无碳小车设计机械设计课程设计说明书
无碳小车设计说明书
《理论力学》实践课设计说明书题 目: 无 碳 小 车年 月系 部 机械与汽车工程系 班 级 1213班组长沈琛 联系电话姓名学号承担工作沈琛 12316周翔何振涛钟彪 12316351董传能一、设计概述1. 作品取名:清新之翼2. 徽标设计:巨大的圆环象征着完美无缺,羽翼象征着执着的追求,飞翔的箭则象征着永不停留一往直前的决心,绿色则寓意无限的活力与生命力,还有与环保同行。
3. 作品创意:所有的动力动力来自荷载重物,纯机械结构,无碳排放;在重物下落阶段,增加了一动滑轮,使得做功行程加长,并合理利用了扭矩。
并且设计该小车的前进过程是静止—加速—匀速—减速的过程。
启动时转矩稍大于阻力使小车启动,启动后转矩与阻力平衡小车匀速前进。
当重物下落完毕时小车靠惯性减速行驶。
二、设计思路和方案1. 设计思路根据能量守恒定律,物块下落的重力势能直接转化为小车前进的动能时,能量损失最少,所以小车前进能量来源直接由重物下落过程中减少的重力势能提供为宜。
2、设计方案(1)、基本结构1.车架车架不用承受很大的力,精度要求低。
考虑到重量加工成本等,车架采用木材加工制成的三角底板式。
2.原动机构原动机构的作用是将重块的重力势能转化为小车的驱动力。
能实现这一功能的方案有多种,就效率和简洁性来看绳轮最优。
小车对原动机构还有其它的具体要求。
1.驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
2.到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击。
同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,重块本身还有较多动能未释放,能量利用率不高。
3.由于不同的场地对轮子的摩擦摩擦可能不一样,在不同的场地小车是需要的动力也不一样。
在调试时也不知道多大的驱动力恰到好处。
因此原动机构还需要能根据不同的需要调整其驱动力。
4.机构简单,效率高。
基于以上分析我们提出了输出驱动力可调的绳轮式原动机构。
无碳小车设计说明书
无碳小车设计说明书小组成员:指导教师:学校:一. 设计思路:1.根据设计要求,为达到无碳小车走8字形轨迹重叠的目的,无碳小车应具备重力势能的转换和周期性的转向的功能,即小车分为传动机构和导向机构两部分。
其中传动机构要求能量损耗少、传动比精确,故优先选用齿轮和皮带轮传动。
导向机构要求方向控制度高、摩擦损失小,选用凸轮直线滑块机构。
2.为减轻车身质量同时保证小车刚度要求,小车采用尼龙作为底板材料,上面安装轴承座以支撑输入轴、驱动轴、吊挂重物的立杆等,小车导向机构中的滑块也需固定在底板上。
4.通过计算并确定两齿轮的传动比i,并实现小车驱动轮每行走i个周长长度,转向机构运动实现一个周期,小车也行走一个完整的8字路线。
为了使小车适应不同间距桩,我们采用凸轮机构,控制小车走重叠的8字,使得小车的工作效率更高。
二. 工作原理:当重物下落时,细绳绕过立杆定滑轮带动驱动后轮上面的绕线轮,驱动中间齿轮转动驱动后轮前进,同时通过齿轮啮合传动带动凸轮旋转,带动转向前轮周期性左右转向,从而实现小车在前进过程中自动转向。
这样小车便能在重力势能驱动下沿着“8”形路线前进,并能自动绕过障碍物。
三、设计说明我们可以将小车行走路线简化为余弦曲线和两段圆弧来处理,通过小车的传动比以及驱动轮的大小我们可以计算出该余弦曲线的幅值,可计算出小车的出发点,我们将小车出发位置定在向左转弯的圆弧中点。
我们以绕8字的两个桩位置方向为X轴,在水平面内垂直于X轴为Y 轴方向,通过计算桩间距,障碍物距离,传动比,驱动轮周长可以得出确定曲线方程,通过数学知识我们可以得出小车在出发点的前轮偏向角度(即凸轮角度),偏向角度可以适当调节。
由此我们便可以得出小车出发时垂直摆桩方向的距离以及此时小车前轮的偏向角度,从而确定小车的理论出发位置。
四、设计总结对于大赛给定的命题,重力势能转换为机械能的能量转换原理是设计的重点之一,小车动力传动结构和摩擦传动装置的设计是最重要的部分。
机械设计无碳小车课程设计说明书
目录一、设计任务书 (1)二、总体结构设计 (1)三、总传动比的设计与分配 (2)四、转向轮轴运动参数的计算 (2)五、对轴进行结构设计与校核 (2)七、润滑剂的选择 (2)八、工艺设计方案 (2)九、成本分析方案 (2)十、工程管理方案 (4)十一、徽标设计 (5)十二、参考文献 (6)十三、心得体会 (6)一、设计任务书命题:以重力势能驱动的具有方向控制功能的自行小车功能设计要求:给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。
该自行小车在前行时能够自动避开赛道上设置的障碍物(每间隔1米,放置一个直径20mm、高200mm的弹性障碍圆棒)。
以小车前行距离的远近、以及避开障碍的多少来综合评定成绩。
给定重力势能为5焦耳(取g=10m/s2),竞赛时统一用质量为1Kg 的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差500±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。
要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式。
小车要求采用三轮结构(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自主设计完成。
要求满足:①小车上面要装载一件外形尺寸为¢60×20 mm的实心圆柱型钢制质量块作为载荷,其质量应不小于400克;在小车行走过程中,载荷不允许掉落。
②转向轮最大外径应不小于¢30mm。
二、总体结构设计根据本届大赛命题要求,我们首先确定如下设计思路:1.驱动机构根据能量守恒定律,要尽可能多的利用重物的重力势能,就必须简化结构,因此该系统不设储能装置,直接由重物通过细绳拉动后轴驱动。
2.转向机构控制转向是该小车的核心问题之一,普通凸轮只能控制转向轮规则摆动,在不需要转向的时候小车仍会转向,因此我们在此处将凸轮机构进行了进一步的优化,通过引入“太空豆”控制转向信号,使得前轮在我们需要的时候转向,并以此实现小车的预编程功能。
无碳小车的设计
图 2 自行小车在重力势能作用下自动行走 示意图
求采用三轮结构(1 个转向轮,2 个驱动轮),具体结构造型以及材料选用均由参赛 者自主设计完成。要求满足:①小车上面要装载一件外形尺寸为¢60×20 mm 的实 心圆柱型钢制质量块作为载荷,其质量应不小于 400 克;在小车行走过程中,载荷 不允许掉落。②转向轮最大外径应不小于¢30mm。 二.技术要求 1、1 个转向轮和 2 个驱动轮的设计 2、转向轮控制机构的设计计算; 3、轴的设计; 4、轴承的选择; 5、装配图、零件图的绘制; 6、设计计算说明书的编写; 三.工作要求 1. 学生应当在指导老师指导下完成设计,必须独立完成设计任务,严禁抄袭,一经 发现成绩以不及格计,并给予批评教育各严肃处理. 2. 课程设计期间要严格遵守学习纪律,在此期间缺勤 1/3 以上,成绩以不及格计. 3. 课程设计报告书一律打印在 A4 纸上,同时配上封面装订成册.
3.1 动力的获得.....................................................................................................................................- 3 3.2 传动方案的分析与拟定................................................................................................................- 3 3.3 转向系统........................................................................................................................................- 3 4 齿轮的设计计算.......................................................................................................................................- 4 4.1 选精度等级、材料及齿数............................................................................................................- 4 4.2 按齿面接触强度设计....................................................................................................................- 4 -
无碳小车设计说明书
无碳小车设计说明书为响应“低碳生活”的号召,我们应该节能减排,以优化环境。
作为学生,我们更应践行。
我们通过学习和实践,以及运用机械制造的原理,物理学等等方面的知识,设计了s型的无碳小车.我们对它进行了严密的构思与计算,并结合实际进行了材料与运动的分析。
设计思路1.根据能量守恒定律,物体下落的重力势能直接转化为小车前进的动力,此时能量损失少,所以小车前进的能量来源于重物下落过程中减少的重力势能.2.根据小车功能设计的要求,即小车在前行时能够自动绕开赛场上的障碍物,小车运动的路线需有一定的周期性.考虑到小车在转向时会受到摩擦等阻力的影响,让小车行走最远路程是设计要求的最优解。
3.需要进行结构的设计与成本的分析,同时也需考虑加工工艺的繁琐程度,力求产品的最优设计.小车的原理分析及构架设计1.小车的质量要适中,以此来保证车的稳定性.质量若太大,则会增加阻力。
2.应采取齿轮传动和连杆机构,同步带的精度不高,也可避免传动效率的低下。
3.传动的力与力矩要适中,保证加速度的适中.4.相对运动的精度要保证,以减少摩擦,保证力量的充分利用。
5.S型的路线转弯半径要适中,保证其行程。
6.选择大小适中的轮子,轮子太大,稳步性降低。
7.采用轴承,螺纹连接,用三根圆柱支撑,以此挂系重物,转向时则采用连杆机构。
小车的转向机构转向轮及转向机构如图所示。
转向采用连杆机构传动,转向轮固定在支架上。
当齿轮转动时,带动连杆运动,根据惯性,使转动轮运动方向发生改变。
小车的驱动原理重物的牵引带动栓线轴的转动,以此带动齿轮的转动,通过齿轮的啮合带动驱动轴与齿轮的转动,使驱动轮转动,带动着小车的前进;同时也带动着摇杆的转动,使推杆左右动的同时,前后运动。
在推杆与摇杆之间,有套筒相连,保证其作圆周运动。
杆偏转,使转动轮偏转,根据驱动轮与转动轮的合运动,小车就可以走S型。
栓线处为梯形原动轮.起始时,原动轮的转动半径较大,起动转矩大,有利起动。
其次,起动后,原动轮的半径变小,转速提高,转矩变小,和阻力平衡后作匀速运动.原动轮的半径变小,使总转速比提高。
无碳小车设计说明书
无碳小车设计说明书一、基本构思通过对小车的功能分析小车需要完成重力势能的转换、驱动自身行走、形成固定路线。
在小车行走时尽量较小摩擦,实现能量较大化的转换。
而且需要灵活绕过障碍物。
在选择方案时综合考虑功能、材料、加工、制造成本等各方面因素,同时尽量避免直接决策,减少决策时的主观因素,使得选择的方案能够综合最优。
二、驱动机构1.通过重物自由下落,将重力势能转化为动能,由重物下落带动绕线轮转动,从而实现能量的转换。
2.为了增加下车的稳定性,在设计重物支撑杆时采用了三根杆,这样在小车转弯的时候控制重物左右摆动的角度。
3.在设计绕线轮时综合考虑到,要让小车跑的稳定,能轻松启动,而且跑得更远,设计成一个半径较小的二阶的绕线轮。
4.为了增加美光和方便,将固定线直接套在轴上,这样减小工作量,而且更美观更便捷。
三、传动机构1.重物的下落通过绕线轮(黄色)带动主动轴转动,然后通过二级齿轮(红色)将动力传递到后轮从动轴,从而驱动后轮转动。
2.二级齿轮实现对能量的储存。
四、转向机构(绿)1.转向机构采用偏心轴+曲柄、连杆机构(蓝色)。
U型槽的圆周运动通过连杆转化为曲柄的前后摆动,从而实现小车前轮的摆动。
(具有简单、高效、摩擦力小、能量损耗小的特点)2.还有可以无极可调。
这实现了创新,也非常符合比赛规则。
五、车身及其后轮等其他机构1.将其中的一个后轮变为从动轮,保证了小车的正常运行,而且增加差速,让下车启动更加轻松容易,跑的的也更加稳定。
2.降低了底板的高度,增加了小车的稳定性3.支撑杆支座的设计,采用尼龙,使车身更轻,更加美光。
4.后轮选用亚克力板,在车轮三割去三个圆形快,减轻车身重量,强度达到要求,美观实用。
无碳小车设计说明书
无碳小车设计说明书为响应“低碳生活”的号召,我们应该节能减排,以优化环境。
作为学生,我们更应践行。
我们通过学习和实践,以及运用机械制造的原理,物理学等等方面的知识,设计了s型的无碳小车。
我们对它进行了严密的构思与计算,并结合实际进行了材料与运动的分析。
设计思路1.根据能量守恒定律,物体下落的重力势能直接转化为小车前进的动力,此时能量损失少,所以小车前进的能量来源于重物下落过程中减少的重力势能。
2.根据小车功能设计的要求,即小车在前行时能够自动绕开赛场上的障碍物,小车运动的路线需有一定的周期性。
考虑到小车在转向时会受到摩擦等阻力的影响,让小车行走最远路程是设计要求的最优解。
3.需要进行结构的设计与成本的分析,同时也需考虑加工工艺的繁琐程度,力求产品的最优设计。
小车的原理分析及构架设计1.小车的质量要适中,以此来保证车的稳定性。
质量若太大,则会增加阻力。
2.应采取齿轮传动和连杆机构,同步带的精度不高,也可避免传动效率的低下。
3.传动的力与力矩要适中,保证加速度的适中。
4.相对运动的精度要保证,以减少摩擦,保证力量的充分利用。
5.S型的路线转弯半径要适中,保证其行程。
6.选择大小适中的轮子,轮子太大,稳步性降低。
7.采用轴承,螺纹连接,用三根圆柱支撑,以此挂系重物,转向时则采用连杆机构。
小车的转向机构转向轮及转向机构如图所示。
转向采用连杆机构传动,转向轮固定在支架上。
当齿轮转动时,带动连杆运动,根据惯性,使转动轮运动方向发生改变。
小车的驱动原理重物的牵引带动栓线轴的转动,以此带动齿轮的转动,通过齿轮的啮合带动驱动轴与齿轮的转动,使驱动轮转动,带动着小车的前进;同时也带动着摇杆的转动,使推杆左右动的同时,前后运动。
在推杆与摇杆之间,有套筒相连,保证其作圆周运动。
杆偏转,使转动轮偏转,根据驱动轮与转动轮的合运动,小车就可以走S型。
栓线处为梯形原动轮。
起始时,原动轮的转动半径较大,起动转矩大,有利起动。
其次,起动后,原动轮的半径变小,转速提高,转矩变小,和阻力平衡后作匀速运动。
无碳小车说明书
目录1.摘要 (1)2.引言 (1)3目的 (1)4工作原理和设计理论推导 (1)4.1总体结构 (1)4.2设计方案介绍与计算分析 (2)4.2.1无碳小车模块机构介绍 (3)5. 设计总结 (8)6.附件1.摘要本作品是依据工程训练综合能力竞赛命题主题“无碳小车”,提出一种“无碳”方法,带动小车运行,即给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转化为机械能并用来驱动小车行走的装置。
该小车通过微调装置,能够实现自动走“S"字直线绕障。
此模型最大的特点是通过两个不完全齿轮驱动前轮摆动,进行可调整的周期性摆动,使前轮的摆动节拍具有可调性。
本文将对无碳小车的设计过程,功能结构特点等进行详细介绍,并介绍创新点。
2.引言随着社会科技的发展,人们的生活水平的提高,无碳对于人们来说,显得越来越重要,建设无碳社会,使得生活更加的环保,没有任何的污染。
节能、环保、方便、经济,是现代社会所提倡的。
现在许多发达国家都把无碳技术运用到各个领域,像交通,家具等,这也是我国当今所要求以及努力的方向。
针对目前这一现状,我们设计了无碳小车模型,用重力势能转化为机械能提供了一种全新的思路,以便更好的解决以上问题。
3目的本作品设计的目的是围绕命题主题“无碳小车”,即不利用有碳资源,根据能量转化原理,利用重力势能驱动带动具有方向控制功能的小车模型。
这种模型比较轻巧,结构相对的简单,能够成功的将重力势能转化为小车的动能,从而完成小车前行过程中的所有动作。
4工作原理和设计理论推导4.1总体结构图 1 无碳小车总体结构无碳小车模型的主要机构有驱动机构、转向机构、行走机构及微调机构。
主要部件如下图2所示为小车整体模型。
图 2 无碳小车模型4.2设计方案介绍与计算分析4.2.1无碳小车模块机构介绍1.驱动机构本方案采用绳轮作为驱动力转换机构。
我们采用了梯形轮使能量转化过程中有更合适的转矩使驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
无碳小车设计说明书最新
无碳小车“S”设计说明书学校:贵阳学院设计者:王显令肖着勇邵佳明指导老师:李佳霖石文昌一、设计任务设计一台以1KG砝码重力驱动的三轮小车,在砝码驱动小车行进时,要求小车绕过按一定间距(700~1300mm)摆放的障碍物,并把能量损失降到最低,降低生产成本。
二、机构设计小车要绕过按一定间距摆放的障碍物,前轮必须实现周期性的左右摆动,为降低机构的复杂性,该小车我们采用正弦机构使小车前轮实现周期性对称摆动;运行原理:通过正弦机构上的偏心轴,使用直线轴承将正弦机构的旋转运动转换为顶杆的周期性直线往复运动,在顶杆与前轮导向杆之间使用关节的浮动连接,将顶杆的周期性直线往复运动转换成为导向轮的周期性摆动,从而实现小车的周期性转向功能。
三、传动设计根据设计任务要求,小车要实现持续绕桩的功能,正弦机构与驱动轮之间的传动比要恒定,传动效率要高,结合各种传动方式的优缺点,决定驱动轮与正弦机构之间采用齿轮传动,因为齿轮传动具有瞬时传动比恒定,传动效率高(0.92~0.99)的特点;对砝码重力势能的转换采用线轮传动,由砝码的重力势能驱动二级绕线轮的小轮,再由二级绕线轮的大轮驱动正弦机构的小绕线轮,正弦机构通过齿轮将动力传递给驱动轴,驱动轴与驱动轮之间采取单向轴承驱动实现差速,减低能量损失,使在转向过程中驱动轴的动力周期性的交替传递给驱动轮。
二级绕线轮和正弦机构大齿轮的配合,能实现在保证驱动轴与正弦机构之间传动比不变的情况下更合理地分配整体机构的传动比,从而控制砝码下降中的重力加速度,减小由于砝码与车身撞击产生的能量损失。
四、微调机构设计在小车零件加工和装配过程中,各机构之间的配合尺寸都会产生一定的误差,这些微小的误差会使小车偏离预定的轨迹,并且将一次又一次的进行累加,最终导致小车偏离轨道,因此在小车装配完成后需要至少一个微调装置对机构的配合尺寸进行调节,以实现轨迹对称的要求。
传动机构展开图。
无碳小车说明书
无碳小车设计说明书学院: 行知工学分院班级: 机械132班学生姓名:学号:指导老师:完成时间: 2015 年 6 月 15日1、绪论1、1小车得设计命题设计一种小车,驱动其行走及转向得能量就是根据能量转换原理,由给定重力势能转换来得。
给定重力势能为4焦耳(取g=10m/s2),设计时统一用质量为1Kg得重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许从小车上掉落。
如图1、1所示。
图1、1要求小车行走过程中完成所有动作所需得能量均由此重力势能转换获得,不可使用任何其她得能量来源。
要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物得竞赛场地。
要求小车为三轮结构,具体设计、材料选用及加工制作均由学生自主完成。
1、2小车得整体设计要求小车设计过程需要完成:机械设计、工艺方案设计、经济成本分析与工程管理方案设计。
命题中得工程管理项要求综合考虑材料、加工、制造成本等各方面因素,提出合理得工程计划。
设计能力项要求对参赛作品得设计具有创新性与规范性。
命题中得制造工艺能力项要求综合运用加工制造工艺得知识。
1、3小车得设计方法在小车得设计方法上,我们借鉴了参数化设计、优化设计、系统设计等现代设计发明理论方法。
采用CAXA、SolidWorks2012等辅助软件设计。
2、设计方案2、1尺寸设计由于小车实在平面上运行,转弯半径较小,所以定小车得宽度为150mm,长度为150mm,使其能拥有更佳得灵活性。
如图2、1所示。
图2、12、2最大转角因为小车长为150mm,当绕过最大偏移距离为500mm得圆弧时能得到最大转角,如图3、2所示,即可得最大转角位26、897°、如图2、2所示。
、、图2、2设曲柄长度为10,已知最大转角位26、897°,由图2、3所示可知可得最大偏移距离图2、3偏移距离L=10 /tan(26、897°)=19、71mm2、3后轮直径设计传动机构得功能就是把动力与运动传递到转弯机构与驱动轮上。
8型无碳小车设计说明书
8型无碳小车设计说明书简介本文档为8型无碳小车的设计说明书,描述了该小车的设计概念、功能特点、技术参数以及设计原理等内容。
设计概念8型无碳小车是一款注重环保和可持续发展的智能交通工具。
通过使用无碳能源,例如电动驱动系统和太阳能充电系统,减少对传统燃油的依赖,并且降低了对环境的污染。
同时,该小车还拥有简洁、时尚的外观设计,提供舒适、安全的乘坐体验。
功能特点1.环保节能:采用电动驱动系统,减少对燃油的依赖,无废气排放。
2.太阳能充电:配备太阳能充电系统,可以通过太阳能进行充电,提高能源利用效率。
3.智能导航:配备智能导航系统,提供准确的导航信息,优化行驶路线,减少能源浪费。
4.安全性能:采用高强度车身结构,具有较高的抗冲击性能,保护乘员的安全。
5.舒适乘坐体验:提供宽敞舒适的座椅和乘坐空间,享受愉快的驾驶体验。
技术参数参数值尺寸4000mm x 1500mm x 1800mm车重800kg最高时速80km/h续航里程300km电池容量30kWh充电时间6小时最大载重量300kg功率50kW驱动方式后轮驱动制动系统四轮盘式刹车内饰材质环保材料能源类型电能、太阳能驾驶员座椅数量1乘员座椅数量2设计原理1. 电动驱动系统8型无碳小车采用电动驱动系统,由电动机、电池和控制器组成。
电动机负责将电能转化为机械能,提供动力驱动车辆前进。
电池负责存储电能,供电给电动机使用。
控制器负责控制电动机的运行状态,调节电能的分配和使用。
2. 太阳能充电系统为了提高能源利用效率,8型无碳小车配备了太阳能充电系统。
该系统由太阳能电池板、电控设备和储能装置组成。
太阳能电池板负责将太阳能转化为电能,电控设备负责控制电能流入储能装置进行存储。
通过太阳能充电系统,可以在太阳光充足的情况下,充电小车的电池,提高续航里程。
3. 智能导航系统8型无碳小车配备智能导航系统,通过与卫星导航系统(如GPS)的连接,提供精准的导航信息。
该系统能够根据交通状况和实时路况,优化行驶路线,减少能源的浪费。
无碳小车课程设计项目说明
1. 设计命题:以重力势能驱动的具有方向控制功能的自行小车给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并以此驱动小车行走的装置。
要求小车行走过程中完成所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量来源。
给定重力势能为4焦耳(取g=10m/s2),竞赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。
小车要求具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。
要求小车为三轮结构。
图1:无碳小车示意图(1)直行小车竞赛小车在前行时能够自动避开赛道上设置的障碍物。
障碍物为直径20mm、高200mm的多个圆棒,沿直线等距离摆放,距离可在900mm-1100mm之间调节。
图2:无碳小车在重力势能作用下自动行走示意图(2)台上环绕小车小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。
障碍物为直径20mm、长200mm的2个圆棒,相距300mm-500mm放置在半张标准乒乓球台的中。
如下图图3:竞赛项目二所用乒乓球台及障碍设置图2. 报告要求要求提交结构设计报告,以以下标准评分:(1)完整性要求:小车装配图1幅(A4纸1页),设计说明书1-2页(A4)(2)正确性要求:传动原理与机构设计正确,选材和工艺合理;(3)创新性要求:有独立见解及创新设计思想;(4)规范性要求:图纸表达完整,标注正确;文字描述准确、清晰。
1。
无碳小车产品设计说明书
机械创新设计大赛及工程训练综合能力竞赛培训课程无碳小车设计说明书设计小组:陈博洋、孟祥楠、赵雪融指导老师:罗阳无碳小车产品设计说明书产品名称:重力驱动式无碳小车设计团队:小组成员:陈博洋孟祥楠赵雪融指导老师:罗阳一.设计思想:驱动方面,我们想到了利用飞轮驱动,飞轮转动惯量大,结构简单,通常作为能量储存器使用。
与此同时,飞轮的储能与释能波动较小,这样可以使小车速度平稳。
转向方面,我们利用之前学过的曲柄摇杆机构控制小车自动转向。
二.工作原理:主要构件如下图所示,包括驱动后轮、传动齿轮、深沟球轴承、连杆、转向“摇杆”和转向前轮。
当重物下落时,细绳绕过立杆定滑轮带动驱动后轮上面的绕线轮,驱动中间小齿轮转动驱动后轮前进,同时通过齿轮啮合传动带动曲柄齿轮旋转,通过连杆传动推拉转向“摇杆”带动转向前轮周期性左右转向,从而实现小车在前进过程中自动转向。
这样小车便能在重力势能驱动下沿着“S”形路线前进,并能自动绕过障碍物。
1)驱动机构原理:主要包括绕线轮、驱动后轮和传动齿轮在重物下落时,通过绕在绕线轮上的细线带动齿轮旋转,齿轮旋转驱动后轮转动,小车便向前行进。
当重物完全下落后,小车靠飞轮储存的能量继续前进,直到能量通过车轮摩擦耗散完停止。
小车在前进过程中,通过固定在轴上的齿轮旋转从而带动前方的“曲柄”齿轮旋转,通过连杆和转向机构连接。
齿轮传动的一个主要作用是通过小轮带大轮实现固定传动比增速和减速,从而使驱动机构和转向机构协调配合。
2)转向机构原理:主要包括“曲柄”齿轮、连杆、转向“摇杆”和转向前轮原理是利用“曲柄摇杆机构”的原理,其中“曲柄”齿轮、转向“摇杆”分别是该曲柄摇杆机构的曲柄和摇杆。
图6三.设计组图:(1)、UG三维立体组图:(2)、CAD整体图:。
无碳小车说明书
无碳小车设计说明书机制八班(100%)2014.7.71.工作原理给定1kg的重块在400mm的高度落下来,由重力势能转化成小车前进的动能,同时利用转向装置实现小车按8字形曲线(近似看作)绕桩前进,桩距500mm。
当重物下落时,其所带的绳子带动绕线轴转动,带动与绕线轴同轴的主动齿轮Z1与大带轮d1转动,Z1又带动前面的与前轮同轴的从动齿轮Z2转动,驱动小车前进。
大带轮通过带传动带动小带轮转动引起凸轮转动推动连杆使小车前轮发生偏转从而改变小车运行方向构成转向机构。
机构运动简图如下所示2.行程放大小车绕一个8字的近似路程S=2π*500=3142mm,绕20个8字S总=20S=62840,取64000初步设计小车车轮直径100mm小车绕一圈8字车轮转过圈数n轮=S/(πD)=10行程放大系数u=64000/400=160S总=n轮πD=n绕*i*πD=L*i*D/D绕i/D绕=8/5,取i=8,D绕=5mm小车驱动转矩M=1*10*2.5=25N/mm通过网络可以查知一般情况下滚动摩擦系数u<0.01,小车整体质量小于3KG,阻力转矩M阻=30*50*0.01=15<M所以正常状态下物块能驱动小车行进3.转向机构的设计如图所示为小车的绕行轨迹,其中加粗部分为主动轮的轨迹使用单轮驱动,小车运动时前轮偏转角为Θ如图所示,cosα=cos(兀/2_Θ)=sinΘ=0.4Θ=23.58使用凸轮机构,设实际轨迹为240°的大圆弧则S1=4兀/3×6×5=40兀左边为270°S2=6兀/4×4×5=30兀如图导杆机构令l2=5mm则计算可得l1=11.5mm令在凸轮大端推动推杆时小车的主动轮在大圆上运动,可设计如图所示凸轮Θ1=s1/s总×360°=144°Θ2=s2/s总×360°=108°传动比i2的计算由已知可知道凸轮绕一圈小车绕一个8字,车轮绕10圈n凸/n轮=1:10n凸/n绕=n凸/(n轮/8)=4:5无碳小车示意图。
无碳小车设计机械设计课程设计说明书
无碳小车设计机械设计课程设计说明书1. 引言本课程设计旨在通过机械设计的方式,设计一款无碳小车,以减少对环境的污染和消耗。
本文档将详细介绍无碳小车的设计背景、设计目标、设计原则和设计方法。
2. 设计背景随着全球环境问题的日益严重,减少碳排放已成为全球范围内的热门话题。
传统的汽车使用化石燃料,会产生大量的二氧化碳排放,对空气质量和气候变化产生不良影响。
为了减少对环境的负面影响,无碳小车设计应运而生。
3. 设计目标本课程设计的主要目标是设计一款无碳小车,具体目标包括: - 实现零碳排放,不使用化石燃料或其它能源; - 具备足够的运行时间和里程,以满足日常出行需求; - 车辆结构紧凑,便于停放和携带; - 提供舒适的乘坐体验和便捷的操作方式;- 造价低廉,易于生产和维护。
4. 设计原则在设计无碳小车时,应遵循以下原则: - 绿色环保:选择环保材料和可再生能源来实现零碳排放; - 轻量化设计:减少车辆重量,降低能耗; - 紧凑型设计:优化车辆结构,使其紧凑易携带; - 智能化设计:引入智能控制系统,提高车辆的性能和安全性; - 成本优化:设计时要兼顾制造和维护成本,降低用户购买和使用成本。
5. 设计方法无碳小车的设计可以通过以下步骤来完成:5.1 确定车辆类型和用途根据市场需求和用户需求,确定无碳小车的类型和用途,例如城市代步车、短途出行车、商务巴士等。
5.2 材料选择选择符合绿色环保要求的材料,例如轻质高强度的复合材料,可再生材料等。
5.3 车辆结构设计根据车辆类型和用途,设计合理的车身结构、底盘结构和悬挂系统,以确保车辆性能和舒适性的要求。
5.4 驱动系统设计设计无碳小车的驱动系统,可以使用电动机、太阳能电池等能源,提高车辆的效能和续航能力。
5.5 控制系统设计引入智能控制系统,通过传感器和算法优化车辆的性能和安全性,例如自动驾驶、智能节能等功能。
5.6 辅助设备设计除了核心的车辆设计,还可以设计一些辅助设备,例如充电桩、车辆定位系统等,提供便捷的使用体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械设计课程设计
计算说明书
题目。
专业班级。
学号。
学生姓名。
指导教师。
年。
月。
日
机械设计课程设计任务书
学生姓名。
专业班级。
班学号。
指导教师。
职称教研室。
题目无碳小车设计
方案与要求
“无碳小车”以重力势能驱动的具有方向控制功能的自行小车。
功能设计要求是给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置如上图所示。
小车在前行时能够在半张标准乒乓球台(长1525mm、宽1370mm)上,绕两个障碍物按“8”字形轨迹运行。
障碍物为直径20mm|、长200mm的2个圆棒,相距一定距离放置在半张标准乒乓球台的中线上,以小车完成8字绕行圈数的多少来评定成绩。
给定重力势能为5焦耳(取g=10m/s2),竞赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。
要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式。
小车要求采用三轮结构(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自主设计完成。
要求满足:①小车上面要装载一件外形尺寸为Φ60×20 mm的实心圆柱型钢制质量块作为载荷,其质量应不小于400克;在小车
行走过程中,载荷不允许掉落。
②转向轮最大外径应不小于Φ30mm。
要求完成:
1.装配图1张(A2)。
2.零件工作图2张(齿轮和轴两个零件)。
3.设计说明书1份,6000-8000字。
开始日期2014 年12 月15日完成日期2015 年01 月02 日
2014年11 月20 日
目录
计算与说明 0
1.设计任务书 (2)
1.1设计题目 (2)
1.2原始数据 (2)
1.3工作条件 (2)
1.4动力来源 (2)
1.5传动方案 (2)
2.传动比的分配 (3)
2.1总传动比的分配 (3)
2.2减速器传动比 (5)
3.传动装置的运动和动力参数计算 (6)
3.1 各轴转速的计算 (6)
3.2各轴输入功率 (7)
3.3各轴输入转矩 (7)
4.转向设计 (8)
4.1 选定转向装置 (8)
4.2 确定转向装置的基本参数 (8)
5.齿轮的设计 (10)
5.1设计计算一级齿轮 (11)
5.1.1选择齿轮类型、精度等级、材料及齿数 (11)
5.1.2按齿面接触强度设计 (11)
5.1.3按齿根弯曲疲劳强度设计 (13)
5.2设计计算一级齿轮 (19)
5.2.1选择齿轮类型、精度等级、材料及齿数 (19)
5.2.2按齿面接触强度设计 (19)
5.2.3按齿根弯曲疲劳强度设计 (22)
6.轴的结构设计 (26)
6.1按扭转强度条件计算 (26)
6.2按弯扭合成强度条件计算 (29)
6.3轴的扭转刚度校核计算 (35)
7.键连接的选择及校核计算 (37)
7.1平键连接强度计算 (37)
8 轴承的选择 (39)
9润滑方式选择 (40)
9.1齿轮的润滑 (40)
9.2轴承的润滑 (40)
10注意装配事项 (42)
10.1轴的装配 (42)
10.2齿轮的装配 (42)
10.3转向杆的装配 (42)
11设计小结 (44)
12参考文献 (45)
图1-1 小车扫描轨迹
根据图1-1和圆的周长公式,我们可以大致确定出小车所要走过的路径,
根据公式:
d l π=..........................................................................................①
将数据代入公式中可得:
mm l 1257=
由于小车要走过的距离为两个圆的周长,所以小车要走过的距离为
mm l 25142=
而绳子所下降的距离为400mm.
根据摩擦理论可知:摩擦力矩和正压力的关系为:
σ⨯=N M .................................................................................② 而滚动摩擦所受的阻力为:
R N R M f σ
⋅==
.............................................................................③
根据上述公式我们可以初步判定我们无碳小车的设计原则,即小车质量要轻,轮体直径应尽可能的大。
初步计算时,为了方便计算,我们初步取得轮子直径为100mm,但是在绘图的过程中发现无法安装转向机构,所以后初步设计直径为150mm 。
小车至少要完整的走过一圈的距离,所以车轮要转动的圈数为:
支撑架转向机构摆杆滑杆
连杆
对轴B :
)8(6114
352.010
5619.4955000033
mm mm d 取=⨯⨯⨯⨯≥-
对轴C :
)8(6114
352.010
5619.4955000033
mm mm d 取=⨯⨯⨯⨯≥-
6.2按弯扭合成强度条件计算
通过轴的结构设计,轴的主要结构尺寸、轴上零件的位置、以及外载荷和支
反力的作用位置均已确定,轴上的载荷(弯矩和扭矩)已可以求得,因而可
按弯扭合成强度条件对轴进行强度校核计算。
一般的轴使用这种方法计算即可。
其计算步骤如下:
(1)作出轴的计算简图(即力学模型): 对轴A :
轴A 的计算简图
mm d 875.04= s
m v 026.0=
mm b 3525.4=
mm h 152.1=
778.3==h b
01.1=v K
N
F t 044.1524=
mm
N b F K t A 1004<1.1=αF K 417.1=βH K 6.1=βF K
7776.1=F K
m
N
T⋅
=8377
.0
1
)
104
(
2125
.
104
10
16
7.
837
2
2
3
1
1
N
N
N
D
T
F取
=
⨯
⨯
=
=
-
)
(
)
(
=
=
F
M
F
M
V
U
13
.0
085
.0
13
.0
045
.0
1
3
2
3
=
-
=
+
-
F
F
F
F
解得。
N
F
N
F68
,
36
1
2
=
=
对轴B:
轴B的计算简图
m
N
T⋅
=5023
.1
2
)
94
(
89
.
93
10
32
3.
1502
2
2
3
2
2
2
N
N
N
D
T
F取
=
⨯
⨯
=
=
-
)
(
)
(
=
=
F
M
F
M
V
U
13
.0
085
.0
13
.0
045
.0
1
3
2
3
=
-
=
+
-
F
F
F
F
解得。
N
F
N
F46
.
61
,
54
.
32
1
2
=
=
对轴C:
568
.0
=
m
23
4
=
z
47
3
=
z
轴C 的计算简图
m N T ⋅=5023.13
)218(725.217108.133
.1502223
333N N N D T F 取=⨯⨯==
- 0)(0)(==F M F M V U 002.002.004.00
04.006.002.0421243=-+-=+--F F F F F F
解得。
N F N F 8625.58,8625.25812==
(1)做出弯矩图,扭矩图: 对轴A :
mm b 144= mm b b 9.63==
轴A的弯矩图扭矩图
由图可知,m
N
mm
N
T
mm
N
M⋅
=
⋅
=
⋅
=7.
837
8377
.0
,
30
max
max
对轴B:
轴B的弯矩图扭矩图
由图可知,m
N
T
mm
N
M⋅
=
⋅
=3.
1502
,
9.
2765
max
max。