苏科版七年级下册证明压轴题

合集下载

期末必刷题(压轴题,10种题型)—2023-2024学年七年级数学下学期期末(苏科版)(解析版)

期末必刷题(压轴题,10种题型)—2023-2024学年七年级数学下学期期末(苏科版)(解析版)

期末必刷题(压轴题,35题10种题型)【考试题型1】二元一次方程组的应用1.(23-24八年级上·四川成都·期末)“沉睡数千年,一醒惊天下”,三星堆遗址出土的文物再现了古蜀文明的辉煌景象.某校组织师生共480人开展三星堆博物馆研学活动.该校计划向运输公司租用A,B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则还有15人没有座位.(1)求A,B两种车型各有多少个座位?(2)若要求租用的每辆客车都坐满,那么共有多少种租车方案?并列出所有的租车方案.2.(23-24七年级上·四川成都·期末)一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)该市政府决定甲、乙、丙三种车型至少两种车型参与运送,己知它们的总辆数为18辆,请通过列方程组的方法分别求出三种车型的数量.【答案】(1)需甲车型8辆,需车型10辆;(2)方案一:甲车型12辆,乙车型0辆,丙车型6辆;方案二:甲车型10辆,乙车型5辆,丙车型3辆;方案三:甲车型8辆,乙车型10辆,丙车型0辆.【分析】本题考查了二元一次方程组和三元一次方程的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.(1)设需甲车x辆,乙车y辆,根据运费600元,总吨数是120,列出方程组,再进行求解即可;(2)设甲车有x辆,乙车有y辆,则丙车有z辆,列出等式,再根据x、y、z均为非负整数,求出x,y,z 的值,从而得出答案.【详解】(1)解:设需甲车型x辆,乙车型y辆,根据题意,得:{5x+8y=120300x+400y=6400,解得:{x=8y=10,答:需甲车型8辆,需车型10辆;(2)解:甲车型x辆,乙车型y辆,丙车型z辆,根据题意,得:{x+y+z=185x+8y+10z=120,消去z得5x+2y=60,∴x=12−25y,因x,y是非负整数,且不大于18,得y=0,5,10,15,则x=12,10,8,6;又z是非负整数,解得z=6,3,0,∴{x=12y=0z=6或{x=10y=5z=3或{x=8y=10z=0,∴共有三种运送方案:方案一:甲车型12辆,乙车型0辆,丙车型6辆;方案二:甲车型10辆,乙车型5辆,丙车型3辆;方案三:甲车型8辆,乙车型10辆,丙车型0辆.3.(23-24八年级上·山东青岛·期末)“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,也是营造文明城市,做文明市民的重要标准,电动自行车驾驶人和乘坐人员应当戴安全头盔.某商场欲购进一批安全头盔,已知购进2个甲种型号头盔和5个乙种型号头盔需要390元;购进4个甲种型号头盔和3个乙种型号头盔需要360元.(1)甲,乙两种型号头盔的进货单价分别是多少?(2)若该商场分别以55元/个、80元/个的价格销售完甲,乙两种型号的头盔共200个,请写出销售收入Q (元)与销售的甲种型号头盔的数量m (个)之间的函数关系式;(3)在(2)的条件下,商场销售该批头盔的利润能否为3150元?若能,请写出相应的采购方案;若不能,请说明理由.【答案】(1)甲,乙两种型号头盔的进货单价分别45元和60元 (2)Q 与m 之间的函数关系式为Q =−25m +16000 (3)能,采购甲,乙两种型号头盔分别为85个和115个【分析】本题考查了二元一次方程组的应用,一次函数的应用,根据题意,找到等量关系,列出方程组和函数关系式是解题的关键.(1)设甲,乙两种型号头盔的进货单价分别是x 元和y 元,根据题意列二元一次方程组并求解即可; (2)根据销售收入=售价×数量,分别计算甲、乙两种型号的头盔销售收入并求和即为Q ;(3)根据销售利润=(售价−进价)×数量,分别计算甲、乙两种型号的头盔销售利润并求和就是总的销售利润,令其值为3150,若解得的值符合题意,说明商场销售该批头盔的利润可以达到元,并求出此时(200−m )的值,否则,则不能.【详解】(1)解:设甲,乙两种型号头盔的进货单价分别是x 元和y 元. 根据题意,得{2x +5y =3904x +3y =360 ,解得{x =45y =60 ,∴甲,乙两种型号头盔的进货单价分别45元和60元; (2)销售的乙种型号头盔的数量为(200−m )个, 根据题意,得Q =55m +80(200−m )=−25m +16000, ∴ Q 与m 之间的函数关系式为Q =−25m +16000; (3)能.采购方案如下:设商场销售该批头盔的利润为w 元,则w =(55−45)m +(80−60)(200−m )=−10m +4000, 当w =3150时,−10m +4000=3150, 解得:m =85,200−m=200−85=115(个),∴当采购甲,乙两种型号头盔分别为85个和115个.4.(23-24八年级上·山东枣庄·期末)第19届杭州亚运会2023年10月8日闭幕了,在亚运会期间某经销商销售带有“琮琮”吉祥物标志的甲、乙两种纪念品很畅销,该经销商用12400元一次性购进了甲、乙两种纪念品共200件.已知甲、乙两种纪念品的进价和售价如表:(1)该经销商一次性购进甲、乙两种纪念品各多少件?(2)在杭州亚运会开幕式当天销售完全部纪念品,则可获得利润为多少元?【答案】(1)甲种纪念品80件,乙种纪念品120件(2)6400元【分析】本题考查二元一次方程组的应用.找准等量关系,正确的列出方程组和代数式,是解题的关键.(1)该经销商一次性购进甲种纪念品各x件,乙种纪念品各y件,利用进货总价=进货单价×进货数量,结合该经销商用12400元一次性购进了甲、乙两种纪念品共200件,列二元一次方程组,解之即可得出结论;(2)利用总利润=每件销售利润×销售数量(进货数量),即可得出结论;【详解】(1)设该经销商一次性购进甲种纪念品各x件,乙种纪念品各y件,根据题意得:{x+y=20050x+70y=12400,解得:{x=80y=120答:该经销商一次性购进甲种纪念品80件,乙种纪念品120件;(2)甲种纪念品每件利润为(100−50)元,乙种纪念品每件利润为(90−70)元,根据题意得:(100−50)×80+(90−70)×120=50×80+20×120=4000+2400=6400(元)答:可获得利润为6400元.5.(23-24七年级上·福建厦门·期末)请你观察下列几种简单多面体模型,解答下列问题:(1)计算长方体棱数,可依据长方体有6个面,每个面均为四边形即有4条棱,得出总棱数为12;请你猜想多面体面数、形状、棱长之间的数量关系,完成以下计算:①如图所示,正八面体的每一个面都是三角形,则正八面体有__________条棱;②正十二面体的每一个面都是正五边形,则它共有__________条棱;(2)如下图,一种足球(可视作简单32面多面体)是由32块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长相等,已知图中足球有90条棱;某体育公司采购630张牛皮用于生产这种足球,已知一张牛皮可用于制作30个正五边形或者制作20个正六边形,要使裁剪后的五边形和六边形恰好配套,应怎样计划用料才能制作尽可能多的足球?【答案】(1)12;30(2)用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张.【分析】本题考查了几何体中点、棱、面之间的关系以及二元一次方程组的应用与整除问题,解题的关键是审清题意.(1)根据每一个面有三条棱,每二个面共用一条棱即可求解,即:棱数=面数×3÷2.(2)设一个足球有黑皮x块,白皮y块,根据二个面共用一条棱,结合题意可列方程组,求得每个足球黑皮块数与白皮块数;然后再设用于制作正五边形的需要m张,用于制作正六边形的需要n张,依据题意建立方程组,求得m与n的最大整数值,并检验是否符合题意即可得到答案.【详解】(1)解:①正八面体的每一个面都是三角形,则每一个面有三条棱,故八个面共有8×3=24条棱,但每两个面共用一条棱,因此正八面体棱数是:24÷2=12(条).②根据①的思路可知,正十二面体共有棱数:12×52=30(条).故答案为:12;30.(2)设一个足球有黑皮x 块,白皮y 块,根据题意得: {5x +6y =90×2x +y =32,解得:{x =12y =20设630张牛皮中,用于制作正五边形的需要m 张,用于制作正六边形的需要n 张,依据题意得:{m +n ≤63030m 12=20n 20,解得:{m ≤180n ≤450(m 、n 为整数)m 、n 取最大的整数并经过检验知,m =180,n =450正好符合题意, ∴最多制作20n20=450(个)足球,且正好将630张牛皮全部用完.答:用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张. 【考试题型2】一元一次不等式(组)的应用 6.(23-24八年级上·浙江湖州·期末)【问题背景】小明所在的班级开展知识竞赛,需要去商店购买A 、B 两种款式的盲盒作为奖品.B 款【问题解决】(1)某商店在无促销活动时,求A 款盲盒和B 款盲盒的销售单价各是多少元?(2)小明计划在促销期间购买A 、B 两款盲盒共40个,其中A 款盲盒m 个(0<m <40),若在线下商店购买,共需要______元;若在线上淘宝店购买,共需要______元.(均用含m 的代数式表示)请你帮小明算一算,购买A 款盲盒的数量在什么范围内时,线下购买方式更合算?【答案】(1)某商店在无促销活动时,A 款盲盒销售单价为10元,B 款单价销售单价为8元(2)(1.6m +291),(1.8m +288);当购买A 款盲盒的数量超过15个且少于40个时,线下购买方式更合算 【分析】本题考查了二元一次方程组的应用,整式加减的应用,一元一次不等式的应用;(1)设A 款盲盒销售单价为x 元,B 款盲盒销售的单价为y 元,根据题意列出二元一次方程组,解方程,即可求解;(2)根据题意列出线下购买的费用的代数式和线上淘宝购买费用的代数式,即可求解;结合题意,列出一元一次不等式,解不等式,即可求解.【详解】(1)解:设某商店在无促销活动时,A 款盲盒销售单价为x 元,B 款盲盒销售的单价为y 元, 由题意得,{15x +10y =23025x +25y =450,解得{x =10y =8答:某商店在无促销活动时,A 款盲盒销售单价为10元,B 款单价销售单价为8元;(2)解:依题意,若在线下商店购买,共需要35+0.8×10m +0.8×8×(40−m )=1.6m +291(元) 若在线上淘宝店购买,共需要0.9×10m +0.9×8×(40−m )=1.8m +288(元) 当1.6m +291<1.8m +288 解得m >15, ∴15<m <40;答:当购买A 款盲盒的数量超过15个且少于40个时,线下购买方式更合算.7.(23-24七年级上·浙江杭州·期末)某校课后服务开设足球训练营,需要采购一批足球运动装备,市场调查发现每套队服比每个足球多60元,三套队服与五个足球的费用相等 (1)求足球的单价.(2)该训练营需要购买30套队服和y (y >10)个足球,甲、乙两商家以同样的价格出售所需商品,各自优惠方案不同:①按照以上方案到甲、乙商家购买装备各需费用多少?(用含有y 的代数式分别表示). ②请比较到哪个商家购买比较合算? 【答案】(1)足球的单价为90元;(2)①到甲商家购买装备所需费用:(4230+90y )元, 到乙商家购买装备所需费用:(4500+72y )元;② 当训练营需要购买30套队服和15个足球时,在甲乙两个商家所需费用一样多, 当训练营需要购买30套队服和超过15个足球时,在乙商家购买较合算, 当训练营需要购买30套队服和购买足球超过10个而不足15个时,在甲商家购买较合算.【分析】本题考查了一元一次方程的应用,一元一次不等式的应用,列代数式的应用,以及最优购物问题,找出题目中的等量关系是解题的关键.(1)设足球的单价为x元,则队服的单价为(x+60)元,根据题意“三套队服与五个足球的费用相等”,可得到等量关系,列方程求解即可;(2)①购买装备所需费用=买队服的费用+买足球的费用,用含有y的代数式表示即可;②由①中的结论,先求出当甲商家的消费=乙商家的消费时,再分情况比较哪个商家购买较合算.【详解】(1)解:设足球的单价为x元,则队服的单价为(x+60)元,根据题意得,3(x+60)=5x,解得x=90,答:足球的单价为90元;(2)①由(1)得足球的单价为90元,则队服的单价为90+60=150元,到甲商家购买装备所需费用:150×30+90(y−3)=4230+90y,到乙商家购买装备所需费用:150×30+90×80%y=4500+72y;②当甲商家的消费=乙商家的消费时,即4230+90y=4500+72y,解得y=15,∴当训练营需要购买30套队服和15个足球时,在甲乙两个商家所需费用一样多,当甲商家的消费>乙商家的消费时,即4230+90y>4500+72y,解得y>15,∴当训练营需要购买30套队服和超过15个足球时,在乙商家购买较合算,当甲商家的消费<乙商家的消费时,即4230+90y<4500+72y,解得y<15,又∵y>10,∴当训练营需要购买30套队服和购买足球超过10个而不足15个时,在甲商家购买较合算.8.(23-24八年级上·浙江绍兴·期末)嵊州是香榧的盛产地之一,某榧农与某快递公司合作寄送香榧.素材1:素材2:问题解决:【答案】(1)y=6x−28(x>10);(2)最省寄送费用是94元;(3)小红最多可以购买96kg香榧,寄送方式为9件10kg,1件6kg.【分析】本题考查一元一次方程和一元一次不等式的应用,根据题意列出方程或不等式求解是解题的关键.任务1:利用电子存单2或3的总费用和计量重量列出方程求出m,从而得解;任务2:根据总计量重量是25千克,设计方案求出总费用,比较大小即可;任务3:要尽可能的多寄送,则应该多寄10千克一件的,也就是一件少于10千克的,其余都是10千克,或者也就是一件10−20千克的,其余都是10千克,设小红购买的香榧一共分y件不超过10kg的寄送方式,根据总费用不超过8000元列出不等式,求出y的取值范围,继而求出y的最大值,计算购买9件10千克的香榧剩余的钱或8件10千克的香榧剩余的钱,再根据剩余的钱计算剩余的寄送的重量,从而得解.【详解】任务1:由电子存单2可得:m(12−10)+32=44,解得:m=6,∴香榧重量超过10千克时寄送费用y(元)关于香榧重量x(千克)之间的函数关系式为:y=6(x−10)+32= 6x−28(x>10)任务2:若单件寄送,则需寄费y=6×25−28=122元,若分两件寄送,则可使得每件都不少于10千克,例如一件10千克,一件15千克,需寄费32+15×6−28=94元,若分三件寄送,则可使得三件都少于10千克,,则需寄费32×3=96元,∴94<96<122,最省寄送费用是94元.任务3:∵前10千克的快递费是3.2元/千克,超过10千克的部分是6元/千克,∴设小红购买的香榧一共分y件10kg的寄送方式,由题意得,80×10y+32y≤8000,,解得y≤12513又∵y是正整数,∴y最大值为9,∴还剩下8000−80×10×9−32×9=512元,∵512=80×6+32∴9件10kg,余下的钱刚好能再购买并寄送6kg,故共可寄送96kg.若8件10kg的寄送的寄费为80×10×8+32×8=6656元,15×6−28+15×80=1262,6656+1262=7918<8000,16×6−28+16×80=1348,6656+1348=8004>8000,此时最多可寄送95kg.∴最省钱的寄送方式应该是9件不超过10kg的寄送,一件6kg寄送,∴小红最多可以购买10×9+6=96kg香榧,寄送方式为9件10kg,1件6kg.9.(23-24八年级上·浙江宁波·期末)随着梦天实验舱的顺利发射,我国空间站完成了在轨组装,为了庆祝这令人激动的时刻,某校开展了关于空间站的科学知识问答竞赛.为了奖励在竞赛中表现优异的学生,学校准备一次性购买A,B两种航天器模型作为奖品.已知购买1个A模型和1个B模型共需159元;购买3个A模型和2个B模型共需374元.(1)求A模型和B模型的单价.(2)根据学校的实际情况,需一次性购买A模型和B模型共20个,但要求购买A模型的数量多于12个,且不超过B模型的3倍.请你给出一种费用最少的方案,并求出该方案所需的费用.【答案】(1)56元,103元;(2)购买A模型15个,B模型5个,费用最少,该方案所需的费用为1355元.【分析】(1)设1个A模型的价格为x元,1个B模型的价格为y元,根据“购买1个A模型和1个B模型共需159元;购买3个A模型和2个B模型共需374元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买A模型m个,则购买B模型(20-m)个,根据“购买A模型的数量多于12个,且不超过B模型的3倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各购买方案,利用总价=单价×数量可求出各方案所需费用,比较后即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.【详解】(1)解:设1个A模型的价格为x元,1个B模型的价格为y元,依题意得:{x+y=1593x+2y=374,解得:{x=56y=103.答:1个A模型的价格为56元,1个B模型的价格为103元.(2)设购买A模型m个,则购买B模型(20−m)个,依题意得:{m>12m≤3(20−m),解得:12<m≤15.又∵m为整数,∴m可以为13,14,15,∴共有3种购买方案,方案1:购买A模型13个,B模型7个,所需费用为56×13+103×7=728+721=1449(元);方案2:购买A模型14个,B模型6个,所需费用为56×14+103×6=784+618=1402(元);方案3:购买A模型15个,B模型5个,所需费用为56×15+103×5=840+515=1355(元).∵1449>1402>1355,∴方案3购买A模型15个,B模型5个费用最少,最少费用为1355元.10.(23-24九年级上·湖南邵阳·期末)某商场同时采购了A,B两种品牌的运动装,第一次采购A品牌运动装10件,B品牌运动装30件,采购费用为8600元;第二次只采购了B品牌运动装50件,采购费用为11000元.(1)求A ,B 两种品牌运动装的采购单价分别为多少元每件?(2)商家通过一段时间的营销后发现,B 品牌运动装的销售明显比A 品牌好,商家决定采购一批运动装,要求:①采购B 品牌运动装的数量是A 品牌运动装的2倍多10件,且A 品牌的采购数量不低于18件;②采购两种品牌运动装的总费用不超过15000元,请问该商家有哪几种采购方案?【答案】(1)A 种品牌运动装的采购单价为200元每件,B 种品牌运动装的采购单价为220元每件; (2)该商家共有3种采购方案,方案1:A 种品牌运动装采购18件,B 种品牌运动装采购46件; 方案2:A 种品牌运动装采购19件,B 种品牌运动装采购48件; 方案3:A 种品牌运动装采购20件,B 种品牌运动装采购50件.【分析】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键.(1)设A 种品牌运动装的采购单价为x 元每件,B 种品牌运动装的采购单价为y 元每件,根据题意列出二元一次方程组求解即可;(2)设A 种品牌运动装采购m 件,则B 种品牌运动装采购(2m +10)件,根据题意列出一元一次不等式组求解即可.【详解】(1)设A 种品牌运动装的采购单价为x 元每件,B 种品牌运动装的采购单价为y 元每件.根据题意,得:{10x +30y =860050y =11000,解得{x =200y =220答:A 种品牌运动装的采购单价为200元每件,B 种品牌运动装的采购单价为220元每件. (2)设A 种品牌运动装采购m 件,则B 种品牌运动装采购(2m +10)件. 根据题意,得:{200m +220(2m +10)≤15000m ≥18解得18≤m ≤20又∵m 为整数,m =18,19,20. ∴该商家共有3种采购方案,方案1:A 种品牌运动装采购18件,B 种品牌运动装采购46件; 方案2:A 种品牌运动装采购19件,B 种品牌运动装采购48件; 方案3:A 种品牌运动装采购20件,B 种品牌运动装采购50件.【考试题型3】由不等式组的解集求参数11.(22-23七年级下·湖南长沙·期末)已知关于x的不等式组{x+1>mx−1≤n(1)若上不等式组的解集与不等式组{1−2x<53x−12≤4的解集相同,求m+n的值;(2)当m=−1时,若上不等式组有4个非负整数解,求n的取值范围.【答案】(1)1(2)2≤n<3【分析】(1)分别求出不等式组{1−2x<53x−12≤4和不等式组{x+1>mx−1≤n的解,再根据两个不等式组的解集相同,即可得出m=−1,n=2,从而得出答案;(2)把不等式组{x+1>mx−1≤n的解集表示出来,根据4个非负整数解即可求出n的取值范围.【详解】(1)解:{x+1>m①x−1≤n②,解不等式①得,x>m−1,解不等式②得,x≤n+1,∴不等式组{x+1>mx−1≤n的解为:m−1<x≤n+1,{1−2x<5③3x−12≤4④,解不等式③得x>−2,解不等式④得x≤3,∴不等式组{1−2x<53x−12≤4的解为:−2<x≤3,∵不等式组{x+1>mx−1≤n的解集与不等式组{1−2x<53x−12≤4的解集相同,∴m−1=−2,n+1=3,∴m=−1,n=2,∴m+n=−1+2=1;(2)当m=−1时,由(1)可知不等式组{x+1>mx−1≤n的解集为:−2<x≤n+1∵不等式组有4个非负整数解,分别为0,1,2,3∴3≤n+1<4,∴2≤n<3.【点睛】本题考查了一元一次不等式组的整数解,解题的关键时熟练掌握解不等式组的方法.12.(22-23七年级下·河北秦皇岛·期末)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”,例如,方程2x−6=0的解为x=3,不等式组{x−2>0x<5的解集为2<x<5.因为2<3<5,所以称方程2x−6=0为不等式组{x−2>0x<5的“相伴方程”.(1)下列方程式不等式组{x+1>0x<2的“相伴方程”的是;(填序号)①x−1=0②2x+1=0③−2x−2=0(2)若关于x的方程2x−k=2是不等式组{3x−6>4−xx−1≥4x−10的相伴方程,求k的取值范围.【考试题型4】不等式组和方程组综合13.(22-23七年级下·江西宜春·期末)已知关于x ,y 的方程组{x −4y =2m −22x +y =m +5.(1)若该方程组的解满足x −y =2024,求m 的值; (2)若该方程组的解满足x ,y 均为正数,求m 的取值范围;(3)在(2)的条件下,若不等式(2m +1)x −2m <1的解为x >1,求m 的整数值.∴整数m 的值为−1,−2.【点睛】本题考查了二元一次方程组和一元一次不等式组,正确理解题意、熟练掌握解二元一次方程组和一元一次不等式组的方法是解题的关键.14.(22-23七年级下·安徽合肥·期中)阅读下列材料:已知x −y =2,且x >1,y <0,试确定x +y 的取值范围.有如下解法: 解:∵x −y =2,且x >1,∴y +2>1,又∵y <0, ∴−1<y <0…①同理得1<x <2…②. 由①+②得−1+1<x +y <0+2, ∴x +y 的取值范围是0<x +y <2.按上述方法完成下列问题:关于x ,y 的方程组{3x −y =2a −5x +2y =3a +3 的解都为正数.(1)求a 的取值范围;(2)已知a −b =4,且b <2,求a +b 的取值范围. 【答案】(1)a >1 (2)−2<a +b <8【分析】(1)先把方程组解出,再根据解为正数列关于a 的不等式组解出即可; (2)分别求a 、b 的取值范围,相加可得结论. 【详解】(1)解方程组{3x −y =2a −5x +2y =3a +3 ,得{x =a −1y =a +2, ∵方程组{3x −y =2a −5x +2y =3a +3的解都为正数,∴{a −1>0a +2>0 ,解得{a >1a >−2,∴a 的取值范围为a >1;(2)∵a −b =4,b <2,a >1, ∴b =a −4<2,a =b +4>1, ∴a <6,b >−3, ∴1<a <6,−3<b <2, ∴−2<a +b <8.【点睛】本题考查了二元一次方程组的解法及不等式组的解的应用,解答本题的关键是仔细阅读材料,理解解题过程.15.(22-23七年级下·安徽合肥·期中)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x=4,而不等式组{x−1>1 x−2<3的解集为2<x<5,不难发现x=4在2<x<5的范围内,所以方程x−1=3是不等式组{x−1>1x−2<3的“关联方程”(1)在方程①3(x+1)−x=9;②4x−7=0;③x−12+1=x中,不等式组{2x−2>x−13(x−2)−x≤4的“关联方程”是______;(填序号)(2)若关于x的方程2x−k=6是不等式组{3x+12>xx−12≥2x+13−2的“关联方程”,求k的取值范围;(3)若关于x的方程x+72−3m=0是关于x的不等式组{x+2m2>mx−m≤2m+1的“关联方程”,且此时不等式组有4个整数解,试求m的取值范围【考试题型5】与整数乘法与因式分解有关的阅读理解问题16.(23-24八年级上·山东济宁·期末)阅读下面的材料学习完《第十四章整式的乘法与因式分解》,某校八年级数学兴趣小组探索了代数式3a2+6a−9的最值问题,具体过程如下:∵3a2+6a−9=3(a2+2a)−9=3(a2+2a+1−1)−9=3[(a+1)2−1]−9=3(a+1)2−3−9= 3(a+1)2−12,不论a取何值,(a+1)2≥0,当且仅当a=−1时等号成立.∴(a+1)2−12≥−12.∴代数式3a2+6a−9有最小值是−12.根据上面材料的信息,解决下列问题(1)求证:代数式a2−8a+10的最小值为−6.(2)判断代数式−2x2+12x−7有最大值还是最小值?并求出此时x的值.【答案】(1)见解析(2)有最大值,当x=3时,代数式−2x2+12x−7有最大值11【分析】此题考查配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【详解】(1)证明:a2−8a+10=a2−8a+16−16+10=(a−4)2−6,不论a取何值,(a−4)2≥0,当且仅当a=4时等号成立.∴(a−4)2−6≥−6.∴a2−8a+10的最小值为−6.(2)解:代数式−2x2+12x−7有最大值.−2x2+12x−7=−2(x2−6x)−7=−2(x2−6x+9−9)−7=−2(x−3)2+11,不论x取何值,(x−3)2≥0,当且仅当x=3时等号成立.∴−2(x−3)2+11≤11,∴当x=3时,代数式−2x2+12x−7有最大值11.17.(23-24八年级上·陕西西安·期末)阅读下列材料:数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“m2−mn+2m−2n”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为m2−mn+2m−2n=(m2−mn)+ (2m−2n)=m(m−n)+2(m−n)=(m−n)(m+2).此种因式分解的方法叫做“分组分解法”.请在这种方法的启发下,解决以下问题:(1)因式分解:a3−3a2+6a−18;(2)因式分解:ax+a2−2ab−bx+b2.18.(23-24八年级上·湖北孝感·期末)阅读材料:若m−2mn+2n2−8n+16=0,求m,n的值.解:∵m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0,∵(m−n)2≥0,(n−4)2≥0∴{m−n=0n−4=0,∴n=4,m=4.请解答下面的问题:(1)已知x2+2xy+2y2−10y+25=0,求xy2的值;(2)已知△ABC的三边a,b,c的长都是互不相等的正整数,且满足a2+b2−4a−14b+53=0,求△ABC的最大边c的长;【答案】(1)−125(2)c=8【分析】本题主要考查完全平方公式及三角形的三边关系,熟练掌握完全平方公式及三角形的三边关系是解题的关键;(1)根据利用完全平方公式进行因式分解进行求解;(2)先利用完全平方公式及三角形的三边关系可进行求解.【详解】(1)解:∵x2+2xy+2y2−10y+25=0,∴x2+2xy+y2+y2−10y+25=0,∴(x+y)2+(y−5)2=0,∵(x+y)2≥0,(y−5)2≥0,∴x+y=0,y−5=0,∴x=−5,y=5,∴xy2=−5×52=−125;(2)解:∵a2+b2−4a−14b+53=0,∴(a−2)2+(b−7)2=0,∵(a−2)2≥0,(b−7)2≥0,∴a−2=0,b−7=0,∴a=2,b=7,∵△ABC的三边a,b,c的长都是互不相等的正整数,∴5<c<9,∴c=8.【考试题型6】平行线的性质与判定19.(23-24七年级上·河南南阳·期末)【课题学习】平行线的“等角转化”.如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.解:过点A作ED∥BC,∴∠B=,∠C=,又∵∠EAB+∠BAC+∠DAC=180°.。

(完整版)苏教七年级下册期末解答题压轴数学必考知识点试卷经典套题答案

(完整版)苏教七年级下册期末解答题压轴数学必考知识点试卷经典套题答案

(完整版)苏教七年级下册期末解答题压轴数学必考知识点试卷经典套题答案 一、解答题1.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒; (2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.2.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”; (2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .3.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC . (1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小; (3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .4.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.5.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l 2与l 3的位置关系是 ;(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N:∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.6.已知:∠MON=36°,OE 平分∠MON ,点A ,B 分别是射线OM ,OE ,上的动点(A ,B 不与点O 重合),点D 是线段OB 上的动点,连接AD 并延长交射线ON 于点C ,设∠OAC=x ,(1)如图1,若AB ∥ON ,则 ①∠ABO 的度数是______; ②当∠BAD=∠ABD 时,x=______; 当∠BAD=∠BDA 时,x=______;(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ABD 中有两个相等的角?若存在,求出x 的值;若不存在,请说明理由.7.我们知道:光线反射时,反射光线、入射光线分别在法线两侧,反射角等于入射角.如图1,EF 为一镜面,AO 为入射光线,入射点为点O ,ON 为法线(过入射点O 且垂直于镜面EF 的直线),OB 为反射光线,此时反射角BON ∠等于入射角AON ∠,由此可知BOF ∠等于AOE ∠.(1)两平面镜OP 、OQ 相交于点O ,一束光线从点A 出发,经过平面镜两次反射后,恰好经过点B .①如图2,当POQ ∠为多少度时,光线//AM NB ?请说明理由.②如图3,若两条光线AM 、NB 所在的直线相交于点E ,延长MN 发现MO 和NO 分别为MEN 一个内角和一个外角的平分线,则POQ ∠与MEN ∠之间满足的等量关系是_______.(直接写出结果)(2)三个平面镜PM 、MN 、NQ 相交于点M 、N ,一束光线从点A 出发,经过平面镜三次反射后,恰好经过点E ,请直接写出M ∠、N ∠、BCD ∠与BFD ∠之间满足的等量关系. 8.已如在四边形ABCD 中,90A C ∠=∠=︒.(1)如图1,若70ABC ∠=︒,则NDC ∠=________.(2)如图2,若BF 、DE 分别平分CBM ∠、CDN ∠,判断DE 与BF 位置关系并证明理由.(3)如图3,若BP 、DP 分别五等分CBM ∠、CDN ∠(即15CBP CBM ∠=∠,15CDP CDN ∠=∠),则P ∠=_______.9.(想一想)在三角形的三条重要线段(高、中线、角平分线)中,能把三角形面积平分的是三角形的______; (比一比)如图,已知12l l //,点A 、D 在直线1l 上,点B 、C 在直线2l 上,连接AB 、AC 、DB 、DC ,AC 与DB 相交于点O ,则ABC 的面积_______DBC △的面积;(填“>”“<”或“=”)(用一用)如图所示,学校种植园有一块四边形试验田STPQ .现准备过S 点修一条笔直的小路(小路面积忽略不计),将试验田分成面积相等的两部分,安排“拾穗班”、“锄禾班”两班种植蔬菜,进行劳动实践,王老师提醒同学们先把四边形转化为同面积的三角形,再把三角形的面积二等分即可.请你在下图中画出小路SM ,并保留作图痕迹.10.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等,例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①,若入射光线EF与反射光线GH平行,则α=________°.(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.(3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示)【参考答案】一、解答题1.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO 、CO 分别是∠ABC 与∠ACB 的角平分线, ∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =12(180°﹣n °) =90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °. 故答案为:(90+12n ); (3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1,∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB ,∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °,同理,∠O 2=18×180°+78n °,∴∠O n =112n +×180°+11212n n ++- n °,∴∠O 2017=201812×180°+20182018212-n °,故答案为:201712×90°+20182018212-n °.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.2.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°. 【分析】(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个; (2)根据角平分线的定义得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°. 【分析】(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP ,∠BDP=∠CDP ,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,两等式相减得到∠C ﹣∠P=∠P ﹣∠B ,即∠P=(∠C+∠B ),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.3.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.4.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.5.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;;理由如下:(4)∠N:∠BCD的值不会变化,等于12∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.6.(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数解析:(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;(2)根据三角形内角和定理以及直角的度数,可得x的值.【详解】解:(1)如图1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②当∠BAD=∠ABD时,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③当∠BAD=∠BDA时,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案为①18°;②126°;③63°;(2)如图2,存在这样的x的值,使得△ADB中有两个相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,则∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,则∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,则∠BAD=36°,故∠OAC=90°-36°=54°;综上所述,当x=18、36、54时,△ADB中有两个相等的角.【点睛】本题考查了三角形的内角和定理和三角形的外角性质的应用,三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.利用角平分线的性质求出∠ABO的度数是关键,注意分类讨论思想的运用.7.(1)①90°,理由见解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①设∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根据∠AMN+∠BNM=解析:(1)①90°,理由见解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①设∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根据∠AMN+∠BNM=180°,可得α+β=90°,再根据三角形内角和定理进行计算即可;②设∠AMP=∠NMO=α,∠BNO=∠MNQ=β,根据三角形外角性质可得∠MEN=2(β-α),再根据三角形外角性质可得∠POQ=β-α,进而得出∠MEN=2∠POQ;(2)分别表示出∠M,∠N,∠BCD,利用四边形内角和表示出∠BFD,再将∠M,∠N,∠BCD进行运算,变形得到∠BFD,即可得到关系式.【详解】解:(1)①设∠AMP=∠NMO=α,∠BNQ=∠MNO=β,当AM∥BN时,∠AMN+∠BNM=180°,即180°-2α+180°-2β=180°,∴180°=2(α+β),∴α+β=90°,∴△MON中,∠O=180°-∠NMO-∠MNO=180°-(α+β)=90°,∴当∠POQ为90度时,光线AM∥NB;②设∠AMP=∠NMO=α,∠BNO=∠MNQ=β,∴∠AMN=180°-2α,∠MNE=180°-2β,∵∠AMN是△MEN的外角,∴∠MEN=∠AMN-∠MNE=(180°-2α)-(180°-2β)=2(β-α),∵∠MNQ是△MNO的外角,∴∠POQ=∠MNQ-∠NMO=β-α,∴∠MEN=2∠POQ;(2)设∠PBE=∠MBC=∠1,∠MCB=∠NCD=∠2,∠CDN=∠ADQ=∠3,可知:∠M=180°-∠1-∠2,∠N=180°-∠2-∠3,∠BCD=180°-2∠2,∵∠CBA=180°-2∠1,∠CDA=180°-2∠3,∴∠BFD=360°-∠CDA-∠CBA-∠BCD=360°-(180°-2∠1)-(180°-2∠2)-(180°-2∠3)=2(∠1+∠2+∠3)-180°又∵2(∠M+∠N)-∠BCD=2(180°-∠1-∠2+180°-∠2-∠3)-(180°-2∠2)=540°-2(∠1+∠2+∠3)=360°-[2(∠1+∠2+∠3)-180°]=360°-∠BFD∴2(∠M+∠N)-∠BCD=360°-∠BF D.【点睛】本题考查了平行线的判定与性质,三角形外角的性质以及多边形内角和定理的综合应用,解题时注意:两直线平行,同旁内角互补;三角形的一个外角等于与它不相邻的两个内角的和.8.(1)70°;(2)DE∥BF,证明见解析;(3)54°【分析】(1)根据四边形内角和计算即可;(2)根据平角的定义和等量代换可得∠MBC+∠CDN=180°,再根据角平分线的定义得到∠CBF解析:(1)70°;(2)DE∥BF,证明见解析;(3)54°【分析】(1)根据四边形内角和计算即可;(2)根据平角的定义和等量代换可得∠MBC+∠CDN=180°,再根据角平分线的定义得到∠CBF+∠CDE=90°,从而推出∠EDB+∠FBD=180°,可得结论;(3)根据五等分得到∠CDP+∠CBP=36°,连接PC并延长,证明∠DCB=∠DPB+∠CBP+∠CDP,即可计算.【详解】解:(1)∵∠A=∠C=90°,∠ABC=70°,∴∠ADC=360°-90°-90°-70°=110°,∴∠NDC=180°-110°=70°;(2)DE∥BF,如图,连接BD,∵∠ABC+∠ADC=180°,且∠MBC+∠ABC=180°,∠CDN+∠ADC=180°,∴∠MBC+∠CDN=180°,∵∠CBF=12∠MBC,∠CDE=12∠CDN,∴∠CBF+∠CDE=90°,∵∠C=90°,∴∠CBD+∠CDB=90°,∴∠EDB+∠FBD=∠CBF+∠CDE+∠CBD+∠CDB=180°,∴DE∥BF;(3)∵∠MBC+∠CDN=180°,∴∠CDP+∠CBP=15(∠MBC+∠CDN)=36°,连接PC并延长,∵∠DCE=∠CDP+∠CPD,∠BCE=∠CPB+∠CBP,∴∠DCB=∠DCE+∠BCE=∠DPB+∠CBP+∠CDP,∴∠DPB=90°-36°=54°.【点睛】本题考查多边形内角和与外角,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.9.想一想:中线;比一比:=;用一用:见解析【分析】想一想:三角形中线把三角形底边等分成两份,过顶点向底边作垂线,高相同;比一比:和共底边BC,,两平行线之间的距离相等,即和高相等;用一用:利用解析:想一想:中线;比一比:=;用一用:见解析【分析】想一想:三角形中线把三角形底边等分成两份,过顶点向底边作垂线,高相同; 比一比:ABC 和DBC △共底边BC ,12l l //,两平行线之间的距离相等,即ABC 和DBC △高相等;用一用:利用“想一想”中的中线和“比一比”的平行线进行面积的二等分.【详解】想一想:三角形中线把三角形底边等分成两份,过顶点向底边作垂线,高相同,故能把三角形面积平分的是三角形的中线.比一比:∵12l l //∴两平行线之间的距离相等,即A 到BC 的距离=D 到BC 的距离又∵ABC 和DBC △共底边BC ∴ABC 和DBC △同底,等高,面积相等.用一用:如图所示,连接SP ,过Q 点作QM ∥SP ,延长TP ,交QM 与点M ,连接SP ,取TM 的中点N .SN 即为所求笔直的小路.证明:∵QM ∥SP∴QSP MSP SS = ∵TM 的中点N ∴STN SNM SS = ∴STN SNM SNP SPM SNP SPQ SNPQ S S S S S S S ==+=+=四边形【点睛】本题考查中线和平行线的距离.连接三角形的一个顶点和它所对的边的中点的线段叫做三角形的中线.两条平行线的距离处处相等.10.(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m 或150°【分析】(1)根据EF ∥GH ,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠解析:(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150°【分析】(1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°,以及∠1=∠2,∠3=∠4,可得∠2+∠3=90°,即可求出α=90°;(2)在△BEG中,∠2+∠3+α=180°,可得∠2+∠3=180°-α,根据入射光线、反射光线与镜面所夹的角对应相等可得,∠MEG=2∠2,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,可得α与β的数量关系;(3)分两种情况画图讨论:①当n=3时,根据入射光线、反射光线与镜面所夹的角对应相等,及△GCH内角和,可得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,根据三角形外角定义,可得∠G=γ-60°,由EF∥HK,且由(1)的结论可得,γ=150°.【详解】解:(1)在△BEG中,∠2+∠3+α=180°,∵EF∥GH,∴∠FEG+∠EGH=180°,∵∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°,∴∠1+∠2+∠3+∠4=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴α=180°-(∠2+∠3)=90°;(2)β=2α-180°,理由如下:在△BEG中,∠2+∠3+α=180°,∴∠2+∠3=180°-α,∵∠1=∠2,∠1=∠MEB,∴∠2=∠MEB,∴∠MEG=2∠2,同理可得,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,∴β=180°-(∠MEG+∠MGE)=180°-(2∠2+2∠3)=180°-2(∠2+∠3)=180°-2(180°-α)=2α-180°;(3)90°+m或150°.理由如下:①当n=3时,如下图所示:∵∠BEG=∠1=m,∴∠BGE=∠CGH=60°-m,∴∠FEG=180°-2∠1=180°-2m,∠EGH=180°-2∠BGE=180°-2(60°-m),∵EF∥HK,∴∠FEG+∠EGH+∠GHK=360°,则∠GHK=120°,则∠GHC=30°,由△GCH内角和,得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,如下图所示:根据三角形外角定义,得∠G=γ-60°,由EF∥HK,且由(1)的结论可得,∠G=γ-60°=90°,则γ=150°.综上所述:γ的度数为:90°+m或150°.【点睛】本题考查了平行线的性质、列代数式,解决本题的关键是掌握平行线的性质,注意分类讨论思想的利用.。

苏教七年级下册期末解答题压轴数学资料专题题目(比较难)及答案解析

苏教七年级下册期末解答题压轴数学资料专题题目(比较难)及答案解析

苏教七年级下册期末解答题压轴数学资料专题题目(比较难)及答案解析 一、解答题1.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.2.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.3.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使OEC OBA∠=∠?若存在,求出其度数.若不存在,请说明理由.4.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1)(图2)5.已知在Rt ABC中,,点在MN上,边BC在上,在中,边在直线AB上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点F在M上时,求度数;(3)将在直线AB上平移,当以为顶点的三角形是直角三角形时,直接写出度数.6.[原题](1)已知直线 //AB CD ,点P 为平行线AB ,CD 之间的一点,如图①,若52,64ABP CDP ∠∠=︒=︒,BE 平分ABP ∠,DE 平分CDP ∠,则BED ∠=__________.[探究](2)如图②, //AB CD ,当点P 在直线AB 的上方时.若,ABP CDP αβ∠=∠=,ABP ∠和CDP ∠的平分线相交于点1E ,1ABE ∠与1CDE ∠的平分线相交于点2E ,2ABE ∠与2CDE ∠的平分线相交于点3E ……以此类推,求n E ∠的度数.[变式](3)如图③, //AB CD ,ABP ∠的平分线的反向延长线和CDP ∠的补角的平分线相交于点E ,试猜想P ∠与E ∠的数量关系,并说明理由.7.如图1,已知//AB CD ,P 是直线AB ,CD 外的一点,PF CD ⊥于点F ,PE 交AB 于点E ,满足60FPE ∠=︒.(1)求AEP ∠的度数;(2)如图2,射线PN 从PE 出发,以每秒10︒的速度绕P 点按逆时针方向匀速旋转,当PN 到达PF 时立刻返回至PE ,然后继续按上述方式旋转;射线EM 从EA 出发,以相同的速度绕E 点按顺时针方向旋转至EP 后停止运动,此时射线PN 也停止运动.若射线PN 、射线EM 同时开始运动,设运动时间为t 秒.①当射线PN 平分EPF ∠时,求MEP ∠的度数()0180MEP ︒<∠<︒; ②当直线EM 与直线PN 相交所成的锐角是60︒时,则t =________.8.已知//AB CD ,点M 、N 分别是AB 、CD 上的点,点G 在AB 、CD 之间,连接MG 、NG .(1)如图1,若GM GN ⊥,求AMG CNG +∠∠的度数.(2)在(1)的条件下,分别作BMG ∠和GND ∠的平分线交于点H ,求MHN ∠的度数. (3)如图2,若点P 是CD 下方一点,MT 平分BMP ∠,NC 平分TNP ∠,已知40BMT ∠=︒.则判断以下两个结论是否正确,并证明你认为正确的结论.①MTN P∠+∠为定值;②MTN P ∠-∠为定值.9.(数学经验)三角形的中线,角平分线,高是三角形的重要线段,我们知道,三角形的3条高所在直线交于同一点.(1)①如图1,△ABC 中,∠A =90°,则△ABC 的三条高所在的直线交于点 ; ②如图2,△ABC 中,∠BAC >90°,已知两条高BE ,AD ,请你仅用一把无刻度的直尺(仅用于过任意两点作直线、连接任意两点、延长任意线段)画出△ABC 的第三条高.(不写画法,保留作图痕迹). (综合应用)(2)如图3,在△ABC 中,∠ABC >∠C ,AD 平分∠BAC ,过点B 作BE ⊥AD 于点E . ①若∠ABC =80°,∠C =30°,则∠EBD = ;②请写出∠EBD 与∠ABC ,∠C 之间的数量关系 ,并说明理由. (拓展延伸)(3)三角形的中线将三角形分成面积相等的两部分,如果两个三角形的高相同,则他们的面积比等于对应底边的比.如图4,M 是BC 上一点,则有=ABM BMACM CM∆∆的面积的面积.如图5,△ABC中,M是BC上一点BM=14BC,N是AC的中点,若三角形ABC的面积是m请直接写出四边形CMDN的面积.(用含m的代数式表示)10.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.【参考答案】一、解答题1.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出GEP EGP∠=∠=60°,计算∠PFD即可;(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠,∴GEP EGP∠=∠=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.2.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=5407().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB =3∠ABO , ∴△AOB 为“梦想三角形”,∵∠MON =60°,∠ACB =80°,∠ACB =∠OAC +∠MON , ∴∠OAC =80°﹣60°=20°, ∴∠AOB =3∠OAC , ∴△AOC 是“梦想三角形”.(3)解:∵∠EFC +∠BDC =180°,∠ADC +∠BDC =180°, ∴∠EFC =∠ADC , ∴AD ∥EF , ∴∠DEF =∠ADE , ∵∠DEF =∠B , ∴∠B =∠ADE , ∴DE ∥BC , ∴∠CDE =∠BCD , ∵AE 平分∠ADC , ∴∠ADE =∠CDE , ∴∠B =∠BCD , ∵△BCD 是“梦想三角形”, ∴∠BDC =3∠B ,或∠B =3∠BDC , ∵∠BDC +∠BCD +∠B =180°, ∴∠B =36°或∠B =5407︒(). 【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.3.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案; (2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°. 【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.【详解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF)=12∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不发生变化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.4.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β5.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出AFD∠,即可得出结论;(3)分和两种情况求解即可得出结论.【详解】解:(1),,,,,;(2)由(1)知,,,,,;(3)当时,如图3,由(1)知,,;当时,如图4,,∴点,E重合,,,由(1)知,,,即当以、D、F为顶点的三角形是直角三角形时,度数为或.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键.6.(1);(2);(3),理由见解析 【分析】(1)过作,依据平行线的性质,即可得到,依据角平分线即可得出的度数; (2)依据平行线的性质以及三角形外角性质,求得,,,以此类推的度数为; (3)过作解析:(1)58︒;(2)1()2n βα-;(3)1902DEB P ∠=︒-∠,理由见解析 【分析】(1)过E 作//EF AB ,依据平行线的性质,即可得到BED BEF DEF ABE CDE ∠=∠+∠=∠+∠,依据角平分线即可得出BED ∠的度数;(2)依据平行线的性质以及三角形外角性质,求得11()2E βα∠=-,21()4E βα∠=-,31()8E βα∠=-,以此类推n E ∠的度数为1()2n βα-;(3)过E 作//EG AB ,进而得出DEB BEG DEG MBE FDE ABQ FDE ∠=∠+∠=∠+∠=∠+∠,再根据平行线的性质以及三角形外角性质,即可得到11190()90()90222DEB CDP ABP AHP ABP P ∠=︒-∠-∠=︒-∠-∠=︒-∠【详解】解:(1)如图1,过E 作//EF AB ,而//AB CD ,////AB CD EF ∴,ABE FEB ∴∠=∠,CDE FED ∠=∠, BED BEF DEF ABE CDE ∴∠=∠+∠=∠+∠,又52ABP ∠=︒,64CDP ∠=︒,BE 平分ABP ∠,DE 平分CDP ∠,1262ABE ABP ∴∠=∠=︒,1322CDE CDP ∠=∠=︒, 263258BED ∴∠=︒+︒=︒,故答案为:58︒;(2)如图2,ABP ∠和CDP ∠的平分线交于点1E ,11122ABE ABP α∴∠=∠=,11122CDE CDP β∠=∠=,//AB CD ,112CDF AFE β∴∠=∠=,111111()222E AFE ABE βαβα∴∠=∠-∠=-=-,1ABE ∠与1CDE ∠的角平分线交于点2E ,211124ABE ABE α∴∠=∠=,211124CDE CDE β∠=∠=,//AB CD ,214CDG AGE β∴∠=∠=,2221()4E AGE ABE βα∴∠=∠-∠=-,同理可得,31()8E βα∠=-,以此类推,n E ∠的度数为1()2nβα-. (3)1902DEB P ∠=︒-∠.理由如下:如图3,过E 作//EG AB ,而//AB CD ,////AB CD EG ∴,MBE BEG ∴∠=∠,FDE GED ∠=∠,DEB BEG DEG MBE FDE ABQ FDE ∴∠=∠+∠=∠+∠=∠+∠,又ABP ∠的角平分线的反向延长线和CDP ∠的补角的角平分线交于点E ,11(180)22FDE PDF CDP ∴∠=∠=︒-∠,12ABQ ABP ∠=∠,111(180)90()222DEB ABP CDP CDP ABP ∴∠=∠+︒-∠=︒-∠-∠,//AB CD ,CDP AHP ∴∠=∠,11190()90()90222DEB CDP ABP AHP ABP P ∴∠=︒-∠-∠=︒-∠-∠=︒-∠.【点睛】本题考查了平行线性质以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.7.(1);(2)①;②. 【分析】(1)根据,,可以得到,即,再根据三角形外角定理求解即可.(2)①射线平分时,可知此时,根据题意可以确定运动时间t=3s 或t=9s ,从而计算的度数即可;②用含t 的解析:(1)150AEP ∠=;(2)①60120MEP ∠=或;②3922t s s =或. 【分析】(1)根据//AB CD ,PF CD ⊥,可以得到PF AB ⊥,即90AMP ∠=,再根据三角形外角定理求解即可.(2)①射线PN 平分EPF ∠时,可知此时30EPN ∠=,根据题意可以确定运动时间t =3s 或t =9s ,从而计算MEP ∠的度数即可;②用含t 的代数式表示出所成的角度,然后进行动态分析求解即可. 【详解】解(1)∵//AB CD ,PF CD ⊥ ∴PF AB ⊥ ∴90AHP ∠= 又∵60FPE ∠=∴150AEP PHE FPE ∠=∠+∠=(2)①∵射线PN 平分EPF ∠ ∴==30EPN FPN ∠∠∵射线EM 从EA 出发,以相同的速度绕E 点按顺时针方向旋转至EP 后停止运动,此时射线PN 也停止运动,150AEP ∠= ∴运动的总时间1501015t s =÷=总∵射线PN 从PE 出发,以每秒10︒的速度绕P 点按逆时针方向匀速旋转,当PN 到达PF 时立刻返回至PE ,然后继续按上述方式旋转∴第一次=60EPN ∠,130103t s =÷=,第二次=60EPN ∠时,190109t s =÷=,第三次=60EPN ∠时,31501015t s =÷=以此类推故当第一次=60EPN ∠,130103t s =÷= ∴150103120MEP AEP AEM ∠=∠-∠=-⨯= 故第二次=60EPN ∠时,190109t s =÷= ∴15010960MEP AEP AEM ∠=∠-∠=-⨯= 故第三次=60EPN ∠时,31501015t s =÷= ∴15010150MEP AEP AEM ∠=∠-∠=-⨯= ∵0180MEP ︒<∠<︒ ∴60120MEP ∠=或②如图所示直线EM 与直线PN 相交所成的锐角是60︒ ∴600MOP ∠=或12∵EGO PEB EPN ∠=∠+∠,GEO MEA ∠=∠,18030PEB AEP ∠=-∠= ∴180MOP MEA EPN PEB ∠=-∠-∠-∠ ∴150MOP MEA EPN ∠=-∠-∠ 又∵10MEA t ∠=∴15010MOP t EPN ∠=--∠ 第一种情况,当06t ≤≤时=10EPN t ∠∴1501015020MOP t EPN t ∠=--∠=- 当150101502060MOP t EPN t ∠=--∠=-=时 解得192t s =当1501015020120MOP t EPN t ∠=--∠=-= 解得232t s =第二种情况,当612t <≤=12010EPN t ∠︒-∴1501060MOP t EPN ∠=--∠= 此时t 无解,第三种情况当1215t <≤ 同理可以计算出()3212t s =舍去,()4152t s =舍去 综上所述:3922t s s =或 【点睛】本题主要考查了三角形内角和定理,解题的关键在于能够正确的分析动态过程.8.(1) (2) (3)②是正确的,证明见解析 【分析】(1)过点G 作GE ∥AB ,然后利用平行线性质即可得到结果;(2)分别过G 和H 作GE ∥AB ,FH ∥AB ,然后利用平行线的性质得到对应的边角解析:(1)90︒ (2)135︒ (3)②是正确的,证明见解析 【分析】(1)过点G 作GE ∥AB ,然后利用平行线性质即可得到结果;(2)分别过G 和H 作GE ∥AB ,FH ∥AB ,然后利用平行线的性质得到对应的边角关系,进而∠MHN 的具体值;(3)根据角平分线性质,设CNT CNP x ∠=∠=,然后利用平行线的基本性质,分别推导出MTN P ∠+∠和MTN P ∠-∠的值即可判断. 【详解】(1)如图所示,过点G 作//GE AB , ∵//AB CD ,//GE AB , ∴////AB GE CD ,∴AMG MGE ∠=∠,CNG NGE ∠=∠, ∴AMG CNG MGE NGE MGN ∠+∠=∠+∠=∠, ∵GM GN ⊥, ∴90MGN ∠=︒, ∴90AMG CNG +=︒∠∠.(2)如图所示,过点G 作//GE AB ,过点H 作//FH AB , ∵//AB CD ,∴//////GE AB FH CD ,∴180BMG MGE ∠+∠=︒,180DNG NGE ∠+∠=︒, ∴360BMG DNG MGN ∠+∠+∠=︒, ∵90MGN ∠=︒, ∴270BMG DNG ∠+∠=︒,∵MH 平分BMG ∠,NH 平分DNG ∠, ∴12BMH BMG ∠=∠,12DNH DNG ∠=∠,∴1()1352BMH DNH BMG DNG ∠+∠=∠+∠=︒,∵////AB HF CD ,∴BMH MHF ∠=∠,DNH NHF ∠=∠,∴135MHN MHF NHF BMH DNH ∠=∠+∠=∠+∠=︒.(3)如图所示, ∵//AB CD , ∴BMP DQP ∠=∠, ∵MT 平分BMP ∠, ∴40BMT PMT ∠=∠=︒, ∴80BMP DQP ∠=∠=︒, ∴100MQN ∠=︒, ∵CN 平分TNP ∠, ∴CNT CNP ∠=∠, 设CNT CNP x ∠=∠=,则180100P PQD CNP x ∠=︒-∠-∠=︒-, ∴360MTN PMT MQN CNT ∠=︒-∠-∠-∠36040100CNT =︒-︒-︒-∠220x =︒-,∴120MTN P ∠-∠=︒,3202MTN P x ∠+∠=∠︒-,∴②中MTN P ∠-∠的值为定值. 故②是正确的.【点睛】本题主要考查了平行线的性质,做题的关键是能够找到辅助线,构造辅助线.9.(1)①A ;②见解析;(2)①25°;②2∠EBD =∠ABC ﹣∠ACB ;(3)m . 【分析】(1)①由直角三角形三条高的定义即可得出结论; ②分别延长BE ,DA ,两者交于F ,连接CF 交BA 的延长线解析:(1)①A ;②见解析;(2)①25°;②2∠EBD =∠ABC ﹣∠ACB ;(3)920m . 【分析】(1)①由直角三角形三条高的定义即可得出结论;②分别延长BE ,DA ,两者交于F ,连接CF 交BA 的延长线于H ,CH 即为所求; (2)①由三角形内角和定理和角平分线的性质可以得出∠BAE =12∠BAC =35°,再由直角三角形的性质得∠ABE =55°,即可求解;②由三角形内角和定理和角平分线的性质求解即可;(3)连接CD ,由中线的性质得S △ADN =S △CDN ,同理:S △ABN =S △CBN ,设S △ADN =S △CDN =a ,S △ABN =S △CBN =12m ,再求出S △CDM =34S △BCD =3384m a -,S △ACM =34S △ABC =34m ,利用面积关系求解即可. 【详解】解:(1)①∵直角三角形三条高的交点为直角顶点,∠A =90°, ∴△ABC 的三条高所在直线交于点A , 故答案为:A ;②如图,分别延长BE ,DA ,两者交于F ,连接CF 交BA 的延长线于H ,CH 即为所求;(2)①∵∠ABC =80°,∠ACB =30°, ∴∠BAC =70°, ∵AD 平分∠BAC , ∴∠BAE =12∠BAC =35°, ∵BE ⊥AD , ∴∠AEB =90°,∴∠ABE =90°﹣35°=55°,∴∠EBD =∠ABC ﹣∠ABE =80°﹣55°=25°, 故答案为:25°;②∠EBD 与∠ABC ,∠C 之间的数量关系为:2∠EBD =∠ABC ﹣∠ACB ∵BE ⊥AD , ∴∠AEB =90°, ∴∠ABE =90°﹣∠BAD ,∴∠EBD =∠ABC ﹣∠ABE =∠ABC +∠BAD ﹣90°, ∵AD 平分∠BAC ,∴∠BAD =∠CAD =12∠BAC , ∵∠BAC =180°﹣∠ABC ﹣∠ACB , ∴∠BAD =90°﹣12∠ABC ﹣12∠ACB ,∴∠EBD =∠ABC +∠BAD ﹣90°=∠ABC +90°﹣12∠ABC ﹣12∠C ﹣90°=12∠ABC ﹣12∠C , ∴2∠EBD =∠ABC ﹣∠ACB , 故答案为:2∠EBD =∠ABC ﹣∠ACB ; (3)连接CD ,如图所示: ∵N 是AC 的中点, ∴1ADN CDN S ANS CN==△△, ∴S △ADN =S △CDN , 同理:S △ABN =S △CBN , 设S △ADN =S △CDN =a , ∵△ABC 的面积是m , ∴S △ABN =S △CBN =12m ,∴S △BCD =S △ABD =12m ﹣a , ∵BM =14BC ,∴13BM CM =, ∴13BDM CDMS BM SCM ==,13ABM ACMSBM SCM ==, ∴S △CDM =3S △BDM ,S △ACM =3S △ABM ,∴S △CDM =34S △BCD =34×(12m ﹣a )=3384m a -,S △ACM =34S △ABC =34m ,∵S △ACM =S 四边形CMDN +S △ADN =S △CDM +S △CDN +S △ADN ,即:333484m m a a a =-++,解得:a =310m , ∴S 四边形CMDN =S △CDM +S △CDN =3333984101020m m m m -⨯+=,【点睛】本题主要考查了三角形的高,三角形的中线,三角形内角和,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.10.(1)∠APB =∠NAP+∠HBP ;(2)见解析;(3)∠HBP =∠NAP+∠APB 【分析】(1)过P 点作PQ ∥GH ,根据平行线的性质即可求解; (2)过P 点作PQ ∥GH ,根据平行线的性质即可求解析:(1)∠APB =∠NAP+∠HBP ;(2)见解析;(3)∠HBP =∠NAP+∠APB 【分析】(1)过P 点作PQ ∥GH ,根据平行线的性质即可求解; (2)过P 点作PQ ∥GH ,根据平行线的性质即可求解; (3)根据平行线的性质和三角形外角的性质即可求解. 【详解】解:(1)如图①,过P 点作PQ ∥GH , ∵MN ∥GH , ∴MN ∥PQ ∥GH ,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.。

【常考压轴题】因式分解压轴四大类型—2023-2024学年七年级数学下册(苏科版)(解析版)

【常考压轴题】因式分解压轴四大类型—2023-2024学年七年级数学下册(苏科版)(解析版)

因式分解压轴四大类型题型一:运用提公因式法合公式法综合因式分解题型二:十字相乘法因式分解题型三:分组分解法题型四:因式分解的应用题型一:运用提公因式法合公式法综合因式分解【典例1】(2023秋•西城区期末)分解因式:(1)xy3﹣xy;(2)2x2﹣20x+50.【答案】(1)xy(y+1)(y﹣1);(2)2(x﹣5)2.【解答】解:(1)原式=xy(y2﹣1)=xy(y+1)(y﹣1);(2)原式=2(x2﹣10x+25)=2(x﹣5)2.【变式1-1】(2023春•鼓楼区校级期中)因式分解:(1)2mx2﹣4mx+2m;(2)25(m+n)2﹣9(m﹣n)2.【答案】(1)2m(x﹣1)2;(2)4(m+4n)(4m+n).【解答】解:(1)2mx2﹣4mx+2m=2m(x2﹣2x+1)=2m(x﹣1)2;(2)25(m+n)2﹣9(m﹣n)2=[5(m+n)]2﹣[3(m﹣n)]2=[5(m+n)﹣3(m﹣n)][5(m+n)+3(m﹣n)]=(5m+5n﹣3m+3n)(5m+5n+3m﹣3n)=(2m+8n)(8m+2n)=4(m+4n)(4m+n).【变式1-2】(2023春•皇姑区校级期中)因式分解:(1)x2(a﹣b)+4(b﹣a);(2)2x2﹣12xy+18y2.【答案】(1)(a﹣b)(x+2)(x﹣2);(2)2(x﹣3y)2.【解答】解:(1)x2(a﹣b)+4(b﹣a)=x2(a﹣b)﹣4(a﹣b)=(a﹣b)(x2﹣4)=(a﹣b)(x+2)(x﹣2);(2)2x2﹣12xy+18y2=2(x2﹣6xy+9y2)=2(x﹣3y)2.【变式1-3】(2022秋•渑池县期末)因式分解:(1)18a2b﹣12ab2+2b3;(2)x2(x﹣3)+y2(3﹣x).【答案】(1)2b(3a﹣b)2;(2)(x﹣3)(x+y)(x﹣y).【解答】解:(1)18a2b﹣12ab2+2b3=2b(9a2﹣6ab+b2)=2b(3a﹣b)2.(2)x2(x﹣3)+y2(3﹣x)=(x﹣3)(x2﹣y2)=(x﹣3)(x+y)(x﹣y).题型二:十字相乘法因式分解【典例2】(2023秋•普陀区校级期末)因式分解:a2﹣13a+36=.【答案】(a﹣4)(a﹣9).【解答】解:a2﹣13a+36∵﹣4a+(﹣9a)=﹣13a,∴a2﹣13a+36=(a﹣4)(a﹣9).故答案为:(a﹣4)(a﹣9).【变式2-1】(2023秋•璧山区期末)因式分解a2+a﹣6的结果是.【答案】(a﹣2)(a+3).【解答】解:a2+a﹣6=(a﹣2)(a+3).【变式2-2】(2023秋•浦东新区期末)因式分解:x2﹣8x+12=.【答案】(x﹣2)(x﹣6).【解答】解:x2﹣8x+12=x2﹣8x+16﹣4=(x﹣4)2﹣(2)2=(x﹣4+2)(x﹣4﹣2)=(x﹣2)(x﹣6).故答案为:(x﹣2)(x﹣6).(2023秋•河北区校级期末)把多项式x2﹣2x﹣35因式分解为.【变式2-3】【答案】(x+5)(x﹣7).【解答】解:x2﹣2x﹣35=(x+5)(x﹣7).题型三:分组分解法【典例3】(2023秋•临潼区期末)阅读下列材料:数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“m2﹣mn+2m﹣2n”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为m2﹣mn+2m﹣2n=(m2﹣mn)+(2m﹣2n)=m(m﹣n)+2(m﹣n)=(m﹣n)(m+2).此种因式分解的方法叫做“分组分解法”.请在这种方法的启发下,解决以下问题:(1)因式分解:a3﹣3a2+6a﹣18;(2)因式分解:ax+a2﹣2ab﹣bx+b2.【答案】(1)(a﹣3)(a2+6);(2)(a﹣b)(a﹣b+x).【解答】解:(1)a3﹣3a2+6a﹣18=a2(a﹣3)+6(a﹣3)=(a﹣3)(a2+6);(2)ax+a2﹣2ab﹣bx+b2=(a2﹣2ab+b2)+(ax﹣bx)=(a﹣b)2+x(a﹣b)=(a﹣b)(a﹣b+x).【变式3-1】(2023秋•青浦区校级期中)因式分解:4x3﹣2x2﹣9xy2﹣3xy.【答案】x(2x+3y)(2x﹣3y﹣1).【解答】解:原式=(4x3﹣9xy2)+(﹣2x2﹣3xy)=x(4x2﹣9y2)﹣x(2x+3y)=x(2x+3y)(2x﹣3y)﹣x(2x+3y)=x(2x+3y)(2x﹣3y﹣1).【变式3-2】(2023秋•沙坪坝区校级期末)把下列各式因式分解:(1)﹣3ab3+6a2b2﹣3a3b;(2)x2﹣y2﹣ax+ay.【答案】(1)﹣3ab(b﹣a)2;(2)(x﹣y)(x+y﹣a).【解答】解:(1)原式=﹣3ab(b2﹣2ab+a2)=﹣3ab(b﹣a)2;(2)原式=(x2﹣y2)+(﹣ax+ay)=(x+y)(x﹣y)﹣a(x﹣y)=(x﹣y)(x+y﹣a).【变式3-3】(2023秋•武都区期末)常用的因式分解的方法有:提公因式法和公式法,但有的多项式用上述方法无法分解,例如x2﹣4y2﹣2x+4y,我们细心观察就会发现,前两项可以分解,后两项也可以分解,分别分解后会产生公因式,就可以完整分解了,具体分解过程如下:x2﹣4y2﹣2x+4y=(x2﹣4y2)﹣(2x﹣4y)=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)这种方法叫分组分解法,请利用这种方法对下列多项式进行因式分解:(1)mn2﹣2mn+2n﹣4;(2)x2﹣2xy+y2﹣16;(3)4x2﹣4x﹣y2+4y﹣3.【答案】(1)(n﹣2)(mn+2);(2)(x﹣y﹣4)(x﹣y+4);(3)(2x﹣y+1)(2x+y﹣3).【解答】解:(1)mn2﹣2mn+2n﹣4=(mn2﹣2mn)+(2n﹣4)=mn(n﹣2)+2(n﹣2)=(n﹣2)(mn+2);(2)x2﹣2xy+y2﹣16=(x2﹣2xy+y2)﹣16=(x﹣y)2﹣42=(x﹣y﹣4)(x﹣y+4);(3)4x2﹣4x﹣y2+4y﹣3=4x2﹣4x+1﹣y2+4y﹣4=(4x2﹣4x+1)﹣(y2﹣4y+4)=(2x﹣1)2﹣(y﹣2)2=(2x﹣1﹣y+2)(2x﹣1+y﹣2)=(2x﹣y+1)(2x+y﹣3).题型四:因式分解的应用【典例4】(2023秋•钢城区期末)阅读材料:教科书中提到a2+2ab+b2和a2﹣2ab+b2这样的式子叫做完全平方式.”有些多项式不是完全平方式,我们可以通过添加项,凑成完全平方式,再减去这个添加项,使整个式子的值不变,这样也可以将多项式进行分解,并解决一些最值问题.例如:(1)分解因式:x2﹣2x﹣3.x2﹣2x﹣3=x2﹣2x+1﹣1﹣3=(x﹣1)2﹣4=(x﹣1)2﹣22=(x﹣1+2)(x﹣1﹣2)=(x+1)(x﹣3).(2)求代数式x2﹣2x﹣3的最小值.x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4∵(x﹣1)2≥0,∴当x=1时,代数式x2﹣2x﹣3有最小值﹣4.结合以上材料解决下面的问题:(1)若二次三项式x2﹣kx+9恰好是完全平方式,k的值是;(2)分解因式:x2﹣8x+15;(3)当x为何值时,x2﹣8x+15有最小值?最小值是多少?【答案】(1)6或﹣6;(2)(x﹣3)(x﹣5);(3)当x=4时,代数式x2﹣8x+15有最小值﹣1.【解答】解:(1)∵a2+2ab+b2和a2﹣2ab+b2这样的式子叫做完全平方式,而x2﹣kx+9恰好是完全平方式,同时x2﹣kx+9可以整理为x2﹣kx+32,∴k=6或﹣6,故答案为:6或﹣6.(2)x2﹣8x+15=x2﹣8x+42﹣1=(x﹣4)2﹣1=(x﹣4)2﹣12=(x﹣4+1)(x﹣4﹣1)=(x﹣3)(x﹣5);(3)x2﹣8x+15=(x﹣4)2﹣1,∵(x﹣4)2≥0,∴当x=4时,代数式x2﹣8x+15有最小值﹣1.【变式4-1】(2022春•金东区期末)通常情况下,a+b不一定等于ab,观察下列几个式子:第1个:2+2=2×2;第2个:3+=3×;第3个:4+=4×…我们把符合a+b=ab的两个数叫做“和积数对”.(1)写出第4个式子.(2)写出第n个式子,并检验.(3)若m,n是一对“和积数对”,求代数式的值.【答案】(1)第4个式子为5+=5×;(2)第n个式子(n+1)+=(n+1)×;检验过程见解答.(3).【解答】解:(1)第4个式子为5+=5×;(2)第n个式子(n+1)+=(n+1)×;检验:左边=+==右边;(3)∵m,n,∴m+n=mn,设m+n=mn=x,原式===;【变式4-2】(2023秋•哈密市期末)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值.【答案】见试题解答内容【解答】解:(1)∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,∴xy=(﹣3)×(﹣3)=9,即xy的值是9.(2)∵a2+b2﹣10a﹣12b+61=0,∴(a2﹣10a+25)+(b2﹣12b+36)=0,∴(a﹣5)2+(b﹣6)2=0,∴a﹣5=0,b﹣6=0,∴a=5,b=6,∵6﹣5<c<6+5,c≥6,∴6≤c<11,∴△ABC的最大边c的值可能是6、7、8、9、10.【变式4-3】(2023春•罗湖区校级期中)阅读材料:要把多项式am+an+bm+bn因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am+an)+(bm+bn)=a(m+m)+b(m+n)=(m+n)(a+b)这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x2﹣y2+2x﹣2y;(2)知a、b、c是△ABC三边的长,且满足a2+c2﹣2b(a﹣b+c)=0,试判断△ABC 的形状,并说明理由;(3)若m、n、p为非零实数,且(m﹣n)2=(p﹣n)(m﹣p),求证:2p=m+n.【答案】(1)(x﹣y)(x+y+2);(2)见解答;(3)见解答.【解答】解:(1)x2﹣y2+2x﹣2y=(x2﹣y2)+2(x﹣y)=(x+y)(x﹣y)+2(x﹣y)=(x﹣y)(x+y+2);(2)△ABC的形状是等边三角形,理由如下:a2+c2﹣2b(a﹣b+c)=0,a2+c2﹣2ba+2b2﹣2bc=0,(a2﹣2ba+b2)+(c2+b2﹣2bc)=0,(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC的形状是等边三角形.(3)证明:(m﹣n)2=(p﹣n)(m﹣p),等式两边展开移项得:﹣mn++mn﹣pm﹣pn+p2=0,整理得:(m2+mn+n2)﹣p(m+n)+p2=0,即[(m+n)﹣p]2=0,∴(m+n)﹣p=0,∴2p=m+n一.选择题(共8小题)1.(2022秋•内江期末)已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25B.20C.15D.10【答案】A【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.2.(2022春•兰西县校级期末)已知长方形的周长为16cm,它两邻边长分别为x cm,y cm,且满足(x﹣y)2﹣2x+2y+1=0,则该长方形的面积为()cm2.A.B.C.15D.16【答案】A【解答】解:∵长方形的周长为16cm,∴2(x+y)=16,∴x+y=8①;∵(x﹣y)2﹣2x+2y+1=0,∴(x﹣y)2﹣2(x﹣y)+1=0,∴(x﹣y﹣1)2=0,∴x﹣y=1②.联立①②,得,解得:,∴长方形的面积S=xy==(cm2),故选:A.3.(2023秋•洪山区期末)已知实数a满足a2﹣2a﹣1=0,则代数式2a3﹣a2﹣8a+4的值为()A.9B.7C.0D.﹣9【解答】解:∵a2﹣2a﹣1=0,,∴a2﹣2a=1,∴2a3﹣a2﹣8a+4=2a•a2﹣a2﹣8a+4=2a(2a+1)﹣a2﹣8a+4=4a2+2a﹣a2﹣8a+4=3a2﹣6a+4=3(a2﹣2a)+4=3×1+4=7.故选:B.4.(2023秋•商水县期末)已知m2+n2=25,mn=12,则m3n﹣mn3的值为()A.±300B.±84C.±48D.±12【答案】B【解答】解:m3n﹣mn3=mn(m2﹣n2)=mn(m+n)(m﹣n).∵m2+n2=25,mn=12,∴(m+n)2=m2+n2+2mn=25+2×12=49;(m﹣n)2=m2+n2﹣2mn=25﹣2×12=1.∴m+n=±7;m﹣n=±1.①m+n=7,m﹣n=1.原式=12×7×1=84;②m+n=7,m﹣n=﹣1.原式=12×7×(﹣1)=﹣84;③m+n=﹣7,m﹣n=1.原式=12×(﹣7)×1=﹣84;④m+n=﹣7,m﹣n=﹣1.原式=12×(﹣7)×(﹣1)=84.故选:B.5.(2023秋•海安市期末)已知xy=4,则x2﹣2x+y2﹣2y的最小值是()A.﹣9B.﹣2C.0D.2【答案】C【解答】解:x2﹣2x+y2﹣2y=(x2+y2)﹣2(x+y)=(x+y)2﹣2(x+y)﹣2xy.∴原式=(x+y)2﹣2(x+y)﹣8=(x+y)2﹣2(x+y)+1﹣9=(x+y﹣1)2﹣9.设x+y=a,则y=a﹣x.∵xy=4,∴x(a﹣x)=4.∴ax﹣x2=4.∴x2﹣ax+4=0.∴Δ=(﹣a)2﹣4×1×4=a2﹣16.∵方程有解,∴a2﹣16≥0.∴a2≥16.∴a≥4或a≤﹣4.当a=4即x+y=4时,原式=0;当a=﹣4即x+y=﹣4时,原式=25﹣9=16.∵0<16,∴x2﹣2x+y2﹣2y的最小值是0.故选:C.6.(2023秋•宣化区期末)小颖利用两种不同的方法计算下面图形的面积,并据此写出了一个因式分解的等式,此等式是()A.a2+2ab+b2=(a+b)(a+b)B.a2+3ab+2b2=(a+2b)(a+b)C.a2﹣b2=(a+b)(a﹣b)D.2a2+3ab+b2=(2a+b)(a+b)【答案】B【解答】解:根据题图可得大长方形是由2个边长为b的正方形,3个长为b宽为a的长方形和1个边长为a的正方形组成,∴大长方形的面积为a2+3ab+2b2,另外大长方形可以看作一般长为(a+2b)宽为(a+b)的长方形组成,∴大长方形的面积为(a+2b)(a+b),∴可以得到一个因式分解的等式为a2+3ab+2b2=(a+2b)(a+b),故B正确.故选:B.7.(2023秋•鲅鱼圈区期末)已知a﹣b=5,ab=﹣6,则a3b﹣2a2b2+ab3的值为()A.57B.120C.﹣39D.﹣150【答案】D【解答】解:a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,把a﹣b=5,ab=﹣6代入,ab(a﹣b)2=(﹣6)×52=﹣150,故选:D.8.(2023秋•东兴区校级期中)已知,则代数式a2+b2+c2﹣ab﹣bc﹣ac的值是()A.0B.C.2D.3【答案】D【解答】解:∵,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ac=====3.故选:D.二.填空题(共5小题)9.(2023秋•乌兰察布期末)已知a、b是△ABC的两边,且满足a2﹣b2=ac﹣bc,则△ABC 的形状是.【答案】等腰三角形.【解答】解:∵a2﹣b2=ac﹣bc,∴(a+b)(a﹣b)﹣c(a﹣b)=0.∴(a﹣b)(a+b﹣c)=0.∵在△ABC中,a+b>c,∴a+b﹣c>0.∴a﹣b=0,即a=b.∴△ABC是等腰三角形.故答案为:等腰三角形.10.(2023秋•通山县期末)已知:x2﹣x=1,则x4﹣x3﹣2x2+x+1的值是.【答案】0【解答】解:x4﹣x3﹣2x2+x+1=x2(x2﹣x)﹣2x2+x+1,∵x2﹣x=1,∴原式=x2﹣2x2+x+1=﹣x2+x+1=﹣1+1=0.11.(2023秋•沙坪坝区校级期末)若将多项式2x3﹣x2+m进行因式分解后,有一个因式是x+1,则m的值为.【答案】3.【解答】解:∵多项式2x3﹣x2+m进行因式分解后,有一个因式是x+1,∴当x=﹣1时,2x3﹣x2+m=0,即2×(﹣1)3﹣(﹣1)2+m=0,解得m=3.故答案为:3.12.(2022秋•东莞市校级期末)已知a=x+20,b=x+19,c=x+21,则代数式a2+b2+c2﹣ab﹣bc﹣ca的值是.【答案】见试题解答内容【解答】解:由a=x+20,b=x+19,c=x+21,得(a﹣b)x+20﹣x﹣19=1,同理得:(b﹣c)=﹣2,(c﹣a)=1,∴a2+b2+c2﹣ab﹣bc﹣ac,=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac),=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)],=[(a﹣b)2+(a﹣c)2+(b﹣c)2],=×(1+1+4)=3.故答案为3.13.(2022秋•芝罘区期末)计算:20232﹣2023×2022=.【答案】2023.【解答】解:20232﹣2023×2022=2023×(2023﹣2022)=2023×1=2023.故答案为:2023.三.解答题(共3小题)14.(2023秋•梨树县期末)已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.【答案】见试题解答内容【解答】解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴(a﹣b)2=49,∴a2+b2﹣2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25﹣24=1,∴a+b=±1.15.(2023秋•东辽县期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:①ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)②2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:a2+4ab﹣5b2;(3)多项式x2﹣6x+1有最小值吗?如果有,当它取最小值时x的值为多少?【答案】(1)(a﹣b)(a+b+1);(2)(a+5b)(a﹣b);(3)当x=3时,取最小值为﹣8.【解答】解:(1)a2﹣b2+a﹣b=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1);(2)a2+4ab﹣5b2=(a+5b)(a﹣b);(3)x2﹣6x+1=x2﹣6x+9﹣8=(x﹣3)2﹣8∵(x﹣3)2≥0,∴(x﹣3)2﹣8≥﹣8,∴当x=3时,取最小值为﹣8.16.(2023春•新吴区期中)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解例如x2+4x﹣5=x2+4x+()2﹣()2﹣5=(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+3)(x﹣1).根据以上材料,解答下列问题.(1)分解因式(利用公式法):x2+2x﹣8;(2)求多项式x2+4x﹣3的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.【答案】(1)(x﹣2)(x+4);(2)﹣7;(3)12.【解答】解:(1)x2+2x﹣8=x2+2x+1﹣1﹣8=(x+1)2﹣9=(x+1﹣3)(x+1+3)=(x﹣2)(x+4);(2)设y=x2+4x﹣3,y=x2+4x+4﹣4﹣3,y=(x+2)2﹣7,∴多项式x2+4x﹣3的最小值是﹣7.(3)a2+b2+c2+50=6a+8b+10c,即a2+b2+c2+50﹣6a﹣8b﹣10c=0,(a﹣3)2+(b﹣4)2+(c﹣5)2﹣9﹣16﹣25+50=0,(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a=3,b=4,c=5,∴△ABC的周长为3+4+5=12.。

数学苏教七年级下册期末解答题压轴必考知识点题目精选名校解析

数学苏教七年级下册期末解答题压轴必考知识点题目精选名校解析

数学苏教七年级下册期末解答题压轴必考知识点题目精选名校解析一、解答题1.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.2.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒.当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论.3.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.4.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 5.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.6.如图,//AB CD ,点O 在直线CD 上,点P 在直线AB 和CD 之间,ABP PDQ α∠=∠=,PD 平分BPQ ∠.(1)求BPD ∠的度数(用含α的式子表示);(2)过点D 作//DE PQ 交PB 的延长线于点E ,作DEP ∠的平分线EF 交PD 于点F ,请在备用图中补全图形,猜想EF 与PD 的位置关系,并证明;(3)将(2)中的“作DEP ∠的平分线EF 交PD 于点F ”改为“作射线EF 将DEP ∠分为1:3两个部分,交PD 于点F ”,其余条件不变,连接EQ ,若EQ 恰好平分PQD ∠,请直接写出FEQ ∠=__________(用含α的式子表示).7.我们将内角互为对顶角的两个三角形称为“对顶三角形.例如,在图1中,AOB 的内角AOB ∠与COD △的内角COD ∠互为对顶角,则AOB 与COD △为对顶三角形,根据三角形内角和定理知“对顶三角形”有如下性质:A B C D ∠+∠=∠+∠.(1)(性质理解)如图2,在“对顶三角形”AOB 与COD △中,EAO C ∠=∠,2D B ∠=∠,求证:EAB B ∠=∠;(2)(性质应用)如图3,在ABC 中,点D 、E 分别是边AB 、AC 上的点,BOD A ∠=∠,若ECD ∠比DBE ∠大20°,求BDO ∠的度数;(3)(拓展提高)如图4,已知BE ,CD 是ABC 的角平分线,且BDC ∠和BEC ∠的平分线DP 和EP 相交于点P ,设A α∠=,求P ∠的度数(用α表示P ∠).8.在ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,P 是射线AC 上任意一点(不与A 、D 、C 三点重合),过点P 作PQ AB ⊥,垂足为Q ,交直线BD 于E .(1)如图①,当点P 在线段AC 上时,(i )说明PDE PED ∠=∠.(ii )作CPQ ∠的角平分线交直线AB 于点F ,则PF 与BD 有怎样的位置关系?画出图形并说明理由.(2)当点P 在AC 的延长线上时,作CPQ ∠的角平分线交直线AB 于点F ,此时PF 与BD 的位置关系为___________.9.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.10.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).【参考答案】一、解答题1.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去);当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.2.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°,∴18070BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1352EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时,∵60B ∠=︒,60C ∠=°,∴18060BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1302EAC BAC ∠=∠=︒.∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时,∵70B ∠=︒,60C ∠=°,∴18050BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1252EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD DAC EAC αβ∴∠=∠-∠=- ; 综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.3.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.4.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD =∠CDE +∠AED ,∴∠CDE =∠ACD -∠AED =140°-1802n ︒-=1002n ︒+, ∵∠BAC =100°,∠DAC =n ,∴∠BAD =100°+n ,∴∠BAD =2∠CDE .【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键. 5.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.6.(1);(2)画图见解析,,证明见解析;(3)或【分析】(1)根据平行线的传递性推出,再利用平行线的性质进行求解;(2)猜测,根据平分,推导出,再根据、平分,通过等量代换求解;(3)分两种情解析:(1)2BPD α∠=;(2)画图见解析,EF PD ⊥,证明见解析;(3)452α︒-或3452α︒- 【分析】(1)根据平行线的传递性推出////PG AB CD ,再利用平行线的性质进行求解; (2)猜测EF PD ⊥,根据PD 平分,2BPQ BPD α∠∠=,推导出2BPD DPQ α∠=∠=,再根据//DE PQ 、EF 平分DEP ∠,通过等量代换求解;(3)分两种情况进行讨论,即当:1:3PEF DEF ∠∠=与:1:3DEF PEF ∠∠=,充分利用平行线的性质、角平分线的性质、等量代换的思想进行求解.【详解】(1)过点P 作//PG AB ,//,//AB CD PG AB ,////PG AB CD ∴,,BPG ABP DPG PDQ αα∴∠=∠=∠=∠=,2BPD BPG DPG α∴∠=∠+∠=.(2)根据题意,补全图形如下:猜测EF PD ⊥,由(1)可知:2BPD α∠=,PD 平分,2BPQ BPD α∠∠=,2BPD DPQ α∴∠=∠=,//DE PQ ,2EDP DPQ α∴∠=∠=,1801804DEP BPD EDP α∴∠=︒-∠-∠=︒-,又EF 平分DEP ∠, 19022PEF DEP α∠=∠=︒-, 18090EFD PEF BPD ∴∠=︒-∠-∠=︒,EF PD ∴⊥.(3)①如图1,:1:3PEF DEF ∠∠=,由(2)可知:2,1804EPD DPQ EDP DEP αα∠=∠=∠=∠=︒-,:1:3PEF DEF ∠∠=,1454PEF DEP α∴∠=∠=︒-, 313534DEF DEP α∠=∠=︒-, //DE PQ ,DEQ PQE ∴∠=∠,180EDQ PQD ∠+∠=︒,2,EDP PDQ αα∠=∠=,3EDQ EDP PDQ α∴∠=∠+∠=,1801803PQD EDQ α∠=︒-∠=︒-,又EQ 平分PQD ∠,139022PQE DQE DEQ PQD α∴∠=∠=∠=∠=︒-, 331353(90)4522FEQ DEF DEQ ααα∴∠=∠-∠=︒--︒-=︒-; ②如图2,1804DEP α∠=︒-,1803PQD α∠=︒-(同①);若:1:3DEF PEF ∠∠=, 则有11(1804)4544DEF DEP αα∠=∠=⨯︒-=︒-, 又113(1803)90222PQE DQE PQD αα∠=∠=∠=⨯︒-=︒-, //DE PQ ,3902DEQ PQE α∴∠=∠=︒-, 1452FEQ DEQ DEF α∴∠=∠-∠=︒-, 综上所述:3452FEQ α∠=︒-或452α︒-, 故答案是:452α︒-或3452α︒-. 【点睛】 本题考查了平行线的性质、角平分线、三角形内角和定理、垂直等相关知识点,解题的关键是掌握相关知识点,作出适当的辅助线,通过分类讨论及等量代换进行求解. 7.(1)见详解;(2)100°;(3)∠P=45°-【分析】(1)由“对顶三角形”的性质得,从而得,进而即可得到结论;(2)设=x , =y ,则=x+20°,=y-20°,可得∠ABC+∠DCB=解析:(1)见详解;(2)100°;(3)∠P =45°-14α 【分析】(1)由“对顶三角形”的性质得EAO AEO C D ∠+∠=∠+∠,从而得2AEO B ∠=∠,进而即可得到结论;(2)设DBE ∠=x , BDC ∠=y ,则ECD ∠=x +20°,BEC ∠=y -20°,可得∠ABC +∠DCB =y -20°,根据三角形内角和定理,列出方程,即可求解;(3)设∠ABE =∠CBE =x ,∠ACD =∠BCD =y ,可得x +y =90°-12α,结合∠CEP +∠ACD =∠CDP +∠P ,即可得到结论.【详解】(1)证明:∵在“对顶三角形”AOE △与COD △中,∴EAO AEO C D ∠+∠=∠+∠,∵EAO C ∠=∠,∴AEO D ∠=∠,∵2D B ∠=∠,∴2AEO B ∠=∠,又∵AEO EAB B ∠=∠+∠∴EAB B ∠=∠;(2)∵ECD ∠比DBE ∠大20°,ECD ∠+BEC ∠=DBE ∠+BDC ∠,∴设DBE ∠=x , BDC ∠=y ,则ECD ∠=x +20°,BEC ∠=y -20°,∵BOD A ∠=∠,∴∠ABC +∠ACB =180°-∠A =180°-BOD ∠=x +y ,∴∠ABC +∠DCB =∠ABC +∠ACB -ECD ∠= x +y - x -20°=y -20°,∵∠ABC +∠DCB +BDC ∠=180°,∴y -20°+y =180°,解得:y =100°,∴BDO ∠=100°;(3)∵BE ,CD 是ABC 的角平分线,∴设∠ABE =∠CBE =x ,∠ACD =∠BCD =y ,∴2x +2y +α=180°,即:x +y =90°-12α,∵BDC ∠和BEC ∠的平分线DP 和EP 相交于点P ,∴∠CEP =12(180°-2y -x ),∠CDP =12(180°-2x -y ),∵∠CEP +∠ACD =∠CDP +∠P ,∴∠P =12(180°-2y -x )+y -12(180°-2x -y )= 12x +12y =45°-14α, 即:∠P =45°-14α. 【点睛】本题主要考查角平分线的定义,三角形内角和定理,三角形外角的性质,熟练掌握“对顶三角形”的性质,是解题的关键. 8.(1)(i )见解析;(ii ),理由见解析;(2)【分析】(1)(i )根据平分可以得到,再根据,,即可得到答案;(ii )设,根据,,即可求解;(2)根据∠PDO=∠A+∠DBA ,∠A+∠ABC解析:(1)(i )见解析;(ii )//PF BD ,理由见解析;(2)PF BD ⊥【分析】(1)(i )根据BD 平分ABC ∠可以得到CBD QBE ∠=∠,再根据o 90DBC CDB ∠+∠=,o 90QBE QEB ∠+∠=,QEB PED ∠=∠即可得到答案;(ii )设CPF QPF x ∠=∠=,根据CGP BGF ∠=∠,o =90F FPQ +∠∠,==2F FGB CBA CBD +∠∠∠∠即可求解;(2)根据∠PDO =∠A +∠DBA ,∠A +∠ABC =90°,∠ABC =∠CPG ,利用角平分线的性质,即可得到o ==90PDO APF A ABC ++∠∠∠.【详解】解:(1)(i )∵BD 平分ABC ∠,∴CBD QBE ∠=∠,∵o 90ACB ∠=,∴o 90DBC CDB ∠+∠=,∵PQ AB ⊥,∴o 90PQB ∠=,∴o 90QBE QEB ∠+∠=,∴QEB CDB ∠=∠,∵QEB PED ∠=∠,∴PDE PED ∠=∠.(ii )//PF BD .设CPF QPF x ∠=∠=,∴o 90CGP x ∠=-.∵CGP BGF ∠=∠,o =90F FPQ +∠∠∴o =90BGF x -∠,o =90F x -∠又∵==2F FGB CBA CBD +∠∠∠∠ ∴()o 1==902BGF CBD F x +-∠∠∠ ∴CGP CBD ∠=∠,∴//PF BD .(2)PF BD ⊥,理由如下:∵∠ACB =90°∴∠PCB =90°,∠A +∠ABC =90°∵PQ ⊥AB∴∠PQB =∠PCB =90°又∵∠CGP =∠BGQ∴∠ABC =∠CPG∵∠PDO =∠A +∠DBA ,BD 是∠ABC 的角平分线 ∴1=2PDO A ABC +∠∠∠ ∵PF 是∠APQ 的角平分线∴11==22APF APQ ABC ∠∠∠ ∴o 11===9022PDO APF A ABC ABC A ABC ++++∠∠∠∠∠∠∠ ∴∠POD =90°∴PF ⊥BD .【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,对顶角的性质,平行线的判定,解题的关键在于能够熟练掌握相关知识进行求解.9.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0, ∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°, ∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°; 理由:由(1)得AB ∥CD , ∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°, ∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R , ∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN , ∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y , 则有:122y x R y x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1, ∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.10.(1);(2);(3).【分析】(1)过点作,利用平行线的性质可得,,由,经过等量代换可得结论; (2)过作,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设,,则,,设交于.证明解析:(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠,EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.。

苏教七年级下册期末解答题压轴数学真题模拟试卷答案

苏教七年级下册期末解答题压轴数学真题模拟试卷答案

苏教七年级下册期末解答题压轴数学真题模拟试卷答案一、解答题1.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD . (尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 相交于点 E ,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜 OM ,ON ,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 所在的直线相交于点 E ,∠BED =β , α 与 β 之间满足的等量关系是 .(直接写出结果)2.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积 ;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中HABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围. 3.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 . 4.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.5.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.6.已知:∠MON=36°,OE平分∠MON,点A,B分别是射线OM,OE,上的动点(A,B 不与点O重合),点D是线段OB上的动点,连接AD并延长交射线ON于点C,设∠OAC=x,(1)如图1,若AB∥ON,则①∠ABO 的度数是______; ②当∠BAD=∠ABD 时,x=______; 当∠BAD=∠BDA 时,x=______;(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ABD 中有两个相等的角?若存在,求出x 的值;若不存在,请说明理由.7.如图1,将一副三角板ABC 与三角板ADE 摆放在一起;如图2,固定三角板ABC ,将三角板ADE 绕点A 按顺时针方向旋转,记旋转角CAE α∠=(0180α︒︒<<).(1)当α=________度时,AD BC ⊥;当α=________度时//AD BC ;(2)当ADE 的一边与ABC 的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(3)当045α︒<<︒,连接BD ,利用图4探究BDE CAE DBC ∠+∠+∠的度数是否发生变化,并给出你的证明.8.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动.(1)如图1,已知AC 、BC 分别是BAO ∠和ABO ∠角的平分线,点A 、B 在运动的过程中,ACB ∠的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长BA 至D ,己知BAO ∠、OAD ∠的角平分线与BOQ ∠的角平分线及其延长线相交于E 、F . ①求EAF ∠的度数.②在AEF 中,如果有一个角是另一个角的3倍,试求ABO ∠的度数. 9.(想一想)在三角形的三条重要线段(高、中线、角平分线)中,能把三角形面积平分的是三角形的______; (比一比)如图,已知12l l //,点A 、D 在直线1l 上,点B 、C 在直线2l 上,连接AB 、AC 、DB 、DC ,AC 与DB 相交于点O ,则ABC 的面积_______DBC △的面积;(填“>”“<”或“=”)(用一用)如图所示,学校种植园有一块四边形试验田STPQ .现准备过S 点修一条笔直的小路(小路面积忽略不计),将试验田分成面积相等的两部分,安排“拾穗班”、“锄禾班”两班种植蔬菜,进行劳动实践,王老师提醒同学们先把四边形转化为同面积的三角形,再把三角形的面积二等分即可.请你在下图中画出小路SM ,并保留作图痕迹. 10.已知:射线//OP AE(1)如图1,AOP ∠的角平分线交射线AE 与点B ,若58BOP ∠=︒,求A ∠的度数. (2)如图2,若点C 在射线AE 上,OB 平分AOC ∠交AE 于点B ,OD 平分COP ∠交AE 于点D ,39ADO ∠=︒,求ABO AOB ∠-∠的度数.(3)如图3,若A m ∠=︒,依次作出AOP ∠的角平分线OB ,BOP ∠的角平分线1OB ,1B OP ∠的角平分线2OB ,1n B OP -∠的角平分线n OB ,其中点B ,1B ,2B ,,1n B -,nB 都在射线AE 上,直接写出n AB O ∠的度数.【参考答案】一、解答题1.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】 2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】 β = 2α. 【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB ∥CD ; [尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°; [深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α. 【详解】 [现象解释] 如图2,∵OM ⊥ON , ∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.2.(1)3; (2)见解析; (3)见解析 【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD=CD•OC ,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析 【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD =12CD •OC ,(2)利用∠CFE +∠CBF =90°,∠OBE +∠OEB =90°,求出∠CEF =∠CFE .(3)由∠ABC +∠ACB =2∠DAC ,∠H +∠HCA =∠DAC ,∠ACB =2∠HCA ,求出∠ABC =2∠H ,即可得答案.详解:(1)S △BCD =12CD •OC =12×3×2=3.(2)如图②,∵AC ⊥BC ,∴∠BCF =90°,∴∠CFE +∠CBF =90°.∵直线MN ⊥直线PQ ,∴∠BOC =∠OBE +∠OEB =90°.∵BF 是∠CBA 的平分线,∴∠CBF =∠OBE .∵∠CEF =∠OBE ,∴∠CFE +∠CBF =∠CEF +∠OBE ,∴∠CEF =∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC =∠PAD .∵∠ADC =∠DAC ∴∠CAP =2∠DAC .∵∠ABC +∠ACB =∠CAP ,∴∠ABC +∠ACB =2∠DAC .∵∠H +∠HCA =∠DAC ,∴∠ABC +∠ACB =2∠H +2∠HCA ∵CH 是,∠ACB 的平分线,∴∠ACB =2∠HCA ,∴∠ABC =2∠H ,∴HABC ∠∠=12.点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.3.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE=S △BDE ,S △ABE=S △AEC ,从而得到结论; 拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S 1=2S 2 (2)10.5试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.4.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.5.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于1;理由如下:2∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.6.(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数解析:(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;(2)根据三角形内角和定理以及直角的度数,可得x的值.【详解】解:(1)如图1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②当∠BAD=∠ABD 时,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③当∠BAD=∠BDA 时,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案为①18°;②126°;③63°;(2)如图2,存在这样的x 的值,使得△ADB 中有两个相等的角.∵AB ⊥OM ,∠MON=36°,OE 平分∠MON ,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,则∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,则∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,则∠BAD=36°,故∠OAC=90°-36°=54°;综上所述,当x=18、36、54时,△ADB 中有两个相等的角.【点睛】本题考查了三角形的内角和定理和三角形的外角性质的应用,三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.利用角平分线的性质求出∠ABO 的度数是关键,注意分类讨论思想的运用.7.(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析【分析】(1)三角板ADE 顺时针旋转后的三角板为,当时,,则可求得旋转角 解析:(1)105,15;(2)旋转角α的所有可能的度数是:15°,45°,105°,135°,150°;(3) 105BDE CAE DBC ∠+∠+∠=︒,保持不变;见解析【分析】(1)三角板ADE 顺时针旋转后的三角板为AD E '',当AD BC '⊥时,D AD D AE EAD ''∠=∠+∠,则可求得旋转角度;当AD '∥BC 时,D AD DAE ACB '∠=∠-∠,则可求得旋转角度;(2)分五种情况考虑:AD ∥BC ,DE ∥AB ,DE ∥BC ,DE ∥AC ,AE ∥BC ,即可分别求出旋转角;(3)设BD 分别交AC 、AE 于点M 、N ,利用三角形的内外角的相等关系分别得出:ANM E BDE ∠=∠+∠及AMN C DBC ∠=∠+∠,由AMN 的内角和为180°,即可得出结论.【详解】(1)三角板ADE 顺时针旋转后的三角板为AD E '',当AD BC '⊥时,如图,∵9060D AE ACB '∠=︒-∠=︒,∠EAD =45°∴6045105D AD D AE EAD ''∠=∠+∠=︒+︒=︒即旋转角105α=︒当//AD BC '时,如图,则30D AE ACB '∠=∠=︒∴D AD DAE ACB '∠=∠-∠=45°-30°=15°即旋转角15α=°故答案为:105,15(2)当ADE 的一边与ABC 的某一边平行(不共线)时,有五种情况当AD ∥BC 时,由(1)知旋转角为15°;如图(1),当DE ∥AB 时,旋转角为45°;当DE ∥BC 时,由AD ⊥DE ,则有AD ⊥BC ,此时由(1)知,旋转角为105°;如图(2),当DE ∥AC 时,则旋转角为135°;如图(3),当AE ∥BC 时,则旋转角为150°;所以旋转角α的所有可能的度数是:15°,45°,105°,135°,150°(3)当045α︒<<︒,105BDE CAE DBC ∠+∠+∠=︒,保持不变;理由如下:设BD 分别交AC 、AE 于点M 、N ,如图在AMN 中,180AMN CAE ANM ∠+∠+∠=ANM E BDE ∠=∠+∠,AMN C DBC ∠=∠+∠180E BDE CAE C DBC ∴∠+∠+∠+∠+∠=︒30C ∠=︒,45E ∠=︒105BDE CAE DBC ∴∠+∠+∠=︒【点睛】本题考查了图形旋转的性质,三角形内角和定理,三角形的外角与不相邻的两个内角的相等关系等知识,注意旋转的三要素:旋转中心,旋转方向和旋转角度.8.(1)不变,135°;(2)①90°;②60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AC、BC分别是∠BAO和∠ABO角的平分线得出∠BAC=∠OAB解析:(1)不变,135°;(2)①90°;②60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由A C、BC分别是∠BAO和∠ABO角的平分线得出∠BAC=12∠OAB,∠ABC=12∠ABO,由三角形内角和定理即可得出结论;(2)①由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=12∠BAO,∠EOQ=12∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAD的角平分线可知∠EAF=90°;②在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵A C、BC分别是∠BAO和∠ABO角的平分线,∴∠BAC=12∠OAB,∠ABC=12∠ABO,∴∠BAC+∠ABC=12(∠OAB+∠ABO)=12×90°=45°,∴∠ACB=135°;(2)①∵AE、AF分别是∠BAO和∠OAD的角平分线,∴∠EAO=12∠BAO,∠FAO=12∠DAO,∴∠EAF=12(∠BAO+∠DAO)=12×180°=90°.故答案为:90;②∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,即∠ABO=2∠E,在△AEF中,∵有一个角是另一个角的3倍,故分四种情况讨论:①∠EAF=3∠E,∠E=30°,则∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F =3∠E ,∠E =22.5°,∠ABO =45°;④∠E =3∠F ,∠E =67.5°,∠ABO =135°(舍去).∴∠ABO 为60°或45°.【点睛】本题考查的是三角形内角和定理、三角形外角性质以及角平分线的定义的运用,熟知三角形内角和是180°是解答此题的关键.9.想一想:中线;比一比:=;用一用:见解析【分析】想一想:三角形中线把三角形底边等分成两份,过顶点向底边作垂线,高相同;比一比:和共底边BC ,,两平行线之间的距离相等,即和高相等;用一用:利用解析:想一想:中线;比一比:=;用一用:见解析【分析】想一想:三角形中线把三角形底边等分成两份,过顶点向底边作垂线,高相同; 比一比:ABC 和DBC △共底边BC ,12l l //,两平行线之间的距离相等,即ABC 和DBC △高相等;用一用:利用“想一想”中的中线和“比一比”的平行线进行面积的二等分.【详解】想一想:三角形中线把三角形底边等分成两份,过顶点向底边作垂线,高相同,故能把三角形面积平分的是三角形的中线.比一比:∵12l l //∴两平行线之间的距离相等,即A 到BC 的距离=D 到BC 的距离又∵ABC 和DBC △共底边BC ∴ABC 和DBC △同底,等高,面积相等.用一用:如图所示,连接SP ,过Q 点作QM ∥SP ,延长TP ,交QM 与点M ,连接SP ,取TM 的中点N .SN 即为所求笔直的小路.证明:∵QM ∥SP∴QSP MSP SS = ∵TM 的中点N ∴STN SNM SS = ∴STN SNM SNP SPM SNP SPQ SNPQ S S S S S S S ==+=+=四边形【点睛】本题考查中线和平行线的距离.连接三角形的一个顶点和它所对的边的中点的线段叫做三角形的中线.两条平行线的距离处处相等.10.(1)64°;(2)78°;(3)【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数;(2)利用已知条件和平行线解析:(1)64°;(2)78°;(3)11802n m +︒-︒ 【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数;(2)利用已知条件和平行线的性质、角平分线的性质解答即可.(3)分别求出∠ABO ,∠AB 1O ,∠AB 2O ,得到规律,即可求得∠AB n O .【详解】解:(1)如图1,∵OP ∥AE ,∴∠A=∠1,∵∠BOP=58°,OB 是∠AOP 的角平分线,∴∠AOP=2∠BOP=116°,∴∠1=180°-116°=64°,∴∠A=∠1=64°;(2)如图2,∵OP ∥AE ,∴∠POD=∠ADO=39°,∵OB 平分∠AOC ,∴∠AOB=∠BOC ,∵OD 平分∠COP ,∴∠COP=2∠DOP=78°,∴∠ABO-∠AOB=∠COP=78°;(3)如图3,由(1)可知,∠ABO=12(180°-m ),∠AB 1O=12(180°-∠OBB 1)=12∠ABO=14(180°-m ), ∠AB 2O=18(180°-m ), …则∠AB n O=11802n m +︒-︒.【点睛】本题考查了平行线的性质,三角形外角的性质,三角形内角和定理,角平分线的性质,熟练掌握性质定理是解题的关键.。

苏教七年级下册期末解答题压轴数学必考知识点真题经典及答案解析

苏教七年级下册期末解答题压轴数学必考知识点真题经典及答案解析

苏教七年级下册期末解答题压轴数学必考知识点真题经典及答案解析 一、解答题1.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,∠ADC =α°,∠ABC =β°,求∠AEC 的度数;(3)如图3,PQ ⊥MN 于点O ,点A 是平面内一点,AB 、AC 交MN 于B 、C 两点,AD 平分∠BAC 交PQ 于点D ,请问ADPACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.2.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.3.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.4.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒; (2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.5.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .6.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使120AOC ∠=︒,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OA 上,另一边ON 在直线AB 的下方,其中30OMN ∠=︒.(1)将图1中的三角尺绕点O 顺时针旋转至图2,使一边OM 在AOC ∠的内部,且恰好平分AOC ∠,求CON ∠的度数;(2)将图1中的三角尺绕点O 顺时针旋转至图3,使ON 在BOC ∠的内部,请探究BOM ∠与CON ∠之间的数量关系,并说明理由.(3)将图1中三角尺绕点O 按每秒10︒的速度沿顺时针方向旋转一周,旋转过程中,在第_____秒时,边MN 恰好与射线OC 平行;在第_______秒时,直线ON 恰好平分锐角BOC ∠.7.直线MN 与直线PQ 垂直相交于点O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE BE 、分别是BAO ∠和ABO ∠角的平分线,点AB 、在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小.(2)如图2,已知AB 不平行CD AD BC ,、分别是BAP ∠和ABM ∠的角平分线,又DE CE 、分别是ADC ∠和BCD ∠的角平分线,点A B 、在运动的过程中,CED ∠的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出CED ∠的度数. (3)如图3,延长BA 至G ,已知BAO OAG ∠∠、的角平分线与BOQ ∠的角平分线及反向延长线相交于E F 、,在AEF 中,如果有一个角是另一个角的3倍,则ABO ∠的度数为____(直接写答案)8.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系.9.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案) (2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).10.(1)思考探究:如图,△ABC 的内角∠ABC 的平分线与外角∠ACD 的平分线相交于P 点,已知∠ABC =70°,∠ACD =100°.求∠A 和∠P 的度数.(2)类比探究:如图,△ABC 的内角∠ABC 的平分线与外角∠ACD 的平分线相交于P 点,已知∠P =n°.求∠A 的度数(用含n 的式子表示).(3)拓展迁移:已知,在四边形ABCD 中,四边形ABCD 的内角∠ABC 与外角∠DCE 的平分线所在直线....相交于点P ,∠P=n°,请画出图形;并探究出∠A+∠D 的度数(用含n 的式子表示).【参考答案】一、解答题1.(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠ 解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E=12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案. (3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案. 【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB , ∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E , ∴∠E=12(∠D+∠B ),∵∠ADC=50°,∠ABC=40°, ∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F , ∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D , ∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD=∠B+∠BAE -12(∠B+∠BAD+∠D )= 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠ 理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F , ,PQ MN ⊥90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠ 90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠ ,OEB CAD ADP ∴∠-∠=∠ 2,ADP ACB ABC ∠=∠-∠1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.2.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[变式思考]相等,理由如下:证明:∵AF为∠BAG的角平分线,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD为AB边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线 AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.3.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.4.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=12(180°﹣n°)=90°﹣12n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12n°.故答案为:(90+12n);(3)由(2)得∠O=90°+12n°,∵∠ABO的平分线与∠ACO的平分线交于点O1,∴∠O1BC=34∠ABC,∠O1CB=34∠ACB,∴∠O1=180°﹣34(∠ABC+∠ACB)=180°﹣34(180°﹣∠A)=14×180°+34n°,同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°. 5.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个; (2)根据角平分线的定义得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP ,∠BDP=∠CDP ,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,两等式相减得到∠C ﹣∠P=∠P ﹣∠B ,即∠P=(∠C+∠B ),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B ).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【详解】解:(1)在图2中有3个以线段AC 为边的“8字形”,故答案为3;(2)∵∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,∴∠CAP=∠BAP ,∠BDP=∠CDP ,∵∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,∴∠C ﹣∠P=∠P ﹣∠B ,即∠P=(∠C+∠B ),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.6.(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根据邻补角的定义求出∠AOC=120°,再根据角平分线的定义求出∠COM,然后根据∠CON=∠CO解析:(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根据邻补角的定义求出∠AOC=120°,再根据角平分线的定义求出∠COM,然后根据∠CON=∠COM+90°解答;(2)用∠BOM和∠CON表示出∠BON,然后列出方程整理即可得解.(3)分别分两种情况根据平行线的性质和旋转的性质求出旋转角,然后除以旋转速度即可得解.【详解】解:(1)∵∠AOC=120°,∴∠BOC=60°,又∵OM平分∠AOC,∴∠COM=1∠BOC=60°,2∴∠CON=∠COM+90°=150°;(2)∵∠MON=90°,∠BOC=60°,∴∠BON=90°-∠BOM,∠BON=60°-∠CON,∴90°-∠BOM=60°-∠CON,∴∠BOM-∠CON=30°,故∠BOM与∠CON之间的数量关系为:∠BOM-∠CON=30°.(3)∵∠OMN=30°,∴∠N=90°-30°=60°,∵∠BOC=60°,∴当ON在直线AB上时,MN∥OC,如图,则旋转角为90°或270°,∵每秒顺时针旋转10°,∴时间为9秒或27秒;当直线ON恰好平分锐角∠BOC时,则旋转角为90°-30°=60°或90°+150°=240°,∵每秒顺时针旋转10°,∴时间为6秒或24秒.【点睛】本题考查了旋转的性质,角平分线的定义,平行线的性质,读懂题目信息并熟练掌握各性质是解题的关键,难点在于(3)要分情况讨论.7.(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BA解析:(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO的角平分线得出∠BAE=12∠OAB,∠ABE=12∠ABO,由三角形内角和定理即可得出结论;(2)延长A D、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由A D、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=12∠BAP,∠ABC=12∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=12∠BAO,∠EOQ=12∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=12∠OAB,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长A D、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵A D、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=12∠BAP,∠ABC=12∠ABM,∴∠BAD+∠ABC=12(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠CED =67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍弃);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍弃).∴∠ABO为60°或45°.故答案为:60°或45°.【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.8.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA 、DC 使之相交于点E ,延长MC 与BA 的延长线相交于点F ,∵∠B +∠D =150°,∠AMC =α,∴∠E =30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A -∠C =30°+α.②如图所示,210-∠A =(180°-∠D CM )+α,即∠A -∠DCM =30°-α.综上所述,∠A -∠DCM =30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l ∥AB ,利用平行线的性质(两直线平行内错角相等)将所求的角∠M 与已知角∠A 、∠C 的数量关系联系起来,从而求得∠M 的度数.9.(1);(2);(3).【分析】(1)过点作,利用平行线的性质可得,,由,经过等量代换可得结论; (2)过作,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设,,则,,设交于.证明解析:(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论;(2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠,112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.10.(1)∠A =30°,∠P=15°;(2)∠A =2n°;(3)画图见解析;∠A+∠D =180°+2n°或180°﹣2n°.【分析】(1) 根据三角形内角和定理可以算出∠A 的大小,再根据角平分线的性 解析:(1)∠A =30°,∠P=15°;(2)∠A =2n°;(3)画图见解析;∠A+∠D =180°+2n°或180°﹣2n°.【分析】(1) 根据三角形内角和定理可以算出∠A 的大小,再根据角平分线的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠PCD=∠P+∠PBC ,即可得解;(2)和(1)证明方法类似,先证明∠A+∠ABC =2(∠P+∠PBC ),再证明∠A =2∠P 即可得到答案;(3) 延长BA 交CD 的延长线于F 根据三角形内角和定理和三角形的一个外角等于与它不相邻的两个内角的和,即可得到第一种情况;延长AB 交DC 的延长线于F ,同理即可得到答案.【详解】解:(1)∠A=30°,∠P=15°∵∠ACD+∠ACB=180°,∠ACD=100°∴∠ACB=80°,∵∠ABC+∠ACB+∠A=180°(三角形内角和定理),又∵∠ABC=70°,∴∠A=30°,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴∠PCD=12∠ACD=50°,∠PBC=12∠ABC=35°∵∠PBC+∠PCB+∠P=180°,∠PCB+∠PCD=180°∴∠PCD=∠PBC+∠P∴∠P=50°-35°=15°(2)结论:∠A=2n°,理由如下:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC(三角形的一个外角等于与它不相邻的两个内角和),又∵P点是∠ABC和外角∠ACD的角平分线的交点,∴∠ACD=2∠PCD,∠ABC=2∠PBC,∴∠A+∠ABC=2(∠P+∠PBC)(等量替换),∴∠A+∠ABC=2∠P+2∠PBC,∴∠A+∠ABC=2∠P+∠ABC(等量替换),∴∠A=2∠P;∴∠A=2n°(3)(Ⅰ)如图②延长BA交CD的延长线于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣∠A)﹣(180°﹣∠D)=∠A+∠D﹣180°,由(2)可知:∠F=2∠P=2n°,∴∠A+∠D=180°+2n°。

(完整word版)苏科版七年级下册证明压轴题

(完整word版)苏科版七年级下册证明压轴题

1 .如图,点 A 和点 B 在直线MN 的同一侧, A 到 MN 的距离大于 B 到 MN 的距离,AB 7m . P 为 MN 上一个动点,问:当P 到 A 的距离与 P 到 B 的距离之差最大时,这个差等于 __________ 米.AA B AE BAEBE BM P N2.右上几个图形是五角星和它的变形.CC DCD D( 1)(2 )( 3)(1)图( 1)中是一个五角星形状,求∠A+∠ B+∠ C+∠ D+∠ E=;(2)图( 1)中的点 A 向下移到BE上时(如图⑵)五个角的和(即∠CAD+∠ B+∠ C+∠ D+∠ E)有无变化?说明你的结论的正确性;(3)把图( 2)中的点 C 向上搬动到 BD 上时(如图⑶),五个角的和(即∠ CAD+∠ B+∠ ACE+∠D+∠ E)有无变化?说明你的结论的正确性.3.已知:如图 1,线段AB、CD订交于点 O,连接 AD、CB.如图2,在图1的条件下,∠ DAB和∠的均分线和订交于点,并且与、分别订交于、.试解答以下问题:BCD AP CP P CD AB M N(1)在图 1 中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:(2)在图 2 中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)( 3)若是图 2 中∠D和∠B为任意角,其他条件不变,试写出∠P 与∠ D、∠ B 之间数量关系.(直接写出结论即可)4.( 1)AB∥ CD ,如图 1,点∠BOD 是△ POD 的外角,故∠P在 AB 、CD 外面时,由 AB∥CD ,有∠ B=∠ BOD,又因为BOD=∠ BPD +∠D ,得∠ BPD= ∠ B- ∠ D.如图 2,将点 P 移到 AB、CD 内部,以上结论可否成立?若不成立,则∠ BPD 、∠ B、∠ D 之间有何数量关系?请证明你的结论.(2)如图 3,若 AB 、CD 订交于点 Q,则∠ BPD 、∠ B、∠ D 、∠ BQD 之间有何数量关系(不需证明)?(3)依照( 2)的结论求图 4 中∠ A+∠ B+∠ C+∠ D+∠ E+∠ F 的度数.(4)若平面内有点 A1、A2、A3、A4、A5、A6、A7、A8,连接 A1A3、A2A4、 A3 A5、A4A6、A5A7、A6A8、A7 A1、A8 A2,如图 5,则∠ A 1+∠A 2+∠ A3+∠ A4+∠ A5+∠ A6+∠ A7+∠A 8的度数是多少(直接写出结果)?(5)若平面内有 n 个点 A1、A2、A3、A4、A5、······,A n,且这 n 个点能围成的多边形为凸多边形,连接 A1 A3、A2A4、A3A5、A4A6、A5A7,······, A n-1A1、 A n A2,则∠ A1+∠ A2+∠ A3+∠A4+ ······ +∠ A n-1+∠ A n的度数是多少(直接写出结果,用含n 的代数式表示)?5.已知如图,∠ COD =90 °,直线 AB 与 OC 交于点 B,与 OD 交于点 A,射线 OE 与射线 AF 交于点G.(1)若OE 均分∠BOA, AF 均分∠ BAD ,∠OBA=42°,则∠OGA=;(2)若∠GOA =∠ BOA,∠GAD =∠ BAD ,∠ OBA=42°,则∠OGA=;(3)将( 2)中的“∠ OBA=42°”改为“∠ OBA=”,其他条件不变,求∠OGA的度数 .(用含的代数式表示)(4)若∠OGAOE 将∠ BOA 分成 1︰ 2 两部分,的度数 .(用含的代数式表示)AF 均分∠BAD ,∠ ABO =( 30°<<90°),求6.我们定义:【看法理解】在一个三角形中,若是一个角的度数是另一个角度数的4倍,那么这样的三角形我们称之为“圆满三角形”.如:三个内角分别为130 °, 40°, 10°的三角形是“完美三角形”.【简单应用】如图以 A 为端点作射线1 ,∠MON=72°,在射线 OM上找一点A,过点 A作AD,交线段OB 于点 C(点 C 不与 O,B 重合)AB⊥ OM 交ON于点B,(1)∠ ABO=,△ AOB__________(填“是”或“不是”)“圆满三角形”;(2)若∠ ACB= 90°,求证:△ AOC是“圆满三角形”.【应用拓展】如图在 DC上取点 F,使求∠ B 的度数.2 ,点EFCD 在△ ABC 的边BDC 180AB上,连接,DEFDC,作∠ ADC的均分线交 AC于点B .若△BCD是“圆满三角形”E,,。

(完整版)苏教七年级下册期末解答题压轴数学试题精选答案

(完整版)苏教七年级下册期末解答题压轴数学试题精选答案

(完整版)苏教七年级下册期末解答题压轴数学试题精选答案一、解答题1.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.2.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由; 【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)3.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线, (1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________ (3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其反向延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO的度数.4.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.5.互动学习课堂上某小组同学对一个课题展开了探究. 小亮:已知,如图三角形,点D 是三角形内一点,连接BD ,CD ,试探究BDC ∠与A ∠,,2∠之间的关系.小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵,(______) ∴,(等式性质)∵, ∴,∴.(______)(2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题: ①如图①,在凹四边形中,,,求______;②如图②,在凹四边形中,与ACD ∠的角平分线交于点E ,60A ∠=︒,,则______;③如图③,,ACD ∠的十等分线相交于点、、、…、,若,,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______; ⑤如图⑤,,BAC ∠的角平分线交于点E ,,,求AEB ∠的度数.6.阅读材料:如图1,点A 是直线MN 上一点,MN 上方的四边形ABCD 中,140ABC ∠=︒,延长BC ,2DCE MAD ADC ∠=∠+∠,探究DCE ∠与MAB ∠的数量关系,并证明.小白的想法是:“作ECF ECD ∠=∠(如图2),通过推理可以得到CF MN ,从而得出结论”.请按照小白的想法.....完成解答:拓展延伸:保留原题条件不变,CG 平分ECD ∠,反向延长CG ,交MAB ∠的平分线于点H (如图3),设MAB α∠=,请直接写出H ∠的度数(用含α的式子表示).7.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系.8.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等,例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB 与BC 的夹角∠ABC =α. (1)如图①,若入射光线EF 与反射光线GH 平行,则α=________°.(2)如图②,若90°<α<180°,入射光线EF 与反射光线GH 的夹角∠FMH =β.探索α与β的数量关系,并说明理由.(3)如图③,若α=120°,设镜子CD 与BC 的夹角∠BCD =γ(90°<γ<180°),入射光线EF 与镜面AB 的夹角∠1=m (0°<m <90°),已知入射光线EF 从镜面AB 开始反射,经过n (n 为正整数,且n ≤3)次反射,当第n 次反射光线与入射光线EF 平行时,请直接写出γ的度数.(可用含有m 的代数式表示)9.已知:射线//OP AE(1)如图1,AOP ∠的角平分线交射线AE 与点B ,若58BOP ∠=︒,求A ∠的度数. (2)如图2,若点C 在射线AE 上,OB 平分AOC ∠交AE 于点B ,OD 平分COP ∠交AE 于点D ,39ADO ∠=︒,求ABO AOB ∠-∠的度数.(3)如图3,若A m ∠=︒,依次作出AOP ∠的角平分线OB ,BOP ∠的角平分线1OB ,1B OP ∠的角平分线2OB ,1n B OP -∠的角平分线n OB ,其中点B ,1B ,2B ,,1n B -,nB 都在射线AE 上,直接写出n AB O ∠的度数.10.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.【参考答案】一、解答题1.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案; (2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°. 【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可. 【详解】 (1)∵CB ∥OA ∴∠C+∠COA=180° ∵∠C=100°∴∠COA=180°-∠C=80° ∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°; ∴∠EOB=40°;(2)∠OBC :∠OFC 的值不发生变化 ∵CB ∥OA∴∠OBC=∠BOA ,∠OFC=∠FOA ∵∠FOB=∠AOB ∴∠FOA=2∠BOA ∴∠OFC=2∠OBC ∴∠OBC :∠OFC=1:2(3)当平行移动AB 至∠OBA=60°时,∠OEC=∠OBA . 设∠AOB=x , ∵CB ∥AO , ∴∠CBO=∠AOB=x , ∵CB ∥OA ,AB ∥OC ,∴∠OAB+∠ABC=180°,∠C+∠ABC=180° ∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x , ∴x+40°=80°-x , ∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.2.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β3.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.4.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.5.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤ 【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③40A ∠=︒;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定,,即可判断BDC ∠与A ∠,,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解; ②连接BC ,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;③连接BC ,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.【详解】 (1)∵,(三角形内角和180°) ∴,(等式性质)∵, ∴,∴.(等量代换)故答案为:三角形内角和180°;等量代换. (2)如图,延长BD 交AC 于E ,由三角形外角性质可知,,,∴.(3)①如图①所示,连接BC,,根据(1)中结论,得,∴,∴;②如图②所示,连接BC,,根据(1)中结论,得,∴,的角平分线交于点E,∵与ACD∴,,∴,∵,,∴,∴,∵,∴;③如图③所示,连接BC,,根据(1)中结论,得, ∵,,∴, ∵与ACD ∠的十等分线交于点, ∴,,∴,∴,∵,∴,∴,∴,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O , ∵AE 平分BAC ∠,BD 平分BDC ∠, ∴,,∵,,∴,∴, ∴,即;⑤∵,BAC ∠的角平分线交于点E ,∴,∴.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.6.阅读材料:,见解析;拓展延伸:. 【分析】(1)作,,,由平行线性质可得,结合已知,可证,进而得到,从而,,将代入可得.(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结解析:阅读材料:40∠=︒+∠ECD MAB ,见解析;拓展延伸:120CHA α=∠︒-. 【分析】(1)作ECF ECD ∠=∠,DGMN ,BHMN ,由平行线性质可得180MAD ADG ∠+∠=︒,结合已知2DCE MAD ADC ∠=∠+∠,可证180CDG DCF ∠+∠=︒,进而得到DG CF ,从而CFBH ,140BCF MAB ABC ∠+∠=∠=︒,将180180BCF ECF ECD ∠=︒-∠=︒-∠代入可得40∠=︒+∠ECD MAB .(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结论和CG 平分∠ECD 可得∠PHC =∠FCH =120°-3MAB 2∠,即可得120CHA α=∠︒-. 【详解】 解:【阅读材料】 作ECF ECD ∠=∠,DGMN ,BHMN (如图1).∵DGMN ,∴180MAD ADG ∠+∠=︒.∴()180CDG MAD ADC ∠+∠+∠=︒. ∵2DCE MAD ADC ∠=∠+∠, ∴2180CDG DCE ∠+∠=︒. ∴180CDG DCF ∠+∠=︒. ∴DG CF . ∵DG MN ,∴MNCF .∵BH MN , ∴CFBH .∴BCF CBH ∠=∠,MAB ABH ∠=∠. ∴140BCF MAB ABC ∠+∠=∠=︒. ∵180180BCF ECF ECD ∠=︒-∠=︒-∠, ∴40∠=︒+∠ECD MAB . 【拓展延伸】结论:120CHA α=∠︒-.理由:如图,作ECF ECD ∠=∠,过H 点作HP ∥MN ,∴∠PHA=∠MAH=1BAM 2∠, 由(1)得FC ∥MN , ∴FC ∥HP , ∴∠PHC=∠FCH ,∵40∠=︒+∠ECD MAB ,CG 平分∠ECD , ∴∠ECG=20°+1MAB 2∠, ∴∠FCH=180ECG ECF ︒-∠-∠ =180°-(40MAB ︒+∠)-(20°+1MAB 2∠) =120°-3MAB 2∠∴∠CHA=∠PHA+∠PHC=1MAB 2∠∠+(120°-3MAB 2∠)=120°-MAB ∠ 即:120CHA α=∠︒-. 【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α 【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.8.(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150°【分析】(1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠解析:(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150°【分析】(1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°,以及∠1=∠2,∠3=∠4,可得∠2+∠3=90°,即可求出α=90°;(2)在△BEG中,∠2+∠3+α=180°,可得∠2+∠3=180°-α,根据入射光线、反射光线与镜面所夹的角对应相等可得,∠MEG=2∠2,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,可得α与β的数量关系;(3)分两种情况画图讨论:①当n=3时,根据入射光线、反射光线与镜面所夹的角对应相等,及△GCH内角和,可得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,根据三角形外角定义,可得∠G=γ-60°,由EF∥HK,且由(1)的结论可得,γ=150°.【详解】解:(1)在△BEG中,∠2+∠3+α=180°,∵EF∥GH,∴∠FEG+∠EGH=180°,∵∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°,∴∠1+∠2+∠3+∠4=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴α=180°-(∠2+∠3)=90°;(2)β=2α-180°,理由如下:在△BEG中,∠2+∠3+α=180°,∴∠2+∠3=180°-α,∵∠1=∠2,∠1=∠MEB,∴∠2=∠MEB,∴∠MEG=2∠2,同理可得,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,∴β=180°-(∠MEG+∠MGE)=180°-(2∠2+2∠3)=180°-2(∠2+∠3)=180°-2(180°-α)=2α-180°;(3)90°+m或150°.理由如下:①当n=3时,如下图所示:∵∠BEG=∠1=m,∴∠BGE=∠CGH=60°-m,∴∠FEG =180°-2∠1=180°-2m , ∠EGH =180°-2∠BGE =180°-2(60°-m ), ∵EF ∥HK ,∴∠FEG +∠EGH +∠GHK =360°, 则∠GHK =120°, 则∠GHC =30°,由△GCH 内角和,得γ=90°+m .②当n =2时,如果在BC 边反射后与EF 平行,则α=90°, 与题意不符;则只能在CD 边反射后与EF 平行, 如下图所示:根据三角形外角定义,得 ∠G =γ-60°,由EF ∥HK ,且由(1)的结论可得, ∠G =γ-60°=90°, 则γ=150°.综上所述:γ的度数为:90°+m 或150°. 【点睛】本题考查了平行线的性质、列代数式,解决本题的关键是掌握平行线的性质,注意分类讨论思想的利用.9.(1)64°;(2)78°;(3) 【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数; (2)利用已知条件和平行线解析:(1)64°;(2)78°;(3)11802n m +︒-︒【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数;(2)利用已知条件和平行线的性质、角平分线的性质解答即可.(3)分别求出∠ABO ,∠AB 1O ,∠AB 2O ,得到规律,即可求得∠AB n O .【详解】解:(1)如图1,∵OP ∥AE ,∴∠A=∠1,∵∠BOP=58°,OB 是∠AOP 的角平分线,∴∠AOP=2∠BOP=116°,∴∠1=180°-116°=64°,∴∠A=∠1=64°;(2)如图2,∵OP ∥AE ,∴∠POD=∠ADO=39°,∵OB 平分∠AOC ,∴∠AOB=∠BOC ,∵OD 平分∠COP ,∴∠COP=2∠DOP=78°,∴∠ABO-∠AOB=∠COP=78°;(3)如图3,由(1)可知,∠ABO=12(180°-m ),∠AB 1O=12(180°-∠OBB 1)=12∠ABO=14(180°-m ), ∠AB 2O=18(180°-m ), …则∠AB n O=11802n m +︒-︒.【点睛】本题考查了平行线的性质,三角形外角的性质,三角形内角和定理,角平分线的性质,熟练掌握性质定理是解题的关键.10.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平解析:(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平分线,可得∠CDF=12∠CDB,∠CDE=1 2∠CDO,进而得出∠EDF=12(∠CDB+∠CDO)=90°,再根据平行线的性质,即可得到∠AED=90°,即DE⊥AO;(2)连接OC,依据∠DEO=∠DEC,∠EDO=∠EDC,可得∠DOE=∠DCE,再根据三角形外角性质,即可得到∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)如图3中,依据∠CDB是△ODG的外角,可得∠CDB=∠DOG+∠DGO,依据∠DGO 是△CEG的外角,可得∠DGO=∠AEC+∠C,进而得到∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4中,同理可得∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【详解】解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线,∴∠CDF=12∠CDB,∠CDE=12∠CDO,∴∠EDF=12(∠CDB+∠CDO)=90°,又∵DF∥AO,∴∠AED=90°,∴DE⊥AO;(2)如图2,连接OC,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△COD的外角,∠AEC是△COE的外角,∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO,∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由:如图3,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△ODG的外角,∴∠CDB=∠DOG+∠DGO,∵∠DGO是△CEG的外角,∴∠DGO=∠AEC+∠C,∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠AEC是△OEH的外角,∴∠AEC=∠DOE+∠OHE,∵∠OHE是△CDH的外角,∴∠OHE=∠CDB+∠C,∴∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【点睛】本题主要考查了平行线的性质以及三角形外角性质的综合运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.。

(完整版)苏教七年级下册期末解答题压轴数学专题资料题目解析

(完整版)苏教七年级下册期末解答题压轴数学专题资料题目解析

(完整版)苏教七年级下册期末解答题压轴数学专题资料题目解析 一、解答题 1.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.2.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.3.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.4.模型与应用. (模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .如图③,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 的度数为 .(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)5.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1)(图2)6.已知:∠MON=36°,OE平分∠MON,点A,B分别是射线OM,OE,上的动点(A,B 不与点O重合),点D是线段OB上的动点,连接AD并延长交射线ON于点C,设∠OAC=x,(1)如图1,若AB∥ON,则①∠ABO 的度数是______; ②当∠BAD=∠ABD 时,x=______; 当∠BAD=∠BDA 时,x=______;(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ABD 中有两个相等的角?若存在,求出x 的值;若不存在,请说明理由.7.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.8.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC的延长线与BD的延长线有交点,当点M在线段BD的延长线上从左向右移动的过程中,直接写出A∠与C∠所有可能的数量关系.9.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.10.问题1:现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.(1)探究1:如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是;(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .【参考答案】一、解答题1.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒. 【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;(2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠.故答案为:1902D A ∠=︒+∠. ②连结BE . ∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒.故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒;180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.2.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=12a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=12∠CAE,∠ACF=12∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH =12∠AGB ,∠GAH =12∠GAB ,∴∠H =180°﹣(∠AGH +∠GAH )=180°﹣12(∠AGB +∠GAB )=180°﹣12(180°﹣∠ABG )=90°+12∠ABG ,∴∠F +∠H =12∠ABC +90°+12∠ABG =90°+12∠CBG =180°,∴∠F +∠H 的值不变,是定值180°. 【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.3.(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析.【解析】 【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.4.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.5.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β6.(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数解析:(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;(2)根据三角形内角和定理以及直角的度数,可得x的值.【详解】解:(1)如图1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②当∠BAD=∠ABD 时,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③当∠BAD=∠BDA 时,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案为①18°;②126°;③63°;(2)如图2,存在这样的x 的值,使得△ADB 中有两个相等的角.∵AB ⊥OM ,∠MON=36°,OE 平分∠MON ,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,则∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,则∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,则∠BAD=36°,故∠OAC=90°-36°=54°;综上所述,当x=18、36、54时,△ADB 中有两个相等的角.【点睛】本题考查了三角形的内角和定理和三角形的外角性质的应用,三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.利用角平分线的性质求出∠ABO 的度数是关键,注意分类讨论思想的运用.7.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x R y x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.8.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.9.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB 【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解析:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.10.(1);(2);(3)见解析;(4)【分析】(1)根据三角形外角性质可得;(2)在四边形中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下解析:(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.。

数学苏教七年级下册期末解答题压轴必考知识点题目优质及答案解析

数学苏教七年级下册期末解答题压轴必考知识点题目优质及答案解析

数学苏教七年级下册期末解答题压轴必考知识点题目优质及答案解析 一、解答题 1.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.2.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.3.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为.(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .4.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的32倍,求∠ABO的度数.5.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.6.阅读材料:如图1,点A 是直线MN 上一点,MN 上方的四边形ABCD 中,140ABC ∠=︒,延长BC ,2DCE MAD ADC ∠=∠+∠,探究DCE ∠与MAB ∠的数量关系,并证明.小白的想法是:“作ECF ECD ∠=∠(如图2),通过推理可以得到CF MN ,从而得出结论”.请按照小白的想法.....完成解答:拓展延伸:保留原题条件不变,CG 平分ECD ∠,反向延长CG ,交MAB ∠的平分线于点H (如图3),设MAB α∠=,请直接写出H ∠的度数(用含α的式子表示).7.已知,如图1,射线PE 分别与直线AB 、CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α,∠EMF =β,且2(35)αβα-+-0=.(1)α=____ °,β=______ °;直线AB 与CD 的位置关系是_______ ;(2)如图2,若点G 是射线MA 上任意一点,且∠MGH=∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论:(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 和点N ,时,作∠PMB 的角平分线MQ 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由. 8.我们知道:光线反射时,反射光线、入射光线分别在法线两侧,反射角等于入射角.如图1,EF 为一镜面,AO 为入射光线,入射点为点O ,ON 为法线(过入射点O 且垂直于镜面EF 的直线),OB 为反射光线,此时反射角BON ∠等于入射角AON ∠,由此可知BOF ∠等于AOE ∠.(1)两平面镜OP 、OQ 相交于点O ,一束光线从点A 出发,经过平面镜两次反射后,恰好经过点B .①如图2,当POQ ∠为多少度时,光线//AM NB ?请说明理由.②如图3,若两条光线AM 、NB 所在的直线相交于点E ,延长MN 发现MO 和NO 分别为MEN 一个内角和一个外角的平分线,则POQ ∠与MEN ∠之间满足的等量关系是_______.(直接写出结果)(2)三个平面镜PM 、MN 、NQ 相交于点M 、N ,一束光线从点A 出发,经过平面镜三次反射后,恰好经过点E ,请直接写出M ∠、N ∠、BCD ∠与BFD ∠之间满足的等量关系. 9.直线MN 与直线PQ 垂直相交于点O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE BE 、分别是BAO ∠和ABO ∠角的平分线,点AB 、在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小.(2)如图2,已知AB 不平行CD AD BC ,、分别是BAP ∠和ABM ∠的角平分线,又DE CE 、分别是ADC ∠和BCD ∠的角平分线,点A B 、在运动的过程中,CED ∠的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出CED ∠的度数. (3)如图3,延长BA 至G ,已知BAO OAG ∠∠、的角平分线与BOQ ∠的角平分线及反向延长线相交于E F 、,在AEF 中,如果有一个角是另一个角的3倍,则ABO ∠的度数为____(直接写答案) 10.已知:射线//OP AE(1)如图1,AOP ∠的角平分线交射线AE 与点B ,若58BOP ∠=︒,求A ∠的度数. (2)如图2,若点C 在射线AE 上,OB 平分AOC ∠交AE 于点B ,OD 平分COP ∠交AE 于点D ,39ADO ∠=︒,求ABO AOB ∠-∠的度数.(3)如图3,若A m ∠=︒,依次作出AOP ∠的角平分线OB ,BOP ∠的角平分线1OB ,1B OP ∠的角平分线2OB ,1n B OP -∠的角平分线n OB ,其中点B ,1B ,2B ,,1n B -,nB 都在射线AE 上,直接写出n AB O ∠的度数.【参考答案】一、解答题1.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒. 【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;(2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠.故答案为:1902D A ∠=︒+∠. ②连结BE . ∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒.故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒;180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒. 【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.2.(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析.【解析】 【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.3.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.4.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.5.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF ,MO 分别平分∠AFO ,∠AOF ,∴∠M =180°-12(∠AFO +∠AOF )=180°-12(180°-∠FAO )=90°+12∠FAO ,∵NH ,NG 分别平分∠DHG ,∠BGH ,∴∠N =180°-12(∠DHG +∠BGH )=180°-12(∠HAG +∠AGH +∠HAG +∠AHG )=180°-12(180°+∠HAG )=90°-12∠HAG=90°-12(30°+∠FAO +45°)=52.5°-12∠FAO ,∴∠M +∠N =142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO 表示出∠M ,∠N . 6.阅读材料:,见解析;拓展延伸:.【分析】(1)作,,,由平行线性质可得,结合已知,可证,进而得到,从而,,将代入可得.(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结 解析:阅读材料:40∠=︒+∠ECD MAB ,见解析;拓展延伸:120CHA α=∠︒-.【分析】(1)作ECF ECD ∠=∠,DG MN ,BH MN ,由平行线性质可得180MAD ADG ∠+∠=︒,结合已知2DCE MAD ADC ∠=∠+∠,可证180CDG DCF ∠+∠=︒,进而得到DG CF ,从而CF BH ,140BCF MAB ABC ∠+∠=∠=︒,将180180BCF ECF ECD ∠=︒-∠=︒-∠代入可得40∠=︒+∠ECD MAB .(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结论和CG 平分∠ECD 可得∠PHC =∠FCH =120°-3MAB 2∠,即可得120CHA α=∠︒-.【详解】解:【阅读材料】作ECF ECD ∠=∠,DG MN ,BH MN (如图1).∵DG MN ,∴180MAD ADG ∠+∠=︒.∴()180CDG MAD ADC ∠+∠+∠=︒.∵2DCE MAD ADC ∠=∠+∠,∴2180CDG DCE ∠+∠=︒.∴180CDG DCF ∠+∠=︒.∴DG CF . ∵DG MN , ∴MN CF . ∵BH MN , ∴CF BH .∴BCF CBH ∠=∠,MAB ABH ∠=∠.∴140BCF MAB ABC ∠+∠=∠=︒.∵180180BCF ECF ECD ∠=︒-∠=︒-∠,∴40∠=︒+∠ECD MAB .【拓展延伸】结论:120CHA α=∠︒-.理由:如图,作ECF ECD ∠=∠,过H 点作HP ∥MN ,∴∠PHA=∠MAH=1BAM 2∠,由(1)得FC ∥MN ,∴FC ∥HP ,∴∠PHC=∠FCH ,∵40∠=︒+∠ECD MAB ,CG 平分∠ECD ,∴∠ECG=20°+1MAB 2∠,∴∠FCH=180ECG ECF ︒-∠-∠=180°-(40MAB ︒+∠)-(20°+1MAB 2∠)=120°-3MAB 2∠∴∠CHA=∠PHA+∠PHC=1MAB 2∠∠+(120°-3MAB 2∠)=120°-MAB ∠即:120CHA α=∠︒-.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用. 7.(1)35;35;AB ∥CD ;(2)∠FMN+∠GHF=180°.证明见解析;(3)的值不变,=2.【分析】(1)利用非负数的性质可知:==35,推出即可解决问题;(2)结论,只要证明即可解决解析:(1)35;35;AB ∥CD ;(2)∠FMN +∠GHF =180°.证明见解析;(3)1FPN Q∠∠的值不变,1FPN Q ∠∠=2. 【分析】(1)利用非负数的性质可知:α=β=35,推出EMF MFN =∠∠即可解决问题; (2)结论180FMN GHF ∠+∠=︒,只要证明//GH PN 即可解决问题;(3)结论:1FPN Q ∠∠的值不变,1FPN Q∠∠=2.如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,只要证明∠R =∠1FQM ,∠1FPM =2∠R 即可;【详解】(1)证明:∵2(35)0αβα-+-=,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;故答案为:35;35;AB ∥CD ;(2)解:∠FMN +∠GHF =180°.理由:∵AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°.(3)解:1FPN Q ∠∠的值不变,1FPN Q∠∠=2. 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R .∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠1FQM =∠R ,设∠PER =∠REB =x ,11PM R RM B y ==∠∠, 则有:122y x R y x EPM =+∠⎧⎨=+∠⎩,可得∠1FPM =2∠R ,∴∠1EPM =2∠1FQM∴1FPN Q∠∠=2. 【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.8.(1)①90°,理由见解析;②∠MEN=2∠POQ ;(2)2(∠M+∠N )-∠BCD=360°-∠BFD【分析】(1)①设∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根据∠AMN+∠BNM=解析:(1)①90°,理由见解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①设∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根据∠AMN+∠BNM=180°,可得α+β=90°,再根据三角形内角和定理进行计算即可;②设∠AMP=∠NMO=α,∠BNO=∠MNQ=β,根据三角形外角性质可得∠MEN=2(β-α),再根据三角形外角性质可得∠POQ=β-α,进而得出∠MEN=2∠POQ;(2)分别表示出∠M,∠N,∠BCD,利用四边形内角和表示出∠BFD,再将∠M,∠N,∠BCD进行运算,变形得到∠BFD,即可得到关系式.【详解】解:(1)①设∠AMP=∠NMO=α,∠BNQ=∠MNO=β,当AM∥BN时,∠AMN+∠BNM=180°,即180°-2α+180°-2β=180°,∴180°=2(α+β),∴α+β=90°,∴△MON中,∠O=180°-∠NMO-∠MNO=180°-(α+β)=90°,∴当∠POQ为90度时,光线AM∥NB;②设∠AMP=∠NMO=α,∠BNO=∠MNQ=β,∴∠AMN=180°-2α,∠MNE=180°-2β,∵∠AMN是△MEN的外角,∴∠MEN=∠AMN-∠MNE=(180°-2α)-(180°-2β)=2(β-α),∵∠MNQ是△MNO的外角,∴∠POQ=∠MNQ-∠NMO=β-α,∴∠MEN=2∠POQ;(2)设∠PBE=∠MBC=∠1,∠MCB=∠NCD=∠2,∠CDN=∠ADQ=∠3,可知:∠M=180°-∠1-∠2,∠N=180°-∠2-∠3,∠BCD=180°-2∠2,∵∠CBA=180°-2∠1,∠CDA=180°-2∠3,∴∠BFD=360°-∠CDA-∠CBA-∠BCD=360°-(180°-2∠1)-(180°-2∠2)-(180°-2∠3)=2(∠1+∠2+∠3)-180°又∵2(∠M+∠N)-∠BCD=2(180°-∠1-∠2+180°-∠2-∠3)-(180°-2∠2)=540°-2(∠1+∠2+∠3)=360°-[2(∠1+∠2+∠3)-180°]=360°-∠BFD∴2(∠M+∠N)-∠BCD=360°-∠BF D.【点睛】本题考查了平行线的判定与性质,三角形外角的性质以及多边形内角和定理的综合应用,解题时注意:两直线平行,同旁内角互补;三角形的一个外角等于与它不相邻的两个内角的和.9.(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BA解析:(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO的角平分线得出∠BAE=12∠OAB,∠ABE=12∠ABO,由三角形内角和定理即可得出结论;(2)延长A D、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由A D、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=12∠BAP,∠ABC=12∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=12∠BAO,∠EOQ=12∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=12∠OAB,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长A D、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵A D、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=12∠BAP,∠ABC=12∠ABM,∴∠BAD+∠ABC=12(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠CED =67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍弃);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍弃).∴∠ABO为60°或45°.故答案为:60°或45°.【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.10.(1)64°;(2)78°;(3)【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数;(2)利用已知条件和平行线解析:(1)64°;(2)78°;(3)11802n m +︒-︒ 【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数;(2)利用已知条件和平行线的性质、角平分线的性质解答即可.(3)分别求出∠ABO ,∠AB 1O ,∠AB 2O ,得到规律,即可求得∠AB n O .【详解】解:(1)如图1,∵OP ∥AE ,∴∠A=∠1,∵∠BOP=58°,OB 是∠AOP 的角平分线,∴∠AOP=2∠BOP=116°,∴∠1=180°-116°=64°,∴∠A=∠1=64°;(2)如图2,∵OP ∥AE ,∴∠POD=∠ADO=39°,∵OB 平分∠AOC ,∴∠AOB=∠BOC ,∵OD 平分∠COP ,∴∠COP=2∠DOP=78°,∴∠ABO-∠AOB=∠COP=78°;(3)如图3,由(1)可知,∠ABO=12(180°-m ),∠AB 1O=12(180°-∠OBB 1)=12∠ABO=14(180°-m ), ∠AB 2O=18(180°-m ), …则∠AB n O=11802n m +︒-︒.【点睛】本题考查了平行线的性质,三角形外角的性质,三角形内角和定理,角平分线的性质,熟练掌握性质定理是解题的关键.。

苏教七年级下册期末解答题压轴数学重点初中真题经典及答案解析

苏教七年级下册期末解答题压轴数学重点初中真题经典及答案解析

苏教七年级下册期末解答题压轴数学重点初中真题经典及答案解析一、解答题1.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由.2.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;(2)当∠1=70°,求∠EPB的度数;(一般化)(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).3.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)4.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.5.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.6.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E=°;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.7.已知,如图1,射线PE 分别与直线AB 、CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α,∠EMF =β,且2(35)αβα-+-0=.(1)α=____ °,β=______ °;直线AB 与CD 的位置关系是_______ ;(2)如图2,若点G 是射线MA 上任意一点,且∠MGH=∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论:(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 和点N ,时,作∠PMB 的角平分线MQ 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由. 8.(数学经验)三角形的中线,角平分线,高是三角形的重要线段,我们知道,三角形的3条高所在直线交于同一点.(1)①如图1,△ABC 中,∠A =90°,则△ABC 的三条高所在的直线交于点 ; ②如图2,△ABC 中,∠BAC >90°,已知两条高BE ,AD ,请你仅用一把无刻度的直尺(仅用于过任意两点作直线、连接任意两点、延长任意线段)画出△ABC 的第三条高.(不写画法,保留作图痕迹).(综合应用)(2)如图3,在△ABC 中,∠ABC >∠C ,AD 平分∠BAC ,过点B 作BE ⊥AD 于点E . ①若∠ABC =80°,∠C =30°,则∠EBD = ;②请写出∠EBD 与∠ABC ,∠C 之间的数量关系 ,并说明理由.(拓展延伸)(3)三角形的中线将三角形分成面积相等的两部分,如果两个三角形的高相同,则他们的面积比等于对应底边的比.如图4,M 是BC 上一点,则有=ABM BM ACM CM∆∆的面积的面积. 如图5,△ABC 中,M 是BC 上一点BM =14BC ,N 是AC 的中点,若三角形ABC 的面积是m 请直接写出四边形CMDN 的面积 .(用含m 的代数式表示)9.已知:射线//OP AE(1)如图1,AOP ∠的角平分线交射线AE 与点B ,若58BOP ∠=︒,求A ∠的度数. (2)如图2,若点C 在射线AE 上,OB 平分AOC ∠交AE 于点B ,OD 平分COP ∠交AE 于点D ,39ADO ∠=︒,求ABO AOB ∠-∠的度数.(3)如图3,若A m ∠=︒,依次作出AOP ∠的角平分线OB ,BOP ∠的角平分线1OB ,1B OP ∠的角平分线2OB ,1n B OP -∠的角平分线n OB ,其中点B ,1B ,2B ,,1n B -,n B 都在射线AE 上,直接写出n AB O ∠的度数.10.(1)思考探究:如图,△ABC 的内角∠ABC 的平分线与外角∠ACD 的平分线相交于P 点,已知∠ABC =70°,∠ACD =100°.求∠A 和∠P 的度数.(2)类比探究:如图,△ABC 的内角∠ABC 的平分线与外角∠ACD 的平分线相交于P 点,已知∠P =n°.求∠A 的度数(用含n 的式子表示).(3)拓展迁移:已知,在四边形ABCD 中,四边形ABCD 的内角∠ABC 与外角∠DCE 的平分线所在直线....相交于点P ,∠P=n°,请画出图形;并探究出∠A+∠D 的度数(用含n 的式子表示).【参考答案】一、解答题1.(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.2.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;【详解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.3.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.4.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.5.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;;理由如下:(4)∠N:∠BCD的值不会变化,等于12∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.6.(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根据角平分线的定义可得∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,根据已知可推导得出x﹣y=45,再解析:(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根据角平分线的定义可得∠CAF=12∠DAC,∠ACE=12∠ACB,设∠CAF=x,∠ACE=y,根据已知可推导得出x﹣y=45,再根据三角形外角的性质即可求得答案;(2)①根据角平分线的尺规作图的方法作出图形即可;②如图2,由CF平分∠ECB可得∠ECF=12y,再根据∠E+∠EAF=∠F+∠ECF以及∠E+∠EAB=∠B+∠ECB,可推导得出45°+452y+=∠F+12y,由此即可求得答案;(3)如图3,设∠FAH=α,根据AF平分∠EAB可得∠FAH=∠EAF=α,根据已知可推导得出∠FCH=α﹣22.5①,α+22.5=30+23∠FCH+∠FPH②,由此可得∠FPH=22.53α+,再根据∠FCH=m∠FAH+n∠FPH,即可求得答案.【详解】(1)如图1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=12∠DAC,∠ACE=12∠ACB,设∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案为45;(2)①如图2所示,②如图2,∵CF平分∠ECB,∴∠ECF=12y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+12y ①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=452y+②,把②代入①得:45°+452y+=∠F+12y,∴∠F=67.5°,即∠AFC=67.5°;(3)如图3,设∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=13∠AFC=13×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=13∠AHC=13(∠B+∠BCH)=13(90+2∠FCH)=30+23∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH ,∴α+22.5=30+23∠FCH+∠FPH ,② 把①代入②得:∠FPH=22.53α+,∵∠FCH=m ∠FAH+n ∠FPH ,α﹣22.5=mα+n 22.5·3α+, 解得:m=2,n=﹣3.【点睛】本题考查了三角形内角和定理、三角形外角的性质、基本作图——角平分线等,熟练掌握三角形内角和定理以及三角形外角的性质、结合图形进行求解是关键.7.(1)35;35;AB ∥CD ;(2)∠FMN+∠GHF=180°.证明见解析;(3)的值不变,=2.【分析】(1)利用非负数的性质可知:==35,推出即可解决问题;(2)结论,只要证明即可解决解析:(1)35;35;AB ∥CD ;(2)∠FMN +∠GHF =180°.证明见解析;(3)1FPN Q∠∠的值不变,1FPN Q ∠∠=2. 【分析】(1)利用非负数的性质可知:α=β=35,推出EMF MFN =∠∠即可解决问题; (2)结论180FMN GHF ∠+∠=︒,只要证明//GH PN 即可解决问题;(3)结论:1FPN Q ∠∠的值不变,1FPN Q∠∠=2.如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,只要证明∠R =∠1FQM ,∠1FPM =2∠R 即可;【详解】(1)证明:∵2(35)0αβα-+-=,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;故答案为:35;35;AB ∥CD ;(2)解:∠FMN +∠GHF =180°.理由:∵AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°.(3)解:1FPN Q ∠∠的值不变,1FPN Q∠∠=2. 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R .∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠1FQM =∠R ,设∠PER =∠REB =x ,11PM R RM B y ==∠∠, 则有:122y x R y x EPM =+∠⎧⎨=+∠⎩,可得∠1FPM =2∠R ,∴∠1EPM =2∠1FQM∴1FPN Q∠∠=2. 【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.8.(1)①A ;②见解析;(2)①25°;②2∠EBD =∠ABC ﹣∠ACB ;(3)m .【分析】(1)①由直角三角形三条高的定义即可得出结论;②分别延长BE ,DA ,两者交于F ,连接CF 交BA 的延长线解析:(1)①A;②见解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)920m.【分析】(1)①由直角三角形三条高的定义即可得出结论;②分别延长BE,DA,两者交于F,连接CF交BA的延长线于H,CH即为所求;(2)①由三角形内角和定理和角平分线的性质可以得出∠BAE=12∠BAC=35°,再由直角三角形的性质得∠ABE=55°,即可求解;②由三角形内角和定理和角平分线的性质求解即可;(3)连接CD,由中线的性质得S△ADN=S△CDN,同理:S△ABN=S△CBN,设S△ADN=S△CDN=a,S△ABN=S△CBN=12m,再求出S△CDM=34S△BCD=3384m a,S△ACM=34S△ABC=34m,利用面积关系求解即可.【详解】解:(1)①∵直角三角形三条高的交点为直角顶点,∠A=90°,∴△ABC的三条高所在直线交于点A,故答案为:A;②如图,分别延长BE,DA,两者交于F,连接CF交BA的延长线于H,CH即为所求;(2)①∵∠ABC=80°,∠ACB=30°,∴∠BAC=70°,∵AD平分∠BAC,∴∠BAE=12∠BAC=35°,∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣35°=55°,∴∠EBD=∠ABC﹣∠ABE=80°﹣55°=25°,故答案为:25°;②∠EBD与∠ABC,∠C之间的数量关系为:2∠EBD=∠ABC﹣∠ACB∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣∠BAD,∴∠EBD=∠ABC﹣∠ABE=∠ABC+∠BAD﹣90°,∵AD 平分∠BAC ,∴∠BAD =∠CAD =12∠BAC ,∵∠BAC =180°﹣∠ABC ﹣∠ACB ,∴∠BAD =90°﹣12∠ABC ﹣12∠ACB ,∴∠EBD =∠ABC +∠BAD ﹣90°=∠ABC +90°﹣12∠ABC ﹣12∠C ﹣90°=12∠ABC ﹣12∠C , ∴2∠EBD =∠ABC ﹣∠ACB ,故答案为:2∠EBD =∠ABC ﹣∠ACB ;(3)连接CD ,如图所示:∵N 是AC 的中点, ∴1ADN CDN S AN S CN ==△△, ∴S △ADN =S △CDN ,同理:S △ABN =S △CBN ,设S △ADN =S △CDN =a ,∵△ABC 的面积是m ,∴S △ABN =S △CBN =12m ,∴S △BCD =S △ABD =12m ﹣a ,∵BM =14BC , ∴13BM CM =, ∴13BDM CDM S BM S CM ==,13ABM ACM S BM S CM ==, ∴S △CDM =3S △BDM ,S △ACM =3S △ABM ,∴S △CDM =34S △BCD =34×(12m ﹣a )=3384m a -,S △ACM =34S △ABC =34m , ∵S △ACM =S 四边形CMDN +S △ADN =S △CDM +S △CDN +S △ADN ,即:333484m m a a a =-++, 解得:a =310m , ∴S 四边形CMDN =S △CDM +S △CDN =3333984101020m m m m -⨯+=,【点睛】本题主要考查了三角形的高,三角形的中线,三角形内角和,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.9.(1)64°;(2)78°;(3)【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数;(2)利用已知条件和平行线解析:(1)64°;(2)78°;(3)11802n m +︒-︒ 【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数;(2)利用已知条件和平行线的性质、角平分线的性质解答即可.(3)分别求出∠ABO ,∠AB 1O ,∠AB 2O ,得到规律,即可求得∠AB n O .【详解】解:(1)如图1,∵OP ∥AE ,∴∠A=∠1,∵∠BOP=58°,OB 是∠AOP 的角平分线,∴∠AOP=2∠BOP=116°,∴∠1=180°-116°=64°,∴∠A=∠1=64°;(2)如图2,∵OP ∥AE ,∴∠POD=∠ADO=39°,∵OB 平分∠AOC ,∴∠AOB=∠BOC ,∵OD 平分∠COP ,∴∠COP=2∠DOP=78°,∴∠ABO-∠AOB=∠COP=78°;(3)如图3,由(1)可知,∠ABO=12(180°-m ),∠AB 1O=12(180°-∠OBB 1)=12∠ABO=14(180°-m ), ∠AB 2O=18(180°-m ), …则∠AB n O=11802n m +︒-︒.【点睛】本题考查了平行线的性质,三角形外角的性质,三角形内角和定理,角平分线的性质,熟练掌握性质定理是解题的关键.10.(1)∠A =30°,∠P=15°;(2)∠A =2n°;(3)画图见解析;∠A+∠D =180°+2n°或180°﹣2n°.【分析】(1) 根据三角形内角和定理可以算出∠A 的大小,再根据角平分线的性 解析:(1)∠A =30°,∠P=15°;(2)∠A =2n°;(3)画图见解析;∠A+∠D =180°+2n°或180°﹣2n°.【分析】(1) 根据三角形内角和定理可以算出∠A 的大小,再根据角平分线的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠PCD=∠P+∠PBC ,即可得解;(2)和(1)证明方法类似,先证明∠A+∠ABC =2(∠P+∠PBC ),再证明∠A =2∠P 即可得到答案;(3) 延长BA 交CD 的延长线于F 根据三角形内角和定理和三角形的一个外角等于与它不相邻的两个内角的和,即可得到第一种情况;延长AB 交DC 的延长线于F ,同理即可得到答案.【详解】解:(1)∠A=30°,∠P=15°∵∠ACD+∠ACB=180°,∠ACD=100°∴∠ACB=80°,∵∠ABC+∠ACB+∠A=180°(三角形内角和定理),又∵∠ABC=70°,∴∠A=30°,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴∠PCD=12∠ACD=50°,∠PBC=12∠ABC=35°∵∠PBC+∠PCB+∠P=180°,∠PCB+∠PCD=180°∴∠PCD=∠PBC+∠P∴∠P=50°-35°=15°(2)结论:∠A=2n°,理由如下:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC(三角形的一个外角等于与它不相邻的两个内角和),又∵P点是∠ABC和外角∠ACD的角平分线的交点,∴∠ACD=2∠PCD,∠ABC=2∠PBC,∴∠A+∠ABC=2(∠P+∠PBC)(等量替换),∴∠A+∠ABC=2∠P+2∠PBC,∴∠A+∠ABC=2∠P+∠ABC(等量替换),∴∠A=2∠P;∴∠A=2n°(3)(Ⅰ)如图②延长BA交CD的延长线于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣∠A)﹣(180°﹣∠D)=∠A+∠D﹣180°,由(2)可知:∠F=2∠P=2n°,∴∠A+∠D=180°+2n°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,点A 和点B 在直线MN 的同一侧,A 到MN 的距离大于B 到MN 的距离,
7m AB .P 为MN 上一个动点,问:当P 到A 的距离与P 到B 的距离之差最大时,这个
差等于__________米.
M
N
P
B A
2.右上几个图形是五角星和它的变形.
(1)图(1)中是一个五角星形状,求∠A+∠B+∠C+∠D+∠E= ;
(2)图(1)中的点A 向下移到BE 上时(如图⑵)五个角的和(即∠CAD+∠B+∠C+∠D+∠E )有无变化说明你的结论的正确性;
(3)把图(2)中的点C 向上移动到BD 上时(如图⑶),五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E )有无变化说明你的结论的正确性.
3.已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB .如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题: (1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系:
(2)在图2中,若∠D =40°,∠B =30°,试求∠P 的度数;(写出解答过程)
(3)如果图2中∠D 和∠B 为任意角,其他条件不变,试写出∠P 与∠D 、∠B 之间 数量关系.(直接写出结论即可)
(3)
(2)
(1)
E
E
E
D
D
D
C
C
C
B
B
B
A
A
A
4.(1)AB∥CD,如图1,点P在AB、CD外面时,由AB∥CD,有∠B=∠BOD,又因为∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.如图2,将点P移到AB、CD内部,以上结论是否成立若不成立,则∠BPD、∠B、∠D之间有何数量关系请证明你的结论.(2)如图3,若AB、CD相交于点Q,则∠BPD、∠B、∠D、∠BQD之间有何数量关系(不需证明)
(3)根据(2)的结论求图4中∠A+∠B+∠C+∠D+∠E+∠F的度数.
(4)若平面内有点A1、A2、A3、A4、A5、A6、A7、A8,连结A1A3、A2A4、A3A5、A4A6、A5A7、A6A8、A7A1、A8A2,如图5,则∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7+∠A8的度数是多少(直接写出结果)
(5)若平面内有n个点A1、A2、A3、A4、A5、······,A n,且这n个点能围成的多边形为凸多边形,连结A1A3、A2A4、A3A5、A4A6、A5A7,······,A n-1A1、A n A2,则∠A1+∠A2+∠A3+∠A4+······+∠A n-1+∠A n的度数是多少(直接写出结果,用含n的代数式表示)
5. 已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA= ;
(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=42°,则∠OGA= ;
(3)将(2)中的“∠OBA=42°”改为“∠OBA=”,其它条件不变,求∠OGA的度数.(用含的代数式表示)
(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO=(30°<<90°),求∠OGA 的度数.(用含的代数式表示)
6.我们定义:
【概念理解】 在一个三角形中,如果一个角的度数是另一个角度数的 4 倍,那么这样的三角形我
们称之为“完美三角形”.如:三个内角分别为 130°,40°,10°的三角形是“完 美三角形”.
【简单应用】 如图 1,∠MON=72°,在射线OM 上找一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点 C 不与 O ,B 重合)
(1)∠ABO = ,△AOB__________(填“是”或“不是”)“完美三角形”; (2)若∠ACB =90°,求证:△AOC 是“完美三角形”.
【应用拓展】 如图 2,点D 在△ABC 的边AB 上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取点F ,使︒=∠+∠180BDC EFC ,B DEF ∠=∠.若△BCD 是“完美三角形”, 求∠B 的度数.。

相关文档
最新文档