智能计算-模拟退火算法(matlab实现)

合集下载

matlab带约束模拟退火算法

matlab带约束模拟退火算法

【文章】matlab带约束模拟退火算法深入探讨和分析matlab带约束模拟退火算法在现代科学和工程领域,优化问题是十分常见的。

而其中,约束优化问题更是一种常见的形式。

为了解决这类问题,人们经过长时间的探索,提出了许多方法,其中模拟退火算法便是一种被广泛应用的优化算法之一。

而在matlab中,带约束的模拟退火算法更是得到了丰富的实现和应用。

本文将从简单到复杂,由浅入深地介绍matlab带约束模拟退火算法,以帮助读者更好地理解和掌握这一优化方法。

1. 什么是模拟退火算法?模拟退火算法是一种基于模拟退火过程的全局优化算法。

它模拟了金属在高温下退火时的物理过程,通过不断降低系统的温度来寻找全局最优解。

在matlab中,模拟退火算法通常通过设置初始温度、终止温度、温度下降率等参数来实现。

2. 为什么需要约束?在实际问题中,许多优化问题都存在着一定的约束条件。

比如工程设计中的材料强度、生产计划中的资源限制等。

如何在求解优化问题时满足这些约束条件便成为了一个重要的问题。

3. matlab带约束模拟退火算法是如何工作的?在matlab中,带约束的模拟退火算法通过引入罚函数、拉格朗日乘子等方法来处理约束条件。

它不仅要寻找全局最优解,还要确保解满足一定的约束条件。

这就需要在温度下降的过程中,不断调整解的位置,以在搜索最优解的同时满足约束条件。

4. 代码实现及应用在matlab中,带约束的模拟退火算法通常通过调用现成的优化工具箱来实现。

我们可以通过设置目标函数、约束条件等参数,来对不同的优化问题进行求解。

可以用该算法来求解工程设计中的优化问题、生产计划中的调度优化问题等。

总结回顾通过本文的介绍,我们对matlab带约束模拟退火算法有了一个较为全面的了解。

我们知道了模拟退火算法是如何工作的,以及在matlab中如何处理带约束的优化问题。

在实际应用中,我们可以根据具体的问题,合理地设置参数和约束条件,来求解复杂的优化问题。

使用matlab实现模拟退火算法

使用matlab实现模拟退火算法

使用matlab实现模拟退火算法标题:使用MATLAB实现模拟退火算法:优化问题的全局搜索方法引言:模拟退火算法(Simulated Annealing)是一种经典的全局优化算法,常用于解决各种实际问题,如组合优化、参数优化、图形分割等。

本文将详细介绍如何使用MATLAB实现模拟退火算法,并介绍其原理、步骤以及代码实现。

1. 模拟退火算法简介模拟退火算法借鉴了金属退火的物理过程,在解空间中进行随机搜索,用于找到全局最优解。

其核心思想是通过接受一定概率的劣解,避免陷入局部极小值,从而实现全局优化。

2. 模拟退火算法步骤2.1 初始参数设置在使用MATLAB实现模拟退火算法之前,我们需要配置一些初始参数,包括起始温度、终止温度、温度衰减系数等。

这些参数的合理设定对算法的效果至关重要。

2.2 初始解的生成在模拟退火算法中,我们需要随机生成一个初始解,作为搜索的起点。

这个初始解可以是随机生成的,也可以是根据问题本身的特性生成的。

2.3 判定条件模拟退火算法需要一个判定条件来决定是否接受新解。

通常我们使用目标函数值的差异来评估新解的优劣。

如果新解更优,则接受;否则,按照一定概率接受。

2.4 温度更新模拟退火算法中最重要的一步是对温度的更新。

温度越高,接受劣解的概率就越大,随着迭代的进行,温度逐渐降低,最终达到终止温度。

2.5 迭代过程在每次迭代中,我们通过随机生成邻近解,计算其目标函数值,并根据判定条件决定是否接受。

同时,根据温度更新的规则调整温度。

迭代过程中,不断更新当前的最优解。

3. MATLAB实现模拟退火算法在MATLAB中,我们可以通过编写函数或使用内置函数来实现模拟退火算法。

具体的实现方法取决于问题的复杂度和求解的要求。

我们需要确保代码的可读性和可复用性。

4. 示例案例:TSP问题求解为了演示模拟退火算法的实际应用,我们将以旅行商问题(Traveling Salesman Problem,TSP)为例进行求解。

matlab模拟退火法

matlab模拟退火法

模拟退火算法是一种基于物理中退火过程的优化算法,适用于解决全局优化问题。

以下是一个基本的MATLAB模拟退火算法实现示例:
matlab
function SA()
% 参数设置
T = 1000; % 初始温度
alpha = 0.95; % 降温系数
x = rand(1,10); % 初始解
f = @(x) sum(x.^2 - 10*cos(2*pi*x) + 10); % 目标函数
while T > 1e-5
% 随机生成新解
x_new = x + randn(1,10);
% 计算新解的函数值
f_new = f(x_new);
% 计算接受概率
p = exp(-(f_new - f(x))/T);
% 以概率p接受新解,否则拒绝
if rand() < p
x = x_new;
f = f_new;
end
% 降温
T = T*alpha;
end
% 输出最优解和最优值
fprintf('最优解:%f\n', x);
fprintf('最优值:%f\n', f);
end
这个示例中,我们定义了一个目标函数f,它是一个简单的多峰函数。

我们使用一个随机生成的初始解作为初始解x,然后在一个循环中不断生成新的解,并计算其函数值。

我们根据接受概率决定是否接受新解,如果新解更好,则接受;否则,我们以一定的概率接受新解。

在每次迭代中,我们都会降低温度T,直到达到预设的终止条件。

最后,我们输出最优解和最优值。

matlab量子退火算法

matlab量子退火算法

在MATLAB中使用量子退火算法(Quantum Annealing)可以借助QuaRL(Quantum Artificial Intelligence Toolbox for Reinforcement Learning)工具箱来实现。

QuaRL是MATLAB的一个量子计算工具箱,专门用于开发和测试基于量子计算的算法。

以下是在MATLAB中使用量子退火算法的一般步骤:1.安装QuaRL工具箱:确保您已在MATLAB中安装了QuaRL工具箱。

您可以从MathWorks官方网站下载并安装该工具箱。

2.导入必要的库:在MATLAB代码中导入QuaRL工具箱以及其他所需的库。

matlabCopy Codeimport rl.quarl.*3.定义问题:根据要解决的问题,构建适当的量子优化模型。

这可能涉及定义目标函数、约束条件等。

4.配置量子退火参数:设置量子退火算法的相关参数,例如温度、退火速率、量子比特数等。

matlabCopy Codeoptions = saoptimset('AnnealingFcn', @quantumAnnealing);options.AnnealingParameters = [temperature, annealingRate];5.运行量子退火算法:使用simulannealbnd函数运行量子退火算法,并获取结果。

matlabCopy Code[x, fval, exitFlag, output] = simulannealbnd(problem, x0, lb, ub, options);其中,problem是问题定义的函数句柄,x0是初始解,lb和ub是变量的下限和上限,options 包含了问题的设置。

6.分析结果:根据算法运行后得到的结果,进行进一步的分析和评估。

请注意,量子退火算法需要与适当的量子计算设备或模拟器配合使用。

在MATLAB中,您可以使用QuaRL工具箱提供的量子计算模拟器来模拟量子退火算法的执行。

MATLAB_智能算法30个案例分析

MATLAB_智能算法30个案例分析

MATLAB_智能算法30个案例分析1.线性回归:使用MATLAB的回归工具箱,对给定的数据集进行线性回归分析,获取拟合的直线方程。

2.逻辑回归:使用MATLAB的分类工具箱,对给定的数据集进行逻辑回归分析,建立分类模型。

3.K均值聚类:使用MATLAB的聚类工具箱,对给定的数据集进行K 均值聚类算法,将数据集分为多个簇。

4.支持向量机:使用MATLAB的SVM工具箱,对给定的数据集进行支持向量机算法,建立分类或回归模型。

5.决策树:使用MATLAB的分类工具箱,对给定的数据集进行决策树分析,建立决策模型。

6.随机森林:使用MATLAB的分类和回归工具箱,对给定的数据集进行随机森林算法,集成多个决策树模型。

7. AdaBoost:使用MATLAB的分类工具箱,对给定的数据集进行AdaBoost算法,提升分类性能。

8.遗传算法:使用MATLAB的全局优化工具箱,利用遗传算法进行优化问题的求解。

9.粒子群优化:使用MATLAB的全局优化工具箱,利用粒子群优化算法进行优化问题的求解。

10.模拟退火算法:使用MATLAB的全局优化工具箱,利用模拟退火算法进行优化问题的求解。

11.神经网络:使用MATLAB的神经网络工具箱,构建和训练多层感知机模型。

12.卷积神经网络:使用MATLAB的深度学习工具箱,构建和训练卷积神经网络模型。

13.循环神经网络:使用MATLAB的深度学习工具箱,构建和训练循环神经网络模型。

14.长短期记忆网络:使用MATLAB的深度学习工具箱,构建和训练长短期记忆网络模型。

15.GAN(生成对抗网络):使用MATLAB的深度学习工具箱,构建和训练生成对抗网络模型。

16.自编码器:使用MATLAB的深度学习工具箱,构建和训练自编码器模型。

17.强化学习:使用MATLAB的强化学习工具箱,构建和训练强化学习模型。

18.关联规则挖掘:使用MATLAB的数据挖掘工具箱,发现数据中的关联规则。

如何在Matlab中进行模拟退火算法的优化

如何在Matlab中进行模拟退火算法的优化

如何在Matlab中进行模拟退火算法的优化模拟退火算法是一种用于求解复杂问题的全局优化算法。

在Matlab中,我们可以利用其强大的数值计算和优化工具箱来实现模拟退火算法的优化。

本文将介绍如何在Matlab中进行模拟退火算法的优化,并通过一个实际的案例来演示其应用。

一、模拟退火算法简介模拟退火算法是一种启发式的全局优化算法,模拟了固体物体在退火过程中的特性。

其基本原理是通过模拟固体退火过程,逐渐降低系统能量,从而找到全局最优解。

在模拟退火算法中,由于退火过程中存在较高的温度,使算法有机会跳出局部极小值点,因此能够在搜索空间中全面地寻找最优解。

二、Matlab中的模拟退火算法优化函数Matlab提供了优化工具箱,在其中包含了一系列优化函数,其中包括模拟退火算法。

我们可以使用"simulannealbnd"函数来在Matlab中实现模拟退火算法的优化。

三、案例演示:函数最优化假设我们要求解以下函数的最小值:f(x) = x^2 + sin(5x)我们可以使用Matlab中的模拟退火算法优化函数来找到该函数的全局最小值。

1. 定义目标函数首先,我们需要在Matlab中定义目标函数:function y = myfunc(x)y = x.^2 + sin(5*x);2. 编写优化代码接下来,我们可以编写优化代码,利用"simulannealbnd"函数进行模拟退火算法的优化:options = saoptimset('Display','iter','TolFun',1e-6);[x,fval] = simulannealbnd(@myfunc, [-10,10],[],[],options);在上述代码中,"options"用于设置优化选项,"@myfunc"是要优化的目标函数,[-10,10]为变量的取值范围,[]表示无约束条件。

模拟退火例题

模拟退火例题

例已知敌方100个目标的经度、纬度如下:我方有一个基地,经度和纬度为(70,40)。

假设我方飞机的速度为1000公里/小时。

我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地。

在敌方每一目标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。

这是一个旅行商问题。

我们依次给基地编号为1,敌方目标依次编号为2,3,…,101,最后我方基地再重复编号为102(这样便于程序中计算)。

距离矩阵102102)(⨯=ij d D ,其中ij d 表示表示j i ,两点的距离,102,,2,1, =j i ,这里D 为实对称矩阵。

则问题是求一个从点1出发,走遍所有中间点,到达点102的一个最短路径。

上面问题中给定的是地理坐标(经度和纬度),我们必须求两点间的实际距离。

设B A ,两点的地理坐标分别为),(11y x ,),(22y x ,过B A ,两点的大圆的劣弧长即为两点的实际距离。

以地心为坐标原点O ,以赤道平面为XOY 平面,以0度经线圈所在的平面为XOZ 平面建立三维直角坐标系。

则B A ,两点的直角坐标分别为:)sin ,cos sin ,cos cos (11111y R y x R y x R A )sin ,cos sin ,cos cos (22222y R y x R y x R B 其中6370=R 为地球半径。

B A ,两点的实际距离⎪⎫ ⎛=OBR d OA arccos , 化简得]sin sin cos cos )(arccos[cos 212121y y y y x x R d +-=。

求解的模拟退火算法描述如下: (1)解空间解空间S 可表为{102,101,,2,1 }的所有固定起点和终点的循环排列集合,即}102,}101,,3,2{),,(,1|),,{(102101211021===ππππππ的循环排列为 S其中每一个循环排列表示侦察100个目标的一个回路,j i =π表示在第i 次侦察j 点,初始解可选为)102,,2,1( ,本文中我们使用Monte Carlo 方法求得一个较好的初始解。

智能优化算法及其matlab实例第三版引用

智能优化算法及其matlab实例第三版引用

智能优化算法及其matlab实例第三版引用一、智能优化算法简介1.优化算法背景在工程实践中,我们常常遇到各种优化问题,如最优化、最小化、最大化等。

为了解决这些问题,传统优化算法如梯度下降、牛顿法等应运而生。

然而,在处理复杂非线性、高维、多峰优化问题时,传统优化算法往往表现出收敛速度慢、易陷入局部最优等缺点。

因此,智能优化算法作为一种自适应、全局搜索能力较强的算法,逐渐得到了广泛关注和应用。

2.智能优化算法分类智能优化算法主要包括以下几类:遗传算法、粒子群优化算法、模拟退火算法、蚁群算法等。

这些算法大多是基于自然界的生物进化过程、社会行为等启发而设计的,具有较好的全局搜索能力和适应性。

二、常见智能优化算法介绍1.遗传算法遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法。

通过选择、交叉、变异等操作,逐步搜索问题空间,直至找到最优解。

2.粒子群优化算法粒子群优化算法(Particle Swarm Optimization,PSO)是一种启发式全局优化算法。

粒子群在搜索空间中不断更新自身位置,通过个体最优解和全局最优解的更新,实现对问题的求解。

3.模拟退火算法模拟退火算法(Simulated Annealing,SA)是一种基于统计物理学思想的优化算法。

通过模拟金属冶炼过程中的退火过程,实现对优化问题的求解。

4.蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种基于自然界蚂蚁觅食行为的优化算法。

通过蚂蚁的信息素更新和路径选择,逐步搜索问题空间,找到最优解。

三、MATLAB实现智能优化算法1.MATLAB编程基础MATLAB是一种功能强大的数学软件,可以方便地实现各种算法。

在本篇中,我们将以MATLAB为工具,演示如何实现智能优化算法。

2.智能优化算法MATLAB实现案例以遗传算法为例,我们选取一个经典优化问题进行MATLAB编程实现。

模拟退火算法节约里程法求解VRP问题Matlab程序

模拟退火算法节约里程法求解VRP问题Matlab程序
Step3:查看已安排路径,发现节点 5 还没有安排车辆,最后第三辆车的路径 为:0-5-0。全部节点安排车辆结束。
通过序贯节约里程法可得三条路径:0-6-3-4-0,0-1-2-0,0-5-0,三条路径的 运行距离分别为:141、138、108,总运行距离为 385。 (2)并行节约里程法
并行节约里程法是指在一次搜索中并行生成全部路径。以上面的算例为例,
第五章 模拟退火算法求解 VRP 问题
讲解标准的车辆路径问题以及节约里程法、模拟退火算法求解 VRP 问题的 Matlab 程序。 Created by Jiannywang@, 20180727
5.1 车辆路径问题(Vehicle Routing Problem,VRP)
车辆路线问题(VRP)最早是由 Dantzig 和 Ramser 于 1959 年首次提出,它 是指一定数量的客户,各自有不同数量的货物需求,配送中心向客户提供货物, 由一个车队负责分送货物,组织适当的行车路线,目标是使得客户的需求得到满 足,并能在一定的约束下,达到诸如路程最短、成本最小、耗费时间最少等目的。
不论哪种合并程序,该算法的前期步骤都是一样的,下面以图 5.1 所示算例
的具体数值来说明。
(1) 给出任意节点对之间的距离,给出所有需求节点的需求量和车辆容量数据;
表 5.1 节点间相互距离
01 2 34 56
0
30 65 67 53 54 28
1
43 72 50 74 53
2
52 27 89 65
车辆容量将多个节点的运输集中到一辆车运输,从而最大程度的节约运输里程,
C-W 算法另一个需要解决的任务就是进行运输任务合并从而实现运输里程的最
大化 节约。
C-W 算法中里程节约的合并过程分为两种:序贯节约里程法和并行节约里程

Matlab技术模拟退火算法

Matlab技术模拟退火算法

Matlab技术模拟退火算法随着科学技术的进步和应用领域的扩展,我们对问题的求解和优化的需求也越来越高。

而在这个过程中,模拟退火算法就显得格外重要。

本文将介绍Matlab技术中的模拟退火算法,以及其原理和应用。

一、模拟退火算法简介模拟退火算法(simulated annealing)是一种全局优化算法,它模拟物质从高温状态慢慢冷却至低温状态的过程,通过跳出局部极值,寻找全局最优解。

其基本思路是在搜索空间中随机生成一个解并逐渐改进,以一定的概率接受差解,以避免陷入局部最优解而无法找到全局最优解。

二、模拟退火算法原理模拟退火算法的基本原理源自于固体退火过程。

在固体的退火过程中,随着温度的逐渐下降,原子的运动趋于平稳,达到了最低能量态。

根据固体退火过程的原理,模拟退火算法将其应用在问题的求解过程中。

模拟退火算法主要由三个元素组成:初始温度、降温策略和能量函数。

初始温度决定了搜索空间的范围,温度越高,搜索范围越广。

降温策略决定了温度的降低速度,常见的降温策略有线性降温、指数降温和对数降温等。

能量函数用于评估解的质量,根据问题的性质和目标确定不同的能量函数。

算法的基本流程是:首先,随机生成一个初始解,并将其作为当前解。

随后,通过交换解中的元素、改变解的部分值等操作,产生新的解。

如果新解优于当前解,则接受新解作为当前解;如果新解不优于当前解,则以一定的概率接受差解,以避免陷入局部最优。

重复上述步骤,直到满足终止条件。

三、模拟退火算法在Matlab中的应用Matlab作为一种强大的数学计算工具,提供了丰富的优化算法库。

在Matlab中使用模拟退火算法解决问题,可以通过调用相应的函数实现。

首先,在Matlab中创建一个目标函数,该函数用于评估解的质量。

可以根据不同的问题需求,自定义目标函数。

然后,使用Matlab中的SA函数进行模拟退火算法的实现。

SA函数的参数包括目标函数、初始温度、降温率等。

下面以一个简单的例子来说明模拟退火算法在Matlab中的使用。

用MATLAB实现模拟退火算法 ppt课件

用MATLAB实现模拟退火算法 ppt课件
else sol_new = sol_current;
end end
用MATLAB实现模拟退火算法
一、0-1背包问题
例:
假设有12件物品,质量分别为2磅、5磅、18磅、3磅、2磅、5磅、 10磅、4磅、11磅、7磅、14磅、6磅,价值分别为5元、10元、13元、 4元、3元、11元、13元、10元、8元、16元、7元、4元,包的最大允 许质量是46磅
tmplist1; %u、v之间的城市移到w后面 end
用MATLAB实现模拟退火算法
一、算法设计步骤
用MATLAB实现模拟退火算法
一、算法设计步骤
% 计算目标函数即内能
E_new = 0; for i = 1 : (amount-1)
E_new = E_new + ... dist_matrix(sol_new(i),sol_new(i+1));
N 结束,输出当
Y
前解
扰动次数
Y
>10000
N
接受新解作为 当前解
N
Y 计算概率与[0,1)随机
数之间的差值
Y
差值大于0
N
扰动:
随机产生 0~1的数
数>0.5
Y
N
二变换法
三变换法
用MATLAB实现模拟退火算法
一、算法设计步骤
用MATLAB实现模拟退火算法
一、算法设计步骤用MBiblioteka TLAB实现模拟退火算法end
%从第一个城市到最后一个城市的距离
E_new = E_new + ... dist_matrix(sol_new(amount),sol_new(1));
用MATLAB实现模拟退火算法

模拟退火算法

模拟退火算法

options = saoptimset('PlotFcns',{@saplotbestf,@saplottemperature, @saplotf,@saplotstopping}); simulannealbnd(@dejong5fcn,x0,lb,ub,options);
options = saoptimset('InitialTemperature',[300 50]);
模拟退火算法的数学模型:马尔可夫链(可达 性,渐近不依赖起点,分布稳定性,收敛到最 优解) 如果温度下降十分缓慢,而在每个温度都有足 够多次的状态转移,使之在每一个温度下达到 热平衡,则全局最优解将以概率1被找到。因 此可以说模拟退火算法能找到全局最优解。
模拟退火算法实现的技术问题
1)解的形式和邻域结构 •解的表现形式直接决定于邻域的构造
模拟退火算法对TSP的应用1)加ຫໍສະໝຸດ 数据表1 29个城市的坐标
城市序 号 X坐标 Y坐标 城市序 号 X坐标 Y坐标 1 1150.0 1760.0 11 840.0 550.0 21 830.0 1770.0 2 630.0 1660.0 12 1170.0 2300.0 22 490.0 500.0 3 40.0 2090.0 13 970.0 1340.0 23 1840.0 1240.0 4 750.0 1100.0 14 510.0 700.0 24 1260. 0 1500. 0 5 750.0 2030.0 15 750.0 900.0 25 1280.0 790.0 6 1030.0 2070.0 16 1280.0 1200.0 26 490.0 2130.0 7 1650.0 650.0 17 230.0 590.0 27 1460.0 1420.0 8 1490.0 1630.0 18 460.0 860.0 28 1260.0 1910.0 9 790.0 2260.0 19 1040.0 950.0 29 360.0 1980.0 10 710.0 1310.0 20 590.0 1390.0

模拟退火二元法

模拟退火二元法

%matlab 程序实现模拟退火算法程序函数求极值(引用后修改,感谢ARMYLAU)%使用模拟退火法求函数f(x,y) = 3*cos(xy) + x + y2的最小值%解:根据题意,我们设计冷却表进度表为:%即初始温度为30%衰减参数为0.95%马可夫链长度为10000%Metropolis的步长为0.02%结束条件为根据上一个最优解与最新的一个最优解的之差小于某个容差。

%使用METROPOLIS接受准则进行模拟, 程序如下%* 日期:2012-11-29%* 作者:steven%*EMAIL:hxs2004@%* 结束条件为两次最优解之差小于某小量function [BestX,BestY]=SimulateAnnealing1clear;clc;%// 要求最优值的目标函数,搜索的最大区间XMAX= 4;YMAX = 4;%冷却表参数MarkovLength = 10000; %// 马可夫链长度DecayScale = 0.95; %// 衰减参数StepFactor = 0.02; %// 步长因子Temperature=30; %// 初始温度Tolerance = 1e-8; %// 容差AcceptPoints = 0.0; %// Metropolis过程中总接受点rnd =rand;% 随机选点初值设定PreX = -XMAX * rand ;PreY = -YMAX * rand;PreBestX = PreX;PreBestY = PreY;PreX = -XMAX * rand ;PreY = -YMAX * rand;BestX = PreX;BestY = PreY;% 每迭代一次退火一次(降温), 直到满足迭代条件为止mm=abs( ObjectFunction( BestX,BestY)-ObjectFunction (PreBestX, PreBestY));while mm > ToleranceTemperature=DecayScale*Temperature;AcceptPoints = 0.0;% 在当前温度T下迭代loop(即MARKOV链长度)次for i=0:MarkovLength:1% 1) 在此点附近随机选下一点p=0;while p==0NextX = PreX + StepFactor*XMAX*(rand-0.5);NextY = PreY + StepFactor*YMAX*(rand-0.5);if p== (~(NextX >= -XMAX && NextX <= XMAX && NextY >= -YMAX && NextY <= YMAX))p=1;endend% 2) 是否全局最优解if (ObjectFunction(BestX,BestY) > ObjectFunction(NextX,NextY))% 保留上一个最优解PreBestX =BestX;PreBestY = BestY;% 此为新的最优解BestX=NextX;BestY=NextY;end% 3) Metropolis过程if( ObjectFunction(PreX,PreY) - ObjectFunction(NextX,NextY) > 0 )%// 接受, 此处lastPoint即下一个迭代的点以新接受的点开始PreX=NextX;PreY=NextY;AcceptPoints=AcceptPoints+1;elsechanger = -1 * ( ObjectFunction(NextX,NextY) - ObjectFunction(PreX,PreY) ) / Temperature ; rnd=rand;p1=exp(changer);double (p1);if p1 > rand %// 不接受, 保存原解PreX=NextX;PreY=NextY;AcceptPoints=AcceptPoints+1;endendendmm=abs( ObjectFunction( BestX,BestY)-ObjectFunction (PreBestX, PreBestY));enddisp('最小值在点:');BestXBestYdisp( '最小值为:{0}');ObjectFunction(BestX, BestY)end****************************************************子函数,目标函数值计算function value=ObjectFunction(x,y)value=3*cos(x*y)+x+y*y;end%使用模拟退火法求函数f(x,y)=sin(x*y)+x^2+y^2的最小值format longXMAX=4; %搜索的最大区间YMAX=4; %搜索的最大区间MarkovLength=10000; %马可夫链长度DecayScale=0.95; %衰减参数0.95StepFactor=0.02; %步长因子Temperature=100; %初始温度Tolerance=1e-8; %容差AcceptPoints=0.0; %Metropolis过程中总接受点PreX=-XMAX*rand; %初始的搜索值PreY=-YMAX*rand; %初始的搜索值PreBestX=PreX; %上一个最优解PreBestY=PreY; %上一个最优解BestX=PreX; %最终解BestY=PreY; %最终解while(1)Temperature=Temperature*DecayScale; %每迭代一次退火一次(降温),直到满足迭代条件为止AcceptPoints=0.0;%在当前温度下迭代(即MARKOV链长度)次for i=0:1:MarkovLengthwhile(1)NextX=PreX+StepFactor*XMAX*(rand-0.5); %在初始点附近随机选下一点NextY=PreY+StepFactor*YMAX*(rand-0.5); %在初始点附近随机选下一点%判断新产生的点是否在规定的最大搜索区间内,若在,则退出循环,不在,继续循环,直到新产生的点在规定的最大搜索区间内if((NextX>=-XMAX && NextX<=XMAX && NextY>=-YMAX &&NextY<=YMAX))break %退出循环endend%判断新产生点与原来最优点哪个更优if(minfunction(BestX,BestY)>minfunction(NextX,NextY))PreBestX=BestX; %保留上一个最优解PreBestY=BestY;BestX=NextX; %新的最优解BestY=NextY;end%接受新产生的点为下一迭代的开始点if(minfunction(PreX,PreY)-minfunction(NextX,NextY)>0)PreX=NextX;PreY=NextY;AcceptPoints=AcceptPoints+1;elsechange=-1*(minfunction(NextX,NextY)-minfunction(PreX,PreY))/Temperature;%不接受,保存原解if(exp(change)>rand)PreX=NextX;PreY=NextY;AcceptPoints=AcceptPoints+1;endendend%结束条件为根据上一个最优解与最新的一个最优解的之差小于某个容差if(~(abs(minfunction(BestX,BestY)-minfunction(PreBestX,PreBestY))>Tolerance)) breakendenda=BestXb=BestYc=minfunction(BestX,BestY)%%%%%%%%%%%%%子程序%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function minf=minfunction(x,y)minf=sin(x*y)+x*x+y*y;%求目标函数的值。

模拟退火例题

模拟退火例题

例已知敌方100个目标的经度、纬度如下:我方有一个基地,经度和纬度为(70,40)。

假设我方飞机的速度为1000公里/小时。

我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地。

在敌方每一目标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。

这是一个旅行商问题。

我们依次给基地编号为1,敌方目标依次编号为2,3,…,101,最后我方基地再重复编号为102(这样便于程序中计算)。

距离矩阵102102)(⨯=ij d D ,其中ij d 表示表示j i ,两点的距离,102,,2,1, =j i ,这里D 为实对称矩阵。

则问题是求一个从点1出发,走遍所有中间点,到达点102的一个最短路径。

上面问题中给定的是地理坐标(经度和纬度),我们必须求两点间的实际距离。

设B A ,两点的地理坐标分别为),(11y x ,),(22y x ,过B A ,两点的大圆的劣弧长即为两点的实际距离。

以地心为坐标原点O ,以赤道平面为XOY 平面,以0度经线圈所在的平面为XOZ 平面建立三维直角坐标系。

则B A ,两点的直角坐标分别为:)sin ,cos sin ,cos cos (11111y R y x R y x R A )sin ,cos sin ,cos cos (22222y R y x R y x R B 其中6370=R 为地球半径。

B A ,两点的实际距离⎪⎫ ⎛=OBR d OA arccos , 化简得]sin sin cos cos )(arccos[cos 212121y y y y x x R d +-=。

求解的模拟退火算法描述如下: (1)解空间解空间S 可表为{102,101,,2,1 }的所有固定起点和终点的循环排列集合,即}102,}101,,3,2{),,(,1|),,{(102101211021===ππππππ的循环排列为 S其中每一个循环排列表示侦察100个目标的一个回路,j i =π表示在第i 次侦察j 点,初始解可选为)102,,2,1( ,本文中我们使用Monte Carlo 方法求得一个较好的初始解。

matlab退火算法

matlab退火算法

matlab退火算法一、概述退火算法(Simulated Annealing,SA)是一种全局优化算法,它模拟固体物质从高温状态冷却到低温状态的过程。

SA算法最初由Kirkpatrick等人于1983年提出,它是一种启发式算法,可以在搜索空间中寻找全局最优解或近似最优解。

Matlab作为一个强大的数学软件,在优化问题中也有着广泛的应用。

Matlab提供了丰富的工具箱和函数库,其中就包括了SA算法的实现。

本文将从以下几个方面介绍Matlab中的SA算法:原理、实现步骤、函数调用、参数设置和应用实例。

二、原理SA算法是一种基于概率的全局优化算法。

其基本思想是通过模拟物理退火过程,在搜索空间中随机跳跃,并接受劣解以避免陷入局部最优解。

在退火过程中,系统处于一个高温状态时可以接受较差的解,并以较大概率向这些较差解移动。

随着温度逐渐降低,系统逐渐趋向稳定状态,并对较差解的接受率逐渐降低。

当系统达到低温状态时,只接受更优的解,以避免陷入局部最优解。

三、实现步骤SA算法的实现步骤如下:1. 初始化参数。

包括初始温度、终止温度、初始解等。

2. 计算初始解的能量。

3. 进入循环。

在每个循环中,按照一定概率选择一个邻域解,并计算其能量。

4. 判断是否接受邻域解。

如果邻域解更优,则接受该解;否则以一定概率接受该劣解,概率与当前温度和能量差有关。

5. 降低温度。

在每个循环中降低温度,并更新参数。

6. 判断是否满足终止条件。

如果满足,则结束循环;否则返回第3步继续搜索。

四、函数调用Matlab中提供了simulannealbnd函数来实现SA算法。

该函数的调用格式为:[x,fval,exitflag,output] = simulannealbnd(fun,x0,lb,ub,options)其中,fun是目标函数,x0是初始点,lb和ub是变量的上下界限制,options是一个结构体变量,可以设置SA算法的参数和选项。

五、参数设置在使用simulannealbnd函数时,可以通过options结构体来设置SA 算法的参数和选项。

matlab模拟退火算法

matlab模拟退火算法

matlab模拟退火算法以matlab模拟退火算法为标题,写一篇文章。

1. 引言模拟退火算法是一种全局优化算法,通过模拟金属退火过程中的晶格结构变化,来搜索问题的最优解。

它广泛应用于组合优化、图论、机器学习等领域。

本篇文章将介绍如何使用matlab实现模拟退火算法,并通过一个简单的例子来演示其应用。

2. 模拟退火算法原理模拟退火算法的核心思想是通过接受较差的解来避免局部最优解,并逐渐降低温度以减小接受较差解的概率。

其基本步骤如下:- 初始化温度和初始解- 在当前温度下,对当前解进行小范围的扰动得到新解- 比较新解与当前解的目标函数值,根据一定的概率选择是否接受新解- 降低温度,重复上述步骤,直到满足停止准则3. matlab实现模拟退火算法在matlab中,我们可以使用内置函数simulannealbnd来实现模拟退火算法。

该函数需要定义目标函数、搜索范围和停止准则等参数。

我们定义一个简单的目标函数,例如求解二元函数f(x,y) = x^2 +y^2的最小值。

我们可以使用matlab的匿名函数来定义目标函数。

```matlabf = @(x) x(1)^2 + x(2)^2;```然后,定义搜索范围,例如x和y的取值范围为[-10, 10]。

```matlablb = [-10, -10];ub = [10, 10];```接着,设置模拟退火算法的参数,包括初始温度、终止温度、退火速率等。

```matlaboptions = optimoptions('simulannealbnd');options.InitialTemperature = 100;options.FunctionT olerance = 1e-6;options.TemperatureFcn = @temperatureexp;options.AnnealingFcn = @annealingboltz;```调用simulannealbnd函数来运行模拟退火算法,并返回最优解和目标函数值。

matlab模拟退火算法工具箱原理_概述及解释说明

matlab模拟退火算法工具箱原理_概述及解释说明

matlab模拟退火算法工具箱原理概述及解释说明1. 引言1.1 概述模拟退火算法是一种元启发式算法,用于在优化问题中寻找全局最优解。

该算法受到自然界中固体物体冷却过程的启发,通过随机搜索和接受次优解的方式,在搜索空间中逐渐降低温度来达到寻找最优解的目标。

Matlab模拟退火算法工具箱是一个集成了多种模拟退火算法的算法库,旨在帮助研究者和工程师解决各种优化问题。

本文将对Matlab模拟退火算法工具箱进行原理概述,并详细解释其功能和使用方法,以及应用场景和技巧。

1.2 文章结构本文将分为五个部分进行阐述。

首先是引言部分,介绍文章的背景和整体结构。

其次是Matlab模拟退火算法工具箱原理部分,包括对模拟退火算法概述、算法原理解析以及工具箱功能的介绍。

第三部分是Matlab模拟退火算法工具箱的应用场景,包括解决优化问题、参数调优与搜索空间探索等方面。

接着是Matlab 模拟退火算法工具箱的使用方法与技巧,详细说明安装与设置环境、建立模型与参数设定以及运行与结果分析等方面。

最后是结论与展望部分,对全文进行总结并展望未来的研究方向。

1.3 目的本文旨在向读者全面介绍Matlab模拟退火算法工具箱的原理和功能,使其能够理解和应用该工具箱来解决各类优化问题。

通过对应用场景的举例和使用方法与技巧的详细说明,希望读者能够掌握该工具箱的使用,并在实际问题中提取更准确、更高效的优化解。

最后,为了推进该领域的研究,还将提出一些可能的研究方向和展望。

2. Matlab模拟退火算法工具箱原理2.1 模拟退火算法概述模拟退火算法(Simulated Annealing)是一种基于统计物理学中固体退火原理的全局优化算法。

它模拟金属在高温下冷却过程中的晶格结构演变,通过随机搜索和接受恶化解以避免陷入局部最优解,并最终找到全局最优解。

2.2 算法原理解析模拟退火算法的主要原理是通过引入一个控制参数“温度”来控制搜索过程。

在初始阶段,温度较高,搜索范围较广,能够灵活地跳出局部最优解。

MATLAB智能算法30个案例分析

MATLAB智能算法30个案例分析

MATLAB智能算法30个案例分析以下是MATLAB智能算法30个案例的分析:1.遗传算法优化问题:利用遗传算法求解最佳解的问题。

可以用于求解复杂的优化问题,如旅行商问题等。

2.神经网络拟合问题:利用神经网络模型拟合给定的数据。

可以用于预测未知的数据或者进行模式分类等。

3.支持向量机分类问题:利用支持向量机模型进行分类任务。

可以用于医学图像处理、信号处理等领域。

4.贝叶斯网络学习问题:利用贝叶斯网络对大量数据进行学习和分析。

可以用于推断潜在关系、预测未来事件等。

5.粒子群算法逆向问题:利用粒子群算法解决逆向问题,如数据恢复、逆向工程等。

可以用于重建丢失的数据或者还原未知的模型参数。

6.模拟退火算法优化问题:利用模拟退火算法寻找最优解。

可以用于参数优化、组合优化等问题。

7.K均值聚类问题:利用K均值算法对数据进行聚类。

可以用于数据分析、图像处理等。

8.线性回归问题:利用线性回归模型预测目标变量。

可以用于价格预测、趋势分析等。

9.主成分分析问题:利用主成分分析模型对高维数据进行降维。

可以用于数据可视化和预处理。

10.深度学习图像分类问题:利用深度学习算法对图像进行分类。

可以用于图像识别和物体检测等。

11.强化学习问题:利用强化学习算法让智能体自主学习和改进策略。

可以用于自动驾驶、博弈等。

12.偏微分方程求解问题:利用数值方法求解偏微分方程。

可以用于模拟物理过程和工程问题。

13.隐马尔可夫模型序列分类问题:利用隐马尔可夫模型对序列进行分类。

可以用于语音识别、自然语言处理等。

14.遗传编程问题:利用遗传编程算法自动发现和改进算法。

可以用于算法设计和优化等。

15.高斯混合模型聚类问题:利用高斯混合模型对数据进行聚类。

可以用于人群分析和异常检测等。

16.马尔可夫链蒙特卡洛采样问题:利用马尔可夫链蒙特卡洛方法采样复杂分布。

可以用于概率推断和统计模拟等。

17.基因表达式数据分析问题:利用统计方法分析基因表达数据。

模拟退火算法及其MATLAB实现

模拟退火算法及其MATLAB实现

4.若 E 0 ,则新解xj被接受,作为新的当前解;

E, 则0 新解xj按概率
Ti为当前温度。
exp( 接E )受,
Ti
5.在温度Ti下,重复Lk次的扰动和接受过程,即执 行步骤(3)与(4)。
6.判断T是否已经达到Tf,是,则终止算法;否, 则转到步骤(2)继续执行
9
算法程序框图
初始化
随机产生初始解
模拟退火算法 及其MATLAB实现
算法基本理论部分
算法的简单介绍及其基本思想
模拟退火算法形成于20世纪80年代初,其思想来源 于固体退火过程,即将固体加热到足够高的温度, 再缓慢冷却;升温时,固体内部粒子随温度的升高 变为无序状,内能增大,缓慢冷却过程中粒子熵减 小,趋于有序。理论上讲,若冷却过程足够的缓慢, 那么在冷却中任意温度固体都会达到一个热平衡, 冷却到低温时将达到这一个低温下的最小内能状态。
四、参数的选择 3.Markov链长度
Markov链长度的选取原则是:一般取
Lk 100 n
n为问题规模
17
算法的MATLAB实现
TSP问题简介
一名商人要到n个不同的城市旅游,每 两个城市i和j之间的距离为dij,如何 选择一条路径使得商人每个城市走一 遍后回到起点,所走的总路径最短。
18
算法设计步骤的简单介绍
2
Metropolis准则的来源
冷却过程中,任一恒定温度都能达到一个热平衡。
由于物理系统总是趋向于能量最低,然而分子的热
运动则趋向于破坏这种低能量的状态,故只需要着
重采取贡献比较大的状态即可以达到比较好的效果。
于是1953年Metropolis提出了一个重要性采样的方
法:从当前状态i生成新状态j,若新状态的内能小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟退火算法
摘要:阐述了模拟退火算法的基本原理及实现过程,运用MATLAB语言实现了该算法。

并将其运用到解决旅行商问题的优化之中。

数值仿真的结果表明了该方法能够对函数进行全局寻优,有效克服了基于导数的优化算法容易陷入局部最优的问题。

该方法既可以增加对MATLAB 语言的了解又可以加深对模拟退火过程的认识,并达到以此来设计智能系统的目的。

关键词:模拟退火算法,全局寻优,搜索策略
simulatedannealing algorithm
Abstract:This paper describes the basic principles and processes simulatedannealing algorithm, using MATLAB language implementation of the algorithm. And use it to solve the traveling salesman problem among optimization. Simulation results show that the method can be a function of global optimization, effectively overcome the derivative-based optimization algorithm is easy to fall into local optimum. This method not only can increase the MATLAB language can deepen understanding and awareness of the simulated annealing process, and in order to achieve the purpose of the design of intelligent systems. Keywords:simulatedannealing algorithm,Global optimization,strategy
目录
一、简介 (1)
二、原理 (2)
三、实现过程 (3)
四、改进的地方 (4)
五、实验结果 (4)
六、结论 (6)
一、简介
许多实际优化问题的目标函数都是非凸的,存在许多局部最优解,但是,有效地求出一般非凸目标函数的全局最优解至今仍是一个难题。

特别是随着优化问题规模的增大,局部最优解的数目将会迅速增加,这无疑使寻找大规模复杂系统优化问题的全局最优解变得更加困难。

求解全局优化问题的方法可分为两类:一类是确定性方法,另一类是随机性方法。

前者基于确定性的搜索策略,在目标函数满足特定的限制条件下可以对求得全局最优解提供确定性的保证,这类方法一般适用于求解满足特定要求的一些特殊问题。

后者在搜索策略中引入了适当的随机因素,对目标函数一般不需要特殊的限制条件,具有比较广泛的适用性,由于采用随机搜索策略,这类方法只能在概率的意义上为求得全局最优解提供保证。

模拟退火算法是20世纪80年代初期发展起来的一种求解大规模组合优化问题的随机性方法。

它以优化问题的求解与物理系统退火过程的相似性为基础,利用Metropolis算法并适当地控制温度的下降过程实现模拟退火,从而达到求解全局优化问题的目的。

模拟退火(简称SA)是一种通用概率算法,用来在一个大的搜寻空间内找寻命题的最优解。

“模拟退火”算法是源于对热力学中退火过程的模拟,在某一给定初温下,通过缓慢下降温度参数,使算法能够在多项式时间内给出一个近似最优解。

退火与冶金学上的‘退火’相似,而与冶金学的淬火有很大区别,前者是温度缓慢下降,后者是温度迅速下降。

旅行商问题是指旅行商必须轮流到N个城市去旅游,每个城市仅去一次,最后返回原出发城市,任务是为旅行商找到一条满足上述条件的最短路径。

这里使用模拟退火解旅行商问题,因为这个问题本身是一个NP 难问题,所以也就求不到最优解,不过应该可以求得一个比较好的解,然后再手工优化。

二、原理
“模拟退火”的原理也和金属退火的原理近似:我们将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。

算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

模拟退火算法可以分解为解空间、目标函数和初始解三部分。

算法步骤:
模拟退火算法新解的产生和接受可分为如下四个步骤:
(1)由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

(2)计算与新解所对应的目标函数差。

因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。

事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

(3)判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/kT)接受S′作为新的当前解S。

(4)当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。

此时,当前解实现了一次迭代。

可在此基础上开始下一轮试验。

而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

三、实现过程
1、随机初始化城市坐标,计算初始路线总长度。

2、随机置换两个不同的城市的坐标,产生随机扰动,计算路线总长度。

每次记录下总长度和上次进行比较,比上次小则更新,否则不更新。

3、比较新老距离的差值,如何新路径好于老路径,则接受新解,否则继续保持老路径,然后继续第二步,直到达到迭代温度。

四、改进的地方
1、多次改变迭代次数,找到最优解;
2、在每次计算总路线长度时,随时和上次总路线长度进行比较,如果小时则对路线进行置换,否则继续保持上次记录值。

最后找到最优值。

五、实验结果
1、初始旅行路线图
求得的初始路径
>>1114.5127
2、最终求得的路线图
3、每次迭代求得的旅行距离:
求得的最短路径
>>321.2309
六、结论
利用MATLAB语言实现的模拟退火程序,能够找到系统的最优解,仿真结果证明了该方法的有效性,每次都与上次路径进行比较,并记录,进行替换,最后得到最佳路径。

采用该方法既可使大家熟悉MATLAB 语言,又可以加深对模拟退火算法的认识和理解。

部分代码截图
1、Main函数
2、计算路线总长度,每个城市只计算和下家城市之间的距离
3、随机置换两个不同的城市的坐标,产生随机扰动
4、连线各城市,画路线图。

相关文档
最新文档