高二物理下学期第三学月考试试题
高二物理下学期第三次月考试卷
高二物理下学期第三次月考试卷一、选择题,共10小题,每题4 分,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分, 选对但不全的得2分, 不选或选错的得0分。
1、牛顿为了说明光的性质,提出了光的微粒说。
如今,人们对光的性质已有了进一步的认识。
下列四个示意图所表示的实验,能说明光性质的是( )2、已知π+介子、π- 介子都是由一个夸克(夸克u 或夸克d )和一个反夸克(反夸下列说法正确的是( )A .π+由u 和d 组成B .π+由d 和u 组成C .π-由u 和d 组成D .π- 由d 和u 组成3、消除噪声污染是当前环境保护的一个重要课题。
内燃机、通风机等在排放各种高速气流的过程中都发出噪声,干涉型消声器可以用来消弱高速气流产生的噪声。
干涉型消声器的结构及气流运行如图所示,产生波长为λ的声波沿水平管道自左向右传播。
当声波到达a 处时,分成两束相干波,它们分别通过r 1和r 2的路程,再在b 处相遇,即可达到消弱噪声的目的。
若Δr= r 2– r 1, 则Δr 等于:( ) A .波长λ的整数倍 B .波长λ的奇数倍 C .半波长2λ的奇数倍 D .半波长2λ的偶数倍4、如图,重力为20N 的物体与地面间的动摩擦因数为0.1,物体向左运动。
同时物体受到大小为10N 、方向向右的水平力F 的作用,则物体所受摩擦力的大小和方向是( )A .2N,向右 B.2N,向左 C.10N ,向左 D.12N,向右5、扫描隧道显微镜(STM )是根据量子力学原理中的隧道效应而设计成的,当原子尺度的探针针尖在不到一个纳米的高度上扫描样品时,外加一电压(2mV~2V ),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流。
电流强度随针尖与样品间的距离的减少而指数上升(如图1所示),当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起隧道电流不断发生改变。
学年下学期高二第三次月考物理(附答案)
物理本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
总分100分。
考试时间90分钟。
第Ⅰ卷(选择题,满分48分)注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。
并检查条形码粘贴是否正确。
2.选择题使用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,将答题卡收回。
一、选择题(本题共12小题,每小题4分,共48分。
1—10题为单选题,11—12题为多选题,多选题全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.物理学的发展离不开许多物理学家的智慧和奋斗,我们学习物理知识的同时也要学习他们的精神,记住他们的贡献.关于他们的贡献,以下说法正确的是A.爱因斯坦通过实验发现通电导线周围存在磁场,并提出了判断磁场方向的左手定则B.奥斯特通过近十年的艰苦探索终于发现了“磁生电”的规律C.法拉第通过实验发现了电磁感应现象,并总结出了感应电流方向的判断方法D.变化的磁场能够在周围空间产生电场,是麦克斯韦最先提出的基本假设之一2.关于传感器的结构框图,下列中正确的是A.非电学量→处理电路→敏感元件→电学量B.非电学量→敏感元件→处理电路→电学量C.电学量→敏感元件→处理电路→非电学量D.电学量→处理电路→敏感元件→非电学量3.对光学现象的认识,以下说法中正确的是A.立体电影利用了光的偏振原理B.光学镜头上的增透膜是利用光的全反射现象C.光纤通信利用了光的衍射现象D .海市蜃楼和彩虹一样都是仅由光的折射形成的 4.以下说法中正确的是A .只要磁场发生变化就一定产生电磁波B .任意两列波叠加一定发生干涉现象C .有振动就一定有波动,有波动就一定有振动D .脉冲雷达采用的是微波5.一列简谐横波沿x 轴正方向传播,从波源质点O 起振时开始计时,0.2s 时的波形如图所示,则该波 A .波长为2m B .频率为0.4Z H C .波速为10/m sD .波源质点做简谐运动的表达10sin5()y t cm π=6.图甲是某燃气炉点火装置的原理图.转换器将直流电压转换为图乙所示的正弦交变电压,并加在一理想变压器的原线圈上,变压器原、副线圈的匝数分别为n 1、n 2,为理想交流电压表.当变压器副线圈电压的瞬时值大于5000V 时,就会在钢针和金属板间引发电火花而点燃气体.以下判断正确的是A .电压表的示数等于10VB .电压表的示数等于25VC .实现点火的条件是21n n > D .实现点火的条件是21nn <7.一质点做简谐运动的图象如图所示,则下列说法正确的是 A .该质点在3s 时刻速度为零,加速 度为负向最大B .质点速度为零而加速度为正方向最大值的时刻分别是2610s s s 、、 C .前10s 内该质点通过的路程为100cmD .2~3s s 内该质点的速度不断增大,回复力不断增大 8.下列说法正确的是A .光在真空中运动的速度在任何惯性系中测得的数值都是相同的B .爱因斯坦质能方程2E mc =中的m 是物体静止时的质量C .爱因斯坦指出:对不同的惯性系,物理规律是不一样的D .空中绕地球运行的卫星的质量比静止在地面上时大得多9.如图所示,水下点光源S 向水面A 点发射一束复色光线,折射后光线分成a ,b 两束,则下列说法不正确...的是 A .在水中a 光的速度比b 光的速度小B .通过同一个单缝发生衍射时,b 光中央明条纹 比a 光中央明条纹宽C .若a 、b 两种单色光由水中射向空气发生全反 射时,a 光的临界角较小D .用同一双缝干涉实验装置做实验,a 光的相邻干涉条纹间距大于b 光的相 邻干涉条纹间距10.对无线电波的发射、传播和接收, 以下说法中正确的是A .信号波需要经过“调谐”后加到高频的等幅电磁波(载波)上才能有效的 发射出去B .一部手机既是电磁波的发射装置,同时又是电磁波的接收装置C .“检波”就是“调制”,“调制”就是“检波”D .电视的遥控器在选择电视节目时发出的是超声波脉冲信号11.一列简谐横波沿直线传播,该直线上a b 、两点相距4.6m .图中实、虚两条曲线分别表示平衡位置在a b 、两点处质点的振动图像.由图像可知A .该波的频率可能是100Z HB .该波的波长可能是2mC .该波的传播速度可能是20/m sD .质点a 一定比质点b 距波源近12.匝数为N 匝总电阻为R 的矩形金属线圈abcd ,绕垂直于匀强磁场并位于线圈平面的轴OO '匀速转动,线圈中产生的感应电动势e 随时间t 的变化关系如图所示.下列说法中正确的是A .t 1时刻线圈位于中性面 42m E t NπΦ=B .t 2时刻穿过线圈的磁通量为C .0~t 1时间内通过线圈横截面的电荷量为42m E t q Rπ= D .0~t 4时间内外力至少做功为24m E t W R=第Ⅱ卷(非选择题,满分52分)注意事项:1.请用蓝黑钢笔或圆珠笔在第Ⅱ卷答题卡上作答,不能答在此试卷上。
高二下学期第三次月考物理试卷-带参考答案
高二下学期第三次月考物理试卷-带参考答案考生须知:1.本卷满分100分,考试时间90分钟。
2.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在答题纸规定的位置上。
3.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在试题卷上的作答一律无效。
4. 非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内。
作图时先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。
5.可能用到的相关参数:重力加速度g 均取102/m s 。
选择题部分一、选择题I (本题共13小题,每小题3分,共39分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列物理量是矢量且对应的单位是由国际单位制的基本单位组成的是A .力,NB .冲量,-1kg m s ⋅⋅C .电场强度,-1N C ⋅D .磁通量。
2-2k m m A g ⋅⋅⋅2. 美国“毅力号”火星车于北京时间2021年2月19号4点55分成功登陆火星表面,“毅力号”火星车于北京时间2021年08月06日进行了首次火星样本取样工作,且其携带的“机智号”火星直升机也完成了持续40秒的首飞,飞行约160米,成功“击败”了火星稀薄的空气。
下列说法正确的是A .“火星车于北京时间2021年2月19号4点55分”是指时刻B .研究火星直升机在空中飞行轨迹时不能将火星直升机看作质点处理C .研究火星直升机叶片与空气间相互作用力时可将叶片看作质点D . “机智号”火星直升机首飞时的平均速度一定是4m/s3. 如图为骑行者驾驶摩托车在水平路面上向左匀速拐弯的某个瞬间,不计空气阻力,下列说法正确的是A.地面对摩托车的弹力方向指向左上方B.地面对摩托车的摩擦力方向与车的运动方向相反C.地面对摩托车的作用力与摩托车对地面的作用力大小相等D.摩托车对驾驶员的作用力竖直向上4. 如图所示的LC振荡电路中,某时刻线圈中磁场方向向上,且正在增强,则此时A.电容器上极板带负电,下极板带正电B.振荡电路中能量正在从磁场能转化为电场能C.线圈中的自感电动势正在变小D.增大电容器两极板间的距离,振荡周期会变大5.在江苏卫视《最强大脑》中,一位选手用“狮吼功”震碎了高脚玻璃杯,如图所示。
高二物理下学期3月月考试卷高二全册物理试题_4
嗦夺市安培阳光实验学校宜昌一中高二(下)月考物理试卷(3月份)一、选择题(共48分.1~6小题为单选题,每小题4分;7~10小题为多选题,全对得6分,选对但不选全得3分,选错或不选得0分)1.物理实验都需要有一定的控制条件.奥斯特做电流磁效应实验时,应排除地磁场对实验的影响.关于奥斯特的实验,下列说法中正确的是()A.该实验必须在地球赤道上进行B.通电直导线应该竖直放置C.通电直导线应该水平东西方向放置D.通电直导线应该水平南北方向放置2.电视台《今日说法》栏目曾经报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲撞进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经部门和门协力调查,画出的现场示意图如图所示.交警根据图示作出以下判断,你认为正确的是()①由图可知汽车在拐弯时发生侧翻是因为车作离心运动②由图可知汽车在拐弯时发生侧翻是因为车作向心运动③公路在设计上可能内(东)高外(西)低④公路在设计上可能外(西)高内(东)低.A.①③B.②④C.①④D.②③3.如图所示,水平光滑地面上停放着一辆质量为M 的小车,其左侧有半径为R 的四分之一光滑圆弧轨道AB,轨道最低点B 与水平轨道BC相切,整个轨道处于同一竖直平面内.将质量为m 的物块(可视为质点)从A 点无初速释放,物块沿轨道滑行至轨道末端C处恰好没有滑出.重力加速度为g,空气阻力可忽略不计.关于物块从A位置运动至C位置的过程,下列说法中正确的是()A.小车和物块构成的系统动量守恒B.摩擦力对物块和轨道BC所做功的代数和为零C .物块的最大速度为D .小车的最大速度为4.如图所示,a、b、c为电场中同一条电场线上的三点,其中c为ab的中点.已知a、b两点的电势分别为φa=3V,φb=9V,则下列叙述正确的是()A.该电场在c点处的电势一定为6VB.正电荷从a点运动到b点的过程中电势能一定增大C.a点处的场强E a一定小于b点处的场强E bD.正电荷只受电场力作用从a点运动到b点的过程中动能一定增大5.一汽车在高速公路上以v0=30m/s的速度匀速行驶,t=0时刻,驾驶员采取某种措施,汽车运动的加速度随时间变化关系如图所示,以初速度方向为正,下列说法正确的是()A.t=6s时车速为5m/s B.t=3s时车速为3m/sC.前9s内的平均速度为15m/s D.前6s内车的位移为90m6.一理想变压器原、副线圈的匝数比为10:1,原线圈输入电压的变化规律如图甲所示,副线圈所接电路如图乙所示,P为滑动变阻器的触头.下列说法正确的是()A.副线圈输出电压的频率为5HzB.副线圈输出电压的有效值为31VC.P向右移动时,原、副线圈的电流比减小D.P向右移动时,变压器的输入功率增加7.如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的滑轮固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而a与斜劈始终静止,则()A.细线对物体a的拉力增大 B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大8.宇航员在地球表面以一定的初速度竖直上抛一小球,经过时间t落回原处;若在某星球表面以相同的速度竖直上抛一小球,则需经5t时间落回原处.已知该星半径与地球半径之比为1:4,则()A.该星表面重力加速度与地球表面重力加速度之比为5:1B.该星质量与地球质量之比为1:80C.该星密度与地球密度之比为4:5D.该星的“第一宇宙速度”与地球的第一宇宙速度之比为1:209.如图所示,竖直平行导轨间距l=20cm,导轨顶端接有一开关S,导体棒ab 与导轨接触良好且无摩擦,ab的电阻R=0.4Ω,质量m=20g,导轨的电阻不计,电路中所接电阻为3R,整个装置处在与竖直平面垂直的匀强磁场中,磁感应强度B=1T,不计空气阻力,设导轨足够长,g取10m/s2,开始时开关断开,当ab棒由静止下落3.2m时,突然接通开关,下列说法中正确的是()A.a点的电势高于b点的电势B.ab间的电压大小为1.2VC.ab间的电压大小为0.4VD.导体棒ab立即做匀速直线运动10.如图所示,在平面直角坐标系中有一个垂直于纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L).一质量为m、电荷量为e的电子从a 点以初速度v0平行于x轴正方向射入磁场,并从x轴上的b点射出磁场,此时速度方向与x轴正方向的夹角为60°.下列说法中正确的是()A .电子在磁场中运动的时间为B .电子在磁场中运动的时间为C .磁场区域的圆心坐标(,)D.电子在磁场中做圆周运动的圆心坐标为(0,﹣2L)二、实验题(共15分.11小题每空2分,12小题每空分别为2、2、1、1、3分)11.如图所示为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为5cm,如果g取10m/s2,那么:(1)闪光的时间间隔是s;(2)小球运动中水平分速度的大小是m/s;(3)小球经过B点时速度大小是m/s.12.欲用伏安法测定一段阻值约为5Ω左右的金属导线的电阻,要求测量结果尽量准确,现备有以下器材:A.电池组(3V,内阻1Ω)B.电流表(0~3A,内阻0.0125Ω)C.电流表(0~0.6A,内阻0.125Ω)D.电压表(0~3V,内阻3kΩ)E.电压表(0~15V,内阻15kΩ)F.滑动变阻器(0~20Ω,额定电流1A)G.滑动变阻器(0~2 000Ω,额定电流0.3A) H.开关、导线(1)上述器材中应选用的是;(填写各器材的字母代号)(2)实验电路应采用电流表接法;(填“内”或“外”)(3)设实验中,电流表、电压表的某组示数如图1所示,图示中I=A,U= V.(4)为使通过待测金属导线的电流能在0~0.5A范围内改变,请按要求在图2框图中画出测量待测金属导线的电阻R x的原理电路图.三、计算题(共47分.13小题9分,14小题12分,15小题12分,16小题14分)13.一质量为0.1kg的小球从0.80m高处自由下落,落到一厚软垫上,若从小球接触软垫到陷至最低点所用的时间为0.20s,则这段时间内软垫对小球的冲量为大?(g=10m/s2)14.质量为m的小物块A,放在质量为M的木板B的左端,B在水平拉力的作用下沿水平地面匀速向右滑动,且A、B相对静止.某时刻撤去水平拉力,经过一段时间,B在地面上滑行了一段距离x,A在B上相对于B向右滑行了一段距离L(设木板B足够长)后A和B都停下.已知A、B间的动摩擦因数μ1,B 与地面间的动摩擦因数μ2,μ2>μ1,求x的表达式.15.两根固定在水平面上的光滑平行金属导轨MN和PQ,一端接有阻值为R=4Ω的电阻,处于方向竖直向下的匀强磁场中.在导轨上垂直导轨跨放质量m=0.5kg的金属直杆,金属杆的电阻为r=1Ω,金属杆与导轨接触良好,导轨足够长且电阻不计.金属杆在垂直杆F=0.5N的水平恒力作用下向右匀速运动时,电阻R上的电功率是P=4W.(1)求通过电阻R的电流的大小和方向;(2)求金属杆的速度大小;(3)某时刻撤去拉力,当电阻R上的电功率为时,金属杆的加速度大小、方向.16.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q 的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.(1)求粒子运动的速度大小;(2)粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?(3)粒子从A点出发后,第一次回到A点所经过的总时间为多少?宜昌一中高二(下)月考物理试卷(3月份)参考答案与试题解析一、选择题(共48分.1~6小题为单选题,每小题4分;7~10小题为多选题,全对得6分,选对但不选全得3分,选错或不选得0分)1.物理实验都需要有一定的控制条件.奥斯特做电流磁效应实验时,应排除地磁场对实验的影响.关于奥斯特的实验,下列说法中正确的是()A.该实验必须在地球赤道上进行B.通电直导线应该竖直放置C.通电直导线应该水平东西方向放置D.通电直导线应该水平南北方向放置【考点】通电直导线和通电线圈周围磁场的方向.【分析】由于地磁的北极在地理的南极附近,故地磁场的磁感线有一个由南向北的分量,而只有当电流的方向与磁场的方向平行时通电导线才不受磁场的安培力.【解答】解:由于地磁的北极在地理的南极附近,故地磁场的磁感线有一个由南向北的分量,而当电流的方向与磁场的方向平行时通电导线才不受磁场的安培力,故在进行奥斯特实验时通电直导线可以水平南北方向放置,而不必非要在赤道上进行,但不能东西放置和竖直放置,故只有D正确.故选:D.2.电视台《今日说法》栏目曾经报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲撞进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经部门和门协力调查,画出的现场示意图如图所示.交警根据图示作出以下判断,你认为正确的是()①由图可知汽车在拐弯时发生侧翻是因为车作离心运动②由图可知汽车在拐弯时发生侧翻是因为车作向心运动③公路在设计上可能内(东)高外(西)低④公路在设计上可能外(西)高内(东)低.A.①③B.②④C.①④D.②③【考点】向心力;牛顿第二定律.【分析】汽车拐弯时发生侧翻是由于车速较快,外界提供的力不够做圆周运动所需的向心力,发生离心运动.有可能是内测高外侧低,支持力和重力的合力向外,最终的合力不够提供向心力.【解答】解:①、②汽车发生侧翻是因为提供的力不够做圆周运动所需的向心力,发生离心运动.故①正确,③错误.③、④汽车在水平路面上拐弯时,靠静摩擦力提供向心力,现在易发生侧翻可能是路面设计不合理,公路的设计上可能内侧(东)高外侧(西)低,重力沿斜面方向的分力背离圆心,导致合力不够提供向心力而致.故③正确,④错误.故选A.3.如图所示,水平光滑地面上停放着一辆质量为M 的小车,其左侧有半径为R 的四分之一光滑圆弧轨道AB,轨道最低点B 与水平轨道BC相切,整个轨道处于同一竖直平面内.将质量为m 的物块(可视为质点)从A 点无初速释放,物块沿轨道滑行至轨道末端C处恰好没有滑出.重力加速度为g,空气阻力可忽略不计.关于物块从A位置运动至C位置的过程,下列说法中正确的是()A.小车和物块构成的系统动量守恒B.摩擦力对物块和轨道BC所做功的代数和为零C .物块的最大速度为D .小车的最大速度为【考点】动量守恒定律.【分析】系统所受合外力为零,系统动量守恒,应用动量守恒定律与能量守恒定律分析答题.【解答】解:A、小车和物块组成的系统水平方向所受合外力为零,水平方向动量守恒,系统整体所受合外力不为零,系统动量不守恒,故A错误;B、摩擦力对物块和轨道BC所做功的代数和等于摩擦力与相对位移的乘积,摩擦力做功的代数和不为零,故B错误;C、如果小车固定不动,物块到达水平轨道时速度最大,由机械能守恒定律得:mgR=mv2,v=,现在物块下滑时,小车向左滑动,物块的速度小于,故C错误;D、小车与物块组成的系统水平方向动量守恒,物块下滑过程,以向右为正方向,由动量守恒定律得:mv1﹣Mv2=0,由机械能守恒定律得:mv12+Mv22=mgR,从物块到达水平面到物块到达右端过程中,由动量守恒定律得:mv1﹣Mv2=(M+m)v,解得:v=,故D正确;故选:D.4.如图所示,a、b、c为电场中同一条电场线上的三点,其中c为ab的中点.已知a、b两点的电势分别为φa=3V,φb=9V,则下列叙述正确的是()A.该电场在c点处的电势一定为6VB.正电荷从a点运动到b点的过程中电势能一定增大C.a点处的场强E a一定小于b点处的场强E bD.正电荷只受电场力作用从a点运动到b点的过程中动能一定增大【考点】电势能;电场强度.【分析】题中是一条电场线,无法判断该电场是否是匀强电场,不能确定c点处的电势.根据正电荷在电势高处电势能大,分析电势能的关系.由能量守恒分析动能关系.【解答】解:A、若该电场是匀强电场,则在c点处的电势为φc ==V=6V,若该电场不是匀强电场,则在c点处的电势为φc≠6V.故A错误.BD、根据正电荷在电势高处电势能大,可知正电荷从a点运动到b点的过程中电势能一定增大,而由能量守恒得知,其动能一定减小.故B正确,D错误C、一条电场线,无法判断电场线的疏密,就无法判断两点场强的大小,所以a点处的场强E a不一定小于b点处的场强E b.故C错误.故选:B.5.一汽车在高速公路上以v0=30m/s的速度匀速行驶,t=0时刻,驾驶员采取某种措施,汽车运动的加速度随时间变化关系如图所示,以初速度方向为正,下列说法正确的是()A.t=6s时车速为5m/s B.t=3s时车速为3m/sC.前9s内的平均速度为15m/s D.前6s内车的位移为90m【考点】加速度与力、质量的关系式;匀变速直线运动的速度与时间的关系.【分析】根据匀变速直线运动的速度时间公式,结合加速度先求出3s末的速度,再根据速度时间公式求出6s末的速度,结合位移公式分别求出前3s内和后6s内的位移,从而得出平均速度的大小.【解答】解:AB、根据速度时间公式得,t=3s时的速度为:v1=v0﹣a1t1=30﹣10×3=0m/s,则6s时的速度为:v2=a2t2=5×3m/s=15m/s.故AB错误.C、前3s 内的位移为:,后6s 内的位移为:,则前9s内的位移为:x=x1+x2=135m ,所以汽车的平均速度为:.故C正确.D、后3s 内的位移为:,则前6s内车的位移为:x=x1+x2′=67.5m.故D错误.故选:C6.一理想变压器原、副线圈的匝数比为10:1,原线圈输入电压的变化规律如图甲所示,副线圈所接电路如图乙所示,P为滑动变阻器的触头.下列说法正确的是()A.副线圈输出电压的频率为5HzB.副线圈输出电压的有效值为31VC.P向右移动时,原、副线圈的电流比减小D.P向右移动时,变压器的输入功率增加【考点】变压器的构造和原理;电功、电功率.【分析】根据瞬时值表达式可以求得输出电压的有效值、周期和频率等,再根据电压与匝数成正比即可求得结论.【解答】解:A、由图象可知,交流电的周期为0.02s,所以交流电的频率为50Hz,所以A错误.B、根据电压与匝数成正比可知,原线圈的电压的最大值为310V,所以副线圈的电压的最大值为31V,所以电压的有效值为V=≈22V,所以B错误.C、P右移,R变小,副线的电压不变,则副线圈的电流变大,原线圈的电流也随之变大;但原、副线圈的电流比等于匝数比的倒数,是不变的,故C错误.D、P向右移动时,滑动变阻器的电阻较小,副线圈的电压不变,所以电路消耗的功率将变大,变压器的输入功率、输出功率均增加,故D正确.故选:D.7.如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的滑轮固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而a与斜劈始终静止,则()A.细线对物体a的拉力增大 B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】对滑轮和物体b受力分析,根据平衡条件求解细线的拉力变化情况;对物体a受力分析,判断物体a与斜面体间的静摩擦力的情况;对斜面体、物体a、物体b整体受力分析,根据平衡条件求解整体与地面间的静摩擦力和弹力的情况.【解答】解:A、对滑轮和物体b受力分析,受重力和两个拉力,如图所示:根据平衡条件,有:m b g=2Tcosθ解得:T=将固定点c向右移动少许,则θ增加,故拉力T增加,故A正确;B、D、对斜面体、物体a、物体b整体受力分析,受重力、支持力、细线的拉力和地面的静摩擦力,如图所示:根据平衡条件,有:N=G总﹣Tcosθ=G总﹣,N与角度θ无关,恒定不变;根据牛顿第三定律,压力也不变;故B错误;f=Tsinθ=tanθ,将固定点c向右移动少许,则θ增加,故摩擦力增加;故D正确;C、对物体a受力分析,受重力、支持力、拉力和静摩擦力,由于不知道拉力与重力的下滑分力的大小关系,故无法判断静摩擦力的方向,故不能判断静摩擦力的变化情况,故C错误;故选:AD.8.宇航员在地球表面以一定的初速度竖直上抛一小球,经过时间t落回原处;若在某星球表面以相同的速度竖直上抛一小球,则需经5t时间落回原处.已知该星半径与地球半径之比为1:4,则()A.该星表面重力加速度与地球表面重力加速度之比为5:1B.该星质量与地球质量之比为1:80C.该星密度与地球密度之比为4:5D.该星的“第一宇宙速度”与地球的第一宇宙速度之比为1:20【考点】万有引力定律及其应用.【分析】通过竖直上抛运动经历的时间求出重力加速度之比,然后根据万有引力等于重力,求出中心天体的质量比.根据密度的定义计算密度之比.第一宇宙速度v=,根据重力加速度和星球半径之比计算第一宇宙速度之比.【解答】解:A、设地球表面重力加速度为g,设该星球表面附近的重力加速度为g′,根据,知重力加速度之比等于它们所需时间之反比,地球上的时间与星球上的时间比1:5,则地球表面的重力加速度和星球表面重力加速度之比g:g′=5:1.故A错误.B 、根据万有引力等于重力,得M=.星球和地球表面的重力加速度之比为1:5,半径比为1:4,所以星球和地球的质量比M星:M地=1:80.故B正确.C 、根据密度的定义,所以,故C正确.D、第一宇宙速度v=,所以,故D错误.故选:BC.9.如图所示,竖直平行导轨间距l=20cm,导轨顶端接有一开关S,导体棒ab 与导轨接触良好且无摩擦,ab的电阻R=0.4Ω,质量m=20g,导轨的电阻不计,电路中所接电阻为3R,整个装置处在与竖直平面垂直的匀强磁场中,磁感应强度B=1T,不计空气阻力,设导轨足够长,g取10m/s2,开始时开关断开,当ab棒由静止下落3.2m时,突然接通开关,下列说法中正确的是()A.a点的电势高于b点的电势B.ab间的电压大小为1.2VC.ab间的电压大小为0.4VD.导体棒ab立即做匀速直线运动【考点】导体切割磁感线时的感应电动势;电磁感应中的能量转化.【分析】由右手定则可得出电流的流向,从而判断电势的高低;根据安培力与重力的大小关系可分析导体棒的运动情况.【解答】解:A、由右手定则可知,电流由a到b,故a点的电势低于b点的电势;故A错误;B、由机械能守恒定律可知:mgh=mv2;解得:v===8m/s;感应电动势为:E=BLv=1×0.2×8=1.6V;ab相当于电源,其两端的电势差为:U=E==1.2V;故B正确;C错误;D 、接通开关时,导体棒受到的安培力为:F=BIL=1××0.2=0.2N;ab受到的重力为:G=mg=0.2N;故导体棒立即做匀速直线运动;故D正确;故选:BD.10.如图所示,在平面直角坐标系中有一个垂直于纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L).一质量为m、电荷量为e的电子从a 点以初速度v0平行于x轴正方向射入磁场,并从x轴上的b点射出磁场,此时速度方向与x轴正方向的夹角为60°.下列说法中正确的是()A .电子在磁场中运动的时间为B .电子在磁场中运动的时间为C .磁场区域的圆心坐标(,)D.电子在磁场中做圆周运动的圆心坐标为(0,﹣2L)【考点】带电粒子在匀强磁场中的运动;牛顿第二定律;向心力.【分析】带电粒子在匀强磁场中在洛伦兹力作用下,做匀速圆周运动.所以由几何关系可确定运动圆弧的半径与已知长度的关系,从而确定圆磁场的圆心,并能算出粒子在磁场中运动时间.并根据几何关系来,最终可确定电子在磁场中做圆周运动的圆心坐标.【解答】解:A、B、电子的轨迹半径为R,由几何知识,Rsin30°=R﹣L,得R=2L电子在磁场中运动时间t=,而 T=,得:t=.故A错误,B正确;C、设磁场区域的圆心坐标为(x,y)其中 x=,y=所以磁场圆心坐标为()),故C正确;D、根据几何三角函数关系可得,R﹣L=Rcos60°,解得R=2L所以电子的圆周运动的圆心坐标为(0,﹣L),故D错误;故选:BC.二、实验题(共15分.11小题每空2分,12小题每空分别为2、2、1、1、3分)11.如图所示为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为5cm,如果g取10m/s2,那么:(1)闪光的时间间隔是0.1 s;(2)小球运动中水平分速度的大小是 1.5 m/s;(3)小球经过B 点时速度大小是 2.5 m/s .【考点】研究平抛物体的运动.【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据竖直方向上相等时间内的位移之差是一恒量求出相等的时间间隔,结合水平位移和时间间隔求出平抛运动的初速度,即水平分速度.根据某段时间内平均速度等于中间时刻的瞬时速度,求出B点竖直方向上的分速度,根据平行四边形定则求出B点的速度大小.【解答】解:(1)根据△y=2L=gT2得,T=;(2)小球在运动过程中水平分速度;(3)B点竖直分速度,根据平行四边形定则知,小球经过B点的速度=.故答案为:(1)0.1,(2)1.5,(3)2.5.12.欲用伏安法测定一段阻值约为5Ω左右的金属导线的电阻,要求测量结果尽量准确,现备有以下器材:A.电池组(3V,内阻1Ω)B.电流表(0~3A,内阻0.0125Ω)C.电流表(0~0.6A,内阻0.125Ω)D.电压表(0~3V,内阻3kΩ)E.电压表(0~15V,内阻15kΩ)F.滑动变阻器(0~20Ω,额定电流1A)G.滑动变阻器(0~2 000Ω,额定电流0.3A) H.开关、导线(1)上述器材中应选用的是ACDFH ;(填写各器材的字母代号)(2)实验电路应采用电流表外接法;(填“内”或“外”)(3)设实验中,电流表、电压表的某组示数如图1所示,图示中I= 0.48 A,U= 2.20 V.(4)为使通过待测金属导线的电流能在0~0.5A范围内改变,请按要求在图2框图中画出测量待测金属导线的电阻R x的原理电路图.【考点】伏安法测电阻.【分析】本题(1)的关键是由电源电动势大小来选择电压表量程,通过求出通过待测电阻的最大电流来选择电流表的量程,通过求出电路中需要的最大电阻来选择变阻器大小;题(2)因为电流表内阻为已知的确定值,采用内接法时能精确求出待测电阻的阻值,所以电流表应采用内接法;题(3)根据电表每小格的读数来确定估读方法;题(4)根据实验要求电流从零调可知,变阻器应采用分压式接法.【解答】解:(1)根据电源电动势为3V可知,电压表应选择D;根据欧姆定律可知通过待测电阻的最大电流为===0.6A,所以电流表应选择C;根据闭合电路欧姆定律可知电路中需要的最大电阻应为===15Ω,所以变阻器应选择F,因此上述器材中应选择ACDFH;(2)由于待测电阻满足,所以应用外接法;(3)由于电流表每小格读数为0.02A,所以应进行“”估读,即电流表读数为I=0.48A;。
高二物理下学期第三次月考试卷(含解析)高二全册物理试题
嗦夺市安培阳光实验学校巢湖市高二下学期第三次月考物理试卷一、选择题(本题共10小题,每小题4分,共40分)1. 下列叙述中错误的是( )A. 晶体的各向异性是由于它内部的微粒按空间点阵排列B. 单晶体具有规则的几何外形是由于它内部的内部微粒按一定规律排列C. 非晶体有规则的几何形状和确定的熔点D. 石墨的硬度比石差得多,是由于它内部的微粒没有按空间点阵分布【答案】CD【解析】A、晶体内部颗粒排列的空间结构决定着晶体的物理性质显示出各向异性,A正确;B、也正是由于颗粒按一定规律排列,使单晶体具有规则的几何形状,B正确;C、非晶体没有规则的几何形状和确定的熔点,C错误;D、石墨与石的硬度相差甚远是由于它们内部颗粒的排列结构不同,石墨的层状结构决定了它的质地柔软,而石的网状结构决定了其中碳原子间的作用力很强,所以石有很大的硬度,D错误。
本题选择错误答案,故选CD。
2. 在甲、乙、丙三种固体薄片上涂上蜡,用烧热的针接触其上一点,蜡熔化的范围如图1所示,而甲、乙、丙三种固体在熔化过程中的温度随加热时间变化的关系如图2所示,则( )A. 甲、乙是非晶体,丙是晶体B. 甲、丙是晶体,乙是非晶体C. 甲、丙是非晶体,乙是晶体D. 甲是多晶体,乙是非晶体,丙是单晶体【答案】BD【解析】单晶体是各向异性的,熔化在晶体表面的石蜡是椭圆形。
非晶体和多晶体是各向同性,则熔化在表面的石蜡是圆形,因此丙为单晶体,甲、乙可能是多晶体与非晶体,根据温度随加热时间变化的关系,可知,甲、丙为晶体,乙是非晶体。
故BD正确、AC错误;故选:BD。
【名师点睛】单晶体是各向异性的,熔化在晶体表面的石蜡是椭圆形.非晶体和多晶体是各向同性,则熔化在表面的石蜡是圆形,这与水在蜡的表面呈圆形是同样的道理。
3. 关于液体的表面张力,下面说法中正确的是( )A. 表面张力是液体各部分间的相互作用B. 液体表面层分子分布比液体内部稀疏,分子间相互作用表现为引力C. 表面张力的方向总是垂直液面,指向液体内部...D. 表面张力的方向总是沿液面分布的【答案】BD【解析】试题分析:表面张力是液体的表面层分子与液体内部分子时间的相互作用引起的,选项A错误;液体表面层分子分布比液体内部稀疏,分子间距离大于液体内部分子间距离,液体表面层的分子间同时存在相互作用的引力与斥力,但由于分子间的距离大于分子的平衡距离r0,分子引力大于分子斥力,分子力表现为引力,即存在表面张力,故B错误;表面张力使液体表面有收缩的趋势,它的方向跟液面相切,故C错误,D正确.故选D.考点:表面张力【名师点睛】此题是对液体的表面张力的理解;作用于液体表面,使液体表面积缩小的力,称为液体表面张力,是由于表面层分子分布比液体内部稀疏,分子间相互作用表现为引力.表面张力的存在使液体表面想被拉伸的弹簧一样,总有收缩的趋势.4. 下列说法正确的是( )A. 浸润液体在细管里能上升B. 不浸润液体在细管里能下降C. 在建筑房屋时,在砌砖的地基上要铺一层油毡或涂过沥青的厚纸,这是为了增加毛细现象使地下水容易上升D. 农田里如果要保存地下的水分,就要把地面的土壤锄松,可以减少毛细现象的发生【答案】ABD【解析】AB、毛细现象和液体的浸润、不浸润相联系。
高二下学期第三次月考物理试题含答案解析
[全国百强校]河北省邢台市第一中学【最新】高二下学期第三次月考物理试题学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列说法错误的是A .力的单位是“N”,该单位属于国际基本单位B .如果取时间△t 非常小时,v=x t∆∆表示的就是瞬时速度 C .最先把猜想、实验和逻辑推理相结合的方法应用于落体运动研究的科学家是牛顿 D .运动学的平均速度、加速度等概念是伽利略首先建立的2.如图所示是甲、乙两物体从同一点出发的位移-时间(x-t )图象,由图象可以看出在0~4s 这段时间内( )A .甲、乙两物体始终同向运动B .4s 时甲、乙两物体之间的距离最大C .甲的平均速度大于乙的平均速度D .甲、乙两物体之间的最大距离为3m3.一物体做匀变速直线运动,当0t =时,物体的速度大小为12m/s ,方向向东;当2s t =时,物体的速度大小为8m/s ,方向仍向东,则当t 为多少时,物体的速度大小变为2m/s ( )A .5sB .6sC .7sD .8s4.作用于同一点的两个力,大小分别为F 1=5N ,F 2=4N ,这两个力的合力F 与F 1的夹角为θ,则θ可能为( )A .30°B .45°C .75°D .90° 5.下列四个图中所有接触面均粗糙,各物体均处于静止状态,其中物体A 受力个数可能超过5个的是( )A .B .C .D .6.如右图所示,两个轻质小环A 、B 套在光滑固定的水平杆上,两环间距为a ,用原长为l 的轻质橡皮条分别连接两环(a <l <2a ),在橡皮条中间加一竖直向上的力F ,在两环上分别施加大小相等的作用力,使橡皮条拉成一个与杆围成边长为a 的正三角形保持平衡,则关于施加在两环上的作用力,下列说法中正确的是( )A .若沿橡皮条方向,大小应为 √33F B .若沿垂直橡皮条方向,大小应为F 3C .此力的最小值为 √312F D .若沿杆方向,大小应为√36F二、单选题7.如图所示,A 、B 两物体(可视为质点)相距7m x =,物体A 以A 4m/s v =的速度向右匀速运动;而物体B 此时的速度B 10m/s v =,只在摩擦力作用下向右做匀减速运动,加速度大小为22m/s a =。
高二物理下学期(3月份)月考试卷高二全册物理试题
嗦夺市安培阳光实验学校高二物理下学期(3月份)月考试卷一、选择题(本题有12小题,每小题4分,共48分,其中7-12题为多选题,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.交流电压的表达式为u=100sin100πtV,可知()A.用电压表测该电压其示数为50VB.该交流电压的周期为0.02sC.将该电压在“100V 100W”的灯泡两端,灯泡的实际功率小于100WD.t=s时,该交流电压的瞬时值为50V2.滑雪运动是人们酷爱的户外体育活动,现有质量为m的人站立于雪橇上,如图所示.人与雪橇的总质量为M,人与雪橇以速度v1在水平面上由北向南运动(雪橇所受阻力不计).当人相对于雪橇以速度v2竖直跳起时,雪橇向南的速度大小为()A .B .C .D.v13.如图,理想变压器原、副线圈匝数比n1:n2=2:1,V和A均为理想电表,灯光电阻R L=6Ω,AB端电压u1=12sin100πt(V).下列说法正确的是()A.电流频率为100Hz B.V的读数为24VC.A的读数为0.5A D.变压器输入功率为6W4.在高台跳水中,运动员从高台向上跃起,在空中完成动作后,进入水中在浮力作用下做减速运动,速度减为零后返回水面.设运动员在空中运动过程为Ⅰ,在进入水中做减速运动过程为Ⅱ.不计空气阻力和水的粘滞阻力,则下述判断错误的是()A.在过程Ⅰ中,运动员受到的冲量等于动量的改变量B.在过程Ⅰ中,运动员受到重力冲量的大小与过程Ⅱ中浮力冲量的大小相等C.在过程Ⅰ中,每秒钟运动员动量的变化量相同D.在过程Ⅰ和在过程Ⅱ中运动员动量变化的大小相等5.水平恒定推力F1和F2分别作用于水平面上原来静止的、质量相等的a、b两物体上,作用一段时间后撤去推力,由于惯性.物体将继续运动一段时间后才能停下,两物体的v﹣t图象如图所示,已知图中线段AB∥CD,则()A.a物体受到的摩擦力小于b物体受到的摩擦力B.a物体受到的摩擦力大于b物体受到的摩擦力C.F1的冲量大于F2的冲量D.F1的冲量小于F2的冲量6.如图所示为一交流电压随时间变化的图象.每个周期内,前三分之一周期电压按正弦规律变化,后三分之二周期电压恒定.根据图中数据可得,此交流电压的有效值为()A.7.5V B.8V C . V D . V7.对下列物理现象的解释,正确的是()A.击钉时,不用橡皮锤仅仅是因为橡皮锤太轻B.跳远时,在沙坑里填沙,是为了减小冲量C.易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间,减小作用力D.在车内推车推不动,是因为合外力冲量为零8.如图所示,一个单匝矩形导线圈在匀强磁场中绕垂直于磁感线的轴oo′匀角速转动,转动周期为T0.线圈产生的电动势的最大值为E m,则()A .线圈产生的电动势的有效值为E mB .线圈转动过程中穿过线圈的磁通量的最大值为C.线圈转动过程中磁通量变化率的最大值为E mD.经过2T0的时间,通过线圈电流的方向改变2次9.某同学质量为60kg,在事训练中要求他从岸上以大小为2m/s的速度跳到一条向他缓慢飘来的小船上,然后去执行任务,小船的质量是140kg,原来的速度大小是0.5m/s,该同学上船后又跑了几步,最终停在船上,则()A.人和小船最终静止在水面上B.该过程同学的动量变化量为105kg•m/sC.船最终的速度是0.95m/sD.船的动量变化量是﹣105kg•m/s10.图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场,A为交流电流表.线圈绕垂直于磁场方向的水平轴OO′沿逆时针方向匀速转动.从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示.以下判断正确的是()A.电流表的示数为10AB.线圈转动的角速度为50π rad/sC.0.01s时线圈平面与磁场方向平行D.0.02s时电阻R中电流的方向自右向左11.2014年10月28日携带“天鹅座”宇宙飞船的“安塔瑞斯”号运载在弗吉尼亚州瓦勒普斯岛发射升空时爆炸,爆炸燃起巨大火球,运载没有载人.下面对于该的描述正确的是()A.发射的初速度大于7.9km/sB.上升过程中处于超重状态C.忽略空气阻力,则碎片落地时速度大小相等D.在爆炸的极短时间内,系统动量守恒12.如图所示,(a)是远距离输电线路的示意图,(b)是用户得到的电压随时间变化的图象,已知降压变压器的匝数比为10:1,不考虑降压变压器与用户间导线的电阻,则()A.发电机输出交流电的频率是50HzB.升压变压器的输出电压为2200VC.输电线的电流只由降压变压器匝副线圈的匝数比决定D.当用户用电器的总电阻增大时,输电线上损失的功率减小二、实验题13.如图甲所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.(1)经测定,m1=45.0g,m2=7.5g,小球落地点的平均位置距O点的距离如图乙所示.碰撞前后m1的动量分别为p1与p1′,则p1:p1′=:11;若碰撞结束时m2的动量为p2′,则p1′:p2′=11:.实验结果说明,碰撞前后总动量的比值= .(2)有同学认为,在上述实验中仅更换两个小球的材质,其他条件不变,可以使被撞小球做平抛运动的射程增大.请你用(1)中已知的数据,分析和计算出被碰小球m1平抛运动射程ON的最大值为cm.三、计算题14.一辆车强行超车时,与另一辆迎面驶来的轿车相撞,两车相撞后连为一体,两车车身因相互挤压,皆缩短了0.5米.据测算两车相撞前的速度约为30m/s.求:(1)若人与车一起做减速运动,车祸过程中车内约60kg的人受到的平均冲力是多大(2)若此人系有安全带,安全带在车祸过程中与人体作用时间是1s,求这时人体受到的平均冲力为多大?15.如图所示,匀强磁场的磁感应强度B=0.5T,边长L=10cm的正方形线圈abcd 共100匝,线圈电阻r=1Ω,线圈绕垂直于磁感线的对称轴OO′匀速转动,角速度ω=2πrad/s,外电路电阻R=4Ω,求:(1)转动过程中感应电动势的最大值;(2)由图示位置(线圈平面与磁感线平行)转过60°角时的瞬时感应电动势;(3)由图示位置转过60°角的过程中产生的平均感应电动势;(4)交流电压表的示数;(5)线圈转动一周外力所做的功;(6)周期内通过R的电荷量为多少?16.如图所示,AOB是光滑水平轨道,BC是半径为R 的光滑的固定圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右快速射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C(木块和子弹均可看成质点).已知R=0.4m,m=1Kg,M=10Kg.(g=10m/s2,结果保留2位有效数字)(1)子弹射入木块前的速度V(2)若每当小木块上升到圆弧并返回到O点或静止于O点时,立即有相同的子弹射入小木块,并留在其中,则当第3颗子弹射入小木块后,木块速度多大?故城高中高二(下)月考物理试卷(3月份)参考答案与试题解析一、选择题(本题有12小题,每小题4分,共48分,其中7-12题为多选题,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.交流电压的表达式为u=100sin100πtV,可知()A.用电压表测该电压其示数为50VB.该交流电压的周期为0.02sC.将该电压在“100V 100W”的灯泡两端,灯泡的实际功率小于100WD.t=s时,该交流电压的瞬时值为50V【考点】E3:正弦式电流的图象和三角函数表达式;BG:电功、电功率.【分析】电压表读数为有效值.先根据最大值求有效值,求得电压表读数;通过瞬时表达式与交电流的ω=,可求出周期;运用瞬时表达式求出有效值,从而利用电功率的公式P=求出电功率;直接根据瞬时表达式代入数据求解.【解答】解:A、交变电压的表达式为u=100sin100πt V,可知最大值为100,又是正弦式电流,则电压的有效值:U=V=100V,故A错误.B、由公式ω=,则有周期T=0.02s.故B正确.C、由于电压的有效值为100V,则该电压加在“100V 100W”的灯泡两端,灯泡正常发光,为额定功率,故C错误D、将t=s代入瞬时表达式,则有交流电压的瞬时值为100V.故D错误.故选:B2.滑雪运动是人们酷爱的户外体育活动,现有质量为m的人站立于雪橇上,如图所示.人与雪橇的总质量为M,人与雪橇以速度v1在水平面上由北向南运动(雪橇所受阻力不计).当人相对于雪橇以速度v2竖直跳起时,雪橇向南的速度大小为()A .B .C .D.v1【考点】53:动量守恒定律.【分析】人和雪橇组成的系统水平方向不受外力,系统水平动量守恒,根据系统水平动量守恒列式求解.【解答】解:雪橇所受阻力不计,人起跳后,人和雪橇组成的系统水平方向不受外力,系统水平动量守恒,起跳后人和雪橇的水平速度相同,设为v.取向南为正方向,由水平动量守恒得:Mv1=Mv,得 v=v1,方向向南,故ABC错误,D正确.故选:D3.如图,理想变压器原、副线圈匝数比n1:n2=2:1,V和A均为理想电表,灯光电阻R L=6Ω,AB端电压u1=12sin100πt(V).下列说法正确的是()A.电流频率为100Hz B.V的读数为24VC.A的读数为0.5A D.变压器输入功率为6W【考点】E8:变压器的构造和原理.【分析】根据电压与匝数成正比,电流与匝数成反比,变压器的输入功率和输出功率相等,逐项分析即可得出结论.【解答】解;A、AB端电压u1=12sin100πt(V).电流频率为f==50Hz,故A错误;B、电压表的示数为电路的有效电压的大小,根据电压与匝数成正比,可知,U2=6V,故B错误;C、I2==1A,A的读数为1A,故C错误;D、P1=P2=U2I2=6W,故D正确.故选:D.4.在高台跳水中,运动员从高台向上跃起,在空中完成动作后,进入水中在浮力作用下做减速运动,速度减为零后返回水面.设运动员在空中运动过程为Ⅰ,在进入水中做减速运动过程为Ⅱ.不计空气阻力和水的粘滞阻力,则下述判断错误的是()A.在过程Ⅰ中,运动员受到的冲量等于动量的改变量B.在过程Ⅰ中,运动员受到重力冲量的大小与过程Ⅱ中浮力冲量的大小相等C.在过程Ⅰ中,每秒钟运动员动量的变化量相同D.在过程Ⅰ和在过程Ⅱ中运动员动量变化的大小相等【考点】52:动量定理.【分析】力与力的作用时间的乘积是力的冲量,由动量定理可得,动量的变化等于合外力的冲量.【解答】解:A、在过程І中,运动员只受重力,故重力的冲量一定等于动量的改变量,故A正确;B、由于在过程II中人也会受到重力,故由动量定理可知,整体过程中重力的冲量等于过程II中浮力的冲量大小,故B错误;C、在过程I中,由于重力不变,运动员的加速度相同,在相同的时间内运动员的速度变化相同,故秒钟运动员动量的变化量相同,故C正确;D、由题意知,过程I中的末速度等于过程II的初速度,而过程II的末速度为零,故动量的变化的大小相等,故D正确.本题选错误的;故选:B.5.水平恒定推力F1和F2分别作用于水平面上原来静止的、质量相等的a、b两物体上,作用一段时间后撤去推力,由于惯性.物体将继续运动一段时间后才能停下,两物体的v﹣t图象如图所示,已知图中线段AB∥CD,则()A.a物体受到的摩擦力小于b物体受到的摩擦力B.a物体受到的摩擦力大于b物体受到的摩擦力C.F1的冲量大于F2的冲量D.F1的冲量小于F2的冲量【考点】52:动量定理;27:摩擦力的判断与计算.【分析】由速度图象分析可知,水平推力撤去后,AB与CD平行,说明加速度相同,动摩擦因数相同,两物体的质量相等,说明摩擦力大小相等.根据动量定理,研究整个过程,确定两个推力的冲量关系.【解答】解:A、由图,AB与CD平行,说明推力撤去后两物体的加速度相同,而撤去推力后物体的合力等于摩擦力,根据牛顿第二定律可知,两物体受到的摩擦力大小相等;故AB错误.C、根据动量定理,对整个过程研究得F1t1﹣ft OB=0,F2t2﹣ft OD=0由图看出,t OB<t OD,则有 F1t1<F2t2,即F1的冲量小于F2的冲量.故C错误,D 正确.故选:D6.如图所示为一交流电压随时间变化的图象.每个周期内,前三分之一周期电压按正弦规律变化,后三分之二周期电压恒定.根据图中数据可得,此交流电压的有效值为()A.7.5V B.8V C . V D . V【考点】E4:正弦式电流的最大值和有效值、周期和频率.【分析】正弦式电流给灯泡供电,电压表显示是电源电压的有效值,要求电路中灯泡的电流或功率等,均要用正弦式电流的有效值.而求有效值方法:是将交流电在一个周期内产生热量与将恒定电流在相同时间内产生的热量相等,则恒定电流的值就是交流电的有效值.【解答】解:如图所示,它不是正弦式电流,因此有效值不是等于最大值除以根号2取一个周期进行分段,在0﹣1s 是正弦式电流,则电压的有效值等于3.在1s﹣3s是恒定电流,则有效值等于9V.则在0﹣3s 内,产生的热量U=2故选:C7.对下列物理现象的解释,正确的是()A.击钉时,不用橡皮锤仅仅是因为橡皮锤太轻B.跳远时,在沙坑里填沙,是为了减小冲量C.易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间,减小作用力D.在车内推车推不动,是因为合外力冲量为零【考点】52:动量定理;31:惯性.【分析】力与时间的乘积是力的冲量;应用冲量的计算公式I=Ft与动量定理分析答题.【解答】解:A、用橡皮锤击钉子,橡皮锤与钉子接触时形变量比较大,延长了作用时间,使作用力减小,所以不要橡皮锤钉钉子,故A错误;B、跳远时,在沙坑里填沙,是为了增加运动员与沙子的作用时间,从而减小作用力,避免运动员受到伤害,故B错误;C、易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间,减小作用力,故C正确;D、在车内推车推不动,是因为合外力冲量为零,故D正确;故选:CD.8.如图所示,一个单匝矩形导线圈在匀强磁场中绕垂直于磁感线的轴oo′匀角速转动,转动周期为T0.线圈产生的电动势的最大值为E m,则()A .线圈产生的电动势的有效值为E mB .线圈转动过程中穿过线圈的磁通量的最大值为C.线圈转动过程中磁通量变化率的最大值为E mD.经过2T0的时间,通过线圈电流的方向改变2次【考点】D8:法拉第电磁感应定律;D7:磁通量.【分析】根据正弦交流电的最大值与有效值的关系,结合最大值,即可求解有效值;由公式E m=BSω,结合ω=,可求出磁通量的最大值;根据法拉第电磁感应定律表达式E m =,可确定磁通量变化率的最大值,最后由线圈在一个周期内,电流方向改变2次,从而即可求解.【解答】解:A、线圈在匀强磁场中匀速转动,产生正弦式交流电,则电动势的有效值为E m,故A错误;B、由公式E m=BSω,结合ω=,可求出磁通量的最大值∅m =,故B正确;C、根据法拉第电磁感应定律表达式E m =,可确定磁通量变化率的最大值=E m,故C正确;D、经过T0的时间,通过线圈电流的方向改变2次,故D错误;故选:BC.9.某同学质量为60kg,在事训练中要求他从岸上以大小为2m/s的速度跳到一条向他缓慢飘来的小船上,然后去执行任务,小船的质量是140kg,原来的速度大小是0.5m/s,该同学上船后又跑了几步,最终停在船上,则()A.人和小船最终静止在水面上B.该过程同学的动量变化量为105kg•m/sC.船最终的速度是0.95m/sD.船的动量变化量是﹣105kg•m/s【考点】53:动量守恒定律;52:动量定理.【分析】水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力为零,系统的动量守恒,根据动量守恒定律列式求解.【解答】解:AC、规定船原来的速度方向为正方向.设人和小船最终的共同速度为v.由题意,水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力为零,系统的动量守恒,由动量守恒定律得:m人v人﹣m船v船=(m人+m船)v,代入数据解得:v=﹣0.25m/s,方向与船原来的速度方向相同.故AC错误;B、该过程同学的动量变化量为:△p=m人v﹣m人v人=60×=105kg•m/s,故B正确;D、船的动量变化量为:△p′=m船v﹣m船v船=140×(﹣0.25﹣0.5)=﹣105kg•m/s;故D正确.故选:BD10.图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场,A为交流电流表.线圈绕垂直于磁场方向的水平轴OO′沿逆时针方向匀速转动.从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示.以下判断正确的是()A.电流表的示数为10AB.线圈转动的角速度为50π rad/sC.0.01s时线圈平面与磁场方向平行D.0.02s时电阻R中电流的方向自右向左【考点】E4:正弦式电流的最大值和有效值、周期和频率;E2:交流发电机及其产生正弦式电流的原理.【分析】由题图乙可知交流电电流的最大值、周期,电流表的示数为有效值,感应电动势最大,则穿过线圈的磁通量变化最快,由楞次定律可判断出0.02s 时流过电阻的电流方向.【解答】解:A 、由题图乙可知交流电电流的最大值是A,周期T=0.02s,由于电流表的示数为有效值,故示数I==10A,选项A正确;B、角速度==100π rad/s,选项B错误;C、0.01s时线圈中的感应电流达到最大,感应电动势最大,则穿过线圈的磁通量变化最快,磁通量为0,故线圈平面与磁场方向平行,选项C正确;D、由楞次定律可判断出0.02s时流过电阻的电流方向自左向右,选项D错误.故选AC.11.2014年10月28日携带“天鹅座”宇宙飞船的“安塔瑞斯”号运载在弗吉尼亚州瓦勒普斯岛发射升空时爆炸,爆炸燃起巨大火球,运载没有载人.下面对于该的描述正确的是()A.发射的初速度大于7.9km/sB.上升过程中处于超重状态C.忽略空气阻力,则碎片落地时速度大小相等D.在爆炸的极短时间内,系统动量守恒【考点】53:动量守恒定律;4F:万有引力定律及其应用;52:动量定理.【分析】明确的发射速度,根据加速度确定是否超重;根据动量守恒的条件明确动量是否守恒.【解答】解:A、发射时的最小速度为7.9km/s;故A正确;B、在上升过程中,具有向上的加速度,故处于超重状态;故B正确;C、由于在爆炸过程中,碎片的速度大小及方向均不相同;故落地时的速度大小不一定相同;故C错误;D、在爆炸过程中由于内力远大于外力;故可以认为动量守恒;故D正确;故选:ABD.12.如图所示,(a)是远距离输电线路的示意图,(b)是用户得到的电压随时间变化的图象,已知降压变压器的匝数比为10:1,不考虑降压变压器与用户间导线的电阻,则()A.发电机输出交流电的频率是50HzB.升压变压器的输出电压为2200VC.输电线的电流只由降压变压器匝副线圈的匝数比决定D.当用户用电器的总电阻增大时,输电线上损失的功率减小【考点】EA:远距离输电.【分析】根据图象可知交流电的最大值以及周期等物理量,然后进一步可求出其瞬时值的表达式以及有效值等.同时由变压器电压与匝数成正比,电流与匝数成反比.【解答】解:A、变压器不会改变交流电的频率,有图b可知周期为T=0.02s,故频率为f=,故A正确;B 、在降压变压器中,根据可得U3=2200V,有与输电线路上有电阻,故损失一部分电压,故升压变压器输送的电压大于2200V,故B错误;C、输电线的电流由输送的功率与电压决定的,与降压变压器原副线圈的匝数比无关,故C错误;D、当用户用电器的总电阻增大时,用户的功率减小,降压变压器的输出功率减小,则输入的功率减小,输入的电流减小,输电线上损失的功率减小,故D正确;故选:AD二、实验题13.如图甲所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.(1)经测定,m1=45.0g,m2=7.5g,小球落地点的平均位置距O点的距离如图乙所示.碰撞前后m1的动量分别为p1与p1′,则p1:p1′=14 :11;若碰撞结束时m2的动量为p2′,则p1′:p2′=11: 2.9 .实验结果说明,碰撞前后总动量的比值= 1.01 .(2)有同学认为,在上述实验中仅更换两个小球的材质,其他条件不变,可以使被撞小球做平抛运动的射程增大.请你用(1)中已知的数据,分析和计算出被碰小球m1平抛运动射程ON的最大值为76.8 cm .【考点】ME:验证动量守恒定律.【分析】验证动量守恒定律实验中,质量可测而瞬时速度较难.因此采用了落地高度不变的情况下,水平射程来反映平抛的初速度大小,所以仅测量小球抛出的水平射程来间接测出速度.过程中小球释放高度不需要,小球抛出高度也不要求.只需满足每次入射球每次从同一点开始运动即可;最后可通过质量与水平射程乘积来验证动量是否守恒;当发生弹性碰撞时机械能损失最少,小球1平抛运动的射程最大.【解答】解:设落地时间为t,则v0=;v1=,v2=;则碰前的动量:P1=m1v0=m1;碰后的动量:P'1=m1v1=m1P'2=m2v2=m2;则可知,碰撞前后m1动量之比: ===,======1.01;发生弹性碰撞时,被碰小球获得速度最大,根据动量守恒的表达式是m1v0=m1v1+m2v2由m1v02=m1v12+m2v22联立解得v2=v0,因此最大射程s m =•OP=×44.8=76.8cm.故答案为:14;2.9;1.01;76.8.三、计算题14.一辆车强行超车时,与另一辆迎面驶来的轿车相撞,两车相撞后连为一体,两车车身因相互挤压,皆缩短了0.5米.据测算两车相撞前的速度约为30m/s.求:(1)若人与车一起做减速运动,车祸过程中车内约60kg的人受到的平均冲力是多大(2)若此人系有安全带,安全带在车祸过程中与人体作用时间是1s,求这时人体受到的平均冲力为多大?【考点】37:牛顿第二定律;1E:匀变速直线运动的位移与时间的关系.【分析】(1)人随车动,根据位移速度公式可求车的加速度,然后利用牛顿第二定律可求人受到的平均冲力;(2)由动量定理求出人受到的水平冲力.【解答】解:(1)由得人和车减速的加速度大小为:根据牛顿第二定律得人受到的平均冲力为:F=ma=60×900N=5.4×104N(2)有动量定理得:F′t=mv﹣mv0解得:负号表示力的方向与初速度方向相反答:(1)若人与车一起做减速运动,车祸过程中车内约60kg的人受到的平均冲力是5.4×104N(2)若此人系有安全带,安全带在车祸过程中与人体作用时间是1s,求这时人体受到的平均冲力为1800N.15.如图所示,匀强磁场的磁感应强度B=0.5T,边长L=10cm的正方形线圈abcd 共100匝,线圈电阻r=1Ω,线圈绕垂直于磁感线的对称轴OO′匀速转动,角速度ω=2πrad/s,外电路电阻R=4Ω,求:(1)转动过程中感应电动势的最大值;(2)由图示位置(线圈平面与磁感线平行)转过60°角时的瞬时感应电动势;(3)由图示位置转过60°角的过程中产生的平均感应电动势;(4)交流电压表的示数;(5)线圈转动一周外力所做的功;(6)周期内通过R的电荷量为多少?【考点】E2:交流发电机及其产生正弦式电流的原理;E4:正弦式电流的最大值和有效值、周期和频率.【分析】(1)先根据Em=NBωS求出最大值,再根据最大值与有效值的关系求出有效值;(2)先写出电动势的瞬时表达式,再带入数据求得瞬时值;(3)利用法拉第电磁感应定律,求出平均感应电动势;(4)电压表测量的是电阻R的电压,根据闭合电路欧姆定律即可求解.(5)通过最大值求出有效值,根据W=EIT求解;(6)线圈由如图位置转过周期内,通过R的电量为:q=t=.【解答】解:(1)根据E m=NBωS,可得感应电动势的最大值:E m=100×0.5×0.12×2πV=3.14V;(2)由于线框垂直于中性面开始计时,所以瞬时感应电动势表达式:e=E m cos2πt(V);当线圈转过60°角时的瞬时感应电动势为:e=1.57V;(3)根据法拉第电磁感应定律可得转60°角的过程中产生的平均感应电动势大小为:=N =N =1.5V=2.6V(4)转动过程中,交流电压表的示数为有效值,所以有:U=R=×4V=1.256V=1.78V;(5)线圈转动一周外力所做的功为:W=EIT===0.99J (6)周期内线圈转过60°角,通过R的电量q电,由公式可得:q=t=•=8.66×10﹣2 C;答:(1)转动过程中感应电动势的最大值3.14V;(2)线圈转过60°角时的瞬时感应电动势1.57V;(3)线圈转过60°角过程中产生的平均感应电动势2.6V;(4)电压表示数1.78V;(5)线圈转动一周外力所做的功为0.99J;(6)线圈转过60°角通过电阻R的电荷量8.66×10﹣2 C;16.如图所示,AOB是光滑水平轨道,BC是半径为R 的光滑的固定圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右快速射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C(木块和子弹均可看成质点).已知R=0.4m,m=1Kg,M=10Kg.(g=10m/s2,结果保留2位有效数字)(1)子弹射入木块前的速度V(2)若每当小木块上升到圆弧并返回到O点或静止于O点时,立即有相同的子弹射入小木块,并留在其中,则当第3颗子弹射入小木块后,木块速度多大?【考点】53:动量守恒定律.【分析】从B到C,由机械能守恒求解子弹射入木块后的速度,由动量守恒求解.【解答】解:(1)子弹射入木块的过程,系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得:mv=(m+M)v1,。
高二物理下学期第三次月考试题(含解析)-人教版高二全册物理试题
高二第二学期第三次月考物理试题(考试时间90分钟,总分为110分)一、选择题(每一小题4分,共48分。
1-8小题为单项选择题;9-12小题为不定项选择题,全部选对的得4分,选不全的得2分,有选错或不答的得0分。
)1.【题文】英国物理学家法拉第引入了“电场〞和“磁场〞的概念,并用画电场线和磁感线的方法来描述电场和磁场,为经典电磁学理论的建立奠定了根底.如下相关说法正确的答案是A. 电荷和电荷、通电导体和通电导体之间的相互作用是通过电场发生的B. 磁极和磁极、磁极和通电导体之间的相互作用是通过磁场发生的C. 电场线和电场线不可能相交,磁感线和磁感线可能相交D. 通过实验可发现电场线和磁感线的存在【答案】B【解析】此题主要考查电场、磁场与其对它们的描述;选项A,电荷和电荷之间是通过电场产生相互作用,通电导体和通电导体之间的相互作用是通过磁场发生的,应当选项A错误;选项B,磁极和磁极、磁极和通电导体之间的相互作用是通过磁场发生的,应当选项B 正确;选项C,电场线和电场线、磁感线和磁感线都不可能相交,应当选项C错误;选项D,电场线和磁感线实际上都不存在,只是为了形象的描述对应的场而假想的曲线,应当选项D错误;此题正确选项为B。
【题型】单项选择题【备注】【完毕】2.【题文】对做匀变速直线运动的物体,如下说法正确的答案是A.在1 s内、2 s内、3 s内物体通过的位移之比是1∶3∶5B.一质点的位置坐标函数是x=4t+2t2,如此它运动的初速度是4 m/s,加速度是2 m/s2C.做匀减速直线运动的物体,位移一定随时间均匀减小D.任意两个连续相等时间间隔内物体的位移之差都相等【答案】D【解析】此题主要考查匀变速运动规律;选项A,由可知在1 s内、2 s内、3 s内物体通过的位移之比是1:4:9,应当选项A错误;选项B,由与的对应关系可知初速度为4m/s,加速度为4m/,应当选项B错误;选项C,做匀减速运动的物体位移未必减小,比如以一定的初速度在地面上滑行的物体,其位移增大,应当选项C错误;选项D,由匀变速运动规律可知任意两个连续相等时间间隔内物体的位移之差都相等,应当选项D正确;此题正确选项为D。
高二物理下学期三月月考试题高二全册物理试题
嗦夺市安培阳光实验学校高二下学期3月月考物理试题一、选择题:本题共10小题,每小题4分.在每小题给出的四个选项中,第1-7题只有一项符合题目要求,第8-10题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分.1. 下列实验现象,属于电磁感应现象的是()A. 导线通电后,其下方的小磁针偏转B. 通电导线AB在在磁场中运动C. 金属杆切割磁感线时,电流表指针偏转D. 通电线圈磁场中转动【答案】C【解析】导线通电后,其下方的小磁针偏转是电流的磁效应,选项A错误;通电导线AB在在磁场中运动是电动机原理,不是电磁感应现象,选项B错误;金属杆切割磁感线时,产生感应电流,使电流表指针偏转,是电磁感应现象,选项C正确;通电线圈在磁场中受力转动,不是电磁感应现象,选项D错误;故选C.2. 如图所示,质量为m的铜质小闭合线圈静置于粗糙水平桌面上,当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、匀速经过时,线圈始终保持不动.则关于线圈在此过程中受到的支持力F N和摩擦力f 的情况,以下判断正确的是 ( )A. F N先大于mg,后小于mgB. F N一直大于mgC. f先向左,后向右D. 线圈中的电流方向始终不变【答案】A【解析】试题分析:A、B、C、当磁铁靠近线圈时,穿过线圈的磁通量增加,线圈中产生感应电流,线圈受到磁铁的安培力作用,根据楞次定律可知,线圈受到的安培力斜向右下方,则线圈对桌面的压力增大,即F N大于mg.线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.当磁铁远离线圈时,穿过线圈的磁通量减小,线圈中产生感应电流,线圈受到磁铁的安培力作用,根据楞次定律可知,线圈受到的安培力斜向右上方,则线圈对桌面的压力减小,即F N小于mg.线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.综上F N先大于mg,后小于mg,F f始终向左,故B、C错误,选项A正确.D、当磁铁靠近线圈时,穿过线圈的磁通量增加,线圈中产生感应电流从上向下看是逆时针方向;当磁铁远离线圈时,穿过线圈的磁通量减小,线圈中产生感应电流从上向下看是顺时针方向,故D错误.故选A.考点:本题考查楞次定律.【名师点睛】本题应用楞次定律的第二种表述判断,也可以运用楞次定律、左手定则、安培则进行判断.基础题.3. 如图所示,在光滑水平面上方,有两个磁感应强度大小均为B、方向相反的水平匀强磁场,如图所示,PQ为两个磁场的边界,磁场范围足够大.一个边长为a,质量为m,电阻为R的正方形金属线框垂直磁场方向,以速度v从图示位置向右运动,当线框中心线AB运动到与PQ重合时,线框的速度为v/2,则()A. 此时线框中的电功率为B. 此时线框的加速度为C. 此过程通过线框截面的电量为D. 此过程回路产生的电能为0.75mv2【答案】C【解析】试题分析:此时两个边做切割磁感线运动,所以回路中产生感应电动势为,根据欧姆定律可得线圈中的感应电流,根据公式可得此时线框中的电功率,A错误;根据左手定则可得左右两边所受安培力方向相同,为,则加速度为,故B错误;此过程通过线框截面的电量为,故C正确;根据能量守恒定律得到,此过程回路产生的电能为,故D错考点:考查了电磁感应与能量【名师点睛】当线框中心线AB运动到与PQ重合时,左右两边都切割磁感线产生感应电动势,两个电动势方向相同串联.根据感应电动势公式和欧姆定律求出感应电流,再求线框中的电功率.求出左右两边所受安培力大小,由牛顿第二定律求出加速度.由推论求出电量.根据功能关系求解回路产生的电能4. 如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,线圈c向右摆动()A. 向右或向左做减速运动B. 向右或向左做匀速运动C. 向右或向左做加速运动D. 只能向右做匀加速运动【答案】A..................点睛:本题运用右手定则、安培定则和楞次定律按步就班进行分析的,也可以直接根据楞次定律进行判断:线圈c被螺线管吸引时,磁通量将要增大,说明原来的磁通量减小,导体棒必定做减速运动.5. 如图甲所示,在竖直向上的磁场中,水平放置一个单匝金属圆线圈,线圈所围的面积为0.1 m2,线圈电阻为1 Ω,磁场的磁感应强度大小B随时间t的变化规律如图乙所示,规定从上往下看顺时针方向为线圈中感应电流i的正方向。
物理下学期3月月考试卷高二全册物理试题
外对市爱戴阳光实验学校高二〔下〕月考物理试卷〔3月份〕一、选择题〔本大题共10小题,每题4分,共40分.1-6小题为单项选择;7-10小题为不项选择,全对的得4分,选对但不全的得2分,不选或有错误选项的得0分〕1.以下说法中正确的选项是〔〕A.汤姆孙发现电子并提出了原子核式结构模型B.贝克勒尔用α粒子轰击氮原子核发现了质子C.在原子核人工转变的中,约里奥﹣居里夫妇发现了正电子D.在原子核人工转变的中,卢瑟福发现了中子2.现有三个核反:①Na→Mg+e②U+n→Ba+Kr+3n③H+H→He+n以下说法正确的选项是〔〕A.①是裂变,②是β衰变,③是聚变B.①是聚变,②是裂变,③是β衰变C.①是β衰变,②是裂变,③是聚变D.①是β衰变,②是聚变,③是裂变3.如下图是光电管的原理图,当有频率为ν0的光照射到阴极K上时,电路中有光电流,那么〔〕A.当换用频率为ν1〔ν1<ν0〕的光照射阴极K时,电路中一没有光电流B.当换用频率为ν2〔ν2>ν0〕的光照射阴极K时,电路中一有光电流C.当增大电路中电源的电压时,电路中的光电流一增大D.当将电源极性反接时,电路中一没有光电流产生4.图中画出了氢原子的4个能级,并注明了相的能量E.处在n=4的能级的一群氢原子向低能级跃迁时,能够发出假设干种不同频率的光波.金属钾的逸出功为2eV.在这些光波中,能够从金属钾的外表打出光电子的总共有〔〕A.二种B.三种C.四种D.五种5.在匀强磁场中有一个静止的氡原子核〔Rn〕,由于衰变它放出一个粒子,此粒子的径迹与反冲核的径迹是两个相互外切的圆,大圆与小圆的直径之比为42:1,如图所示,那么氡核的衰变方程是以下方程中的哪一个〔〕A .Rn→Fr+eB .Rn→Po+HeC .Rn→At+eD .Rn→At+H6.如下图在足够长的光滑水平面上有一静止的质量为M的斜面,斜面外表光滑、高度为h、倾角为θ.一质量为m〔m<M〕的小物块以一的初速度沿水平面向右运动,不计冲上斜面过程中的机械能损失.如果斜面固,那么小物块恰能冲到斜面的顶端.如果斜面不固,那么小物块冲上斜面后能到达的最大高度为〔〕A.h B .C .D .7.以下说法正确的选项是〔〕A.天然放射现象的发现揭示了原子核有复杂的结构B.氢原子从n=3的能级向低能级跃迁时只会辐射出两种不同频率的光C.比结合能大的原子核分解成比结合能小的原子核时要吸收能量D.有10个放射性元素的原子核,当有5个原子核发生衰变所需的时间就是该放射性元素的半衰期8.一个质子以1.0×107m/s的速度撞入一个静止的铝原子核后被俘获,铝原子核变为硅原子核,铝核的质量是质子的27倍,硅核的质量是质子的28倍,那么以下判断中正确的选项是〔〕A.核反方程为Al+H→SiB.核反方程为Al+n→SiC.硅原子核速度的数量级为107m/s,方向跟质子的初速度方向一致D.硅原子核速度的数量级为105m/s,方向跟质子的初速度方向一致9.质量分别为m a=0.5kg,m b=kg的物体a、b在光滑水平面上发生正碰.假设不计碰撞时间,它们碰撞前后的位移﹣时间图象如下图,那么以下说法正确的选项是〔〕A.碰撞前a物体的动量大小为4kg•m/sB.碰撞前b物体的动量大小为零C.碰撞后a物体的动量大小为1kg•m/sD.碰撞后b物体的动量大小为kg•m/s10.如下图,在光滑的水平面上放有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B高,现让小滑块m 从A点静止下滑,在此后的过程中,那么〔〕A.小滑块到达B点时半圆弧轨道的速度为零B.小滑块到达C点时的动能小于mgRC.假设小滑块与半圆弧轨道有摩擦,小滑块与半圆弧轨道组成的系统在水平方向动量不守恒D.m从A到B的过程中,M运动的位移为二、题〔本大题共3小题,共24分〕11.用甲、乙两种光做光电验,发现光电流与电压的关系如下图,由图可知,两种光的频率v甲v乙〔填“<〞,“>〞或“=〞〕,〔选填“甲〞或“乙〞〕光的强度大.普朗克常量为h,被照射金属的逸出功为W0,那么甲光对的遏止电压为.〔频率用v,元电荷用e表示〕12.太阳内部不断进行着各种核聚变反,一个氘核和一个氚核结合成一个氦核是其中一种,请写出其核反方程;如果氘核的比结合能为E1,氚核的比结合能为E2,氦核的比结合能为E3,那么上述反释放的能量可表示为.13.如图是用来验证动量守恒的装置,弹性球1用细线悬挂于O点,O点下方桌子的边沿有一竖直立柱.时,调节悬点,使弹性球1静止时恰与立柱上的球2接触且两球高.将球1拉到A点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞,碰后球1向左最远可摆到B点,球2落到水平地面上的C点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A 点离水平桌面的距离为a,B点离水平桌面的距离为b,C点与桌子边沿间的水平距离为c.此时,〔1〕除了弹性小球1、2的质量m1、m2,还需要测量的量是和.〔2〕根据测量的数据,该中动量守恒的表达式为.〔忽略小球的大小〕14.氢原子处于基态时,原子能量E1=﹣1eV,普朗克常数取h=×10﹣34J•s〔1〕处于n=2激发态的氢原子,至少要吸收多大能量的光子才能电离?〔2〕今有一群处于n=4激发态的氢原子,可以辐射几种不同频率的光?其中最小的频率是多少?〔结果保存2位有效数字〕15.Po原子核质量为2082 87u,Pb原子核的质量为2074 46u,He原子核的质量为4.002 60u,静止的Po核在α衰变中放出α粒子后变成Pb.求:〔1〕在衰变过程中释放的能量;〔2〕α粒子从Po核中射出的动能;〔3〕反冲核的动能.〔lu相当于93MeV,且核反释放的能量只转化为动能〕16.质量M=3kg.足够长的平板车放在光滑的水平面上,在平板车的左端放有一质量m=1kg的小物块〔可视为质点〕,小车左上方的天花板上固一障碍物A,其下端略高于平板车上外表但能挡住物块,如下图.初始时,平板车与物块一起以v0=2m/s的水平速度向左运动,此后每次物块与A发生碰撞后,速度均反向但大小保持不变,而小车可继续运动,物块与小车间的动摩擦因数μ=0.5,取g=10m/s2,碰撞时间可忽略不计,求:①与A第一次碰撞后,物块与平板车相对静止时的速率;②从初始时刻到第二次碰撞后物块与平板车相对静止时,物块相对车发生的位移.17.如下图,固的凹槽水平外表光滑,其内放置U形滑板N,滑板两端为半径R=0.45m的圆弧面.A和D分别是圆弧的端点,BC段外表粗糙,其余段外表光滑.小滑块P1和P2的质量均为m.滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B点,P1以v0=4.0m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上.当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续运动,到达D点时速度为零.P1与P2视为质点,取g=10m/s2.问:〔1〕P2在BC段向右滑动时,滑板的加速度为多大?〔2〕BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?高二〔下〕月考物理试卷〔3月份〕参考答案与试题解析一、选择题〔本大题共10小题,每题4分,共40分.1-6小题为单项选择;7-10小题为不项选择,全对的得4分,选对但不全的得2分,不选或有错误选项的得0分〕1.以下说法中正确的选项是〔〕A.汤姆孙发现电子并提出了原子核式结构模型B.贝克勒尔用α粒子轰击氮原子核发现了质子C.在原子核人工转变的中,约里奥﹣居里夫妇发现了正电子D.在原子核人工转变的中,卢瑟福发现了中子【考点】粒子散射;天然放射现象.【分析】此题可根据汤姆孙、卢瑟福、贝克勒尔、约里奥﹣居里夫妇,及查德威克人的物理学成就进行解答即可.【解答】解:A、汤姆生发现了电子,提出原子枣糕式模型,是卢瑟福提出了原子核式结构学说;故A错误.B、贝克勒尔发现了天然放射现象,卢瑟福用α粒子轰击氮原子核发现了质子,故B错误.C、约里奥﹣居里夫妇首先发现了正电子,故C正确;D、在原子核人工转变的中,查德威克发现了中子,故D错误.应选:C.2.现有三个核反:①Na→Mg+e②U+n→Ba+Kr+3n③H+H→He+n以下说法正确的选项是〔〕A.①是裂变,②是β衰变,③是聚变B.①是聚变,②是裂变,③是β衰变C.①是β衰变,②是裂变,③是聚变D.①是β衰变,②是聚变,③是裂变【考点】天然放射现象;原子核的人工转变;重核的裂变;轻核的聚变.【分析】具有放射性的物质的原子核不稳,释放出一个高速电子即β粒子,而原子核转变成一个的原子核的现象即β衰变;核裂变是质量较大的原子核分裂成两个质量差异不是太大的中质量的原子核的现象;核聚变是指两个较轻的原子核结合成一个质量较大的原子核,同时释放出大量能量的现象.【解答】解:具有放射性的物质的原子核不稳,有时它的一个中子能够转化为一个质子同时释放出一个高速电子,原子核转变成一个的原子核即发生β衰变.故①是β衰变.核裂变是质量较大的原子核分裂成两个质量差异不是太大的中质量的原子核的现象,故②是裂变.核聚变是指两个较轻的原子核结合成一个质量较大的原子核,同时释放出大量能量的现象,故③是核聚变.故C正确.应选C.3.如下图是光电管的原理图,当有频率为ν0的光照射到阴极K上时,电路中有光电流,那么〔〕A.当换用频率为ν1〔ν1<ν0〕的光照射阴极K时,电路中一没有光电流B.当换用频率为ν2〔ν2>ν0〕的光照射阴极K时,电路中一有光电流C.当增大电路中电源的电压时,电路中的光电流一增大D.当将电源极性反接时,电路中一没有光电流产生【考点】光电效.【分析】根据光电效的条件,判断能否发生光电效,从而判断是否有光电流;增大正向电压,电流到达饱和值时,不会增大.加反向电压时,在未到达遏止电压前,电路中有光电流.【解答】解:A、当换用频率为ν1〔ν1<ν0〕的光照射阴极K时,入射光的频率可能大于金属的极限频率,发生光电效,电路中可能有光电流.故A错误.B、频率为ν0的光照射到阴极K上时,电路中有光电流,知发生了光电效,当换用频率为ν2〔ν2>ν0〕的光照射阴极K时,一能发生光电效,一有光电流.故B正确.C、增大电源电源,电路中的光电流可能到达饱和值,保持不变.故C 错误.D、将电源的极性反接,电子做减速运动,可能能到达阳极A,电路中可能有光电流.故D错误应选:B.4.图中画出了氢原子的4个能级,并注明了相的能量E.处在n=4的能级的一群氢原子向低能级跃迁时,能够发出假设干种不同频率的光波.金属钾的逸出功为2eV.在这些光波中,能够从金属钾的外表打出光电子的总共有〔〕A.二种B.三种C.四种D.五种【考点】氢原子的能级公式和跃迁.【分析】发生光电效的条件是光子能量大于逸出功,根据该条件确出n=4的能级的一群氢原子向低能级跃迁时辐射光子能量大于逸出功的种数.【解答】解:处在n=4的能级的一群氢原子向低能级跃迁时能发出不同光电子的数目为=6种,n=4跃迁到n=3辐射的光子能量为0.66eV,n=3跃迁到n=2辐射的光子能量为9eV,均小于2eV,不能使金属钾发生光电效,其它四种光子能量都大于2eV.故C正确,A、B、D错误.应选C.5.在匀强磁场中有一个静止的氡原子核〔Rn〕,由于衰变它放出一个粒子,此粒子的径迹与反冲核的径迹是两个相互外切的圆,大圆与小圆的直径之比为42:1,如图所示,那么氡核的衰变方程是以下方程中的哪一个〔〕A .Rn→Fr+eB .Rn→Po+HeC .Rn→At+eD .Rn→At+H【考点】带电粒子在匀强磁场中的运动;原子核衰变及半衰期、衰变速度.【分析】核衰变过程动量守恒,反冲核与释放出的粒子的动量大小相,结合带电粒子在匀强磁场中圆周运动的半径公式可得小粒子与反冲核的电荷量之比,利用排除法可得正确答案【解答】解:原子核的衰变过程满足动量守恒,可得两带电粒子动量大小相,方向相反,就动量大小而言有:m1v1=m2v2由带电粒子在匀强磁场中圆周运动的半径公式可得:r=所以,===审视ABCD四个选项,满足42:1关系的只有B应选B6.如下图在足够长的光滑水平面上有一静止的质量为M的斜面,斜面外表光滑、高度为h、倾角为θ.一质量为m〔m<M〕的小物块以一的初速度沿水平面向右运动,不计冲上斜面过程中的机械能损失.如果斜面固,那么小物块恰能冲到斜面的顶端.如果斜面不固,那么小物块冲上斜面后能到达的最大高度为〔〕A.h B .C .D .【考点】动量守恒律;动能理的用.【分析】斜面固时,由动能理求出初速度,斜面不固时,由水平方向动量守恒列式,再根据机械能守恒列式,联立方程即可求解.【解答】解:斜面固时,由动能理得:﹣mgh=0﹣,所以;斜面不固时,由水平方向动量守恒得:mv0=〔M+m〕v,由机械能守恒得:=+mgh′解得:.应选D7.以下说法正确的选项是〔〕A.天然放射现象的发现揭示了原子核有复杂的结构B.氢原子从n=3的能级向低能级跃迁时只会辐射出两种不同频率的光C.比结合能大的原子核分解成比结合能小的原子核时要吸收能量D.有10个放射性元素的原子核,当有5个原子核发生衰变所需的时间就是该放射性元素的半衰期【考点】原子核衰变及半衰期、衰变速度;天然放射现象;原子核的结合能.【分析】天然放射现象的发现揭示了原子核有复杂的结构;从n=3的能级向低能级跃迁时会辐射3种不同频率的光;比结合能大的原子核分解成比结合能小的原子核时释放核能;半衰期是放射性元素衰变的统计规律,对个别的原子没有意义.【解答】解:A、天然放射现象的发现说明原子核内部是有结构的,进而人们研究揭示了原子核有复杂的结构,故A正确.B、从n=3的能级向低能级跃迁时会辐射3种不同频率的光;故B错误.C、比结合能大的原子核分解成比结合能小的原子核时质量增加,要吸收核能;故C正确.D、放射性元素样品中,放射性原子核的数目减少一半所需的时间于半衰期;半衰期是放射性元素衰变的统计规律,对个别的原子没有意义,所以有10个放射性元素的原子核,当有5个原子核发生衰变所需的时间不一于该放射性元素的半衰期.故D错误.应选:AC8.一个质子以1.0×107m/s的速度撞入一个静止的铝原子核后被俘获,铝原子核变为硅原子核,铝核的质量是质子的27倍,硅核的质量是质子的28倍,那么以下判断中正确的选项是〔〕A.核反方程为Al+H→SiB.核反方程为Al+n→SiC.硅原子核速度的数量级为107m/s,方向跟质子的初速度方向一致D.硅原子核速度的数量级为105m/s,方向跟质子的初速度方向一致【考点】原子核衰变及半衰期、衰变速度;动量守恒律.【分析】由质量数、电荷数守恒可知核反方程;由动量守恒可知硅原子核速度的数量级及速度方向,从而即可求解.【解答】解:AB、由质量数守恒,电荷数守恒可知:方程为Al+H→Si,故A正确,B错误;CD、由动量守恒可知,mv=28mv′,解得v′=m/s故数量级约为105m/s.故C错误,D正确;应选:AD.9.质量分别为m a=0.5kg,m b=kg的物体a、b在光滑水平面上发生正碰.假设不计碰撞时间,它们碰撞前后的位移﹣时间图象如下图,那么以下说法正确的选项是〔〕A.碰撞前a物体的动量大小为4kg•m/sB.碰撞前b物体的动量大小为零C.碰撞后a物体的动量大小为1kg•m/sD.碰撞后b物体的动量大小为kg•m/s【考点】动量守恒律.【分析】根据图示图象由速度公式求出碰撞前后物体的速度,然后由动量的计算公式求出物体的动量.【解答】解:A、由图示图象可知,碰撞前a的速度:v a ===4m/s,碰撞前a的动量:P a=m a v a=0.5×4=2kg•m/s,故A错误;B、由图示图象可知,碰撞前b静止,碰撞前b的动量为零,故B正确;C、由图示图象可知,碰撞由a、b的速度相,为:v===1m/s,碰撞后a的动量大小为:P a′=m a v a′=0.5×1=0.5kg•m/s,故C错误;D、碰撞后b的动量大小为:P b′=a v b′=×1=kg•m/s,故D正确;应选:BD.10.如下图,在光滑的水平面上放有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B高,现让小滑块m 从A点静止下滑,在此后的过程中,那么〔〕A.小滑块到达B点时半圆弧轨道的速度为零B.小滑块到达C点时的动能小于mgRC.假设小滑块与半圆弧轨道有摩擦,小滑块与半圆弧轨道组成的系统在水平方向动量不守恒D.m从A到B的过程中,M运动的位移为【考点】动量守恒律;机械能守恒律.【分析】小滑块m从A点静止下滑,物体M与滑块m组成的系统水平方向所受合力为零,系统水平方向动量守恒,竖直方向有加速度,合力不为零,系统动量不守恒.用位移表示平均速度,根据水平方向平均动量守恒律求出物体M发生的水平位移.【解答】解:A、小滑块m从A点静止下滑,物体M与滑块m组成的系统水平方向所受合力为零,系统水平方向动量守恒,开始时系统水平方向的动量守恒,滑块到达B点时滑块和圆弧轨道的速度相同,由水平方向动量守恒可知,小滑块到达B点时半圆弧轨道的速度为零.故A正确.B、小滑块到达C点时滑块的重力势能转化为滑块和圆弧轨道的动能,那么知到达C点时滑块的动能小于mgR.故B正确.C、小滑块与半圆弧轨道组成的系统在水平方向不受外力,所以水平方向动量守恒.故C错误.D、设滑块从A到B的过程中为t,M发生的水平位移大小为x,那么m产生的位移大小为2R﹣x取水平向右方向为正方向.那么根据水平方向平均动量守恒得:m﹣M=0解得:x=R,故D错误;应选:AB二、题〔本大题共3小题,共24分〕11.用甲、乙两种光做光电验,发现光电流与电压的关系如下图,由图可知,两种光的频率v 甲= v 乙〔填“<〞,“>〞或“=〞〕,甲〔选填“甲〞或“乙〞〕光的强度大.普朗克常量为h,被照射金属的逸出功为W0,那么甲光对的遏止电压为.〔频率用v,元电荷用e表示〕【考点】光电效.【分析】根据光的强度越强,形成的光电流越大;并根据光电效方程,即可求解.【解答】解:根据eUc=hv0=hv﹣W0,由于Uc相同,因此两种光的频率相,根据光的强度越强,那么光电子数目越多,对的光电流越大,即可判甲光的强度较大;由光电效方程mv2=hv﹣W0,可知,电子的最大初动能E K m=hv﹣W0;那么甲光对的遏止电压为Uc=;故答案为:=,甲,.12.太阳内部不断进行着各种核聚变反,一个氘核和一个氚核结合成一个氦核是其中一种,请写出其核反方程;如果氘核的比结合能为E1,氚核的比结合能为E2,氦核的比结合能为E3,那么上述反释放的能量可表示为4E3﹣2E1﹣3E2.【考点】爱因斯坦质能方程.【分析】根据电荷数守恒、质量数守恒写出核反方程,根据比结合能于结合能与核子数的比值,通过能量关系,求出释放的核能.【解答】解:根据电荷数守恒、质量守恒守恒,知核反方程为;氘核的比结合能为E1,氚核的比结合能为E2,氦核的比结合能为E3,根据比结合能于结合能与核子数的比值,那么有:该核反中释放的核能△E=4E3﹣2E1﹣3E2.故答案为:;4E3﹣2E1﹣3E213.如图是用来验证动量守恒的装置,弹性球1用细线悬挂于O点,O点下方桌子的边沿有一竖直立柱.时,调节悬点,使弹性球1静止时恰与立柱上的球2接触且两球高.将球1拉到A点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞,碰后球1向左最远可摆到B点,球2落到水平地面上的C点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A 点离水平桌面的距离为a,B点离水平桌面的距离为b,C点与桌子边沿间的水平距离为c.此时,〔1〕除了弹性小球1、2的质量m1、m2,还需要测量的量是立柱高h 和桌面高H .〔2〕根据测量的数据,该中动量守恒的表达式为2m1=2m1+m2.〔忽略小球的大小〕【考点】验证动量守恒律.【分析】要验证动量守恒,就需要知道碰撞前后的动量,所以要测量12两个小球的质量,1球下摆过程机械能守恒,根据守恒律列式求最低点速度;球1上摆过程机械能再次守恒,可求解碰撞后速度;碰撞后小球2做平抛运动,根据平抛运动的分位移公式求解碰撞后2球的速度,然后验证动量是否守恒即可.【解答】解:〔1〕要验证动量守恒,就需要知道碰撞前后的动量,所以要测量12两个小球的质量m1、m2,要通过平抛运动的分位移公式求解碰撞后2球的速度,所以要测量立柱高h,桌面高H;〔2〕1小球从A处下摆过程只有重力做功,机械能守恒,根据机械能守恒律,有m1g〔a﹣h〕=m1v12解得:v1=碰撞后1小球上升到最高点的过程中,机械能守恒,根据机械能守恒律,有m1g〔b﹣h〕=m1v22解得:v2=碰撞后小球2做平抛运动,t=所以2球碰后速度v3==所以该中动量守恒的表达式为:m1v1=m2v3+m1v2带入数据得:2m1=2m1+m2故答案为:〔1〕立柱高h;桌面高H;〔2〕2m1=2m1+m2.14.氢原子处于基态时,原子能量E 1=﹣1eV,普朗克常数取h=×10﹣34J•s〔1〕处于n=2激发态的氢原子,至少要吸收多大能量的光子才能电离?〔2〕今有一群处于n=4激发态的氢原子,可以辐射几种不同频率的光?其中最小的频率是多少?〔结果保存2位有效数字〕【考点】氢原子的能级公式和跃迁.【分析】所谓电离,就是使处于基态或激发态的原子的核外电子跃迁到n=∞的轨道,n=∞时,E∞=0,要使处于n=2的氢原子电离,照射光光子的能量能使电子从第2能级跃迁到无限远处.根据求出氢原子发出光子的种数.根据hγ=E m﹣E n,可知在何能级间跃迁发出光的频率最小.【解答】解:〔1〕要使处于n=2的氢原子电离,照射光光子的能量能使电子从第2能级跃迁到无限远处,最小的光子能量为:E=E∞﹣E2=0﹣〔﹣eV〕=eV.〔2〕根据=6,知这群氢原子最多能发出6种频率的光.因为放出的光子能量满足hγ=E m﹣E n,知,从n=4能级跃迁到n=3能级发出光的频率最小.,E4﹣E3=hνmi n答:〔1〕处于n=2激发态的氢原子,至少要吸收eV能量的光子才能电离;〔2〕今有一群处于n=4激发态的氢原子,可以辐射6种不同频率的光,其中最小的频率是1.6×1014Hz.15.Po原子核质量为2082 87u ,Pb原子核的质量为2074 46u ,He原子核的质量为4.002 60u,静止的Po核在α衰变中放出α粒子后变成Pb.求:〔1〕在衰变过程中释放的能量;〔2〕α粒子从Po核中射出的动能;〔3〕反冲核的动能.〔lu相当于93MeV,且核反释放的能量只转化为动能〕【考点】爱因斯坦质能方程;动量守恒律;原子核衰变及半衰期、衰变速度.【分析】〔1〕首先写出核反方程式,再求出质量亏损△m,再根据爱因斯坦质能方程求解释放的能量;〔2、3〕衰变前后系统的动量守恒,根据动量守恒律分析α粒子和铅核关系,根据动能与动量的关系及能量守恒列式求解.【解答】解:〔1〕根据质量数与质子数守恒规律,那么有,衰变方程:→+;衰变过程中质量亏损为:△m=2082 87 u﹣2074 46 u﹣4.002 60u=0.00581 u反过程中释放的能量为:△E=0.005 81×93 MeV=12 MeV;〔2〕因衰变前后动量守恒,那么衰变后α粒子和铅核的动量大小相,方向相反而P=mv=,那么有:=即mαE kα=m P b•E k Pb那么4E kα=206•E kp b又因核反释放的能量只能转化为两者的动能,故有:E kα+E k p b=△E=12 MeV所以α粒子从钋核中射出的动能为:E kα=1 MeV〔3〕反冲核即铅核的动能为:E k P b=0.10 MeV答:〔1〕在衰变过程中释放的能量12 MeV;〔2〕α粒子从Po核中射出的动能1 MeV;〔3〕反冲核的动能0.10 MeV.16.质量M=3kg.足够长的平板车放在光滑的水平面上,在平板车的左端放有一质量m=1kg的小物块〔可视为质点〕,小车左上方的天花板上固一障碍物A,其下端略高于平板车上外表但能挡住物块,如下图.初始时,平板车与物块一起以v0=2m/s的水平速度向左运动,此后每次物块与A发生碰撞后,速度均反向但大小保持不变,而小车可继续运动,物块与小车间的动摩擦因数μ=0.5,取g=10m/s2,碰撞时间可忽略不计,求:。
高二第二学期物理第三次月考试卷附答案)
高二第二学期物理第三次月考试卷答题注意事项:命题人:管伟权1.本试卷满分100分;2.请将试题按要求解答在答题卷指定的位置。
一、本题共4小题,每小题4分,共16分,在每小题给出的四个选项中,有一个选项正确,选对的得4分,有选错或不答的得0分.1、某同学对磁感应强度进行理解时,形成了下列看法,其中错误的是()A.磁感应强度是描述磁场强弱和方向的物理量B.磁场中某点磁感应强度大小是由磁场自身决定的C.虽然B=F/IL,但磁感应强度B与通电导线受到的磁场力F并不成正比D.磁场中某处磁感应强度的方向就是该处一小段通电导线所受磁场力的方向2、在如图所示的实验电路中,当滑动变阻器R0的滑动触头向右端滑动时()A.L1变暗,L2变亮,L3变亮B.L1变暗,L2变暗,L3变亮C.L1变暗,L2变暗,L3变暗D.L1变亮,L2变暗,L3变亮3、在使用电阻器件时,不仅要知道电阻的标称阻值,还要注意电阻的最大功率,否则在使用中如果超过电阻的最大功率,电阻将被烧坏。
某人在调试电路时,用一个“100kΩ,1/8W”的电阻和一个“300kΩ,1/8W”的电阻串联后作为400 kΩ的电阻使用,则这两只电阻串联后允许消耗的总功率最大不得超过()A.1/2W B.1/4W C.1/6W D.1/8W4、如图所示是示波器原理图。
电子经电压为U1的电场加速后,射入电压为U2的偏转电场,离开偏转电场后电子打在荧光屏上的P点,离荧光屏中心O的偏转距离为y。
我们把单位偏转电压引起的偏转距离(y/U2)称为示波器的灵敏度。
则下列哪些方法可以提高示波器的灵敏度()A.提高加速电压U1B.降低偏转电场电压U2C.增大偏转极板的长度LD.增大偏转极板间的距离d二、双项选择题:每小题6分。
在每小题给出的四个选项中,有两个选项符合题目要求,全部选对的得6分,只选1个且正确的得3分,有选错或不答的得0分。
5、欧姆定律适用于()A.金属导电B.气体导电C.电解液导电D.半导体导电6、在研究两个闭合电路A和B的路端电压U与其总电流I的关系时,得到如右图所示的图象,由此可判断()A.电路A的电动势比电路B的电动势大B.电路A的电源内电阻比电路B的电源内电阻大C .电路A 的外电阻始终比电路B 的外电阻小D .电路A 的路端电压始终比电路B 的路端电压大7、在学习“电场”一章的过程中,可总结出一些“经典”结论,有时可直接引用。
高二物理下学期第三学月考试题高新部word版本
高新部高二学月考试物理试题一、选择题(本题共10小题,40分)1.关于理想气体的下列说法正确的是( )A.气体对容器的压强是由气体的重力产生的B.气体对容器的压强是由大量气体分子对器壁的频繁碰撞产生的C.一定质量的气体,分子的平均动能越大,气体压强也越大D.压缩理想气体时要用力,是因为分子之间有斥力2.一定质量的理想气体发生状态变化时,其状态参量p、V、T的变化情况可能是( ) A.p、V、T都增大B.p减小,V和T都增大C.p和V减小,T增大D.p和T增大,V减小3.教室内的气温会受到室外气温的影响,如果教室内上午10点的温度为15 ℃,下午2点的温度为25 ℃,假设大气压强无变化,则下午2点与上午10点相比较,房间内的( )A.空气分子的密集程度增大B.空气分子的平均动能增大C.空气分子的速率都增大D.空气的质量增大图14.用一导热、可自由滑动的轻隔板把一圆柱形容器分隔成A、B两部分,如图1所示,A、B 中分别封闭有质量相等的氮气和氧气,且均可看成理想气体,则当两气体处于平衡状态时( )A.内能相等B.分子的平均动能相等C.压强相等D.分子数相等5.某自行车轮胎的容积为V ,里面已有压强为p 0的空气,现在要使轮胎内的气压增大到p ,设充气过程为等温过程,空气可看做理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同、压强也是p 0的空气的体积为( ) A.p0p V B.p p0V C .(p p0-1)V D .(pp0+1)V6.如图2所示,三支粗细相同的玻璃管,中间都用一段水银柱封住温度相同的空气柱,且V 1=V 2>V 3,h 1<h 2=h 3.若升高相同的温度,则管中水银柱向上移动最多的是( )图2A .丙管B .甲管和乙管C .乙管和丙管D .三管中水银柱上移一样多图37.某种气体在不同温度下的气体分子速率分布曲线如图3所示,图中f (v )表示v 处单位速率区间内的分子数百分率,所对应的温度分别为T Ⅰ、T Ⅱ、T Ⅲ,则( ) A .T Ⅰ>T Ⅱ>T Ⅲ B .T Ⅲ>T Ⅱ>T Ⅰ C .T Ⅱ>T Ⅰ,T Ⅱ>T Ⅲ D .T Ⅰ=T Ⅱ=T Ⅲ图48.如图4所示,由导热材料制成的汽缸和活塞将一定质量的理想气体封闭在汽缸内,活塞与汽缸壁之间无摩擦,活塞上方存有少量液体.将一细管插入液体,由于虹吸现象,活塞上方液体缓慢流出,在此过程中,大气压强与外界的温度保持不变.下列各个描述理想气体状态变化的图象中与上述过程相符合的是( )图59.一定质量的理想气体的状态变化过程的p-V图象如图5所示,其中A是初状态,B、C 是中间状态,A→B是等温变化,如将上述变化过程改用p-T图象和V-T图象表示,则下列各图象中正确的是( )10.对于一定量的稀薄气体,下列说法正确的是( )A.压强变大时,分子热运动必然变得剧烈B.保持压强不变时,分子热运动可能变得剧烈C.压强变大时,分子间的平均距离必然变小D.压强变小时,分子间的平均距离可能变小二、实验题(本题共2小题,第11题5分,12题8分,共13分)11.(5分)如图7所示,两段水银柱将U形管内的空气分成A、B两部分,若B气柱长L=19 cm,封闭A气体的水银柱上端面跟右管水银柱液面相平,外界大气压p0=76 cmHg=1.0×105 Pa,则A部分气体的压强p A=______________Pa.图712.(8分)对于一定质量的理想气体,以p、V、T三个状态参量中的两个为坐标轴建立直角坐标系,在坐标系上描点能直观地表示这两个参量的数值.如图8所示,每个坐标系中的两个点都表示相同质量的某种理想气体的两个状态.根据坐标系中不同点的位置来比较第三个参量的大小.图8(1)p-T图象(图甲)中A、B两个状态,________状态体积小.(2)V-T图象(图乙)中C、D两个状态,________状态压强小.(3)p-V图象(图丙)中E、F两个状态,________状态温度低三、计算题:本大题共5小题,共47分。
高二下学期第三次月考物理试题(解析版)
C.机械波有横波和纵波,电磁波只有横波,故C错误;
D.机械波 传播速度与介质有关,而电磁波除与介质有关外,还与频率有关,故D错误;
故选B。
8.一弹簧振子作简谐振动,某一时刻开始计时,经 振子具有负方向最大加速度。则下列振动图像中正确反映振子振动情况的是( )
入射角50°大于临界角,将发生全反射。
ACD错误,B正确。
故选B。
2.在“测定玻璃的折射率”实验中,对一块两面平行的玻璃砖,用插针法找出与入射光线对应的出射光线,现在A,B,C,D四位同学分别做出如图所示的四组插针结果。从图看,测量结果准确度最高的是()
A. B. C. D.
【答案】D
【解析】
【详解】根据折射定律 ;由几何知识可知,光线在上表面的折射角等于下表面的入射角,根据光路可逆性原理可知,入射光线与法线的夹角跟出射光线与法线的夹角相等,故出射光线与入射光线平行,故ABC错误,D正确。
人教版
高中物理
测试题
试题
2021-10-7
物理试卷
一、选择题(共10小题,每小题4分,共40分)
1.如图所示,光线由空气透过半圆形玻璃砖,或光线由玻璃砖射入空气的光路图中,正确的是(玻璃的折射率为1.5)()
A.图乙、丙、丁B.图乙、丁
Байду номын сангаасC.图乙、丙D.图甲、丙
【答案】B
【解析】
【详解】光线由空气进入玻璃砖中时,入射角大于折射角,由玻璃砖射入空气时,入射角小于折射角,由临界角计算公式得
故选D。
4.关于波的反射与折射,下列说法正确的是()
A. 入射波的波长一定等于反射波的波长,其频率不变
高二物理第二学期第三次月考
高二物理第二学期第三次月考试卷一、选择题:(3分×13=39分)1、下列单位与磁感强度的单位“特斯拉”相当的是:( )A 、韦伯/米2B 、千克/(安培·秒2)C 、牛·秒/(库·米)D 、伏·秒/米22、在一根无限长的通电直导线旁,放一个通电线圈abcd ,导线和线圈在同一平面内,线圈中的电流方向为顺时针,则 ( )A 、线圈上平动;B 、线圈向左平动;C 、线圈向右平动;D 、线圈静止不动;3、一电子通过某空间区域时作匀速直线运动,则( )A 、此区域内一定无磁场;B 、此区域内可能只有电场;C 、此区域内可能既有电场又有磁场;D 、此区域内可能既无电场又无磁场;4、一束带电粒子沿着水平方向平行地飞过静止的小磁针正上方,这时磁针的S 极向西偏转,这一束带电粒子可能是( )A 、由北向南飞行的正离子束;B 、由南向北飞行的正离子束;C 、由北向南飞行的负离子束;D 、由南向北飞行的负离子束;5、铁心上有两个线圈,把它们和一个干电池连接起来,已知线圈的电阻比电池的内阻大得多,如下图所示的图中,哪一种接法铁心的磁性最强 ( )6、下列有关磁通量的论述中正确的是 [ ]A 、磁感强度越大的地点,穿过线圈的磁通量也越大;B 、磁感强度越大的地点,线圈面积越大,则穿过线圈的磁通量越大;C 、穿过线圈的磁通量为零的地点,磁感强度一定为零;D 、匀强磁场中,穿过线圈的磁感线越多,则磁通量越大;7、如图所示,条形磁铁放在水平桌面上,其中央正上方固定一根直导线,导线与磁铁垂直,并通以垂直纸面向外的电流,则( )A 、磁铁对桌面的压力减小、不受桌面摩擦力的作用;B 、磁铁对桌面的压力减小、受到桌面摩擦力的作用;C 、磁铁对桌面的压力增大,个受桌面摩擦力的作用;D 、磁铁对桌面的压力增大,受到桌面摩擦力的作用;Iabc8、下列说法正确的是( )A、安培假说中的分子电流是不存在的;B、通电直导线周围的磁场是导线内部的分子电流产生的;C、铁棒被磁化是因为在外磁场作用下,软铁棒中分子电流取向变得大致相同;D、永磁体和磁场与电流的磁场是有本质区别的;9、质子与α粒子在同一匀强磁场中做半径相同的圆周运动,则质子和α粒子动能之比为( )A、4:1B、1:1C、1:2D、2:110、关于电磁波的发射,下列说法中正确的是[ ]A、各种频率的电磁振荡都能辐射电磁波,只是辐射的能量所占振荡总能量的比例不同罢了,振荡周期越大,越容易辐射电磁波;B、为了有效向外辐射电磁波,振荡电路必须采纳开放电路,同时提高振荡频率;C、为了有效向外辐射电磁波,振荡电路不须采纳开放电路,但要提高振荡频率;D、提高振荡频率和采纳开放电路是发射电磁波的必要手段,振荡电路开放的同时,其振荡频率也随之提高;11、关于电磁场的理论,下面说法中正确的是()A、变化的电场周围产生的磁场一定是变化的;B、变化的电场周围产生的磁场不一定是变化的;C、平均变化的磁场周围产生的电场也是平均变化的;D、振荡电场周围产生的磁场也是振荡的;12、如图所示,甲所示的LC振荡电路中,通过P点的电流变化规律如图乙,且把通过P点向右的电流方向规定为乙图中坐标i的正方向,则()A、0.5~1s的时刻内,电容器C正在充电;B、0.5~1s的时刻内,C的上板带正电;C、1~1.5s时刻内,Q点比P点电势高;D、1~1.5s时刻内,磁场能正在向电场能转化;13、调制的要紧作用是[ ]A、使高频振荡的振幅或频率随要传播的电信号而改变;B、发生电谐振;C、把需要的电信号从高频振荡中取出来;D、选择要接收的电台;题1 2 3 4 5 6 7 8 9 10 11 12 13号答案二、填空题:(5分×5=25分)14、如图所示,一LC振荡电路的周期为T=2×10-2s,从电流逆时针达到最大开始计时,当t=3.4×10-2s时,电容器正处于________电状态,电容器a板带________电,电路中电流方向为________(逆时针或顺时针)。
高二物理下学期第三次月考试题(含解析)(新版)人教版
——————————新学期新成绩新目标新方向——————————2019学年度第二学期第三次月考高二理科综合1. 在物理学史上,奥斯特首先发现电流周围存在磁场。
随后,物理学家提出“磁生电”的闪光思想。
很多科学家为证实这种思想进行了十多年的艰苦研究。
首先成功发现“磁生电”的物理学家是()A. 洛伦兹B. 库伦C. 法拉第D. 纽曼【答案】C【解析】奥斯特实验,把通电直导线放在水平方向静止的小磁针上,小磁针发生偏转,说明受到磁力作用,实验表明电流周围存在磁场.法拉第在奥斯特的启发下,研究了磁场与电流的关系,最终通过十年的努力终于发现了电磁感应现象:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生电流.故选C。
点晴:物理学史一直是考试中的热点,了解相关的物理学史可以使我们了解科学家的贡献,激发我们学习物理的兴趣。
2. 一理想变压器,原线圈和副线圈的匝数分别为n1和n2,正常工作时的电压、电流、功率分别为U1和U2、I1和I2、P1和P2,已知n1>n2,则()A. U1>U2, I1>I2B. U1<U2, I1<I2C. I1>I2, P1=P2D. I1<I2, P1=P2【答案】D【解析】根据理想变压器的特点有:,P1=P2电流关系为:由于n1>n2,所以有I1<I2,U1>U2,故应选D。
点晴:本题比较简单,直接根据理想变压器原副线圈匝数比与电压、电流比之间的关系即可求解,理想变压器的输入功率与输出功率相等。
3. 如图所示,矩形线框abcd的ad和bc的中点M、N之间连接一电压表,整个装置处于匀强磁场中,磁场的方向与线框平面垂直,当线框向右匀速平动时,以下说法正确的是()A. 穿过线框的磁通量不变化,MN间无感应电动势B. MN这段导体做切割磁感线运动,MN间有电势差C. MN间有电势差,所以电压表有读数D. 因为无电流通过电压表,所以电压表无读数【答案】BD【解析】试题分析:由于磁场是匀强磁场,所以线圈运动过程中,磁通量不变,所以无感应电流产生,但是MN这段导体做切割磁力线运动,MN间有电势差故BD正确;考点:考查了导体切割磁感线运动点评:当闭合电路中的磁通量发生变化时,电路有感应电流产生;4. 矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射进一半厚度,如右图所示,上述两种情况相比较 ( )A. 子弹对滑块做功一样多B. 子弹对滑块做的功不一样多C. 相比之下甲系统产生的热量较多D. 相比之下乙系统产生的热量较多【答案】A【解析】最终子弹都没有射出,则最终子弹与滑块的速度相等,根据动量守恒定律可知,两种情况下系统的末速度相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南州中学高2019届高二下第三学月考试物理试题选择题(本题包括5小题,每小题6分,共30分。
每小题只有一个....选项符合题意。
) 1.恒星向外辐射的能量来自于其内部发生的反应,当温度达到K 时,可以发生“氦燃烧”.完成“氦燃烧”的核反应方程:γ+→+Be He He 844242 ,其中He 42的质量为4.0026u ,Be 84的质量为7.9932u ; 质量亏损1u 相当于放出931.5MeV 的能量。
对此“氦燃烧”的核反应表述正确的是 ( )A .该反应过程释放的能量约为11.2MeVB .“氦燃烧”反应过程是裂变反应C .“氦燃烧”反应在常温下可进行D .Be 84是一种不稳定的粒子,其半衰期为16106.2-⨯s .一定质量的Be 84,经16108.7-⨯ s 后所剩Be 84占开始时的161 2.“嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段。
若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1 ,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( )A.求出“嫦娥三号”探月卫星的质量B.求出地球与月球之间的万有引力C.求出地球的密度D.得出33122212r r T T = 3.如图甲所示,轻质弹簧的下端固定在水平面上,上端放置一小物体(物体与弹簧不连接),初始时物体处于静止状态。
现用竖直向上的拉力F 作用在物体上,使物体开始向上做匀加速直线运动,拉力F 与物体位移x 的关系如图乙所示(g=10m/s 2),则下列结论正确的是( )A.物体与弹簧分离时,弹簧处于压缩状态B.物体的质量为3 kgC. 弹簧的劲度系数为7. 5 N/cmD.物体的加速度大小为5 m/s24.图甲所示的理想变压器原、副线圈匝数比为55:6,图乙是该变压器原线圈两端输入的交变电压u的图像,副线圈中L是规格为“24V,12W"的灯泡,R o是定值电阻,R是滑动变阻器,图中各电表均为理想交流电表,以下说法正确的是()A.流过灯泡L的电流每秒钟方向改变50次B.滑片P向下滑动的过程中,灯泡L能正常发光,A2表示数变小C.滑片P向下滑动的过程中,A1表示数变大,V1表示数不变D.原线圈两端输入电压的瞬时值表达式为u= 220sinl00·t(V).5.如图所示,一个绝缘且内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的内径大得多),在圆管内的最低点有一个直径略小于细管内径的带正电小球处于静止状态,小球的质量为m,带电荷量为q,重力加速度为g.空间存在一磁感应强度大小未知(不为零),方向垂直于环形细圆管所在平面且向里的匀强磁场.某时刻,给小球一方向水平向右,大小为v0=的初速度,则以下判断正确的是()A.无论磁感应强度大小如何,获得初速度后的瞬间,小球在最低点一定受到管壁的弹力作用B.无论磁感应强度大小如何,小球一定能到达环形细管的最高点,且小球在最高点一定受到管壁的弹力作用C.无论磁感应强度大小如何,小球一定能到达环形细管的最高点,且小球到达最高点时的速度大小都不同D.小球在从环形细圆管的最低点运动到所能到达的最高点的过程中,机械能不守恒6(19分)(1)( 7分)某组同学用图(a)实验装置探究“加速度a与物体质量m的关系”.A 为小车,B为电火花计时器,C为装有细砂的小桶,D为一端带有定滑轮的长方形木板.①图(b )为某次实验得到的纸带,已知实验所用电源的频率为50Hz .小车的加速度大小为 m/s 2.(结果保留三位有效数字)②改变小车质量m ,分别记录小车加速度a 与其质量m 的数据.在分析处理时,该组同学产生分歧;甲同学认为应该根据实验中测得的数据作出小车加速度a 与其质量m 的图象,乙同学认为应该作出小车加速度a 与其质量倒数m1的图象.两位同学都按照自己的方案将实验数据在坐标系中进行了标注,但尚未完成图象(如下图所示).你认为同学(填“甲”、“乙”)的方案更合理.并帮助该同学作出坐标中的图象(2)( 12分)某同学用如图所示的电路测量出待测电流表的满偏电流,有以下的可供选用的器材:A .待测电流表A0:满偏电流约为700~800μA 、内阻约100Ω,表盘刻度均匀、总格数为NB.电流表A:量程0.6A、内阻R g=0.1ΩC.电压表V:量程3V、内阻R V=3kΩD.滑动变阻器R:最大阻值20ΩE.电源E:电动势约3V、内阻约1.5ΩF.开关S一个,导线若干条①电路图中的电表x应选当器材中的。
(填写器材序号)②测量过程中,测出多组数据,其中一组数据中待测电流表A0的指针偏转了n格,则计算电流表满偏电流的表达式为I max =,式中除字母N、n外,其他字母符号代表的物理量是。
7.(15分)一个质量为2kg的物块,沿粗糙水平面运动,水平推力F的大小和方向随时间变化的规律如图所示。
已知第1s内物块以10m/s速度做匀速直线运动(不计空气阻力。
g 取10m/s2)(1).求物块与水平地面间的摩擦因数(2).求物块在第2s内的加速度(3).求物块在前3s内的位移8.(16分)如图所示的真空室内,在d≤x≤2d的空中存在着沿+y方向的有界匀强电场,电场强度为E;在-2d≤x≤-d的空间中存在着垂直纸面向里的有界匀强磁场,磁感应强度为B。
在坐标原点处有一个处于静止状态的原子核,某时刻该原子核经历一次衰变,沿+x方向射出一质量为m、电荷量为q的粒子;质量为M、电荷量为Q的反冲核进入左侧的匀强磁场区域,反冲核恰好不能从磁场的左边界射出,不计粒子的重力和粒子间相互作用的库仑力。
求:(1)衰变结束时粒子的速度;(2)粒子从电场右边界射出时的坐标。
9.(18分)如图光滑斜面的倾角θ=30°,在斜面上放置一矩形线框abcd,ab边的边长l1=1m,bc边的长l2=0.6m,线框的质量m=1kg,电阻R=0.1Ω,线框用细线通过定滑轮与重物相连,重物质量M=2kg,斜面上ef线与gh线(ef∥gh ∥pq)间有垂直斜面向上的匀强磁场,磁感应强度为B1=0.5T, gh线与pq线间有垂直斜面向下的匀强磁场,磁感应强度B2=0.5T.如果线框从静止开始运动,当ab边进入磁场时恰好做匀速直线运动,ab边由静止开始运动到gh线所用的时间为2.3s,求:(1)求ef线和gh线间的距离;(2)ab边由静止开始运动到gh线这段时间内产生的焦耳热;(3)已知当ab边和cd边分别在B1和B2场中切割时,矩形线框abcd中的总电动势等于ab边和cd边电动势的和,求ab边刚进入磁场B2瞬间线框的加速度三、选做题(第10题和第11题各12分,考生从中选做一题,若两题都做,则按第10题计分.其中选择题只有一个正确选项)10. (12分)(1)(6分)下列说法中正确的是A.单晶体均存在固定的熔点,多晶体不均存在固定的熔点B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大C.只要尽量完善工艺水平,热机效率可以达100%D.对于一定质量的理想气体, 若单位体积内分子个数不变,当分子热运动加剧时,压强一定变大(2)(6分)某同学估测室温的装置如图所示,气缸导热性能良好,用活塞封闭一定质量的理想气体.室温时气体的体积V 1=66mL ,现将气缸竖直放置于冰水混合物中,稳定后封闭气体的体积V 2=60mL .不计活塞重力及活塞与缸壁间的摩擦,室内大气压p 0=1.0×105Pa .①室温是多少?②上述过程中,外界对气体做的功是多少?11.(12分)(1)(6分)下列说法中正确的是( )A .光的偏振现象证明了光波是纵波B .在发射无线电波时,需要进行调谐和解调C .在白炽灯的照射下从两块捏紧的玻璃板表面看到彩色条纹,这是光的干涉现象D .考虑相对论效应,一条沿自身长度方向运动的杆其长度总比杆静止时的长度长(2)(6分)如图所示的装置可以测量棱镜的折射率,ABC 表示待测直角棱镜的横截面,棱镜的顶角为,紧贴直角边AC 是一块平面镜,一光线SO 射到棱镜的AB 面上,适当调整SO 的方向,当SO 与AB 成角时,从AB 面射出的光线与SO 重合,在这种情况下仅需则棱镜的折射率n 为多少?答案:6.(1)①3.19 (3分) ②乙 (2分) 图略 (2分)(2)①C(4分)②VR U n N ⋅(4分);U 为电压表读数,R v 为电压表内阻(4分)7(15分)解:(1)由题意 :物块与地面间的滑动摩擦力大小 f=2N (2分)根据滑动摩擦力定义:有μ=f/mg=0.1 (2分)(2)在第2秒内 摩擦力大小f=2N, F 反向,则有合力大小F 合=f+F=4N (3分) 根据牛顿第二定律:加速度大小a=F 合/m=2m/s 2 (2分)(3)第1s 内的位移 S 1=vt=10m 第2s 内的位移 S 2=221at vt -=9m (2分)根据题意第3s 内作匀速运动,速度s m at v v /83=-=第3s 内的位移S 3=v 3t=8m (2分) 则3s 内的位移S=S 1+S 2+S 3=27m (2分)8.(16分)解:(1)依据题意知反冲核在磁场中做匀速圆周运动的半径为d ,设原子核衰变后M 、m 的速率分别为v 1、v 2根据牛顿第二定律为dv M B Qv 211= (2分) 衰变过程中M 、m 系统满足动量守恒定律:mv 2+M (-v 1)=0 (3分)解得:mdQB v =2 (2分) (2)设粒子进入电场运动过程中,沿电场方向偏转的距离为,则有221at y = (2分)加速度为:mqE a = (2分) 在电场中运动的时间为:2v d t =(2分) 解得:2222222BQ qEm mv qEd y == (2分) 所以坐标为:22(2)2qEm d Q B , (1分) 9.⑴线框abcd 受力平衡A F mg T +=θsin (1分)ab 边进入磁场切割磁感线,产生的电动势 11v Bl E = 形成的感应电流Rv l B R E I 111==受到的安培力11Il B F A =(1分) 联立得:Rv l B mg Mg 2121sin +=θ(1分)解得s m v /6=(1分)线框abcd 进磁场B 1前时,做匀加速直线运动;进磁场的过程中,做匀速直线运动;进入磁场后到运动到gh 线,仍做匀加速直线运动.进磁场前 对M :Ma T Mg =-对m : ma mg T =-θsin (1分)联立解得:2/5sin s m mM mg Mg a =+-=θ(1分)该阶段运动时间为 s a v t 2.1561===进磁场B 1过程中 匀速运动时间 s v lt 1.066.022===(1分)进磁场后 线框受力情况同进磁场前,所以该阶段的加速度仍为2/5s m a =s t t t t 11.02.13.2213=--=--=(1分)ef 线和gh 线间的距离m at t v l s 1.921521166.02321312=⨯⨯+⨯+=++=(1分)此时线框的速度为 s m at v v /11156312=⨯+=+=(1分)⑵J l mg Mg l F Q A 9)sin (22=-==θ(4分)(3) ab 边刚进入gh 线瞬间线框的加速度沿斜面向下221221)()(sin a m M Mg Rv l B B mg +=-++θ(3分)解得:=2a 2/395s m (1分)10.(1)D (6分)(2)【解析】①设室温为T 1,则 2211T V T V = (2分) 代入数据解得o 1300.3K=27.3C T =(1分)②外界对气体做的功0W p V =⋅∆(2分) 解得0.60J W =(1分)11.(12分)(1)C (6分) (3)αβsin cos (6分)。