高一必修2立体几何--平行与垂直关系强化练习(含答案)

合集下载

人教A版高中数学必修第二册强化练习题-8.6.1直线与直线垂直(含答案)

人教A版高中数学必修第二册强化练习题-8.6.1直线与直线垂直(含答案)

人教A版高中数学必修第二册8.6 空间直线、平面的垂直8.6.1 直线与直线垂直基础过关练题组一 求异面直线所成的角1.(2024安徽六安期中)如图,已知正四棱锥P-ABCD的所有棱长均为2,E为棱PA的中点,ABCD-A1B1C1D1中,E,F与直线AD1所成角的大小为在正方体ABCD-A(1)求异面直线CD1与BC1所成的角;(2)求证:MN∥平面ABCD.题组二 空间两条直线所成角的应用5.(多选题)(2024山东德州夏津第一中学月考)已知E,F 分别是三棱锥P-ABC 的棱PA,BC 的中点,且PC=6,AB=8.若异面直线PC 与AB 所成角的大小为60°,则线段EF 的长可能为( )A.7B.13C.5D.376.在长方体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,异面直线AB 与A 1C 所能力提升练在正四面体S-ABC 中3.4.(2024贵州凯里第一中学模拟)平面α过直三棱柱ABC-A 1B 1C 1的顶点B 1,平面α∥平面ABC 1,平面α∩平面BB 1C 1C=l,且AA 1=AB=BC,AB ⊥BC,则A 1B 与l 所成角的正弦值为( )A.32 B.22 C.12 D.335.已知正三棱柱ABC-A 1B 1C 1的侧面积为12,当其外接球的表面积取最小值时,异面直线AC 1与B 1C 所成角的余弦值为 .题组二 异面直线所成角的应用6.(2024上海青浦高级中学期末)在棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为底面ABCD 内(包括边界)的动点,满足直线D 1P 与CC 1所成角的大小为π6,则线段DP 扫过的面积为( )A.π12B.π6C.π3D.π27.(2024广东阳江期末)在四面体A-BCD 中,AB=CD=1,BC=2,且AB ⊥BC,CD ⊥BC,异面直线AB 与CD 所成的角为π3,则该四面体外接球的表面积为 .8.(2022河南濮阳第一高级中学月考)在四棱柱ABCD-A 1B 1C 1D 1中,侧面都是矩形,底面ABCD 是菱形且AB=BC=23,∠ABC=120°,若异面直线A 1B 和AD 1所成的角为90°,求AA 1的长度.答案与分层梯度式解析8.6 空间直线、平面的垂直8.6.1 直线与直线垂直基础过关练1.B2.C3.A 5.BD 6.DPC,EO=1PC=1,在所以BB1∥平面AEF,平面DBB1,所以BB1又与直线AD1所成的角为连接B N,CN,因为点M为A1B1的中点,A1B1=AB,所以MB1=AN,又MB1∥AN,所以四边形ANB1M为平行四边形,所以AM∥B1N,所以异面直线AM与B1C所成的角为∠CB1N(或其补角),设∠CB1N=θ,在正△ABC中,由AB=4,可得CN=23,在直角△BNB1中,BB1=3,BN=2,所以B1N=22+32=13,在直角△BCB1中,BC=4,BB1=3,所以B1C=42+32=5,在△B 1CN 中,由余弦定理的推论可得cos θ=B 1C 2+B 1N 2-C N 22B 1C·B 1N=52+(13)2-(23)22×5×13=135.故选A.4.解析 (1)连接A 1B,A 1C 1,因为A 1D 1=BC 且A 1D 1∥BC,所以四边形A 1D 1CB 为平行四边形,所以CD 1∥A 1B,则∠A 1BC 1或其补角为异面直线CD 1与BC 1所成的角,易知A 1C 1=A 1B=BC 1,所以△A 1C 1B 为等边三角形,所以∠A 1BC 1=60°,所以异面直线CD 1与BC 1所成的角为60°.(2)证明:连接C 1D,BD,则N 为C 1D 的中点,又M 为BC 1的中点,所以MN ∥BD,又MN ⊄平面ABCD,BD ⊂平面ABCD,所以MN ∥平面ABCD.5.BD 如图,取AC 的中点H,连接EH,FH,因为E,F 分别为PA,BC 的中点,PC=6,AB=8,所以AB ∥HF,HE ∥PC,HF=4,HE=3,所以异面直线PC 与AB 所成的角即为∠EHF(或其补角),所以∠EHF=60°或∠EHF=120°.当∠EHF=60°时,根据余弦定理的推论得cos ∠EHF=HE 2+H F 2-E F 22HE ·HF =9+16−EF 224=12,解得EF=13;当∠EHF=120°时,根据余弦定理的推论得cos ∠EHF=HE 2+H F 2-E F 22HE ·HF =9+16−EF 224=-12,解得EF=37.故选BD.易错警示 通过立体图形无法直接判断∠EHF是锐角还是钝角,因此∠EHF可能是异面直线所成的角,也可能是其补角,所以需要进行分类讨论.6.D ∵AB∥DC,∴∠A1CD(或其补角)即为异面直线AB与A1C所成的角,由图可知∠A1CD为.锐角,∴∠A1CD=π3设DD1=x,连接A1D,则A1C=12+12+x2=2+x2,A1D=x2+1.在∴∴7.垂直于上底面于点D,则ADD∥O2A,1∴或其补角,当在当在Rt△ABD中,AB=BD2+A D2=2.综上,AB=2或AB=2.能力提升练1.A2.A3.C4.A 6.A1.A 取SM的中点E,连接EN,AE,如图,∵N是SB的中点,∴EN∥MB,EN=12MB,∴∠ANE或其补角即为异面直线BM与AN所成的角.设正四面体的棱长为4,∵M是SC的中点,N是SB的中点,△SAB和△SBC均为正三角形,∴BM⊥SC,AN⊥SB,且BM=AN=23,∴EN=3,在△ASE中,由余弦定理得AE2=SA2+SE2-2SA·SE·cos∠ASE=16+1-2×4×1×12=13,在△ANE中,由余弦定理的推论得cos∠ANE=AN2+N E2-A E22AN·NE =12+3−132×23×3=16,∴异面直线BM与AN所成角的余弦值为16.故选A.2.A 如图,过点A作AN∥OM,交圆O于点N,连接ON,PN,则∠PAN或其补角即为异面直线OM与AP所成的角,设AO=ON=1,易知∠OAN=∠ONA=∠AOM=30°,则AN=3,因为轴截面PAB为等腰直角三角形,所以PN=PA=2,在△APN中,由余弦定理的推论得cos∠PAN=PA2+A N2-P N22PA·AN =2+3−226=64,所以异面直线OM与AP所成角的余弦值为64.故选A.3.C 如图,连接AD1,AP,易得AD1∥BC1,所以∠AD1P(或其补角)即为异面直线D1P与BC1所成的角.设正方体的棱长为1,DP=x,x∈[0,1],在△AD 1P 中,AD 1=2,AP=D 1P=1+x 2,故cos ∠AD 1P=(2)2+(1+x 2)2-(1+x 2)222·1+x 2=221+x 2,∵x ∈[0,1],∴cos ∠AD 1P=221+x2∈又∠AD 1P 是△AD 1P 的内角,∴∠AD 1P 故选C.B 1则ABC 1,所以B 1C 2∥平面⊂由小题速解 因为平面α∥平面ABC 1,平面α∩平面BB 1C 1C=l,平面ABC 1∩平面BB 1C 1C=BC 1,所以l ∥BC 1,则A 1B 与l 所成的角为∠A 1BC 1(或其补角),下同解析.5.答案 514解析 设正三棱柱的底面边长为a,高为h,外接球的半径为R,由题意知3ah=12,即ah=4,易得△ABC 外接圆的半径r=a2sin π3=a3,则R 2=r 2+ℎ24=a 23+ℎ24≥aℎ3=43,当且仅当a=32h 时取等号,此时外接球的表面积最小.将三棱柱补成一个四棱柱,如图,连接DB 1,DC,则AC 1∥DB 1,∴∠DB 1C(或其补角)为异面直线AC 1与B 1C 所成的角,易得B 1C=DB 1=a 2+ℎ2,DC=3a,∴cos ∠DB 1C=2(a 2+ℎ2)-3a 22(a 2+ℎ2)=514.解题技法 补形平移是常用的一种作平行线的方法,一般是补一个相同形状的几何体,构成一个特殊的几何体,方便作平行线,如此题将三棱柱补成一个四棱柱.6.A 因为DD 1∥CC 1,所以直线D 1P 与CC 1所成的角即为DD 1与D 1P 所成的角,易知DD 1⊥PD,所以DD 1与D 1P 所成的角为∠DD 1P,即∠DD 1P=π6,故tan ∠DD 1P=DPDD 1=33,即DP=33,所以点P 的轨迹是以D 为圆心,33为半径的圆的四分之一,故线段DP 扫过的面积为14π×=π12.故选A.7.答案 16π3或8π解析 由题意,可以将四面体A-BCD 补成一个直三棱柱,如图所示.∵CD∥BE,∴直线AB与CD所成的角为∠ABE或其补角,∵异面直线AB与CD所成的角为π3,∴∠ABE=π3或∠ABE=2π3.设△ABE外接圆的半径为r,当∠ABE=π3时,AE=BE=AB=1,则2r=1sinπ3,解得r=33;当∠ABE=2π3时,AE=3,则则8.BC且A1D1=BC,所以A1B∥CD1,所成的角为∠AD1C,故∠AD1均为矩形,设在故。

北师大版高中数学必修第二册强化练习题 专题强化练8 空间中的平行关系(含答案)

北师大版高中数学必修第二册强化练习题 专题强化练8 空间中的平行关系(含答案)

北师大版高中数学必修第二册专题强化练8 空间中的平行关系1.(多选题)(2024云南保山腾冲第八中学期中)已知a,b是两条不重合的直线,α,β是两个不重合的平面,则下列说法中正确的是( )A.若α∩β=b,a⊂α,则a与β一定相交B.若α∥β,a⊂α,则a∥βAA.EG与BC1为异面直线 B.Ω有13条棱C.Ω有7个顶点 D.平面BC1D∥平面EFG4.(2023新疆乌鲁木齐模拟)如图,在长方体ABCD-A1B1C1D1中,A1EEB1=BFFB1=CGGC1=D1HHC1=2,则下列说法错误的是( )D.边) 于答案与分层梯度式解析专题强化练8 空间中的平行关系1.BC 对于A,若α∩β=b,a⊂α,则a∥β或a与β相交,A错误;对于B,若α∥β,a⊂α,则由面面平行的性质可得a∥β,B正确;对于C,若a∥b,b⊂α,则a∥α或a⊂α,故a平行于α内的无数条直线,C正确;对于D,若α∥β,a⊂α,b⊂β,则a∥b或a与b是异面直线,故D错误.故选BC.2.ABC 由三棱柱ABC-A1B1C1的性质可知平面ABC∥平面A1B1C1,又平面BCHG∩平面ABC=BC,平面BCHG∩平面A1B1C1=GH,所以BC∥GH,因为点E,F分别是AB,AC的中点,所以BC∥EF,故EF∥GH,A正确;由EF∥GH,EF⊂平面A1EF,GH⊄平面A1EF,得GH∥平面A1EF,B正确;因为GH经过△A1B1C1的重心,GH∥BC∥B1C1,所以GHBC =GHB1C1=23,易知EFBC=12,则GHEF=43,C正确;因为A1,E,B,B1四点共面,且A1E与BB1相交,所以平面A1EF与平面BCC1B1相交,D错误.故选ABC.3.ABD 对于A,因为EG⊂平面ACC1A1,C1∈平面ACC1A1且C1∉EG, B∉平面ACC1A1,故EG与BC1为异面直线,故A正确;对于B,几何体Ω的棱有A1D,A1C1,DC1,A1E,EG,EF,CC1,C1B,DB,FG,GC,CB,FB,共13条,故B正确;对于C,几何体Ω的顶点有A1,D,C1,E,G,C,B,F,共8个,故C错误;对于D,如图,取AB的中点H,连接A1H,DH,CH,因为AB=4AF,所以F是AH的中点,又D,G,E分别为所在棱的中点,所以EF∥A1H,FG∥CH,由A1D∥BH,A1D=BH,得四边形A1DBH为平行四边形,故A1H∥DB,则EF∥DB,又EF⊄平面BDC1,DB⊂平面BDC1,所以EF∥平面BDC1.易知DH∥BB1∥CC1,且DH=BB1=CC1,故四边形DC1CH为平行四边形,则C1D∥CH,故FG∥C1D,又GF⊄平面BDC1,DC1⊂平面BDC1,所以GF∥平面BDC1,又EF∩FG=F,EF,FG⊂平面EFG,所以平面EFG∥平面BDC1,故D正确.故选ABD.4.A 如图所示,连接A1B,D1C,BD,BD1,5.②如图2,延长MP交B1C1于点N1,过点N1作AM的平行线交A1B1于点S1,连接AS1,则所求截面为四边形AMN1S1;③如图3,延长MP交BB1于点N2,连接AN2,则所求截面为△AMN2.显然①②中的截面面积均大于或等于③中的截面面积,故只需考虑①②中的情况,根据对称性可知①②中的情况相同,故只考虑情况①即可.在①中,易知AM=22,AM ⊥MN,△SC 1N 为等腰直角三角形,设C 1N=x 0≤x ≤则长度),所以所求截面面积×==12x 4+2x +34,因为y=x 4,y=2x +34在0,,所以函数y=x 4+2x +34在0,,故S max =12×=22,故所求截面面积的最大值为22.6.解析 (1)交线l 如图所示.作法:在平面BDE 中过D 点作直线l ∥BE,则直线l 就是所求作的交线.理由:在圆柱OO'中,EF,BC 是母线,∴EF ∥BC,EF=BC,∴四边形EFCB 是平行四边形,∴EB ∥FC,又∵EB ⊄平面FCD,CF ⊂平面FCD,∴EB ∥平面FCD.∵交线l=平面FCD∩平面DBE,∴l ∥EB,∴过D 作直线l ∥EB,则直线l 就是所求作的交线.∵l ∥EB,l ⊄平面BEF,EB ⊂平面BEF,∴l ∥平面BEF.(2)证明:取EF的中点G,连接MG,NG,∵M,G分别是DE,EF的中点,∴MG∥DF,∵MG⊄平面DFC,DF⊂平面DFC,∴MG∥平面DFC,∴MG∥平面ABE,同理可证GN∥平面ABE,∵MG∩GN=G,MG,GN⊂平面MGN,∴平面MGN∥平面ABE,又∵MN⊂平面MGN,∴MN∥平面ABE.。

高一数学人教A版必修2练习2.4 平行与垂直综合问题 Word版含解析

高一数学人教A版必修2练习2.4 平行与垂直综合问题 Word版含解析

.平行与垂直综合问题.已知直线,和平面α,β满足⊥,⊥α,α⊥β,则().⊥β.∥β或⊂β.⊥α.∥α或⊂α解析:在平面β内作直线垂直于α,β的交线,则由α⊥β得直线⊥α.又⊥α,所以∥.若⊂β,结合图形知,要满足题中限制条件,显然只能∥α或⊂α;同理⊄β,仍有∥α或⊂α.综上所述,正确..若三个平面α,β,γ,之间有α∥γ,β⊥γ,则α与β().垂直.平行.相交.以上三种可能都有.对于任意的直线与平面α相交,在平面α内不可能有直线,使与().平行.相交.垂直.互为异面直线.给出以下四个命题,其中真命题有①②④(填序号).①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直..已知平面α外不共线的三点,,,且∥α,则正确的结论是() .平面必平行于α.平面必与α相交.平面必不垂直于α.存在△的一条中位线平行于α或在α内.设直线⊂平面α,过平面α外一点且与,α都成°角的直线有且只有() .条.条.条.条解析:如图所示与α成°角的直线一定是以为顶点的圆锥的母线所在直线,当∠=∠=°时,直线,都满足条件,故选..下列命题中,正确的是().经过不同的三点有且只有一个平面.分别在两个平面内的两条直线一定是异面直线.垂直于同一个平面的两条直线是平行直线.垂直于同一个平面的两个平面平行.用α表示一个平面,表示一条直线,则平面α内至少有一条直线与().平行.相交.异面.垂直.若,表示直线,α表示平面,则下列命题中,正确的个数为()。

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。

人教版高一数学必修2空间直线的垂直关系练习题(含答案详解)

人教版高一数学必修2空间直线的垂直关系练习题(含答案详解)

人教版高一数学必修2空间直线的垂直关系练习题(含答案详解)必修 2 空间中的垂直关系基础知识点一、选择题:1. 若斜线段 AB 是它在平面α上的射影的长的 2倍,则 AB 与平面α所成的角是( ).2. 直线l ⊥平面α,直线m? α,则 ( ).A.l ⊥mB.l ∥mC.l ,m 异面D.l , m 相交而不垂直3. 如图所示,PO ⊥平面 ABC ,BO ⊥AC ,在图中与 AC 垂直的线段有 ( ). 4. 若平面α⊥平面β,平面β⊥平面γ,则( ). C.30 °D.120C.3条 D.4 条A. α∥γ B. α⊥γ C. α与γ相交但不垂直D.以上都有可能5. 已知长方体 ABCD 1AB 1C 1D 1,在平面 AB 1上任取一点 M ,作ME ⊥AB 于 E ,则( ).A.ME ⊥平面 ACB.ME ? 平面 ACC.ME ∥平面 ACD. 以上都有A.1 条B.2可能6. 如图,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( ).A. 平面PAB与平面PBC、平面PAD都垂直B. 它们两两垂直C. 平面PAB与平面PBC垂直,与平面PAD不垂直D. 平面PAB与平面PBC、平面PAD都不垂直二、填空题:7. _________________________________ 在正方体A1B1C1D1ABCD 中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心(如图),则EF与平面BB1O 的关系是 ______________________________ .8. 若a, b 表示直线,α表示平面,下列命题中正确的有___ 个.①a⊥α,b∥α? a⊥b; ②a⊥α,a⊥b? b∥α;③a∥α,a⊥b? b⊥α;④a⊥α,b⊥α? a∥b.9. α、β是两个不同的平面,m、n 是平面α及β外的两条不同的直线,给出四个论断:① m⊥n;②α⊥β;③m⊥α;④n⊥β. 以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题 __ .10. 如图,正方体ABCD1AB1C1D1中,截面C1D1AB与底面ABCD所成二面角C1ABC的三、解答题:π11. 如图所示,在Rt△AOB中,∠ABO=6 ,斜边AB=4,Rt △AOC可以通过Rt △AOB 以直线AO为轴旋转得到,且二面角BAOC 是直二面角,D是AB的中点.求证:平面COD⊥平面AOB.12. 如图,在四棱锥P - ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=D,C E 是PC的中点,作EF⊥PB交PB于点F.(1) 求证:PA∥平面EDB;(2) 求证:PB⊥平面EFD.综合提高1. 已知l ,m,n 为两两垂直的三条异面直线,过l 作平面α与直线m垂直,则直线n 与平面α的关系是( ).A.n ∥αB.n ∥α或n? αC.n ? α或n 与α不平行D.n ? α2. 已知平面α⊥平面β,α∩β =l,点A∈α,A?l ,直线AB∥l ,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( ).A.AB∥mB.AC ⊥mC.AB ∥βD.AC ⊥β3. 一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角( ).A. 相等B. 互补C. 相等或互补D. 关系无法确定4. 如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,现在沿SE,SF,EF 把这个正方形折成一个四面体,使G1、G2、G3 重合,重合后的点记为G.给出下列关系:①SG⊥平面EFG;②SE⊥平面EFG;③GF⊥ SE;④EF⊥平面SEG. 其中成立的有( ).A. ①②B. ①③C. ②③D. ③④5. 如果三棱锥的三个侧面两两相互垂直,则顶点在底面的正投影是底面三角形的心.6. 已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,若A1在底面ABC内的射影为△ABC的中心,则AB1 与ABC底面所成的角的正弦值等于.7. 将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:①AC⊥BD;②△ ACD是等边三角形;③ AB与平面BCD成60°的角;④ AB与CD 所成的角为60°.其中真命题的编号是 _____ ( 写出所有真命题的编号).8. 如图,A、B、C、D为空间四点,在△ ABC中,AB=2,AC=BC= 2,等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,则CD= .9. 如图所示,四边形ABCD为正方形,SA垂直于四边形ABCD 所在的平面,过点 A 且垂直于SC的平面分别交SB,SC,SD于点E,F,G.求证:AE⊥SB,AG⊥SD.10. 如图,在四棱锥P-ABCD中,PO⊥面ABCD,PD=DC=BC,=1AB=2,AB∥DC,∠ BCD=9°0 .(1) 求证:PC⊥BC.(2) 求点A到平面PBC的距离.11. 如图,已知平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E 为垂足.(1) 求证:PA⊥平面ABC;(2) 当 E 为△ PBC的垂心时,求证:△ ABC是直角三角形.12. (创新拓展)已知△ BCD中,∠BCD=9°0 ,BC=CD=,1AB⊥平面BCD,∠ADB=60°,AE AFE,F 分别是AC,AD上的动点,且A AE C=A A F D=λ(0 <λ<1).(1) 求证:不论λ为何值,总有平面BEF⊥平面ABC;(2) 当λ为何值时,平面BEF⊥平面ACD?参考答案基础篇1. 答案A;解析斜线段、垂线段以及射影构成直角三角形. 如图所示,∠ABO OB1即是斜线AB与平面α所成的角,又AB=2BO,所以cos∠ABO=AB=2. 所以∠ ABO=60°. 故选 A.2. 答案A;解析无论l 与m是异面,还是相交,都有l ⊥m,考查线面垂直的定义,故选 A.3. 答案D;解析∵PO⊥平面ABC,∴ PO⊥AC,又∵ AC⊥BO,∴ AC⊥平面PBD,∴平面PBD中的4条线段PB,PD,PO,BD与AC垂直.4. 答案D;解析以正方体为模型:相邻两侧面都与底面垂直;相对的两侧面都与底面垂直;一侧面和一对角面都与底面垂直,故选 D.5. 答案A;解析由于ME? 平面AB1,平面AB1∩平面AC=AB,且平面AB1⊥平面AC,ME⊥AB,则ME⊥平面AC.6. 答案A;解析∵PA⊥平面ABCD,∴ PA⊥BC.又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵ BC? 平面PBC,∴平面PBC⊥平面PAB. 由AD⊥PA,AD⊥AB,PA∩AB=A,得AD⊥平面PAB.∵AD?。

北师大版高中数学必修第二册强化练习题-专题强化练9-空间中的垂直关系(含答案)

北师大版高中数学必修第二册强化练习题-专题强化练9-空间中的垂直关系(含答案)

北师大版高中数学必修第二册专题强化练9 空间中的垂直关系1.(2022河南南阳第一中学月考)设m,n,l是三条不同的直线,α,β是两个不同的平面,给出下列四个命题,其中正确的是( )A.若α⊥β,l⊂α,m⊂β,则l⊥mB.若α∥β,l⊂α,m⊂β,则l∥mA.37B.3+311C.6D.725.(多选题)如图,PA垂直于以AB为直径的圆所在的平面,点C是圆上异于A,B的任一点,则下列结论正确的是( )A.PC⊥BC B.AC⊥平面PCBC.D.面在四棱锥P-ABCD中,底面面答案与分层梯度式解析专题强化练9 空间中的垂直关系1.C 对于A,若α⊥β,l⊂α,m⊂β,则l与m可能平行、相交或异面,A不正确;对于B,若α∥β,l⊂α,m⊂β,则l与m可能平行或异面,B不正确;对于C,如图,过l作平面γ,γ∩β=l',∵l∥β,l⊂γ,γ∩β=l',∴l∥l',∵l⊥α,∴l'⊥α,又l'⊂β,∴α⊥β,C正确;对于D,当l⊂α,l⊥m,l⊥n,m∥β,n∥β时,α与β还可能平行或斜交,D不正确.故选C.2.D ∵平面PAC⊥平面PBC,AC⊥PC,AC⊂平面PAC,平面PAC∩平面PBC=PC,∴AC⊥平面PBC.∵BC⊂平面PBC,∴AC⊥BC,∴∠ACB=90°,∴动点C的运动轨迹是以AB为直径的圆(除去A,B两点).3.AC 对于A,由题意得PE⊥平面ABCD,连接AC,交BD于点H,若E与H不重合,则AH=CH,EH⊥AC,所以AE=EC,当E与H重合时,显然AE=EC,又PA=PE2+AE2,PC=PE2+CE2,所以PA=PC,A正确;对于B,PD=PE2+ED2,PB=PE2+EB2,由于ED与EB不一定相等,所以PB,PD不一定相等,B错误;对于C,因为PE⊥平面ABCD,AC⊂平面ABCD,所以PE⊥AC,又因为AC⊥BD,PE∩BD=E,PE,BD⊂平面PBD,所以AC⊥平面PBD,C正确;对于D,连接PH,若E,H不重合,则PH与EH不垂直,故BD与PH不垂直,则BD与平面PAC 不垂直,D错误.故选AC.4.A 连接A1B,根据题意,得△CC1B为直角三角形,因为∠ACB=90°,所以∠A1C1B1=90°,即A1C1⊥B1C1,因为AA1⊥底面A1B1C1,CC1∥AA1,所以CC1⊥底面A1B1C1,所以CC1⊥A1C1,又即则当且仅当C,P,A1三点共线B=30°,又在22即∵又∴BC⊥平面PAC,又PC⊂平面PAC,∴PC⊥BC,故A正确;∵BC⊂平面PBC,∴平面PBC⊥平面PAC,故D正确;若AC⊥平面PCB,则AC⊥PC,∵PA⊥平面ABC,∴PA⊥AC,与AC⊥PC矛盾,故B错误;过点C 作CD ⊥PB 于D,若平面PAB ⊥平面PBC,且平面PAB∩平面PBC=PB,CD ⊂平面PBC,则CD ⊥平面PAB,又PA ⊂平面PAB,∴CD ⊥PA,又PA ⊥BC,CD∩BC=C,CD,BC ⊂平面PBC,∴PA ⊥平面PBC,∵PC ⊂平面PBC,∴PA ⊥PC,与PA ⊥AC 矛盾,故C 错误.故选AD.6.答案 63解析 在Rt △ABC 中,BC=33,∠BAC=π6,AC ⊥BC,则AB=233,因为平面ABC ⊥平面α,平面ABC∩平面α=AC,AC ⊥BC,BC ⊂平面ABC,所以BC ⊥平面α,因为CP ⊂平面α,所以BC ⊥CP,则CP=BP 2-BC 2=BP 2-13(在Rt △BCP 中,CP 最短,即BP 最短),设∠ABP=θ(0<θ<π),则S △ABP =12AB·BPsin θ,即33=12×233BP·sin θ,得BP=1sinθ,当sin θ=1,即θ=π2,即AB ⊥BP 时,BP 的长度取得最小值1,此时CP 的长度取得最小值,为12-13=63.7.解析 (1)当a=2时,BD ⊥平面PAC.证明如下:当a=2时,矩形ABCD 为正方形,则BD ⊥AC.∵PA ⊥平面ABCD,BD ⊂平面ABCD,∴BD ⊥PA.又AC∩PA=A,AC,PA ⊂平面PAC,∴BD ⊥平面PAC.故当a=2时,BD ⊥平面PAC.(2)连接AM.∵PA ⊥平面ABCD,DM ⊂平面ABCD,∴DM ⊥PA,又PM ⊥DM,PA∩PM=P,PA,PM ⊂平面PAM,∴DM ⊥平面PAM,∵AM ⊂平面PAM,∴DM ⊥AM,∴点M 是以AD 为直径的圆和棱BC 的交点,∴圆的半径r=AD 2≥AB,即a≥4,∴a 的取值范围是[4,+∞).。

2022版人教A版高中数学必修第二册练习题--专题强化练6 空间中的垂直关系

2022版人教A版高中数学必修第二册练习题--专题强化练6  空间中的垂直关系

2022版人教A版高中数学必修第二册--专题强化练6空间中的垂直关系一、选择题1.(2020河北石家庄第二中学高一下月考,)已知正方体ABCD-A1B1C1D1的棱AA1的中点为E,AC与BD交于点O,平面α过点E且与直线OC1垂直,若AB=1,则平面α截该正方体所得截面图形的面积为()A.√64B.√62C.√32D.√342.(2020山东烟台第二中学高一下月考,)如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么在这个空间图形中必有()A.AG⊥平面EFHB.AH⊥平面EFHC.HF⊥平面AEFD.HG⊥平面AEF3.()在三棱柱ABC-A1B1C1中,已知AB⊥AC,AA1⊥平面A1B1C1,则下列选项中,能使异面直线BC1与A1C相互垂直的条件为()A.∠A1CA=45°B.∠BCA=45°C.四边形ABB1A1为正方形D.四边形BCC1B1为正方形二、填空题4.(2020安徽合肥一六八中学高二上期中,)经过平面α外一点和平面α内一点与平面α垂直的平面有个.5.(2021河南开封高一上期末,)如图,在棱长为2的正方体ABCD-A1B1C1D1中,点P在正方体的表面上移动,且满足B1P⊥D1B,则满足条件的所有点P构成的平面图形的面积是.三、解答题6.(2021安徽合肥高二上期末联考,)如图,在三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM⊥平面BPC;(2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D-BCM的体积.7.(2020四川南充高三第一次适应性考试,)如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2,BC=a,PA⊥底面ABCD.(1)当a为何值时,BD⊥平面PAC?证明你的结论;(2)若在棱BC上至少存在一点M,使PM⊥DM,求a的取值范围.答案全解全析一、选择题1.A连接A1C1,OE,BE,ED,C1E.易得O C12=1+12=32,OE2=14+12=34,E C12=2+14=94,∴O C12+OE2=EC12,∴OE⊥OC1.易得BD⊥平面ACC1A1,∴BD⊥OC1.又OE∩BD=O,∴OC1⊥平面BDE,∴所得截面为△BDE.易知BD⊥OE,∴S△BDE=12BD·OE=12×√2×√32=√64,∴平面α截该正方体所得截面图形的面积为√64.故选A.2.B易知AH⊥HE,AH⊥HF,又HE∩HF=H,∴AH⊥平面EFH,∴B正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;易知AG⊥EF,EF⊥AH,又AG∩AH=A,∴EF⊥平面HAG,又EF⊂平面AEF,∴平面HAG⊥平面AEF,过H作直线l垂直于平面AEF,则l一定在平面HAG内,∴C不正确;∵HG与AG不垂直,∴HG⊥平面AEF不正确,∴D不正确.故选B.3.A如图,连接AC1.易知AA1⊥平面ABC,∴AA1⊥AB,又AB⊥AC,AA1∩AC=A,∴AB⊥平面ACC1A1.∵A1C⊂平面ACC1A1,∴AB⊥A1C,当异面直线BC1与A1C相互垂直时,由AB∩BC1=B,可得A1C⊥平面ABC1,∵AC1⊂平面ABC1,∴A1C⊥AC1,∴四边形ACC1A1为正方形,∴∠A1CA=45°,反之亦然,即∠A1CA=45°时,可得BC1⊥A1C成立.故选A.二、填空题4.答案1或无数解析设平面α外一点为A,平面α内一点为O.若OA⊥α,则过OA的任一平面都与平面α垂直,所以过OA存在无数个平面与平面α垂直;若OA不垂直于α,则过点A有唯一的直线l与平面α垂直,OA与l确定唯一的平面与α垂直,所以过OA存在唯一的平面与平面α垂直.5.答案2√3解析连接AC,B1C,AB1,BD,BC1(图略).在正方体ABCD-A1B1C1D1中,易知AC⊥DD1,AC⊥BD,B1C⊥BC1,B1C⊥C1D1.∵BD∩DD1=D,∴AC⊥平面BDD1,又BD1⊂平面BDD1,∴AC⊥BD1.同理B1C⊥BD1,又AC∩B1C=C,∴BD1⊥平面AB1C.∴满足条件的点P构成的图形为△AB1C.由正方体的棱长为2,可知△AB1C是边长为2√2的等边三角形.∴点P构成的平面图形的面积S△AB1C =√34×(2√2)2=2√3.三、解答题6.解析(1)证明:由题可知DM是△APB的中位线,∴DM∥AP,又∵AP⊥PC,∴DM ⊥PC,∵△PMB为正三角形,D为PB的中点,∴DM⊥PB,又∵PB⊂平面BPC,PC⊂平面BPC,PB∩PC=P,∴DM⊥平面BPC.(2)证明:∵DM⊥平面BPC,DM∥AP,∴AP⊥平面BPC,∵BC⊂平面BPC,∴AP⊥BC.又∵AC⊥BC,AP⊂平面APC,AC⊂平面APC,AP∩AC=A,∴BC⊥平面APC,∵BC⊂平面ABC,∴平面ABC⊥平面APC.(3)∵AB=20,∴PB=BM=12AB=10,∴DM=5√3,∴AP=2DM=10√3,∵BC=4,∴AC=√AB2-BC2=8√6,∴PC=√AC2-AP2=2√21.∵PC2+BC2=PB2,∴PC⊥BC.∴S△PBC=12BC·PC=4√21,∴S△BCD=12S△PBC=2√21.∴三棱锥D-BCM的体积V=13S△BCD·DM=13×2√21×5√3=10√7.7.解析(1)当a=2时,BD⊥平面PAC.证明如下:当a=2时,矩形ABCD为正方形,则BD⊥AC.∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.又AC∩PA=A,AC⊂平面PAC,PA⊂平面PAC,∴BD⊥平面PAC.故当a=2时,BD⊥平面PAC.(2)设M是符合条件的棱BC上的点.连接AM.∵PA⊥平面ABCD,DM⊂平面ABCD,∴DM⊥PA,又PM⊥DM,PA∩PM=P,PA⊂平面PAM,PM⊂平面PAM,∴DM⊥平面PAM,∵AM⊂平面PAM,∴DM⊥AM,∴点M是以AD为直径的圆和BC的交点,≥AB,即a≥4,∴半径r=AD2∴a的取值范围是[4,+∞).。

高中数学人教A版必修2空间中垂直关系课后练习一含解析

高中数学人教A版必修2空间中垂直关系课后练习一含解析

(同步复习精讲指导)北京市2014-2015 学年高中数学空间中的垂直关系课后练习一(含分析)新人教A版必修 2题1).在空间,以下命题正确的选项是((A)平行直线的平行投影重合(B)平行于同向来线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行题2设平面平面,且、分别与订交于a、b,a // b.求证:平面// 平面.题3如图, P是ABC 所在平面外的一点,且PA 平面 ABC ,平面 PAC平面 PBC .求证 BC AC.题4已知在长方体ABCD A1B1C1D1中,棱 AA1 5 ,AB12 ,过点B1作B1E A1B 于E,证明 B1E平面A1BCD1,并求其长度.题5在正方体 ABCD A1B1C1D1中,E是 BB1的中点,O是底面正方形ABCD 的中心.求证: OE平面ACD1.题6如图,圆柱的轴截面ABCD 是正方形,点 E 在底面圆周上, AF DE , F 是垂足,求证:AF DB .题7如下图, P是四边形 ABCD所在平面外的一点, ABCD是∠ DAB=60°且边长为 a的菱形.侧面PAD为正三角形,其所在平面垂直于底面 ABCD.(1)若 G为 AD边的中点,求证: BG⊥平面 PAD;(2)求证: AD⊥ PB.题8已知在四棱锥 P- ABCD中,底面 ABCD是边长为4的正方形,△ PAD是正三角形,平面 PAD⊥平面 ABCD, E、 F、 G分别是 PD、 PC、 BC的中点.(I )求证:PA// 平面EFG;(II )求平面EFG 平面 PAD.题9如图,在长方形 ABCD中, AB=2,BC=1,E为 DC的中点, F为线段 EC(端点除外)上一动点.现将△ AFD沿 AF折起,使平面 ABD⊥平面 ABC.在平面 ABD内过点 D作DK⊥ AB,K为垂足.设AK= t ,则t 的取值范围是__________.题10如图, BC是Rt△ ABC的斜边, AP⊥平面 ABC,PD⊥ BC于 D点,则图中共有直角三角形的个数是() .A.8B.7C.6D.5课后练习详解题1答案: D.详解:由空间直线与平面的地点关系及线面垂直与平行的判断与性质定理能够很简单得出答案.平行直线的平行投影重合,还可能平行, A 错误;平行于同向来线的两个平面平行,两个平面可能订交,B错误;垂直于同一平面的两个平面平行,可能订交, C 错误.题2答案:见详解.证明:在平面内作直线 a 的垂线 l1,垂足为A,由于,平面平面,平面I 平面=a,因此l1在平面内作直线 b 的垂线l2,垂足为 B ,同理可证得l2l1 // l 2,又 Q l1,l 2, l1 //Q a // b a,b, a //Q l1 I a A, l1, a//题3答案:见详解.详解:在平面PAC 内作 AD PC,交 PC于D.由于平面 PAC平面 PBC 于 PC, AD平面 PAC ,且 AD PC ,因此 AD平面 PBC .又由于于是有BC 平面 PBC ,AD BC ①.此外因此PA 平面 ABC , BC平面ABC,PA BC ②.由①②及 AD PA A ,可知由于因此题4BC 平面 PAC .AC 平面 PAC ,BC AC .答案: B1E 60 13详解:∵ BC平面 A1 ABB1,且 B1 E平面 AA1 B1 B ,∴ BC B1 E ,又 B1E A1B ,又 BC A1B B ,∴ B1E平面 A1BCD1.A 1B 1 BB 15 1260,∴ BE60 在 Rt A 1 B 1 B 中, B 1 E.A 1 B52 12 2 13 113题5证明 : 连结 AE 、CE , D 1O ,设正方体 DB 1 的棱长为 a ,易证 AE CE .又∵ AO OC ,∴ OE AC .在正方体 DB 1中易求出:2D 1ODD 12DO2a22 a6a ,2222OEBE2OB2a2 a3a ,222D 1 ED 1B 12B 1E22a23a .2a22∵ D 1O 2 OE 2 D 1E 2 ,∴ D 1O OE .∵ D 1O ACO ,D 1O 、AC平面 ACD 1 ,∴ OE平面 ACD 1 .题6答案:见详解.详解:由 DA底面 ABE ,知 DABE ;又 E 为底面圆周上一点, AB 为底面圆直径,知 BE AE ,故 BE 平面 ADE ,则 BE AF ,又 AF DE ,则 AF 平面 BDE ,则 AF DB .题7答案:见详解.详解: (1) 连结 PG ,由题知△ PAD 为正三角形, G 是 AD 的中点,∴ PG ⊥AD . 又平面 PAD ⊥平面 ABCD ,∴PG ⊥平面 ABCD ,∴ PG ⊥BG .又∵四边形 ABCD 是菱形且∠ DAB =60°, ∴△ ABD 是正三角形,∴ B G ⊥AD . 又AD ∩ PG =G ,∴ BG ⊥平面 PAD .(2) 由 (1) 可知 BG ⊥ AD , PG ⊥ AD .因此 AD ⊥平面 PBG ,因此 AD ⊥PB .题8答案:见详解.详解:证明:( I )取AD的中点H,连结EH,HG.∵H, G为 AD, BC的中点,∴ HG// CD,又 EF// CD.∴ EF// HG,∴ E,F, G,H四点共面,又∵PA//EH,EH 平面EFGH,PA 平面EFGH,∴PA//平面 EFG.(II )证明:AD CD, PD CD ,∴ CD 平面PAD,∵EF// CD,∴EF平面 PAD,∵EF 平面EFG,∴平面EFG平面PAD.题91答案: ( 2,1)详解:过 K 作 KM⊥ AF于 M点,连结 DM,易得 DM⊥ AF,与折前的图形对照,可知由折前的图形中 D、M、 K 三点共线且DK⊥ AF,于是△ DAK∽△ FDA,∴AK AD t11=,又=,∴ t =.又AD DF1DF DF1DF∈(1,2),∴ t ∈(2,1) .题10答案: A.详解:所给图形中的△ PAC、△ PAD、△ PAB、△ PCD、△ PBD、△ ACD、△ ADB、△ ABC 均为直角三角形,因此共有 8 个直角三角形.。

人教版高中数学必修第二册 空间中的平行关系课后练习(含答案)

人教版高中数学必修第二册 空间中的平行关系课后练习(含答案)

人教版高中数学必修第二册空间中的平行关系课后练习1.下列选项中,一定能得出直线m 与平面α平行的是()A.直线m 在平面α外B.直线m 与平面α内的两条直线平行C.平面α外的直线m 与平面内的一条直线平行D.直线m 与平面α内的一条直线平行2.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是()A.一定平行B.一定相交C.平行或相交D.以上判断都不对3.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是()A.平行B.平行或异面C.平行或相交D.异面或相交4.在正方体ABCD -A 1B 1C 1D 1中,M 是棱CD 上的动点,则直线MC 1与平面AA 1B 1B 的位置关系是()A.相交B.平行C.异面D.相交或平行5.①若直线a 在平面α外,则a ∥α;②若直线a ∥b ,直线b ⊂α,则a ∥α;③若直线a ∥b ,b ⊂α,那么直线a 就平行于平面α内的无数条直线.其中正确说法的个数为()A.0B.1C.2D.36.已知l ,m 是两条直线,α是平面,若要得到“l ∥α”,则需要在条件“m ⊂α,l ∥m ”中另外添加的一个条件是________.7.平面α∥平面β,直线l ∥α,则直线l 与平面β的位置关系是________.8.已知平面α,β和直线a ,b ,c ,且a ∥b ∥c ,a ⊂α,b ,c ⊂β,则α与β的关系是________.9.设a ,b 是不同的直线,α,β是两个不同的平面,给出下列结论:①若a ∥α,b ∥β,α∥β,则a ∥b ;②若α∥β,a ∥α,a ⊄β,则a ∥β;③若α∥β,A ∈α,过点A 作直线l ∥β,则l ⊂α;④平行于同一个平面的两个平面平行.其中所有正确结论的序号是________.10.如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 为PB 的中点.求证:PD ∥平面MAC .11.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 、G 、H 、分别是BC 、CC 1、C 1D 1、A 1A 的中点,求证:(1)EG ∥平面BB 1D 1D ;(2)平面BDF ∥平面B 1D 1H .12.已知如图,斜三棱柱ABC ﹣A 1B 1C 1中,点D 、D 1分别为AC 、A 1C 1上的点.(1)当等于何值时,BC 1∥平面AB 1D 1?(2)若平面BC 1D ∥平面AB 1D 1,求的值.答案1.C2.C3.B4.B5.B6.α⊄l7.ββ⊂l l 或//8.相交或平行9.②③④.10.证明:如图所示,连接BD 交AC 于点O ,连接MO ,则MO 为△BDP 的中位线,∴PD ∥MO .∵PD ⊄平面MAC ,MO ⊂平面MAC ,∴PD ∥平面MAC .11.证明:(Ⅰ)取BD 中点O .连接OE ,OD1,则OE DC ,∴OE ∥D 1G∴四边形OEGD 1是平行四边形∴GE ∥D 1O ,又D 1O ⊂平面BDD 1B 1,且EG ⊄平面BDD 1B 1,∴EG ∥平面BDD 1B 1,(4分)(Ⅱ)取BB 1中点M ,连接HM 、C 1M ,则HM ∥AB ∥C 1D 1,∴HMC 1D 1是平行四边形,∴HD 1∥MC 1,又MC 1∥BF ,∴BF ∥HD 1,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面HB 1D 1,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,BD ∩BF =B ,∴平面BDF ∥平面HB 1D 1.(8分)12.解:(1)如图,取D 1为线段A 1C 1的中点,此时=1,连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质,知四边形A 1ABB 1为平行四边形,所以点O 为A 1B 的中点.在△A 1BC 1中,点O 、D 1分别为A 1B 、A 1C 1的中点,∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1,∴BC 1∥平面AB 1D 1.∴=1时,BC 1∥平面AB 1D 1,(2)由已知,平面BC 1D ∥平面AB 1D 1且平面A 1BC 1∩平面BDC 1=BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O .因此BC 1∥D 1O ,同理AD 1∥DC 1.∴=,=.又∵=1,∴=1,即=1.。

高一数学人教A版必修2课后练习3.1.2两条直线平行与垂直的判定及解析

高一数学人教A版必修2课后练习3.1.2两条直线平行与垂直的判定及解析

课后导练基础达标1直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为( ) A.3 B.3- C.33 D.33- 解析:设l 1的斜率为k 1,则k 1=tan30°=33,设l 2的斜率为k 2,∵l 1⊥l 2,∴k 1k 2=-1.∴k 2=3-. 答案:B2若l 1与l 2为两条不重合的直线,它们的倾斜角分别是α1,α2,斜率分别为k 1,k 2,则下列命题,其中正确命题的个数是( )①若l 1∥l 2,则斜率k 1=k 2 ②若k 1=k 2,则l 1∥l 2 ③若l 1∥l 2,则倾斜角α1=α2 ④若α1=α2,则l 1∥l 2A.1B.2C.3D.4解析:由两线平行的判定方法可知,①②③④都正确.答案:D3已知过点A(-2,m)和B(m,4)的直线与斜率为-2的直线平行,则m 的值( )A.-8B.0C.2D.10解析:k AB =24+-m m ,由24+-m m =-2,得m=-8. 答案:A4直线l 过点(a,b)和(b,a),其中a≠b ,则( )A.l 与x 轴垂直B.l 与y 轴垂直C.l 过一、二、三象限D.l 的倾角为135°解析:设直线l 的斜率为k,倾斜角为α.则k=tanα=ab b a --=-1,∴α=135°. 答案:D5若直线l 1∥l 2,且l 1的倾斜角为45°,l 2过点(4,6),则l 2还过下列各点中的( )A.(1,8)B.(-2,0)C.(9,2)D.(0,-8)解析:∵k 1=tan45°,又l 1∥l 2.∴k 2=1.设过点(x,y),则46--x y =1. 即y=x+2,代入检验可知选B.答案:B6原点在直线l 上的射影是P(-2,1),则l 的斜率为_______.解析:设l 的斜率为k,由条件知k OP =21-,又知l ⊥OP, ∴21-k=-1.∴k=2. 答案:27已知点P(3,m)在过M(2,-1)和N(-3,4)的直线上,则m 的值是____________.解析:因为P,M,N 三点共线,所以k PM =k MN .即3241231+--=-+m .得m=-2. 答案:-28顺次连结A(-4,3),B(2,5),C(6,3),D(-3,0),所组成的图形ABCD 是什么图形?解析:如图.∵k AB =314235=+-k BC =216235-=--, k CD =313603=+-, k DA =3403+--=-3. 则k AB =k CD .∴AB ∥CD.k AB ·k DA =-1.∴AD ⊥AB,同理AD ⊥DC.又k BC ≠k AD .∴AD 与BC 不平行.故四边形ABCD 是直角梯形.综合运用9过点(6,3),(0,3)的直线与过点(2,6),(2,0)的直线的位置关系为( )A.相交不垂直B.垂直C.平行D.重合解析:由条件知k 1=320336-=--, k 2=2312602-=--. ∴k 1·k 2=-1.答案:B10已知直线l 1的斜率为3,直线l 2经过点A(1,2),B(2,a),若l 1∥l 2,则a 的值为________;若l 1⊥l 2,则a 的值为____________.解析:k 1=3.k 2=a-2,若l 1∥l 2,则k 1=k 2.即a-2=3.∴a=5,若l 1⊥l 2,则k 1·k 2=-1.即3(a-2)=-1.得a=35. 答案:5 5/311已知△ABC 的顶点B(2,1),C(-6,3),其垂心为H(-3,2),求顶点A 的坐标.解:设A(a,b),∵H 为△ABC 的垂心,∴AH ⊥BC,BH ⊥AC.又知k AH =32+-a b ,k BC =41-,k BH =51-,k AC =63+-a b , 由⎩⎨⎧-=-⎪⎪⎩⎪⎪⎨⎧-=-∙+--=-∙+-.62,19.1)51(63,1)41(32b a a b a b 解得 ∴A 的坐标为(-19,-62).拓展探究12已知A(0,3),B(-1,0),C(3,0),求点D 的坐标,使四边形ABCD 为直角梯形(A 、B 、C 、D 按逆时针方向排列).解:如图,设D(a,b),(1)当AB ∥CD,且∠BAD=90°时,∵k AD =a b 3-,k AB =3,k CD =3-a b .由于AD ⊥AB.且AB ∥CD. ∴⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧=--=∙-.59,518,33,133b a a b a b 解得 此时AD 与BC 不平行.(2)当AD ∥BC 且∠ACD=90°时,此时D(3,3),此时AB 与CD 不平行.故点D 的坐标为(3,3)和(59,518).。

高中数学必修2立体几何平行、垂直小题练习(精品)

高中数学必修2立体几何平行、垂直小题练习(精品)

平行与垂直练习1.PA垂直于正方形ABCD所在平面,连结PB,PC,PD,AC,BD,则下列垂直关系正确的是( )①面PAB⊥面PBC ②面PAB⊥面PAD③面PAB⊥面PCD ④面PAB⊥面PACA.①② B.①③ C.②③ D.②④2.设a、b、c表示三条直线,α、β表示两个平面,则下列命题的逆命题不成立的是A.c⊥α,若c⊥β,则α∥β B.b⊂α,c⊄α,若c∥α,则b∥cC.b⊂β,若b⊥α,则β⊥α D.b⊂β,c是a在β内的射影,若b⊥c,则b⊥a3.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是A.若α∥β,l⊂α,n⊂β,则l∥n B.若α⊥β,l⊂α,则l⊥βC.若l⊥n,m⊥n,则l∥m D.若l⊥α,l∥β,则α⊥β4.已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若a⊥α,a⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若α∥β,a⊂α,b⊂β,则a∥b;④若α∥β,α∩γ=a,β∩γ=b,则a∥b.其中正确命题的序号有________.5.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是( )A.若m⊂β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若α⊥γ,α⊥β,则β∥γD.若m⊥β,m∥α,则α⊥β6.设a、b是不同的直线,α、β是不同的平面,则下列四个命题中正确的是( )A.若a⊥b,a⊥α,则b∥αB.若a∥α,α⊥β,则a⊥βC.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β7.已知△ABC为直角三角形,其中∠ACB=90°,M为AB中点,PM垂直于△ABC所在平面,那么( )A.PA=PB>PC B.PA=PB<PC C.PA=PB=PC D.PA≠PB≠PC 8.在二面角α-l-β的两个面α,β内,分别有直线a,b,它们与棱l都不垂直,则( )A.当该二面角是直二面角时,可能a∥b,也可能a⊥bB.当该二面角是直二面角时,可能a∥b,但不可能a⊥bC.当该二面角不是直二面角时,可能a∥b,但不可能a⊥bD.当该二面角不是直二面角时,不可能a∥b,也不可能a⊥b9.如图,已知矩形ABCD中,AB=10,BC=6,沿矩形的对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD 上.求证:(1)BC⊥A1D;(2)平面A1BC⊥平面A1BD.线面、面面平行1、已知m、n、l1、l2表示不同直线,α、β表示不同平面.若m⊂α,n⊂α,l1⊂βl2⊂β,l1∩l2=M,则能得到结论α∥β的选项是( )A.m∥β且l1∥α B.m∥β且n∥βC.m∥β且n∥l1 D.m∥l1且n∥l22、a,b是两条直线,α,β是两个平面,则能使a⊥b成立的条件是( ) A.a⊥α,b∥β,α⊥β B.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥β D.a⊂α,b∥β,α⊥β3、若有直线m、n和平面α、β,下列四个命题中,正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α4、能使平面α∥平面β成立的条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a、b,a⊂α、b⊂β、a∥β、b∥αD.存在两条异面直线a、b,a⊂α、b⊂β、a∥β、b∥α5、已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的( )A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β6、设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是( )A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β7、设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( )A.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m∥α,n∥α,则m∥nD.若m,n为两条异面直线,且m∥α,n∥α,m∥β,n∥β,则α∥β8、已知m,n,l为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A.α∥β,m⊂α,n⊂β⇒ m∥n B.l⊥β,α⊥β⇒l∥αC.m⊥α,m⊥n⇒n∥α D.α∥β,l⊥α⇒l⊥β9、已知直线l、m,平面α、β,则下列命题中的假命题是( )A.若α∥β,l⊂α,则l∥β B.若α∥β,l⊥α,则l⊥βC.若l∥α,m⊂α,则l∥mD.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥β10、给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为( )A.3 B.2 C.1 D.02能保证直线a与平面α平行的条件是()A.aα,bα,a∥b B .bα,a∥bC. bα,c∥α,a∥b,a∥cD. bα,A∈a,B∈a,C∈b ,D∈b且AC=BD3下列命题正确的是()A. 平行于同一平面的两条直线平行B. 若直线a∥α,则平面α内有且仅有一条直线与a平行C. 若直线a∥α,则平面α内任一条直线都与a平行D. 若直线a∥α,则平面α内有无数条直线与a平行E. 如果a、b是两条直线,且a∥b,那么a平行于经过b的任何平面F. 如果直线a、b和平面α满足a∥b,a∥α,bα,那么b∥α4在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行5已知m、n为两条不同的直线,a、β为两个不同的平面,则下列命题中正确的是A.m∥β,n∥βa∥βB.a∥β,m∥nC.m⊥a,m⊥nn∥aD.n∥m,n⊥am⊥a6.下列命题中错误的是(A)如果平面⊥平面,那么平面内一定直线平行于平面(B)如果平面垂直于平面,那么平面内一定不存在直线垂直于平面(C)如果平面⊥平面,平面⊥平面,,那么⊥平面(D)如果平面⊥平面,那么平面内所有直线都垂直于平面8.求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面.已知:空间四边形ABCD中,E、F分别是AB、AD的中点求证:EFǁ平面BCD。

高一立体几何平行垂直解答题精选

高一立体几何平行垂直解答题精选

高一立体几何平行、垂直解答题精选2017.12.18 1.已知直三棱柱ABC-A 1B 1C 1,点N 在AC 上且CN=3AN ,点M ,P ,Q 分别是AA 1,A 1B 1,BC 的中点.求证:直线PQ ∥平面BMN. 2.如图,在正方形ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是棱B 1C 1,BB 1,C 1D 1的中点,是否存在过点E ,M 且与平面A 1FC 平行的平面?若存在,请作出并证明;若不存在,请说明理由平行的平面?若存在,请作出并证明;若不存在,请说明理由..3.在正方体1111ABCD A B C D -中,M ,O 分别是1,A B BD 的中点的中点..(1)求证://OM 平面11AA D D ; (2)求证:1OM BC ^.4.如图,AB 为圆O 的直径,点,E F 在圆O 上,且//AB EF ,矩形ABCD 所在的平面和圆O 所在的平面垂直,且1,2AD EF AF AB ====. (1)求证:平面AFC ^平面CBF ;(2)在线段CF 上是否存在了点M ,使得//OM 平面ADF ?并说明理由. 5.已知:正三棱柱111ABC A B C -中,13AA =,2AB =,N 为棱AB 的中点.的中点. (1)求证:1AC 平面1NB C .(2)求证:平面1CNB ^平面11ABB A . (3)求四棱锥111C ANB A -的体积.的体积.6.已知△BCD 中,∠BCD=90°,中,∠BCD=90°,BC=CD=1BC=CD=1BC=CD=1,AB⊥平面,AB⊥平面BCD BCD,∠ADB=60°,,∠ADB=60°,,∠ADB=60°,E E 、F 分别是AC AC、、AD 上的动点,且(01).AE AFAC ADl l ==<< (1)求证:不论l 为何值,总有平面BEF⊥平面ABC ABC;; (2)当λ为何值时,平面BEF⊥平面ACD ? ACD ?7.如图,在菱形A B C D 中,60,A B C A CÐ=与BD 相交于点O ,AE ^平面A B C D ,//,2CF AE AB AE ==.(I )求证:BD ^平面ACFE ;(II II)当直线)当直线FO 与平面ABCD 所成的角的余弦值为1010时,求证:EF BE ^;(III III)在()在()在(II II II)的条件下,求异面直线)的条件下,求异面直线OF 与DE 所成的余弦值所成的余弦值..8.如图,四棱锥P ABCD -中,//AD BC ,24AD BC ==,23AB =,090BAD Ð=,,M O 分别为CD 和AC 的中点,PO ^平面ABCD .(1)求证:平面PBM ^平面PAC ;(2)是否存在线段PM 上一点N ,使用//ON 平面PAB ,若存在,求PNPM的值;如果不存在,说明理由的值;如果不存在,说明理由..9.如图,在四棱锥P ABCD -中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,60,BAD N Ð=°是PB 的中点,过,,A D N 三点的平面交PC 于M ,E 为AD 的中点,求证:的中点,求证:(1)//EN 平面PDC ; (2)BC ^平面PEB ; (3)平面PBC ^平面ADMN .10.如图,四棱锥P ABCD -中,PD ^平面PAB , AD //BC ,12BC CD AD ==,E ,F 分别为线段AD ,PD 的中点的中点.. (Ⅰ)求证:CE ////平面平面PAB ; (Ⅱ)求证:PD ^平面CEF ;(Ⅲ)写出三棱锥D CEF -与三棱锥P ABD -的体积之比的体积之比..(结论不要求证明)M 是PC 的中点的中点..(Ⅰ)求证:PA 平面BDM ;(Ⅱ)求证:平面PAC ^平面BDM ;(Ⅲ)求直线BC 与平面BDM 的所成角的大小的所成角的大小..12.在四棱锥A BCDE -中,底面BCDE 为菱形,侧面ABE 为等边三角形,且侧面ABE ^底面BCDE ,O ,F 分别为BE ,DE 的中点. (Ⅰ)求证:AO CD ^. (Ⅱ)求证:平面AOF ^平面ACE . (Ⅲ)侧棱AC 上是否存在点P ,使得BP 平面AOF ?若存在,求出APPC的值;若不存在,请说明理由. 1313.在四棱锥.在四棱锥P ABCD -中,侧面PCD ^底面ABCD ,PD CD ^,E 为PC 中点,底面ABCD 是直角梯形,//AB CD ,90ADC Ð=,1AB AD PD ===,2CD =.(1)求证://BE 平面PAD ; (2)求证:BC ^平面PBD ;(3)在线段PC 上是否存在一点Q ,使得二面角Q BD P --为45?若存在?若存在,,求PQ PC的值;若不存在,请述明理由.述明理由.参考答案1.见解析.见解析【解析】试题分析:根据题目给出的P ,Q 分别是A 1B 1,BC 的中点,想到取AB 的中点G ,连接PG PG,,QG 后分别交BM BM,,BN 于点E ,F ,根据题目给出的线段的长及线段之间的关系证出,根据题目给出的线段的长及线段之间的关系证出GE EP =GF FQ =13,从而得到EF EF∥∥PQ PQ,然后利用线面平行的判定即可得证;,然后利用线面平行的判定即可得证;,然后利用线面平行的判定即可得证; 试题解析:试题解析:如图,如图,如图,取取AB 中点G ,连接PG PG,,QG 分别交BM BM,,BN 于点E ,F ,则E ,F 分别为BM BM,,BN 的中点的中点..而GE∥12AM ,GE=12AM ,GF ∥12AN ,GF=12AN AN,且,且CN=3AN CN=3AN,所以,所以GE EP =13,GF FQ =AN NC =13,所以GE EP =GF FQ =13,所以EF∥PQ,又EF ⊂平面BMN BMN,,PQ ⊄平面BMN BMN,所以,所以PQ∥平面BMN.BMN.2.详见解析.详见解析..【解析】试题分析【解析】试题分析: : : 由正方体的特征及由正方体的特征及N 为BB 1的中点,可知平面A 1FC 与直线DD 1相交,且交点为DD 1的中点G .若过M ,E 的平面α与平面A 1FCG 平行,注意到EM ∥B 1D 1∥FG ,则平面α必与CC 1相交于点N ,结合M ,E 为棱C 1D 1,B 1C 1的中点,易知C 1N ∶C 1C =14.于是平面EMN 满足要求.满足要求. 试题解析试题解析::如图,设N 是棱C 1C 上的一点,且C 1N =C 1C 时,平面EMN 过点E ,M 且与平面A 1FC 平行.平行.证明如下:设H 为棱C 1C 的中点,连接B 1H ,D 1H . ∵C 1N =C 1C , ∴C 1N =C 1H . 又E 为B 1C 1的中点,的中点, ∴EN ∥B 1H . 又CF ∥B 1H , ∴EN ∥CF .又EN ⊄平面A 1FC ,CF ⊂平面A 1FC , ∴EN ∥平面A 1FC .同理MN ∥D 1H ,D 1H ∥A 1F , ∴MN ∥A 1F .又MN ⊄平面A 1FC ,A 1F ⊂平面A 1FC , ∴MN ∥平面A 1FC . 又EN ∩MN =N , ∴平面EMN ∥平面A 1FC .点睛点睛::本题考查线面平行的判定定理和面面平行的判定定理的综合应用本题考查线面平行的判定定理和面面平行的判定定理的综合应用,,属于中档题属于中档题..直线和平面平行的判定定理定理::平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行则该直线与此平面平行; ; ; 平面与平面平行的判定定理:平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面分别平行,则这两个平面平行.个平面内的两条相交直线与另一个平面分别平行,则这两个平面平行. 3.(1)见解析()见解析(22)见解析)见解析【解析】试题分析:(1)连接1A D ,1AD ,由M O ,分别是1A B ,BD 的中点可证OM ∥1A D ,即可证明OM ∥平面11AA D D ;(2)由11D C ∥AB 且11D C AB =可证11D C BA 为平行四边形,即可证1AD ∥1BC ,再根据11AD AD ^即可证明1OM BC ^. 试题解析:试题解析:(1)连接1A D ,1AD ,因为M O ,分别是1A B ,BD 的中点,的中点, 所以OM ∥1A D ,且1A D Ì平面11AA D D ,所以OM ∥平面11AA D D(2)由题意11D C ∥AB 且11D C AB =,所以11D C BA 为平行四边形,所以1AD ∥1BC , 由(Ⅰ)OM ∥1A D ,且11A D AD ^,所以1OM BC ^4.(1)证明见解析;(2)存在,见解析;)存在,见解析;【解析】试题分析:(1)要证明平面AFC ^平面CBF ,只需证AF ^平面CBF ,则只需证AF CB ^, AF BF ^,再根据题目条件分别证明即可;(2)首先猜测存在CF 的中点M 满足//OM 平面ADF ,作辅助线,通过//OM AN ,由线面平行的判定定理,证明//OM 平面ADF 。

(完整版)立体几何证明垂直专项含练习题及答案.doc

(完整版)立体几何证明垂直专项含练习题及答案.doc

精品字里行间精品文档立体几何证明 ------ 垂直一. 复习引入1.空间两条直线的位置关系有: _________,_________,_________三种。

2.(公理 4)平行于同一条直线的两条直线互相 _________.3.直线与平面的位置关系有 _____________,_____________,_____________三种。

4.直线与平面平行判定定理 : 如果 _________的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么 _________________________.6.两个平面的位置关系 :_________,_________.7.判定定理 1:如果一个平面内有 _____________直线都平行于另一个平面,那么这两个平面平行 .8.线面垂直性质定理:垂直于同一条直线的两个平面 ________.9.如果两个平行平面同时和第三个平面相交,那么它们的________平行 .10.如果两个平面平行,那么其中一个平面内的所有直线都 _____于另一个平面 . 二.知识点梳理知识点一、直线和平面垂直的定义与判定定义语言描述如果直线l 和平面α内的任意一条直线都垂直,我们就说直线 l 与平面互相垂直,记作 l ⊥α图形判定一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直 .条件 b 为平面α内的任一直线,而 l 对这l ⊥m, l ⊥n,m∩n=B,m ,一直线总有 l ⊥αn结论l ⊥l ⊥要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直)知识点二、直线和平面垂直的性质性质语言描述一条直线垂直于一个平面,那么这条垂直于同一个平面的两条直线平行.直线垂直于这个平面内的所有直线图形条件结论知识点三、二面角Ⅰ .二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角-AB-. (简记P-AB-Q)二面角的平面角的三个特征:ⅰ.点在棱上ⅱ.线在面内ⅲ .与棱垂直Ⅱ .二面角的平面角:在二面角-l-的棱l上任取一点O,以点O为垂足,在半平面,内分别作垂直于棱 l 的射线 OA 和 OB ,则射线 OA 和 OB 构成的AOB叫做二面角的平面角.作用:衡量二面角的大小;范围:001800.知识点四、平面和平面垂直的定义和判定定义判定文字描述两个平面相交,如果它们所成的二面一个平面过另一个平面的垂线,则这角是直二面角,就说这两个平面垂两个平面垂直直.图形结果α∩β =lα-l-β=90oα⊥β(垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼)三.常用证明垂直的方法立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法:( 1)通过“平移”。

空间立体几何中的平行与垂直 课后练习(解析版)

空间立体几何中的平行与垂直  课后练习(解析版)

空间立体几何中的平行与垂直课后练习(解析版)1.如图,在多面体中,底面是梯形,且,直角梯形中,且,是锐角,且平面平面。

(Ⅰ)求证:;(Ⅱ)试判断直线与平面的位置关系,并证明你的结论。

【答案】(Ⅰ)取中点,连结,因为底面是梯形,且,易证四边形为平行四边形,所以,所以,所以。

因为平面平面,且平面平面,所以平面,而平面,故。

(Ⅱ)平面,以下证明:取的中点,连结、。

在平面中,、,故。

在直角梯形中,且,故。

而、平面,,而平面,,故平面平面,而平面,从而平面。

【解析】本题主要考查直线与直线和直线与平面的位置关系。

(Ⅰ)利用题中所给线段关系先证明,又因为平面平面且交线为,所以平面,又平面,所以。

(Ⅱ)取中点,因为,所以;另外也有,进而可证得。

再根据四边形为直角梯形,且,可得。

再通过平面与平面平行的判定定理,证明平面平面;又平面,于是平面。

2.四棱锥中,底面为平行四边形,侧面底面,,分别是,的中点.已知,,,。

(1)证明:平面;(2)证明:;(3)求直线与平面所成角的正弦值。

【答案】解:(1)取中点,连结,。

因为,分别是,的中点,底面为平行四边形,所以,,又因为平面,平面,所以平面,平面,所以平面平面,所以平面。

......${30.769231}分(2)作,垂足为,连结。

因为侧面底面,所以底面,所以。

又因为,所以,又因为,所以为等腰直角三角形,。

所以平面,所以。

......${61.538462}分(3)由(2)知,因为,所以。

由,,,得,,所以的面积,连结,得的面积。

设到平面的距离为,由,得,解得。

设与平面所成角为,则,所以直线与平面所成角的正弦值为。

......${100}分【解析】本题主要考查空间几何体及点线面之间的位置关系。

(Ⅰ)要证明平面,可以先证明平面平面,而要证明面面平行则可用面面平行的判定定理来证;(Ⅱ)要证明,可用线线垂直的判定定理,即只需证平面即可;(Ⅲ)用等积法求出到平面的距离,再求出所成角的正弦值即可。

高一 平行与垂直的综合应用知识点+例题+练习 含答案

高一 平行与垂直的综合应用知识点+例题+练习 含答案

1.证明方法(1)证明平行关系的方法:①证明线线平行的常用方法a.利用平行公理,即证明两直线同时和第三条直线平行;b.利用平行四边形进行转换;c.利用三角形中位线定理证明;d.利用线面平行、面面平行的性质定理证明.②证明线面平行的常用方法a.利用线面平行的判定定理,把证明线面平行转化为证线线平行;b.利用面面平行的性质定理,把证明线面平行转化为证面面平行.③证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行.(2)证明空间中垂直关系的方法:①证明线线垂直的常用方法a.利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;b.利用勾股定理逆定理;c.利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可.②证明线面垂直的常用方法a.利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;b.利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;c.利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.③证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决. 2.应特别注意的几个易错点定理图形语言易错点等角定理⎭⎪⎬⎪⎫∠AOB 和∠A ′O ′B ′中OA ∥O ′A ′,OB ∥O ′B ′且方向相同⇒∠AOB=∠A ′O ′B ′易忽略“方向相同” 线面平行的判定定理 ⎭⎪⎬⎪⎫a ⊄α,b ⊂αa ∥b ⇒a ∥α易丢掉“a ⊄α”或“b⊂α” 线面平行的性质定理⎭⎪⎬⎪⎫a ∥α,a ⊂βα∩β=b ⇒a ∥b易忽略“α∩β=b ”直线和平面垂直的判定定理 ⎭⎪⎬⎪⎫l ⊥a ,l ⊥b a ⊂α,b ⊂αa ∩b =O⇒l ⊥α易忽略“a ∩b =O ”两个平面垂直的性质定理 ⎭⎪⎬⎪⎫α⊥βα∩β=c a ⊂α,a ⊥c ⇒a ⊥β易忽略“a ⊂α”面面平行的判定定理⎭⎪⎬⎪⎫a ∥α,b ∥αa ⊂β,b ⊂βa ∩b =O ⇒α∥β易忽略“a ∩b =O ”面面平行的判定定理的推论 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =Oc ⊂β,d ⊂βc ∩d =O ′a ∥c ,b ∥d ⇒α∥β易忽略“a ∩b =O ”或“c ∩d =O ′”【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若平面外一条直线上有两个点到平面的距离相等,则直线与平面平行.( × )(2)若直线a∥α,P∈α,则过点P且平行于a的直线有无数条.(×)(3)若a⊥b,b⊥c,则a∥c.(×)(4)α,β,γ为三个不同平面,α∥β,β∥γ⇒α∥γ.(√)(5)若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ.(√)(6)α⊥β,a⊥β,b⊥α⇒a∥b.(×)1.(教材改编)如图,已知平面α,β,且α∩β=AB,PC⊥α,垂足为C,PD⊥β,垂足为D,则直线AB与CD的位置关系是________.答案AB⊥CD解析∵PC⊥α,∴PC⊥AB,又∵PD⊥β,∴PD⊥AB,∴AB⊥平面PCD,∴AB⊥CD.2.已知正方体ABCD—A1B1C1D1中,E,F,G分别为B1C1,A1D1,A1B1的中点,则平面EBD 与平面FGA的位置关系为________.答案平行3.如图所示,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED 绕DE旋转过程中的一个图形,下列命题中错误的是________.①动点A′在平面ABC上的射影在线段AF上;②恒有平面A′GF⊥平面BCED;③三棱锥A′—FED的体积有最大值;④异面直线A′E与BD不可能互相垂直.答案④解析由题意知,DE⊥平面A′FG,又DE⊂平面ABC,所以平面A′FG⊥平面ABC,且它们的交线是AF ,过A ′作A ′H ⊥AF ,则A ′H ⊥平面ABC ,所以A ′在平面ABC 上的射影一定在线段AF 上,且平面A ′GF ⊥平面BCED ,故①②均正确;三棱锥A ′—EFD 的体积可以表示为V =13S △EFD ·A ′H ,当平面A ′DE ⊥平面ABC 时,A ′H 最大,故三棱锥A ′—EFD 的体积有最大值,故③正确;连结CD ,EH ,当CD ∥EH 时,BD ⊥EH ,又知EH 是A ′E 在平面ABC 内的射影,所以BD ⊥A ′E ,因此异面直线A ′E 与BD 可能垂直,故④错误.4.已知点P 是等腰三角形ABC 所在平面外一点,且P A ⊥平面ABC ,P A =8,在△ABC 中,底边BC =6,AB =5,则P 到BC 的距离为________. 答案 4 5解析 取BC 的中点D ,连结AD ,PD .∵AD ⊥BC ,P A ⊥BC ,且AD ∩P A =A ,∴BC ⊥平面P AD ,∴BC ⊥PD , ∴在Rt △P AD 中,PD =82+42=4 5.5.(教材改编)如图,在三棱锥V —ABC 中,∠VAB =∠VAC =∠ABC =90°,则平面VBA 与平面VBC 的位置关系为_____________________________________________________.答案 垂直解析 ∵∠VAB =∠VAC =∠ABC =90°, ∴BC ⊥AB ,VA ⊥AC ,VA ⊥AB , 由⎭⎪⎬⎪⎫VA ⊥AB VA ⊥AC ⇒VA ⊥平面ABC , ∴VA ⊥BC ,由⎭⎪⎬⎪⎫VA ⊥BC AB ⊥BC ⇒BC ⊥平面VAB ∴BC ⊥AB ,又BC ⊂平面VBC , ∴平面VBC ⊥平面VBA.题型一 线、面平行垂直关系的判定例1 (1)如图所示,在直棱柱ABC —A 1B 1C 1中,若D 是AB 的中点,则AC 1与平面CDB 1的关系为________.①AC 1∥平面CDB 1; ②AC 1在平面CDB 1中; ③AC 1与平面CDB 1相交; ④无法判断关系.(2)已知m ,n 为直线,α,β为平面,给出下列命题:①⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ⇒n ∥α;②⎩⎪⎨⎪⎧m ⊥β,n ⊥β⇒m ∥n ; ③⎩⎪⎨⎪⎧m ⊥α,m ⊥β⇒α∥β;④⎩⎪⎨⎪⎧m ⊂α,n ⊂β,α∥β⇒m ∥n .其中正确的命题是________. 答案 (1)① (2)②③解析 (1)连结BC 1,BC 1与CB 1交于E 点,(如图)连结DE ,则DE ∥AC 1,又DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.(2)对于①,n 可能在α内;对于④,m 与n 可能异面.易知②,③是真命题. 思维升华 对线面平行、垂直关系的判定:(1)易忽视判定定理与性质定理的条件,如易忽视线面平行的判定定理中直线在平面外这一条件;(2)结合题意构造或绘制图形,结合图形作出判断;(3)可举反例否定结论或用反证法判断结论是否正确.(1)在正方形SG1G2G3中,E,F分别为G1G2,G2G3的中点.现在沿SE,SF及EF 把这个正方形折成一个四面体,使点G1,G2,G3重合,记为点G,则SG与平面EFG的位置关系为________.答案垂直解析翻折后SG⊥EG,SG⊥FG,从而SG⊥平面EFG.(2)已知三个平面α,β,γ.若α∥β,α∩γ=a,β∩γ=b,且直线c⊂β,c∥b.①判断c与α的位置关系,并说明理由;②判断c与a的位置关系,并说明理由.解①c∥α,∵α∥β,∴α与β没有公共点.又∵c⊂β,∴c与α无公共点,故c∥α.②c∥a.∵α∥β,∴α与β没有公共点.又α∩γ=a,β∩γ=b,∴a⊂α,b⊂β,且a,b⊂γ,∴a∥b.又c∥b,∴a∥c.题型二平行与垂直关系的证明命题点1线面平行的证明例2在正方体ABCD—A1B1C1D1中,E,F分别为棱BC,C1D1的中点.求证:EF∥平面BB1D1D. 证明如图所示,连结AC交BD于点O,连结OE,则OE∥DC,OE=12DC.∵DC∥D1C1,DC=D1C1,F为D1C1的中点,∴OE∥D1F,OE=D1F,∴四边形D1FEO为平行四边形,∴EF∥D1O.又∵EF ⊄平面BB1D1D,D1O⊂平面BB1D1D,∴EF∥平面BB1D1D.命题点2面面平行的证明例3如图所示,已知正方体ABCD—A1B1C1D1.(1)求证:平面A1BD∥平面B1D1C.(2)若E,F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.证明(1)∵B1B∥DD1,B1B=D1D,∴四边形BB1D1D是平行四边形,∴B1D1∥BD,又BD⊂平面A1BD,B1D1⊂平面B1D1C,∴BD∥平面B1D1C.同理A1D∥平面B1D1C,又∵A1D∩BD=D,A1D,BD⊂平面A1BD,∴平面A1BD∥平面B1D1C.(2)由BD∥B1D1,得BD∥平面EB1D1.如图所示,取BB1的中点G,连结AG,GF,易得AE∥B1G,又∵AE=B1G,∴四边形AEB1G是平行四边形,∴B1E∥AG.同理GF ∥AD .又∵GF =AD , ∴四边形ADFG 是平行四边形,∴AG ∥DF ,∴B 1E ∥DF ,∴DF ∥平面EB 1D 1. 又∵BD ∩DF =D , ∴平面EB 1D 1∥平面FBD . 命题点3 直线与平面垂直的证明例4 如图,在多面体ABCDEF 中,四边形ABCD 是菱形,AC 、BD 相交于点O ,EF ∥AB ,AB =2EF ,平面BCF ⊥平面ABCD ,BF =CF ,点G 为BC 的中点.(1)求证:OG ∥平面EFCD ; (2)求证:AC ⊥平面ODE .证明 (1)∵四边形ABCD 是菱形,AC ∩BD =O , ∴点O 是BD 的中点,∵点G 为BC 的中点,∴OG ∥CD , 又∵OG ⊄平面EFCD ,CD ⊂平面EFCD , ∴OG ∥平面EFCD .(2)∵BF =CF ,点G 为BC 的中点,∴FG ⊥BC . ∵平面BCF ⊥平面ABCD , 平面BCF ∩平面ABCD =BC , FG ⊂平面BCF ,FG ⊥BC , ∴FG ⊥平面ABCD .∵AC ⊂平面ABCD ,∴FG ⊥AC ,∵OG ∥AB ,OG =12AB ,EF ∥AB ,EF =12AB ,∴OG ∥EF ,OG =EF ,∴四边形EFGO为平行四边形,∴FG∥EO.∵FG⊥AC,FG∥EO,∴AC⊥EO.∵四边形ABCD是菱形,∴AC⊥DO,∵EO∩DO=O,EO、DO在平面ODE内,∴AC⊥平面ODE.命题点4面面垂直的证明例5如图所示,在正三棱柱ABC—A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.证明如图所示,取A1C的中点F,AC的中点G,连结FG,EF,BG,则FG∥AA1,且GF=12AA1.因为BE=EB1,A1B1=CB,∠A1B1E=∠CBE=90°,所以△A1B1E≌△CBE,所以A1E=CE.因为F为A1C的中点,所以EF⊥A1C.又FG∥AA1∥BE,GF=12AA1=BE,且BE⊥BG,所以四边形BEFG是矩形,所以EF⊥FG.因为A1C∩FG=F,所以EF ⊥侧面ACC 1A 1. 又因为EF ⊂平面A 1CE , 所以截面A 1CE ⊥侧面ACC 1A 1. 命题点5 平行、垂直的综合证明例6 如图,四边形ABCD 是正方形,DE ⊥平面ABCD .(1)求证:AC ⊥平面BDE ;(2)若AF ∥DE ,DE =3AF ,点M 在线段BD 上,且BM =13BD ,求证:AM ∥平面BEF .证明 (1)因为DE ⊥平面ABCD ,所以DE ⊥AC .因为四边形ABCD 是正方形,所以AC ⊥BD .又BD ∩DE =D ,从而AC ⊥平面BDE .(2)如图,延长EF ,DA 交于点G .因为AF ∥DE ,DE =3AF ,所以GA GD =AF DE =13.因为BM =13BD ,所以BM BD =13,所以BM BD =GA GD =13,所以AM ∥GB .又AM ⊄平面BEF ,GB ⊂平面BEF , 所以AM ∥平面BEF .思维升华 (1)空间线面的位置关系的判定方法①证明直线与平面平行,设法在平面内找到一条直线与已知直线平行,解答时合理利用中位线性质、线面平行的性质,或构造平行四边形,寻求比例关系确定两直线平行.②证明直线与平面垂直,主要途径是找到一条直线与平面内的两条相交直线垂直.解题时注意分析观察几何图形,寻求隐含条件.(2)空间面面的位置关系的判定方法①证明面面平行,需要证明线面平行,要证明线面平行需证明线线平行,将“面面平行”问题转化为“线线平行”问题.②证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.如图,四边形AA1C1C为矩形,四边形CC1B1B为菱形,且平面CC1B1B⊥平面AA1C1C,D,E分别为边A1B1,C1C的中点.求证:(1)BC1⊥平面AB1C;(2)DE∥平面AB1C.证明(1)∵四边形AA1C1C为矩形,∴AC⊥C1C.又平面CC1B1B⊥平面AA1C1C,平面CC1B1B∩平面AA1C1C=CC1,∴AC⊥平面CC1B1B.∵BC1⊂平面CC1B1B,∴AC⊥BC1.又四边形CC1B1B为菱形,∴B1C⊥BC1.∵B1C∩AC=C,∴BC1⊥平面AB1C.(2)取AA1的中点F,连结DF,EF.∵四边形AA1C1C为矩形,E,F分别为C1C,AA1的中点,∴EF∥AC.∵EF⊄平面AB1C,AC⊂平面AB1C,∴EF ∥平面AB 1C .∵D ,F 分别为边A 1B 1,AA 1的中点,∴DF ∥AB 1. ∵DF ⊄平面AB 1C ,AB 1⊂平面AB 1C , ∴DF ∥平面AB 1C .∵EF ∩DF =F ,EF ⊂平面DEF ,DF ⊂平面DEF , ∴平面DEF ∥平面AB 1C .∵DE ⊂平面DEF ,∴DE ∥平面AB 1C .题型三 平行与垂直的应用例7 (2015·安徽)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.(1)解 由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高,又P A =1. 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明 在平面ABC 内,过点B 作BN ⊥AC ,垂足为N ,在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连结BM .由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN ,又BM ⊂平面MBN ,所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =ANNC=13.思维升华(1)利用平行关系可以转移点到面的距离,从而求几何体体积或解决关于距离的最值问题.(2)对于存在性问题的证明与探索有三种途径:途径一:先猜后证,即先观察与尝试给出条件再证明;途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题,探索出命题成立的条件.如图,在四棱锥P—ABCD中,底面ABCD是矩形,P A⊥平面ABCD,P A=AD =1,AB=3,点F是PD的中点,点E是边DC上的任意一点.(1)当点E为DC边的中点时,判断EF与平面P AC的位置关系,并加以证明;(2)证明:无论点E在边DC的何处,都有AF⊥EF;(3)求三棱锥B—AFE的体积.(1)解当点E为DC边的中点时,EF与平面P AC平行.证明如下:在△PDC中,E,F分别为DC,PD的中点,∴EF∥PC,又EF⊄平面P AC,而PC⊂平面P AC,∴EF∥平面P AC.(2)证明∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD.∵四边形ABCD是矩形,∴CD⊥AD.∵AD∩AP=A,∴CD⊥平面P AD.又AF⊂平面P AD,∴AF⊥CD.∵P A=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PCD.∵EF⊂平面PCD,∴AF⊥EF.即无论点E 在边DC 的何处,都有AF ⊥EF .(3)解 作FG ∥P A 交AD 于G ,则FG ⊥平面ABCD ,且FG =12,又S △ABE =32,∴V B —AEF =V F —AEB =13S △ABE ·FG =312.∴三棱锥B —AFE 的体积为312.6.立体几何平行、垂直的证明问题典例 (14分)(2014·北京)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积. 规范解答(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC , 所以BB 1⊥AB .[1分] 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1,[2分] 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.[3分](2)证明 取AB 的中点G ,连结EG ,FG .[4分]因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .[6分]因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .[8分]又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .[10分](3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.[12分]所以三棱锥E -ABC 的体积 V =13S △ABC ·AA 1=13×12×3×1×2=33.[14分]证明线面平行问题(一)第一步:作(找)出所证线面平行中的平面内的一条直线. 第二步:证明线线平行.第三步:根据线面平行的判定定理证明线面平行. 第四步:反思回顾.检测关键点及答题规范. 证明线面平行问题(二)第一步:在多面体中作出要证线面平行中的线所在的平面.第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行; 第三步:证明所作平面与所证平面平行. 第四步:转化为线面平行. 第五步:反思回顾,检查答题规范. 证明面面垂直问题第一步:根据已知条件确定一个平面内的一条直线垂直于另一个平面内的一条直线. 第二步:结合已知条件证明确定的这条直线垂直于另一平面内的两条相交直线.第三步:得出确定的这条直线垂直于另一平面.第四步:转化为面面垂直.第五步:反思回顾,检查答题规范.温馨提醒(1)证线面平行的方法:①利用判定定理,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.②若要借助于面面平行来证明线面平行,则先要确定一个平面经过该直线且与已知平面平行,此目标平面的寻找方法是经过线段的端点作该平面的平行线.(2)证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.[方法与技巧]1.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,其转化关系为在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.2.空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.[失误与防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.3.在用线面垂直的判定定理证明线面垂直时,考生易忽视说明平面内的两条直线相交,而导致被扣分,这一点在证明中要注意.口诀:线不在多,重在相交.4.面面垂直的性质定理在立体几何中是一个极为关键的定理,这个定理的主要作用是作一个平面的垂线,在一些垂直关系的证明中,很多情况都要借助这个定理作出平面的垂线.注意定理使用的条件,在推理论证时要把定理所需要的条件列举完整,同时要注意推理论证的层次性,确定先证明什么、后证明什么.A组专项基础训练(时间:45分钟)1.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α∥β,l⊂α,则l∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④若m,n是异面直线,m∥α,n∥α,且l⊥m,l⊥n,则l⊥α.其中真命题的序号是________.答案①③④解析①由α∥β,l⊂α知,l与β无公共点,故l∥β.②当m⊂α,n⊂α,m与n相交,m∥β,n∥β时,α∥β.③由l∥α知,α内存在l′,使得l′∥l.因为l⊥β,所以l′⊥β,故α⊥β.④易知α内存在m′,n′,使得m′∥m,n′∥n,且m′,n′相交,由l⊥m,l⊥n知,l⊥m′且l⊥n′,故l⊥α.2.已知平面α,β,直线m,n,给出下列命题:①若m∥α,n∥β,m∥n,则α∥β;②若α∥β,m∥α,n∥β,则m∥n;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的是________.(填写所有真命题的序号)答案③④解析对于①,平面α与β可能相交,故①错;对于②,若α∥β,m∥α,n∥β,则直线m 与n可能平行,可能相交,也可能异面,故②错;对于③,由面面垂直的判定可知③正确;对于④,由面面垂直的性质可知m⊥n,故④正确.因此真命题的序号为③④.3.在四棱锥P—ABCD中,P A⊥底面ABCD,底面各边都相等,M是PC上一动点,当M满足是________时,平面MBD⊥平面ABCD.答案PC的中点解析 当M 是PC 中点时,连结AC ,BD 交于O ,由题意知,O 是AC 的中点,连结MO ,则MO ∥P A .∵P A ⊥平面ABCD ,∴MO ⊥平面ABCD ,MO ⊂平面MBD ,∴平面MBD ⊥平面ABCD . 4.如图,ABCD 是空间四边形,E ,F ,G ,H 分别是四边上的点,且它们共面,并且AC ∥平面EFGH ,BD ∥平面EFGH ,AC =m ,BD =n ,当EFGH 是菱形时,AE ∶EB =________.答案m n解析 设AE =a ,EB =b ,由题意知,EF ∥AC , 得EF =bm a +b ,同理EH =ana +b.因为EF =EH ,所以bm a +b =an a +b,所以a b =mn .5.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .答案 a 或2a解析 由题意易知,B 1D ⊥平面ACC 1A 1, 所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可. 令CF ⊥DF ,设AF =x ,则A 1F =3a -x . 易知Rt △CAF ∽Rt △F A 1D ,得AC AF =A 1F A 1D ,即2a x =3a -x a , 整理得x 2-3ax +2a 2=0, 解得x =a 或x =2a .6.如图,四棱锥P —ABCD 的底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,PB =PD ,P A ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC 的中点,连结OM .求证:(1)OM ∥平面P AD ; (2)OM ⊥平面PCD .证明 (1)连结AC .因为四边形ABCD 是平行四边形,所以O 为AC 的中点.在△P AC 中,因为O ,M 分别是AC ,PC 的中点,所以OM ∥P A . 因为OM ⊄平面P AD ,P A ⊂平面P AD , 所以OM ∥平面P AD .(2)连结PO .因为O 是BD 的中点,PB =PD , 所以PO ⊥BD .因为平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD =BD ,PO ⊂平面PBD ,所以PO ⊥平面ABCD ,从而PO ⊥CD . 因为CD ⊥PC ,PC ∩PO =P , PC ⊂平面P AC ,PO ⊂平面P AC , 所以CD ⊥平面P AC .因为OM ⊂平面P AC ,所以CD ⊥OM .因为P A⊥PC,OM∥P A,所以OM⊥PC.因为CD⊂平面PCD,PC⊂平面PCD,CD∩PC=C,所以OM⊥平面PCD.7.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)证明:平面ADC1B1⊥平面A1BE;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.(1)证明如图,因为ABCD-A1B1C1D1为正方体,所以B1C1⊥面ABB1A1.因为A1B⊂面ABB1A1,所以B1C1⊥A1B.又因为A1B⊥AB1,B1C1∩AB1=B1,所以A1B⊥面ADC1B1.因为A1B⊂面A1BE,所以平面ADC1B1⊥平面A1BE.(2)解当点F为C1D1中点时,可使B1F∥平面A1BE.证明如下:易知:EF∥C1D,且EF=12C1D.设AB1∩A1B=O,则B1O∥C1D且B1O=12C1D,所以EF∥B1O且EF=B1O,所以四边形B1OEF为平行四边形.所以B1F∥OE.又因为B1F⊄面A1BE,OE⊂面A1BE.8.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是棱DD1,C1D1的中点.(1)证明:平面ADC1B1⊥平面A1BE;(2)证明:B1F∥平面A1BE;(3)若正方体棱长为1,求四面体A1—B1BE的体积.(1)证明如图,连结AB1.因为ABCD—A1B1C1D1为正方体,所以B1C1⊥平面ABB1A1.因为A1B ⊂平面ABB1A1,所以B1C1⊥A1B.因为A1B⊥AB1,B1C1∩AB1=B1,所以A1B⊥平面ADC1B1.因为A1B⊂平面A1BE,所以平面ADC1B1⊥平面A1BE.(2)证明如图,连结EF,DC1,OE,B1F.由已知条件得EF∥C1D,且EF=12C1D.设AB1∩A1B=O,则B1O∥C1D且B1O=12C1D,所以EF∥B1O且EF=B1O,所以四边形B1OEF为平行四边形,所以B1F∥OE.因为B1F⊄平面A1BE,OE⊂平面A1BE,(3)解 VA 1—B 1BE =VE —A 1B 1B =13S △A 1B 1B ·B 1C 1=16. B 组 专项能力提升(时间:25分钟)9.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,给出下面三个结论: ①BC ∥平面PDF ;②DF ⊥平面P AE ;③平面PDF ⊥平面ABC .其中不成立...的结论是________.(填写所有不成立的结论的序号) 答案 ③解析如图,由题知BC ∥DF ,∴BC ∥平面PDF .∵四面体P —ABC 为正四面体,∴BC ⊥P A ,AE ⊥BC ,BC ⊥平面P AE ,∴DF ⊥平面P AE ,∴平面P AE ⊥平面ABC ,∴①和②成立.设此正四面体的棱长为1,则P A =1,AM =34,PM 2=PD 2-DM 2=⎝⎛⎭⎫322-⎝⎛⎭⎫142=1116,∴P A 2≠AM 2+PM 2,故③不成立.10.如图,过四棱柱ABCD —A 1B 1C 1D 1的木块上底面内的一点P 和下底面的对角线BD 将木块锯开,得到截面BDEF .(1)请在木块的上表面作出过点P 的锯线EF ,并说明理由;(2)若该四棱柱的底面为菱形,四边形BB1D1D是矩形,试证明:平面BDEF⊥平面ACC1A1.(1)解在上底面内过点P作B1D1的平行线分别交A1D1,A1B1于E,F两点,则EF为所作的锯线.在四棱柱ABCD—A1B1C1D1中,侧棱B1B∥D1D,B1B=D1D,所以四边形BB1D1D是平行四边形,B1D1∥BD.又EF∥B1D1,所以EF∥BD,故EF为截面BDEF与平面A1B1C1D1的交线,故EF为所作锯线.如图所示.(2)证明由于四边形BB1D1D是矩形,所以BD⊥B1B.又A1A∥B1B,所以BD⊥A1A.又四棱柱的底面为菱形,所以BD⊥AC.因为AC∩A1A=A,所以BD⊥平面A1C1CA.因为BD⊂平面BDEF,所以平面BDEF⊥平面A1C1CA.11.如图,P A垂直于矩形ABCD所在的平面,AD=P A=2,CD=22,E,F分别是AB,PD 的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PECF的体积.(1)证明设G为PC的中点,连结FG,EG.∵F 为PD 的中点,E 为AB 的中点,∴FG 綊12CD ,AE 綊12CD ,∴FG 綊AE , ∴四边形AEGF 为平行四边形,∴AF ∥GE . ∵GE ⊂平面PEC ,AF ⊄平面PEC , ∴AF ∥平面PCE .(2)证明 ∵P A =AD =2,∴AF ⊥PD .又∵P A ⊥平面ABCD ,CD ⊂平面ABCD , ∴P A ⊥CD .∵AD ⊥CD ,P A ∩AD =A ,∴CD ⊥平面P AD .∵AF ⊂平面P AD ,∴AF ⊥CD .∵PD ∩CD =D ,∴AF ⊥平面PCD ,∴GE ⊥平面PCD .∵GE ⊂平面PEC ,∴平面PCE ⊥平面PCD .(3)解 由(2)知GE ⊥平面PCD , 所以EG 为四面体PEFC 的高,又EG =AF =2,CD =22,S △PCF =12PF ·CD =2, 所以四面体PEFC 的体积V =13S △PCF ·EG =223.。

高中数学高考总复习立体几何各种平行与垂直的判断习题及详解

高中数学高考总复习立体几何各种平行与垂直的判断习题及详解

高中数学高考总复习立体几何各种平行与垂直的判断习题及详解一、选择题1.设b 、c 表示两条不重合的直线,α、β表示两个不同的平面,则下列命题是真命题的是( )A.⎭⎪⎬⎪⎫b ⊂αc ∥α⇒b ∥c B.⎭⎪⎬⎪⎫b ⊂αb ∥c ⇒c ∥α C.⎭⎪⎬⎪⎫c ∥αc ⊥β⇒α⊥βD.⎭⎪⎬⎪⎫c ∥αα⊥β⇒c ⊥β [答案] C[解析] 选项A 中的条件不能确定b ∥c ;选项B 中条件的描述也包含着直线c 在平面α内,故不正确;选项D 中的条件也包含着c ⊂β,c 与β斜交或c ∥β,故不正确.[点评] 线线、线面、面面平行或垂直的性质定理和判定定理是解决空间图形位置关系推理的重要依据,在推理中容易把平面几何中的一些结论引用到立体几何中造成错误.对空间中位置关系的考虑不周,也是造成判断错误的因素,所以做这类题目应当考虑全面.2.定点A 和B 都在平面α内,定点P ∉α,PB ⊥α,C 是α内异于A 和B 的动点,且PC ⊥AC .那么,动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点 [答案] B[解析] 连接BC ,∵PB ⊥α,∴AC ⊥PB . 又∵PC ⊥AC ,∴AC ⊥BC .∴C 在以AB 为直径的圆上.故选B. 3.设α、β、γ为平面,给出下列条件: ①a 、b 为异面直线,a ⊂α,b ⊂β,a ∥β,b ∥α; ②α内不共线的三点到β的距离相等; ③α⊥γ,β⊥γ.其中能使α∥β成立的条件的个数是( ) A .0 B .1 C .2D .3[答案] B[解析]对于②,三个点不一定在同侧;对于③,面面的垂直关系不具有传递性.对于①,过b作平面γ∩α=b′,则b∥b′,∵a与b异面,∴a与b′相交,容易证明b′∥β,又∵a∥β,∴α∥β,故只有①正确.4.a、b、c是三条直线,α、β是两个平面,b⊂α,c⊄α,则下列命题不成立的是() A.若α∥β,c⊥α,则c⊥βB.“若b⊥β,则α⊥β”的逆命题C.若a是c在α内的射影,b⊥a,则b⊥cD.“若b∥c,则c∥α”的逆否命题[答案] B[解析]一条直线垂直于两个平行平面中的一个,则垂直于另一个,故A正确;若c∥α,∵a是c在α内的射影,∴c∥a,∵b⊥a,∴b⊥c;若c与α相交,则c与a相交,由线面垂直的性质与判定定理知,若b⊥a,则b⊥c,故C正确;∵b⊂α,c⊄α,b∥c,∴c∥α,因此原命题“若b∥c,则c∥α”为真,从而其逆否命题也为真,故D正确.如图,α⊥β,α∩β=l,b⊂α,b与l不垂直,则b与β不垂直,∴B不成立.5.(文)(2010·天津河东区)已知直线a⊂平面α,直线AO⊥α,垂足为O,P A∩α=P,若条件p:直线OP不垂直于直线a,条件q:直线AP不垂直于直线a,则条件p是条件q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C故OP⊥a⇔AP⊥a,从而p⇔q.(理)(2010·河南新乡调研)设α、β、γ为平面,l、m、n为直线,则m⊥β的一个充分条件为()A.α⊥β,α∩β=l,m⊥lB.n⊥α,n⊥β,m⊥αC.α∩γ=m,α⊥γ,β⊥γD.α⊥γ,β⊥γ,m⊥α[答案] B[解析]如图①知A错;如图②知C错;如图③在正方体中,两侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错.6.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB 沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC[答案] D[解析]∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD ⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,故AB⊥平面ADC.∴平面ABC⊥平面ADC.7.(文)(2010·重庆文)到两互相垂直的异面直线的距离相等的点()A.只有1个B.恰有3个C .恰有4个D .有无穷多个[答案] D[解析] 过两条互相垂直的异面直线的公垂线段中点且与两条直线都成45°角的直线上所有点到两条直线的距离都相等,故选D.(理)(2010·全国Ⅱ理)与正方体ABCD -A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点( )A .有且只有1个B .有且只有2个C .有且只有3个D .有无数个[答案] D[解析] 如图连结B 1D ,可知B 1D 上的点到AB 、CC 1、A 1D 1的距离均相等,故选D.8.(文)平行四边形ABCD 的对角线交点为O ,点P 在平面ABCD 之外,且P A =PC ,PD =PB ,则PO 与平面ABCD 的关系是( )A .斜交B .平行C .垂直D .无法确定[答案] C[解析] ∵P A =PC ,∴PO ⊥AC ,∵PB =PD ,∴PO ⊥BD ,∵AC ∩BD =O ,∴PO ⊥平面ABCD .(理)棱长都为2的直平行六面体(底面为平行四边形的棱柱)ABCD -A 1B 1C 1D 1中,∠BAD =60°,则对角线A 1C 与侧面DCC 1D 1所成角的正弦值为( )A.12B.22C.34D.38 [答案] C[解析] 如图所示,过点A 1作直线A 1M ⊥D 1C 1,交D 1C 1延长线于点M ,连结MC ,A 1C ,则可得A 1M ⊥面DD 1C 1C ,∠A 1CM 就是直线A 1C 与面DD 1C 1C 所成的角.∵所有棱长均为2,∠A 1D 1C 1=120°,∴A 1M =A 1D 1sin60°=3,又A 1C =AC 12+CC 12=(23)2+22=4, ∴sin ∠A 1CM =A 1M A 1C =34,故应选C.[点评] 求直线与平面所成角时,一般要先观察分析是否可以找(或作)出直线上一点到平面的垂线,若能找出则可以将线面角归结到一个直角三角形中求解.若不容易找出线面角,则可以考虑能否进行转化或借助于空间向量求解,请再练习下题:(2010·全国Ⅰ文)正方体ABCD -A 1B 1C 1D 1中BB 1与平面ACD 1所成角的余弦值为( ) A.23B.33C.23D.63[答案] D[解析] 解法1:设BD 与AC 交于点O ,连结D 1O ,∵BB 1∥DD 1,∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1成的角.∵AC ⊥BD ,AC ⊥DD 1,DD 1∩BD =D ,∴AC ⊥平面DD 1B ,平面DD 1B ∩平面ACD 1=OD 1,∴OD 1是DD 1在平面ACD 1内的射影,故∠DD 1O 为直线DD 1与平面ACD 1所成的角,设正方体的棱长为1,则DD 1=1,DO =22,D 1O =62,∴cos ∠DD 1O =DD 1D 1O =63,∴BB 1与平面ACD 1所成角的余弦值为63. 解法2:因为BB 1∥DD 1,所以BB 1与平面ACD 1所成角和DD 1与平面ACD 1所成角相等,设DO ⊥平面ACD 1,由等体积法得VD -ACD 1=VD 1-ACD ,即13S △ACD 1·DO =13S △ACD ·DD 1.设DD 1=a ,则S △ACD 1=12AC ·AD 1sin60°=12×(2a )2×32=32a 2,S △ACD =12AD ·CD =12a 2.所以DO =S △ACD ·DD 1S △ACD 1=a 33a 2=33a ,设DD 1与平面ACD 1所成角为θ,则sin θ=DO DD 1=33, 所以cos θ=63.解法3:建立如图所示空间直角坐标系D -xyz ,设边长为1,BB 1→=(0,0,1),平面ACD 1的一个法向量n =(1,1,1),∴cos 〈BB 1→,n 〉=13·1=33,∴BB 1与面ACD 1所成角的余弦值为63. 9.(文)(2010·鞍山一中模拟)已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α⊥β,其中正确的是( ) A .①②③ B .②③④ C .②④ D .①③ [答案] D∵m ⊂β,∴此时推不出l ∥m ,故②错,排除A ,故选D. (理)若平面α与平面β相交,直线m ⊥α,则( ) A .β内必存在直线与m 平行,且存在直线与m 垂直 B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直 C .β内不一定存在直线与m 平行,但必存在直线与m 垂直 D .β内必存在直线与m 平行,不一定存在直线与m 垂直 [答案] C[解析] 若β内存在直线与m 平行,则必有β⊥α,但α与β不一定垂直,故否定A 、D ;在β内必存在与m 在β内射影垂直的直线,从而此线必与m 垂直,否定B ,故选C.10.(文)(2010·芜湖十二中)已知两条不同的直线m 、n ,两个不同的平面α、β,则下列命题中的真命题是( )A .若m ⊥α,n ⊥β,α⊥β,则m ⊥nB .若m ∥α,n ∥β,α∥β,则m ∥nC .若m ⊥α,n ∥β,α⊥β,则m ⊥nD .若m ∥α,n ⊥β,α⊥β,则m ∥n[答案] A[解析]如图(1),m⊥α,n⊥α满足n∥β,但m∥n,故C错;如图(2)知B错;如图(3)正方体中,m∥α,n⊥β,α⊥β,知D错.(理)(2010·浙江金华十校模考)设a,b为两条直线,α,β为两个平面,下列四个命题中真命题是()A.若a,b与α所成角相等,则a∥bB.若a∥α,b∥β,α⊥β,则a⊥bC.若a⊂α,b⊂β,a⊥b,则α⊥βD.若a⊥α,b⊥β,α⊥β,则a⊥b[答案] D[解析]正四棱锥P-ABCD中,P A、PC与底面ABCD所成角相等,但P A与PC相交,∴A错;如图(1)正方体中,a∥b∥c,满足a∥α,b∥β,α⊥β,故B错;图(2)正方体中,上、下底面为β、α,a、b为棱,满足a⊂α,b⊂β,a⊥b,但α∥β,故C错;二、填空题11.对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD .其中真命题的序号是________.(把你认为正确命题的序号都填上) [答案] ①④[解析] 本题考查四面体的性质,取BC 的中点E ,则BC ⊥AE ,BC ⊥DE ,∴BC ⊥面ADE ,∴BC ⊥AD ,故①正确.设O 为A 在面BCD 上的射影,依题意OB ⊥CD ,OC ⊥BD ,∴O 为垂心,∴OD ⊥BC ,∴BC ⊥AD ,故④正确,②③易排除,故答案为①④.12.(文)P 为△ABC 所在平面外一点,P A 、PB 、PC 与平面ABC 所成角均相等,又P A 与BC 垂直,那么△ABC 形状可以是________.①正三角形 ②等腰三角形 ③非等腰三角形 ④等腰直角三角形(将你认为正确的序号全填上) [答案] ①②④[解析] 设点P 在底面ABC 上的射影为O ,由P A 、PB 、PC 与平面ABC 所成角均相等,得OA =OB =OC ,即点O 为△ABC 的外心,又由P A ⊥BC ,得OA ⊥BC ,即AO 为△ABC 中BC 边上的高线,∴AB =AC ,即△ABC 必为等腰三角形,故应填①②④.(理)如图将边长为1的正方形纸板ABCD 沿对角线AC 折起,使平面ACB ⊥平面ACD ,然后放在桌面上,使点B 、C 、D 落在桌面,这时点A 到桌面的距离为________.[答案]63[解析] 取AC 中点O ,∵OB ⊥AC ,OD ⊥AC ,OB ∩OD =O ,∴AC ⊥平面BOD ,∴∠BOD =90°.又∵BO =OD =22,∴BD =1,S △BOD =14, ∴V A -BCD =13S △BOD ·AC =212,设A 到桌面距离为h ,V A -BCD =13S △BCD ·h =13×34×h =212,∴h =63,即A 到桌面距离为63. 13.(2010·安徽淮北一中)已知四棱锥P -ABCD 的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在的直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△P AB 的面积;④直线AE与直线BF是异面直线.以上结论正确的是________.(写出所有正确结论的编号)[答案]①③[解析]由条件可得AB⊥平面P AD,所以AB⊥PD,故①正确;∵P A⊥平面ABCD,∴平面P AB、平面P AD都与平面ABCD垂直,故平面PBC不可能与平面ABCD垂直,②错;S△PCD=12CD·PD,S△P AB=12AB·P A,由AB=CD,PD>P A知③正确;由E、F分别是棱PC、PD的中点可得EF∥CD,又AB∥CD,所以EF∥AB,故AE与BF共面,故④错.14.(文)(2010·河北唐山)如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD=DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=________.[答案]2 2[解析]∵DA=DC=DD1且DA、DC、DD1两两垂直,故当点M使四边形ADCM为正方形时,D1M⊥平面A1C1D,∴DM=2 2.(理)(2010·安徽巢湖市质检)已知正方体ABCD-A1B1C1D1的棱长为1,E,F,G分别是AB,BC,B1C1的中点.下列命题正确的是________(写出所有正确命题的编号).①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形;②P在直线FG上运动时,AP⊥DE;③Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;④M是正方体的面A1B1C1D1内到点D和C1距离相等的点,则M点的轨迹是一条线段.[答案]②③④[解析]三棱锥A1-ABC的四个面都是Rt△,故①错;F在FG上运动时,PF⊥平面ABCD,∴PF⊥DE,又在正方体ABCD中,E、F为AB、BC中点,∴AF⊥DE,∴DE⊥平面P AF,∴DE⊥P A,故②真;VA-D1QC=VQ-AD1C,∵BC1∥AD1,∴BC1∥平面AD1C,∴无论点Q在BC1上怎样运动,Q到平面AD1C距离都相等,故③真;到点D和C1距离相等的点在经过线段C1D的中点与DC1垂直的平面α上,故点M为平面α与正方体的面A1B1C1D1相交线段上的点,这条线段即A1D1.三、解答题15.(文)(2010·江苏,16)如图,四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°(1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离.[解析] (1)∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC . 由∠BCD =90°知,BC ⊥DC , ∵PD ∩DC =D ,∴BC ⊥平面PDC , ∴BC ⊥PC .(2)设点A 到平面PBC 的距离为h , ∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°, ∵AB =2,BC =1,∴S △ABC =12AB ·BC =1,∵PD ⊥平面ABCD ,PD =1, ∴V P -ABC =13S △ABC ·PD =13,∵PD ⊥平面ABCD ,∴PD ⊥DC , ∵PD =DC =1,∴PC =2, ∵PC ⊥BC ,BC =1, ∴S △PBC =12PC ·BC =22,∵V A -PBC =V P -ABC , ∴13S △PBC ·h =13,∴h =2, ∴点A 到平面PBC 的距离为 2.(理)如图,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点,D 为PB 中点,且△PMB 为正三角形.(1)求证:DM ∥平面APC ; (2)求证:平面ABC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D -BCM 的体积.[解析] (1)∵M 为AB 中点,D 为PB 中点,∴DM ∥AP ,又DM ⊄平面APC ,AP ⊂平面APC .∴DM ∥平面APC .(2)∵△PMB 为正三角形,且D 为PB 中点,∴MD ⊥PB ,又由(1)知MD ∥AP ,∴AP ⊥PB又已知AP ⊥PC ,∴AP ⊥平面PBC ,∴AP ⊥BC ,又∵AC ⊥BC∴BC ⊥平面APC∴平面ABC ⊥平面APC .(3)∵AB =20,∴MP =10,∴PB =10又BC =4,PC =100-16=221∴S △BDC =12S △PBC =14PC ·BC =14×4×221 =221又MD =12AP =12202-102=5 3 ∴V D -BCM =V M -BCD =13S △BDC ·DM =13×221×5 3 =107.16.(文)如图,已知在直四棱柱ABCD -A1B 1C 1D 1中,AD ⊥DC ,AB ∥DC ,DC =DD 1=2AD =2AB =2.(1)求证:DB ⊥平面B 1BCC 1;(2)设E 是DC 上一点,试确定E 的位置,使得D 1E ∥平面A 1BD ,并说明理由.[解析] (1)证明:∵AB ∥DC ,AD ⊥DC ,∴AB ⊥AD ,在Rt △ABD 中,AB =AD =1,∴BD =2,易求BC =2,又∵CD =2,∴BD ⊥BC .又BD ⊥BB 1,B 1B ∩BC =B ,∴BD ⊥平面B 1BCC 1.(2)DC 的中点即为E 点.∵DE ∥AB ,DE =AB ,∴四边形ABED 是平行四边形.∴AD 綊BE .又AD 綊A 1D 1,∴BE 綊A 1D 1,∴四边形A 1D 1EB 是平行四边形.∴D 1E ∥A 1B .∵D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD .∴D 1E ∥平面A 1BD .(理)在三棱锥P -ABC 中,△P AC 和△PBC 是边长为2的等边三角形,AB =2,O 是AB 中点.(1)在棱P A 上求一点M ,使得OM ∥平面PBC ;(2)求证:平面P AB ⊥平面ABC ;(3)求二面角P -BC -A 的余弦值.[解析] (1)当M 为棱P A 的中点时,OM ∥平面PBC .证明如下:∵M 、O 分别为P A 、AB 中点,∴OM ∥PB又PB ⊂平面PBC ,OM ⊄平面PBC∴OM ∥平面PBC .(2)连结OC 、OP∵AC =CB =2,O 是AB 中点,AB =2,∴OC ⊥AB ,OC =1.同理,PO ⊥AB ,PO =1.又PC =2,∴PC 2=OC 2+PO 2=2,∴∠POC =90°,∴PO ⊥OC .∵PO ⊥OC ,PO ⊥AB ,AB ∩OC =O ,∴PO ⊥平面ABC .∵PO ⊂平面P AB ,∴平面P AB ⊥平面ABC .(3)如图,建立空间直角坐标系O -xyz .则B (1,0,0),C (0,1,0),P (0,0,1),∴BC →=(-1,1,0),PB →=(1,0,-1).由(2)知OP →=(0,0,1)是平面ABC 的一个法向量.设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BC →=0n ·PB →=0⇒⎩⎪⎨⎪⎧-x +y =0x -z =0, 令z =1,则x =1,y =1,∴n =(1,1,1).∴cos 〈OP →,n 〉=OP →·n |OP →|·|n |=11×3=33. ∵二面角P -BC -A 的平面角为锐角,∴所求二面角P -BC -A 的余弦值为33. 17.(文)如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且AE AC =AF AD =λ(0<λ<1).(1)判断EF 与平面ABC 的位置关系并给予证明;(2)是否存在λ,使得平面BEF ⊥平面ACD ,如果存在,求出λ的值,如果不存在,说明理由.[分析] (1)EF 与平面ABC 相交于点E ,故其关系只能是垂直或斜交,由条件AE AC =AF AD=λ易知,EF ∥CD ,由∠BCD =90°及AB ⊥平面BCD ,易证CD ⊥平面ABC .(2)∵EF ∥CD ,故问题相当于过点B 作一个平面与ACD 垂直,这样的平面一定存在,故只须计算出λ即可,由条件不难得到BE ⊥CD ,故只须BE ⊥AC .[解析] (1)EF ⊥平面ABC .证明:因为AB ⊥平面BCD ,所以AB ⊥CD ,又在△BCD 中,∠BCD =90°,所以BC ⊥CD ,又AB ∩BC =B ,所以CD ⊥平面ABC ,又在△ACD 中,E 、F 分别是AC 、AD 上的动点,且AEAC =AF AD=λ(0<λ<1),∴EF ∥CD ,∴EF ⊥平面ABC .(2)∵CD ⊥平面ABC ,BE ⊂平面ABC ,∴BE ⊥CD ,在Rt △ABD 中,∠ADB =60°,∴AB =BD tan60°=6,则AC =AB 2+BC 2=7,当BE ⊥AC 时,BE =AB ×BC AC =67,AE =AB 2-BE 2=367, 则AE AC =3677=67,即λ=AE AC =67时,BE ⊥AC , 又BE ⊥CD ,AC ∩CD =C ,∴BE ⊥平面ACD ,∵BE ⊂平面BEF ,∴平面BEF ⊥平面ACD . 所以存在λ,且当λ=67时,平面BEF ⊥平面ACD . [点评] 高考整体降低了对立体几何的考查要求,故线线、线面、面面的位置关系成了主要的考查点,其中平行、垂直的证明题与探索题是重点,同时也要注意由三视图与几何体的结合进行表面积与体积的计算等问题.(理)已知四棱锥P-ABCD 的三视图如下图所示,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论;(3)若点E 为PC 的中点,求二面角D -AE -B 的大小.[解析] (1)由三视图可知,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC =2.∴V P -ABCD =13S 正方形ABCD ·PC =13×12×2=23, 即四棱锥P-ABCD 的体积为23.(2)不论点E 在何位置,都有BD ⊥AE .证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC .∵PC ⊥底面ABCD ,且BD ⊂平面ABCD ,∴BD ⊥PC .又∵AC ∩PC =C ,∴BD ⊥平面P AC .∵不论点E 在何位置,都有AE ⊂平面P AC .∴不论点E 在何位置,都有BD ⊥AE .(3)解法1:在平面DAE 内过点D 作DF ⊥AE 于F ,连结BF .∵AD =AB =1,DE =BE =12+12=2,AE =AE =3,∴Rt △ADE ≌Rt △ABE ,从而△ADF ≌△ABF ,∴BF ⊥AE .∴∠DFB 为二面角D -AE -B 的平面角.在Rt △ADE 中,DF =AD ·DE AE =1×23=63, ∴BF =63. 又BD =2,在△DFB 中,由余弦定理得cos ∠DFB =DF 2+BF 2-BD 22DF ·BF =-12, ∴∠DFB =2π3, 即二面角D -AE -B 的大小为2π3. 解法2:如图,以点C 为原点,CD ,CB ,CP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系.则D (1,0,0),A (1,1,0),B (0,1,0),E (0,0,1),从而DA →=(0,1,0),DE →=(-1,0,1),BA→=(1,0,0),BE →=(0,-1,1).设平面ADE 和平面ABE 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),由⎩⎪⎨⎪⎧n 1·DA →=0n 1·DE →=0⇒⎩⎪⎨⎪⎧ y 1=0-x 1+z 1=0,取n 1=(1,0,1).由⎩⎪⎨⎪⎧n 2·BA →=0n 2·BE →=0⇒⎩⎪⎨⎪⎧ x 2=0-y 2+z 2=0,取n 2=(0,-1,-1). 设二面角D -AE -B 的平面角为θ,则 cos θ=n 1·n 2|n 1|·|n 2|=-12·2=-12, ∴θ=2π3,即二面角D -AE -B 的大小为2π3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学 必修二 空间中平行与垂直关系
强化练习 1.空间中,垂直于同一直线的两条直线
A. 平行 B .相交 C .异面
A.若 m//l, n//l ,则 m//n B .若 m 〃 ,n 〃 ,则 m//n
C.若m ,m ,则 D .若m , ,则m 〃 或m
3. 下列说法正确的是()
A. 如果一条直线与一个平面内的无数条直线平行,则这条直线与这个平面平行
B. 两个平面相交于唯一的公共点
C. 如果一条直线与一个平面有两个不同的公共点,则它们必有无数个公共点
D. 平面外的一条直线必与该平面内无数条直线平行
4. 如图,ABCD- A i BiGD 为正方体,
A. BD// 平面 CBD
B. AG 丄B i C
C. AC 丄平面CBD
D. 直线CC 与平面CBD 所成的角为45°
5. 如图,四棱锥 V ABCD 中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧
棱长为.5的等腰三角形,则二面角 V AB C 的大小
( )
A. 30 B . 45 C . 60 D . 120
6. 下列四个结论:
⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为( )
A. 0 B . 1 C . 2 D . 3 7.在四面体ABCD 中,已知棱AC 的长为.2,其余各棱长都为1,则二面角
A CD
B 的
余弦值为(
) A. 1 B .1
C
.-D 2 3 3 .3
2.已知互不相同的直线l,m,n 与平面
,则下列叙述错误的是( () D .以上均有可能
8.在三棱柱ABC A1BC中,各棱都相等,侧棱垂直底面,点D是侧面BB i C.C的中心,
则AD与平面BBQC所成角的大小是.
9.直二面角—| —的棱|上有一点A ,在平面,内各有一条射线AB , AC都与I成45°, AB ,AC ,贝U BAC ____________________
10.在正方体ABCD- A i BC D中,给出下列结论:①Ad B i D;②AG丄B i C;③AB i与BC所成的角为60°;④AB与A i C所成的角为45°.
其中所有正确结论的序号为
ii.如图是正方形的平面张开图,在这个正方体中:
①BM与DE平行;②CN与BE是异面直线;
③BM与CN成60角;④DM与BN是异面直线;
以上四个命题中,正确命题的序号是
i2.如图:S是平行四边形ABCD平面外一点,
M,N分别是S A BD上的点,且而
求证:MN//平面SBC
ND
BN
i3.如图,长方体ABCD - A i B i C i D i 中,AB=2 , BC= _
(i)求异面直线DD i与MC i所成的角;
CC i=i ,M为线段AB的中点.
14.如图,四棱柱ABC B ABCD的底面ABCD是正方形,0为底面中心,A0丄平面ABCD
AB AA 2 .
(1) 证明:A i BD // 平面CDB i;
(2) 求三棱柱ABD-A i BD的体积.
15.在三棱锥P-ABC中,PB丄平面ABC AB丄BC PB=AB D, E分别是PC的中点,G, H分别是BD BE的中点.
(1)求证:GH/平面
ABC
D i C i
16.在三棱锥S—ABC中,/ SAE=/SAC/ ACB90°, AG=2, BO^/13 , SB= ^29 .
(1)证明:SCL BC
(2)求侧面SBC与底面ABC所成二面角的大小;
17.如图,在四棱锥P-ABCD中, ABCD是正方形,PDL平面ABCD PD=AD=2 E, F, G分别是PC, PD BC的中点.
(1)求证:平面PAB/平面EFG
(2)在线段PB上确定一点M,使PC L平面ADM
并给出证明.
高一数学必修二空间中平行与垂直关系强化练习参考答案
1-5 DBCDC 6-7AC
8. 由题意得,取BC中点E,连接DE AE AD依题意知三棱柱为正三棱柱,得AE 平面
V3 1 BB i C i C,故ADE为AD与平面BB iG C所成角,设各棱长为1,则AE , DE -,
2 2 所以tan ADE
3 ADE 60o。

9. 600或1200
10. ①②③.11.③④12.略
13.解:(1)因为C1C // D1D,所以/ MC1C就是异面直线
DD1与MC1所成的角,…(3分)
连接MC,则△ C1MC 为Rt A .易得MC=|疗J MC1=2,
所以 / MC1C=60 Q
即异面直线DD1与MC1所成的角为60° ••- (6分)
(2)因为MB丄平面B1C1CB,连接BC1,则/ MC1B为直线MC1与平面BB1C1C所成的角,••- (9 分)
由厶MC1B 为Rt △.易得BC1= :\ MC1=2,所以/ MC1B=30 9
即直线MC1与平面BB 1C1C所成的角为30 ° ••- (12分)
14.(1)证明:设B1D1线段的中点为01.
BD和B1D1 是ABCD A1B1C1D1 的对应棱BD//BQ1.
同理,AO和A^O1是棱柱ABCD A B1C1D1的对应线段
AO//A1O1且AO // OC A1O1 // OC且A1O1 OC 四边形A1OCO1为平行四边形A1O//O1C且A1O BD O,O1C B1D1 O1面A1 BD //面CD1B1.(证毕)
⑵解:A1O 面ABCD AO是三棱柱A1B1D1 ABD的高.
在正方形AB CD中,AO = 1 . 在RT A1OA中,AQ 1.
三棱柱A1B1D1 ABD的体积V ABp ABD S ABD AQ 1 0, 2)21 1.
所以,三棱柱A1B1D1 ABD的体积V A[ B] D[ ABD 1.
15.证明:(1)连结DE在厶BDE中,G, H分别是BD, BE的中点,
•••BDE的中位线,
••• GH/ DE
在厶PAC D, E分别是PA, PC的中点,
• DE是A PAC的中位线,
• DE// AC
• GH/ AC
•/ GH?平面ABC
• GH/平面ABC
(2 )v AB=PB
• BDL PA
•••/ PBC M ABC=90 ,
• PC=AC
• CDL PA
• PAL平面BCD
•平面BCDL平面PAC
16.(2) 600
17. (1)证明:T E, F分别是PC, PD的中点.
• EF// CD
由正方形ABCD • AB// CD
• EF// AB
又EF?平面PAB • EF//平面PAB.
同理可得:EG/ PB
可得EG/平面PAB
又EF n EG=E
•平面PAB/平面EFG
(2)解:当M为线段PB的中点时,满足使PC L平面ADM 下面给出证明:取PB的中点M连接DE, EM AM
••• ADL PD
又AD L CD PD A CD=D
• ADL平面PCD
• AD L PC.
又厶PDC为等腰三角形,E为斜边的中点,• DE L PC,又AD A DC=D,
• PC L平面ADEM即PC L平面ADM。

相关文档
最新文档