线段BD的下方(包括线段的端点),连接P A,PC,AC.求△P AC的最大面积;(2)如图2,直线l1过点B、D.过点A作直线l2∥l1交y轴于点E,连接点A、E,得到△OAE,将△OAE绕着原点O顺时针旋转α°(0<α<180)得到△OA1E1,旋转过程中直线OE1与直线l1交于点M,直线A1E1与直线l1交于点N.当△E1MN为等腰三角形时,直接写出点E1的坐标并写出相应的α值.17.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.18.如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B 两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,∠ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC≌△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC∽△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.20.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A(x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH 与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR 为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.参考答案一.解答题(共20小题)1.(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),∴AD=3,由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∠BAD=90°,∴∠BDC=∠DBA,BD是⊙O的直径,∴∠BED=90°,∵∠BFD=∠ABF+∠BAD,∠BFD=∠BDC+45°,∴∠ABF+90°=∠DBA+45°,∴∠DBA﹣∠ABF=45°,∴∠EBD=45°,∴△BED是等腰直角三角形,∴∠EBD=∠EDB;(2)证明:过点K作KS⊥BE,垂足为R,交AB于S,如图2所示:∵KG⊥AB,∴∠BGH=∠KRH=∠SRB=∠KGS=90°,∴∠SBR=∠HKR,∵∠BED=90°,∴∠RBK=∠RKB=45°,∴BR=KR,在△SRB和△HRK中,,∴△SRB≌△HRK(ASA),∴SB=HK,∵SB=BG+SG,HK=BG+AF,∴BG+SG=BG+AF,∴SG=AF,在△ABF和△GKS中,,∴△ABF≌△GKS(AAS),∴AB=KG;(3)解:过点O分别作AD与CN的垂线,垂足分别为Q和T,连接OC,如图3所示:∵∠APO=∠CPO,∴OQ=OT,在Rt△OQD和Rt△OTC中,,∴Rt△OQD≌Rt△OTC(HL),∴DQ=CT,∴AD=CN,∵四边形ABCD是矩形,∴AD=CN=BC,连接ON,在△NOC和△BOC中,,∴△NOC≌△BOC(SSS),∴∠BCO=∠NCO,设∠OBC=∠OCB=∠NCO=α,∴∠MOC=2α,过点M作MW⊥OC于W,在OC上取一点L,使WL=OW,连接ML,∴MO=ML,∴∠MOL=∠MLO=2α,∴∠LCM=∠LMC=α,∴ML=CL,设OM=ML=LC=a,则OD=a+8=OC,∴OL=8,OW=WL=4,∴CW=4+a,由勾股定理得:OM2﹣OW2=MW2=MC2﹣CW2,即a2﹣42=(3)2﹣(4+a)2,整理得:a2+4a﹣45=0,解得:a1=﹣9(不合题意舍去),a2=5,∴OM=5,∴MW=3,WC=9,∴OB=OC=OD=13,BD=26,∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW===,∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW=,设AB=b,则AD=3b,由勾股定理得:b2+(3b)2=262,解得b=,∴CD=GK=AB=,在Rt△GKB中,tan∠GKB==,∴GB=GK=×=.3.(1)证明:连接OF.∴AB⊥CD,∴∠AEH=90°,∴∠EAH+∠AHE=90°,∵GF=GH,∴∠GFH=∠GHF=∠AHE,∵OA=OF,∴∠OAF=∠OF A,∴∠OF A+∠GFH=90°,∴OF⊥GM,∴MG是⊙O的切线.(2)证明:∵=,∴OF垂直平分线段AC∵OF⊥MG,∴AC∥GM,∴∠CAH=∠GFH,∵∠CHA=∠GHF,∠HGF=∠GFH,∴∠CAH=∠CHA,∴CA=CH.(3)解:∵AC∥GM,∴∠G=∠ACH,∴tan∠CAH=tan∠G==,∵AE=6,∴EC=8,AC===10,设GF=GH=x,则CG=CH+GH=AC+GH=10+x,∵CD=2EC=16,∴GD=10+x﹣16=x﹣6,∵GF2=GD•GC,∴x2=(x﹣6)(x+10),解得x=15,∴EG=CG﹣CE=25﹣8=17,∵tan∠G==,∴EM=,∴GM===.4.解:(1)如图1中,当点B在优弧AC的中点时,△ABC的面积的最大,连接AB,BC,OB,延长BO交AC于H.∵=,∴BH⊥AC,∴AH=HC=,∴OH==1,∴BH=OB+OH=2+1=3,∴△ABC的最大面积=×AC×BH=×2×3=3.(2)如图2中,延长BD交⊙O于E,连结OE交AC于F,连结OC.由BD平分∠ABC可得,E为弧AC中点,∴OE⊥AC,∴AF=CF=∴OF===1=EF,∴DF垂直平分OE,又∵OD⊥BD,∴△ODE是等腰直角三角形,∴DF=OE=1,∴AD=.(3)如图3,连结AE、CE,由已知得AE=CE,∠AEC=120〫,将△EAB绕点E顺时针旋转120〫得△ECF,∵∠BAE=∠ECF,∠BAE+∠BCE=180〫,∴∠ECF+∠BCE=180〫,∴BF=BC+CF,∵AB=CF,∴BF=AB+BC,∵BE=FE,∠BEF=∠AEC=120〫,∴BF=BE,∵OD⊥BD,∴BE=2BD,∴BF=2BD,∴BA+BC=2BD.5.(1)证明:连接OA.∵OA=OC,∴∠OAC=∠OCA,∵GA=GE,∴∠GAE=∠GEA,∵DG⊥BC,∴∠EDC=90°,∴∠OCA+∠DEC=90°,∵∠CED=∠GEA=∠GAE,∴∠OAC+∠GAE=90°,∴∠OAG=90°,∴OA⊥AG,∴AG是⊙O的切线.(2)①如图2中,连接OA,AF,OF.∵四边形ABOF是菱形,∴AB=BO=OF=AF=OA,∴△ABO是等边三角形,∴∠B=60°,∵BC是直径,∴∠BAC=90°∴∠ACB=90°﹣60°=30°,∵ED⊥BC,∴∠DEC=90°﹣∠ACB=60°,∴∠AEG=∠DEC=60°.故答案为60.②如图3中,当AB=4时,△AGE是等腰直角三角形.理由:连接OA.∵△AGE是等腰直角三角形,∴∠AEG=∠DEC=∠DCE=45°,∴△EDC,△ABC都是等腰直角三角形,∵OB=OC,∴AO⊥OC,∴∠AOD=∠ODG=∠G=90°,∴四边形AODG是矩形,∴AG=OD=2,∴OC=2OD=4,∴BC=2OC=8,∴AB=AC=4,故答案为4.6.(1)证明:如图1中,∵AD=BC,∴=,∴=,∵AB=AC,∴=,∴=,∴∠ACB=∠BCD,∴CB平分∠ACD.(2)①结论:AC﹣2AG=CD.理由:如图2中,连接BD,在GC上取一点H,使得GH=GA.∵BG⊥AH,GA=GH,∴BA=BH,∴∠BAH=∠BHA,∵∠BAH+∠BDC=180°,∠BHG+∠BHC=180°,∴∠BDC=∠BHC,∵∠BCH=∠BCD,CB=CB,∴△BCH≌△BCD(AAS),∴CD=CH,∴AC﹣2AG=AC﹣AH=CH=CD.②如图3中,过点G作GN⊥AB于G,过点D作DM⊥AC交AC的延长线于M,连接AO,延长AO交BC于J,连接OC.∵=,∴∠BAD=∠ADC,∴AB∥CD,∴S△ACD=S△BCD,∵△BCH≌△BCD,∴S△BCH=S△BCD,∵AG=GH,∴S△ABG=S△BGH,∵S△ABG=S△ACD,∴S△ABG=S△BGH=S△BCH,∴AG=GH=CH,设AG=GH=HC=a,则AB=AC=3a,BG===2a,∵BG⊥AC,∴•BG•AG=•AB•GN,∴GN==a,在Rt△BGC中,BC===2a,∵AB=AC,∴=,∴AJ⊥BC,∴BJ=JC=a,∴AJ===a,在Rt△OJC中,∵OC2=OJ2+JC2,∴152=(a﹣15)2+(a)2,∴a=,∵S△ABG=S△ACD,AB=AC,GN⊥AB,DM∠AC,∴DM=GN=a=,∵BC=AD=2a=20,∴AM===,∵FG∥DM,∴=,∴=,∴AF=6,∴DF=AD=AF=20﹣6=14. 7.(1)证明:∵OA⊥BC,且OA过圆心点P,∴OB=OC,在△AOB和△AOC中,,∴△AOB≌△AOC(SAS),∴AB=AC,∵以AC为直角边作等腰Rt△ACD,∴AD=AC,∴AB=AD;(2)如图1,过点A作AM⊥BD于M,由(1)知,AB=AD,∴DM=BD,∵BF=4,DF=6,∴BD=10,∴DM=5,∵∠AMD=90°=∠DAF,∠ADM=∠FDA,∴△ADM∽△FDA,∴,∴,∴AD=,在等腰直角三角形ADC中,CD=AD=2;(3)的值是不发生变化,理由:如图2,过点D作DH⊥y轴于H,作DQ⊥x轴于Q,∴∠AHD=90°=∠COA,∴∠ADH+∠DAH=90°,∵∠CAD=90°,∴∠CAO+∠DAH=90°,∴∠ADH=∠CAO,∵AD=AC,∴△ADH≌△ACO(AAS),∴DH=AO,AH=OC,∵∠OHD=∠QOH=∠OQD=90°,∴四边形OQDH是矩形,DH=OQ,DQ=OH,又∵HO=AH+AO=OC+DH=OB+DH=OB+OQ=BQ,∴DQ=BQ,∴△DBQ为等腰直角三角形,∴∠DBQ=45°,∴∠DEH=∠BEO=45°,∴sin∠DEH=,∴=,∴,∴.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).10.解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点P(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点P(,);故点P的坐标为:(,)或(,)或(,)或(,).11.解:(1)将点C的坐标代入抛物线表达式得:﹣3am2=3,解得:am2=﹣1;(2)对于二次函数y=a(x2+2mx﹣3m2),令y=0,则x=m或﹣3m,∴函数的对称轴为:x=﹣m,∵CD∥AB,∴点D、C的纵坐标相同,故点D(﹣2m,3),故点A、B的坐标分别为:(m,0)、(﹣3m,0),设点E(x,y),y=a(x2+2mx﹣3m2),分别过点D、E作x轴的垂线,垂足分别为M、N,∵AB平分∠DAE,∴∠DAM=∠EAN,∴RtADM△∽Rt△ANE,∴,即,解得:y=,故点E(x,),将点E的坐标代入抛物线表达式并解得:x==﹣4m,则y==﹣5,故点E(﹣4m,﹣5),故===为定值;(3)存在,理由:函数的对称轴为x=﹣m,当x=﹣m时,y=a(x2+2mx﹣3m2)=4,即点F(﹣m,4),由点F、C的坐标得,直线FC的表达式为:y=﹣x+3,令y=0,则x=3m,即点G(3m,0),GF2=(3m+m)2+42=16m2+16,同理AD2=9m2+9,AE2=25m2+25,故AE2=AD2+GF2,GF、AD、AE的长度为三边长的三角形是直角三角形,点G的横坐标为3m.12.解:(1)∵直线y=kx+3k过点A,∴y=0时,0=kx+3k,解得x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得a=,∴抛物线解析式为y=x2+x+;(2)如图1,过点D作DF⊥x轴于F,过点C作CG⊥x轴于G,∴∠DFB=∠CGO=90°=∠DBC,∴∠DBF+∠BDF=90°,又∵∠DBF+∠CBG=90°,∴∠BDF=∠CBG,∴△BDF∽△CBG,∴,∵CB=5BD,∴CG=5BF,BG=5DF,联立方程组,解得:,(舍去),∴点C(4k﹣1,4k2+2k),∴CG=4k2+2k,OG=4k﹣1,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k=﹣(舍去)或k=0(舍去)或k=1,∴k的值为1;(3)∵将直线y=kx+3k向上平移4个单位,∴平移后解析式为y=kx+3k+4,∴kx+3k+4=x2+x+,∴x E+x F=4k﹣4,x E•x F=﹣12k﹣13,∴|x F﹣x E|==,∵△AEF的面积=×4×,∴当k=﹣时,△AEF的面积的最小值为16.13.解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).14.解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.15.解:(1)抛物线y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),∵点D(﹣5,3)在抛物线y=a(x+2)(x﹣4)上,∴a(﹣5+2)(﹣5﹣4)=3,∴a=.∴抛物线的函数表达式为:y=x2﹣x﹣.(2)如图1中,设直线BD交y轴于J,则J(0,).连接CD,BC.∵S△BDC=××9=10,∴S△P AB=10,∴×6×|y P|=10y P=±,当y=时,=x2﹣x﹣,解得x=1±,∴P(,)或(,),当﹣=x2﹣x﹣,方程无解,∴满足条件的点P的坐标为(,)或(,).(3)如图2中,过点D作DM平行于x轴,∵D(﹣5,3),B(4,0),∴tan∠DBA==,∴∠DBA=30°∴∠BDM=∠DBA=30°,过F作FJ⊥DM于J,则有sin30°=,∴HF=,∴2AF+DF=2(AF+)=2(AF+HF),当A、F、H三点共线时,即AH⊥DM时,2AF+DF=2(AF+HF)取最小值为=.16.解:(1)∵y=x2﹣x﹣=(x2﹣2x﹣3)=(x﹣1)2﹣2,∴顶点D的坐标为(1,﹣2),令y=0,则(x2﹣2x﹣3)=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0,则y=﹣,∴C(0,﹣),∴AC是定值,要△ACP的面积最大,则点P到AC的距离最大,即当点P在点B位置时,点P到AC的距离最大,∴S△ACP最大=S△ABC=AB•OC=(3+1)•=3;(2)由(1)知,B(3,0),D(1,﹣2),∴直线l1的解析式为y=x﹣3,∵l1∥l2,且l1过点A,∴直线l2的解析式为y=x+,∴E(0,),∴OE=,在Rt△AOE中,OA=1,∴tan∠AEO==,∴∠AEO=30°,∵l1∥l2,∴∠DBO=60°,由旋转知,OE1=OE=,∠A1E1O=∠AEO=30°,∴∠ME1N=30°如图,∵△E1MN为等腰三角形,∴①当E1N1=M1N1时,∴∠E1M1N1=∠A1E1O=30°,∴α=∠BOM=60°﹣30°=60°,过点E1作E1F⊥x轴于F,∴E1F=OE1=,∴OF=E1F=,∴E1(,),②当E2M2=E2N2时,∠E2N2M2=∠E2M2N2=(180°﹣30°)=75°,∴∠BOM2=75°﹣60°=15°,∴α=105°,过点E2作E2H⊥x轴,在OH上取一点Q,使OQ=E2Q,∴∠E2QH=30°,设E2H=a,则E2Q=2a,HQ=a,∴OQ=E2Q=2a,OH=(2+)a,在Rt△OHE2中,根据勾股定理得,[(2+)a]2+a2=3,∴a=(舍去负值),∴E2(,﹣).③当E3M3=M3N3时,∠E3N3M3=∠M3E3N3=30,∴∠E3M3N3=120°,∴∠BOM3=60°,∴α=150°,∵∠OBM3=60°,∠E3N3M3=30°,∴∠N3GB=90°,∴OG=,E3G=,∴E3(,﹣).17.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).18.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S△AEO=S△ACE=,∴AE=DE,∴S△AOD=2S△AOE=3;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,∵S△OEF=S△OAH=﹣,∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,∴S△OAH=S△ADO=3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).19.解:(1)理由:∵∠ACB=90°,∴∠ACD=∠BCE=90°,又∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,且∠ADC=∠BEC=90°,∴△ADC∽△CEB;(2)如图,过点O作ON⊥OM交直线CD于点N,分别过M、N作ME⊥x轴NF⊥x轴,由(1)可得:△NFO∽△OEM,∴,∵点M(2,1),∴OE=2,ME=1,∵tanα==,∴,∴NF=3,OF=,∴点N(﹣,3),∵设直线CD表达式:y=kx+b,∴∴∴直线CD的解析式为:y=﹣x+;(3)当∠CDP=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,∵∠ADC+∠CDP=180°,∴点A,点D,点P三点共线,∵∠BAP=∠B=∠H=90°,∴四边形ABHP是矩形,∴AB=PH=3,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠H=90°,AE=EP,∴△ABE≌△EHP(AAS),∴BE=PH=3,当∠CPD=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,∴CD=NH=3,DN=CH,设BE=x,则EC=5﹣x,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠EHP=90°,AE=EP,∴△ABE≌△EHP(AAS),∴PH=BE=x,AB=EH=3,∴PN=3﹣x,CH=3﹣(5﹣x)=x﹣2=DN,∵∠DPC=90°,∴∠DPN+∠CPH=90°,且∠CPH+∠PCH=90°,∴∠PCH=∠DPN,且∠N=∠CHP=90°,∴△CPH∽△PDH,∴,∴∴x=∵点P在矩形ABCD外部,∴x=,∴BE=,综上所述:当BE的长为3或时,△DPC为直角三角形.20.解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.。
2021年广东省中考数学解答题压轴题练习及答案 (35)
2021年广东省中考数学解答题压轴题练习1.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,,求P A的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA =90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出P A;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB =90°,设∠PBD=x°,则可表示出∠DAF=∠P AD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【解答】(1)解:直线PD为⊙O的切线证明:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD∵∠PDA=∠PBD,∴∠BDO=∠PDA∴∠ADO+∠PDA=90°,即PD⊥OD∵点D在⊙O上,∴直线PD为⊙O的切线.(2)解:∵BE是⊙O的切线,∴∠EBA=90°∵∠BED=60°,∴∠P=30°∵PD为⊙O的切线,∴∠PDO=90°在Rt△PDO中,∠P=30°,∴,解得OD=1∴∴P A=PO﹣AO=2﹣1=1(3)(方法一)证明:如图2,依题意得:∠ADF=∠PDA,∠P AD=∠DAF ∵∠PDA=∠PBD∠ADF=∠ABF∴∠ADF=∠PDA=∠PBD=∠ABF∵AB是圆O的直径∴∠ADB=90°设∠PBD=x°,则∠DAF=∠P AD=90°+x°,∠DBF=2x°∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°即90°+x+2x=180°,解得x=30°∴∠ADF=∠PDA=∠PBD=∠ABF=30°∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°∴∠DBE=60°,∴△BDE是等边三角形.∴BD=DE=BE又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°∴△BDF是等边三角形.∴BD=DF=BF∴DE=BE=DF=BF,∴四边形DFBE为菱形(方法二)证明:如图3,依题意得:∠ADF=∠PDA,∠APD=∠AFD,∵∠PDA=∠PBD,∠ADF=∠ABF,∠P AD=∠DAF,∴∠ADF=∠AFD=∠BPD=∠ABF∴AD=AF,BF∥PD∴DF⊥PB∵BE为切线∴BE⊥PB∴DF∥BE∴四边形DFBE为平行四边形∵PE、BE为切线∴BE=DE ∴四边形DFBE为菱形。
2021年广东省中考数学解答题压轴题练习及答案 (75)
2021年广东省中考数学解答题压轴题练习
1.如图,矩形ABCD中,CH⊥BD,垂足为H,P点是AD上的一个动点(P与A、D不重合),CP与BD交于E点.已知CH=,DH:CD=5:13,设AP=x,四边形ABEP的面积为y.
(1)求BD的长;
(2)用含x的代数式表示y.
【分析】(1)设DH=5k,则CD=13k,从而可以用k表示CH,CH长度已知,从而可求出Rt△CDH各边的长度.Rt△CDH∽Rt△BCD,根据各边长的比即可求出BD的长度.
(2)△PDE∽△BEC,BC比上PD等于BC边上的高比上PD边上的高.PD的长度等于BC长度减去x,从而可以用x表示PD上的高,进而可以用x表示三角形PED的面积,四边形ABEP的面积等于三角形ABD的面积减去三角形PED的面积.
【解答】解:(1)在Rt△CHD中,cos∠CDB==,
设DH=5k,DC=13k则CH===12k=,即:k=,∴DH=,DC=5,
在Rt△BCD中,BD==5×=13,
∴BD的长为13.
(2)如图,过点E分别作BC和PD的高,交BC于M,交PD于N.
∵PD∥BC,
∴△BCE∽△PDE.
∴,
∵BD=13,CD=5,根据勾股定理得:BC=12;
PD=AD﹣x=12﹣x,MN=AB=5,
∴,即=,
60﹣5x﹣(12﹣x)EN=12EN,
∴EN=,
∴△PDE的面积为:×=;△ABD的面积为:=30;
四边形ABEP的面积为:y=30﹣;。
2021年广东省中考数学解答题压轴题练习及答案 (23)
2021年广东省中考数学解答题压轴题练习1.已知,如图,EB是⊙O的直径,且EB=6,在BE的延长线上取点P,使EP=EB,A 是EP上一点,过A作⊙O的切线,切点为D,过D作DF⊥AB于F,过B作AD的垂线BH,交AD的延长线于H.当点A在EP上运动,不与E重合时:(1)是否总有,试证明你的结论;(2)设ED=x,BH=y,求y和x的函数关系,并写出x的取值范围.【分析】①欲证所求的比例式,只需证得DE∥FH即可.连接BD,设BD与FH的交点为G,由于HD切⊙O于D,根据弦切角定理知∠HDB=∠DEB,在Rt△DEB中,易证得∠DEB=∠FDB,则∠FDB=∠HDB,即可证得△DFB≌△DHB,由此可得BH=BF,即△BFH 是等腰三角形,根据等腰三角形三线合一的性质可证得BD⊥FH,而BD⊥DE,则FH∥DE,由此得证.②由于BH=BF,根据EB的长,可用y表示出EF的值,进而在Rt△DEB中,根据射影定理得到y、x的函数关系式;求x的取值范围时,只需考虑x的最大值即可,当A、P重合时,若连接OD,则OD⊥PH,根据平行线分线段成比例定理,可求得BH的长,进而可得到BF、EF的值,然后根据射影定理即可求得DE的长,由此求得x的取值范围.【解答】解:①无论点A在EP上怎么移动(点A不与点E重合),总有(3分)证明:连接DB,交FH于G.∵AH是⊙O的切线,∴∠HDB=∠DEB.又∵BH⊥AH,BE为直径,∴∠BDE=90°.有∠DBE=90°﹣∠DEB=90°﹣∠HDB=∠DBH.在△DFB和△DHB中,DF⊥AB,∠DFB=∠DHB=90°,DB=DB,∠DBE=∠DBH,∴△DFB≌△DHB.(4分)∴BH=BF.∴△BHF是等腰三角形.∴BG⊥FH,即BD⊥FH.∴ED∥FH,∴(5分)②∵ED=x,BH=y,BE=6,BF=BH,∴EF=6﹣y,又∵DF是Rt△BDE斜边上的高,∴△DFE∽△BDE,∴即ED2=EF•EB.∴x2=6(6﹣y)即y=﹣x2+6(7分)∴ED=x>0,当A从E向左移动,ED逐渐增大,当A和P重合时,ED最大,这时,连接OD,则OD⊥PH,∴OD∥BH.又PO=PE+EO=6+3=9,PB=12,,BH=∴BF=BH=4,EF=EB﹣BF=6﹣4=2.由ED2=EF•EB,得:x2=2×6=12,∵x>0,∴x=2 ,∴0<x≤2 ,[或由BH=4=y,代入y=﹣x2+6中,得x=2 ]故所求函数关系式为y=﹣x2+6(0<x≤2 ).。
2021年广东省中考数学解答题压轴题练习及答案 (78)
2021年广东省中考数学解答题压轴题练习1.如图,四边形ABCE内接于⊙O,AB是⊙O的直径,点D在AB的延长线上,延长AE 交BC的延长线于点F,点C是BF的中点,∠BCD=∠CAE.(1)求证:CD是⊙O的切线;(2)求证:△CEF是等腰三角形;(3)若BD=1,CD=2,求cos∠CBA的值及EF的长.【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD =90°,即结论得证;(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;(3)证明△DCB∽△DAC,可求出DA的长,得出AB的长;在直角△ACB中,由勾股定理得到边BC的长度;所以根据余弦三角函数的定义求得cos∠CBA的值;根据圆周角定理推知BE⊥AF,则BE2=AB2﹣AE2=BF2﹣EF2,将已知线段的长度代入,借助于方程求解即可.【解答】(1)证明:连接OC,如图所示:∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)证明:在△ABC和△AFC中,,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF.∴△CEF是等腰三角形;(3)解:∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB∽△DAC,∴==,∴=,∴AD=4,∴AB=AD﹣BD=4﹣1=3.在直角△ACB中,由勾股定理得到:AC2+BC2=AB2,即4×32+BC2=32.∴BC=EC=FC=.∴cos∠CBA==.∵AB是圆O的直径,∴BE⊥AF,∴AB2﹣AE2=BF2﹣EF2,即32﹣(3﹣EF)2=()2﹣EF2.解得EF=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东中考数学专题训练(一):代数综合题(函数题)一、命题特点与方法分析以考纲规定,“代数综合题”为数学解答题(三)中的题型,一般出现在该题组的第1题(即试卷第23题),近四年来都是对函数图像的简单考察.近四年考点概况:由此可见,近年来23题考点范围趋向综合,命题主体可以是一次函数与反比例函数或者一次函数与二次函数,但难度基本都不太大.主要的命题形式有以下3种:1.求点的坐标或求直线解析式中的待定系数.这种题一般考查列方程解答,难度较低,在试题的前两问出现.2.考察图像的性质.如14年第(1)问和16年第(2)(3)问,都是对函数图象的性质来设问,要求对图像性质有清晰的记忆.3.考查简单的几何问题.考查简单的解析几何的内容,基本上出现在试题的第(3)问,一般都利用基本的模型出题,几何部分难度不会太大,可以尝试了解高中解析几何的基础知识.二、例题训练1.如图,在直角坐标系中,直线y =?x ?5与反比例函数y =b x(x >0)交于A ?1,4?、B 两点. (1)求b的值;(2)求点B 的坐标; (3)直线y =3与反比例函数图像交于点C ,连接AC 、CB ,另有直线y =m 与反比例函数图像交于点D ,连接AD 、BD ,此时△ACB 与△ADB 面积相等,求m 的值.2.如图,在直角坐标系中,直线y =x +b 与反比例函数y =?1x(x <0)交于点A ? m ,1?.直线与x 轴、y 轴分别交于点B 、C .(1)求m 的值;(2)求点B 、C 的坐标;(3)将直线y =x +b 向上平移一个长度单位得到另一条直线,求两直线之间的距离.3.如图,在直角坐标系中,抛物线y =?1?m ?x 2?mx ?m 2?4经过原点且开口向下,直线y =x +b 与其仅交于点A .(1)求抛物线的解析式;(2)求点A 的坐标;(3)求直线y =x +b 关于x 轴对称的直线的解析式.4.如图,在直角坐标系中,抛物线y =x 2?3x ??与x 轴交于点A 、B ,与y 轴交于点C ,连接BC .(1)求点A 、B 和C 的坐标;(2)求∠OBC 的度数;(3)将直线BC 向上平移5个单位,再向左平移m 个单位,得到的直线与原直线重合,求m 的值.三、例题解析答案:1.(1)b=4;(2)?4,1?;(3)m=43.【考点:一次函数、反比例函数,一元二次方程】2.(1)m=?1;(2)B?2,0?,C?0,2?;(3.【考点:一次函数、反比例函数、相似三角形】3.(1)y=?x2+2x;(2)A?12,34?;(3)y=?x?14.【考点:二次函数、一次函数、一元二次方程、轴对称】4.(1)A?1,0?,B?2,0?,C?0,2?;(2)45°;(3)m=5.【考点:二次函数、一次函数、等腰三角形】解析:主要的命题形式与例题对应:1.求点的坐标或求直线解析式中的待定系数.【题1(1)(2),题2(1)(2),题4(1)】2.考察图像的性质.【题3(1)】3.考查简单的几何问题.【题1(3),题2(3),题3(3),题4(2)(3)】广东中考数学专题训练(二):几何综合题(圆题)一、命题特点与方法分析以考纲规定,“几何综合题”为数学解答题(三)中出现的题型.一般出现在该题组的第2题(即试卷第24题),近四年来都是以圆为主体图形,考察几何证明.近四年考点概况:也相对复杂.难度也较高(尤其是14、15年),考查学生综合多方面知识进行几何证明的能力.本题除了常规的证明以外,主要的命题特点有以下两种:1.改编自常考图形,有可能成为作辅助线的依据.如16年的构图中包含弦切角定理的常用图,17年第(2)问则显然是“切线?垂直?半径相等”得出角平分线的考察,依此就不难判断出辅助线的构造,应该对常考图形有一定的识别能力.2.利用数量关系求出特殊角.如15年第(1)问,17年第(3)问,这常常是容易被遗忘的点,在做这类题目的时候,首先要通过设问推敲,其次在观察题干中是否有给出角度的条件,如果没有,一般就是通过数量关系求出特殊角.二、例题训练1.如图,⊙O 为∆ABC 外接圆,BC 为⊙O 直径,BC =4.点D 在⊙O 上,连接OA 、CD 和BD ,AC 与BD 交于点E ,并作AF⊥BC交BD于点G ,点G 为BE 中点,连接OG . (1)求证:OA ∥CD ;(2)若∠DBC =2∠DBA ,求BD 的长;(3)求证:FG =2DE .2.如图,⊙O为 ABC外接圆,AB为⊙O直径,AB=4.⊙O切线CD交BA延长线于点D,∠ACB平分线交⊙O于点E,并以DC 为边向下作∠DCF=∠CAB交⊙O于点F,连接AF.(1)求证:∠DCF=∠D+∠B;(2)若AF=32,AD=52,求线段AC的长;(3)若CE,求证:AB⊥CF.3.如图,⊙O为 ABC外接圆,BC为⊙O直径.作»AD=»AC,连接AD、CD和BD,AB与CD交于点E,过点B作⊙O 切线,并作点E作EF⊥DC交切线于点G.(1)求证:∠DAC=∠G+90°;(2)求证:CF=GF;(3)若EFBD=23,求证:AE=DE.4.如图,⊙O 为 ABC 外接圆,AB 为⊙O 直径.连接CO ,并作AD ∥CO 交⊙O 于点D ,过点D 作⊙O 切线DE 交CO 延长线于点E ,连接BE ,作AF ⊥CO 交BC 于点G ,交BE 于点H ,连接OG .(1)若CF =2,OF =3,求AC 的长;(2)求证:BE 是⊙O 的切线;(3)若2AF AH DE g =23,求证:OG ⊥AB .三、例题解析答案:1.(1)难度中等,关键是推出∠DBA=∠ACB ;(2)难度中等,关键是推出∠DBC=45°;(3)难度大,OA 与BD 交于点H ,关键是利用OG 为∆BEC 中位线推出GH=2DE ,再利用全等三角形推出FG=GH .【考点:圆的性质(垂径定理)、三角函数、三角形中位线、全等三角形】2.(1)难度中等,关键是推出∠DCA=∠B ;(2)难度中等,关键是推出∠F=∠B ,从而得出∆AFC ∽∆ACD ;(3)难度大,关键是通过作下角平分线的常规辅助线得到全等三角形,通过转化边长和∠ACE=45°的条件推出AB=4解出AC=2,推出30°.【考点:圆的性质、三角函数、相似三角形、全等三角形、角平分线的性质】3.(1)难度低,关键是推出∠G=∠DCB ;(2)难度中等,关键是推出BF=EF ,再推出三角形全等;(3)难度较大,利用平行截割推出2BF=FC ,再利用第(2)问结论转换边长推出∠G=30°,进而推出∠ADC=∠BAD=30°.【考点:圆的性质(切线)、三角函数、全等三角形、平行截割、等腰三角形】4.(1)难度中等,关键是推出∆AFC ∽∆ACB ;(2)难度中等,关键是利用AD ∥CO 得到∆DOE ≌∆BOE ;(3)难度大,关键是推出∆ A FO ∽∆ A BH ,进而推出AF ?AH=2OB 2OB=BE ,推出∠AOC=60°,利用∆ACG ≌∆AOG 得出OG ⊥AB .【考点:圆的性质(切线)、相似三角形、全等三角形、三角函数】解析:主要的命题特点与例题对应:1.改编自常考图形.【题1(1),题2(1),题4(2)】2.利用数量关系求出特殊角.【题1(2),题2(3),题3(3),题4(3)】广东中考数学专题训练(三):代数与几何综合题(动态压轴题)一、命题特点与方法分析以考纲规定,“代数与几何综合题”为数学解答题(三)中出现的题型.一般出现在该题组的第3题(即试卷压轴第25题),近四年都是以简单几何图形的动态问题作背景,综合考察几何证明与代数计算问题.题较为灵活,几何部分的难度一般比24题要低,重点在于对数形结合的考察.前些年的25题对计算量要求较高(尤其是15年),近两年有所降低.本题第(1)问近3年都是送分题,用于拉高平均分,基本没有讨论价值,而其余两问基本采取以下命题形式:1.最值问题,基本是必考问题,如14年第(2)问,15年第(3)问,16年第(3)问,17年第(3)问②.此处的最值问题基本是通过二次函数关系式求得,所以一般会先要求推出关系式.一般而言这类题是面积最值问题,用字母表示出面积的做法,无外乎作高现和割补,而17年求面积的思路则有较高要求.2.特殊时刻,如14年第(1)(3)问,17年第(2)问.对特殊时刻的设问无外乎某图形成为等腰、直角和相似三角形或者某点落在边上等.这类问题一般分两类做法:一是重代数,抓住各边的等量关系,列出式子解方程;二是重几何,寻找该时刻的特殊几何意义(全等,相似和特殊角),利用几何推理得出结果.第一种做法计算量大,第二种做法则更重视几何推理,两种做法没有绝对的界限,一般两种都有涉猎.3.纯几何证明,如16年第(2)问,17年第(3)问①.要注重几何证明与接下来的设问的关系,类似于17年第(3)问,①中的结论用于①,降低难度,几何证明的结论很可能对接下来的解答有所帮助.此类问题有以下命题特点:1.对基本图形的考察,而且常常需要作辅助线来补全基本图形.例如13年“触礁问题”,14年相似求高,15年面积割补,17年“一线三等角”,这些基本图形大多出自课本且常见,像“一线三等角”,即便考过也应该加强,很可能改头换面再出现.2.结合几何证明在近年来,动态问题中的构图慢慢复杂,比起类似于13、15年的纯计算动态问题,类似于16、17年的几何意义比较丰富的动态问题更加受到重视.16、17年都是改编自经典的正方形证明问题,平时应该重视这类问题的改编题.3.基本出现分类讨论,而且常有提示.特别是16、17年都配有两个图作为提示,在解答时二、例题训练1.如图,在平面直角坐标系中,四边形AOBC 为正方形,点A ?0,2?.点D 为OB 边上一动点,连接AD ,向上作DE ⊥AD 并在DE 上取DE=AD 交BC 于点F ,连接CD 、CE 和BE ,设点D 的坐标为?x ,0?.(1)填空:点C 的坐标为____;(2)设y=S ∆CDE ,求y 关于x 的关系式,并求y 的最小值;(3)是否存在这样的x 值,使∆CBE 为等腰三角形?若存在,求出对应的x 值;若不存在,请说明理由.2.如图,Rt ∆ABC 和Rt ∆CDE 全等(点B 、C 、E 共线),∠B=∠E=90°,AB=CE=6cm ,∠ACB=∠CDE=30°,连接CE ,并取CE 中点F .点M 、N 分别为BC 、CD 边上动点,和2cm/s 的速度以点B →C ,点C →D 的方向运动,连接FM 、MN 和FN ,设运动的时间为t ?s ??0≤t≤2?.(1)填空:∠CAD =____°;(2)设S=S ∆FMN ?cm 2?,求S 关于t 的关系式,并求S 的最大值;(3)是否存在这样的t 值,使FN 与CD 的夹角为75°?若存在,求出对应的t 值;若不存在,请说明理由.3.如图,在平面直角坐标系中,四边形OABC是矩形,点0),点C?0,2?.点D为BC边上一动点,将COD沿OD对折成EOD,将点B沿点O和BA边上一点F的连线对折使其落在射线DE上的点G处.(1)填空:∠ODF =____°;(2)设点D?x,2?,点F?y?,求y关于x的关系式,并求出当x从0增大到2时,点F的运动路程;(3)在(2)的条件下,当点G落在x轴上时:①求证:CD=AG;②求出此时x的值.图(1)图(2)4.如图,在等腰三角形ABC 中,BC=6cm ,.点M 、N 分别从点B 、C 出发,分别用1cm/s的速度在BA 、CD 边上运动到点A 、B 停止,以MN 为斜边以如图所示方式在其右上方作等腰直角三角形MNO ,设运动时间为t t ?s ??.(1)填空:∠BAC =____°;(2)设S=S ∆MNO ?cm 2?,求S 关于t 的关系式,并求S 的最大值;??????(?)是否存在这样的t 值,使点O 落在∆ABC 的边上?若存在,求出对应的t 值;若不存在,请说明理由.三、例题解析答案:1.(1)?2,2?;(2)把∆CDE 分割成∆CDF 和∆CFE ,分别作出CF 边上的高,把面积的变化转化为CF长度的变化,再利用∆AOD ∽∆DBF 表示BF 的长度;y=22x ?x+2=12?x ?1?2+32;(3)①当CE=BE 时,x=1;②当BC=BE 时,;③当BC=CE 时,x=2.【考点:正方形的性质、全等三角形、相似三角形、二次函数、等腰三角形】2.(1)45;(2)连接FC ,S ∆FMN =S ∆FCM +S ∆FCN ?S ∆MCN ,利用二次函数的性质求出S 的最大值;2t ?3S max(3)用含t 的式子表示FC 的长;①当∠FND=75°,②当∠FNC=75°,t=3【考点:全等三角形、三角函数、二次函数、解直角三角形】3.(1)90;(2)利用相似求出关系式,路程分开y 从2到最小值和从最小值到2两段;y=22x 12?x 2+12;运动路程长为3;(3)①连接BG ,四边形BGOD 为平行四边形;②利用①和相似得出结论,此时 【考点:矩形的性质、相似三角形、平行四边形、二次函数】4.(1)120;(2)把∆MNO 的面积用MN 2表示,而MN 2用勾股定理求得;S=74?x ? 2+243196;(3)①当落在AB 边上,;②当落在BC 边上,;③当落在AC 边上,过点M 、N 向AC 边做垂直,证出全等, 【考点:等腰三角形、三角函数、勾股定理、二次函数、全等三角形、解直角三角形】 解析:主要的命题形式与例题对应:1.最值问题.【题1(2),题2(2),题3(2),题4(2)】2.特殊时刻.【题1(3),题2(3),题3(3),题4(3)】【题1(2)过程,题3(3)①,题4(3)过程】。