大学物理 复习笔记
大学物理知识点总结汇总
大学物理知识点总结大学物理知识点总结汇总大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。
欢迎阅读参考学习!一、物体的内能1.分子的动能物体内所有分子的动能的平均值叫做分子的平均动能.温度升高,分子热运动的平均动能越大.温度越低,分子热运动的平均动能越小.温度是物体分子热运动的平均动能的标志.2.分子势能由分子间的相互作用和相对位置决定的能量叫分子势能.分子力做正功,分子势能减少,分子力做负功,分子势能增加。
在平衡位置时(r=r0),分子势能最小.分子势能的大小跟物体的体积有关系.3.物体的内能(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能.(2)分子平均动能与温度的关系由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。
(3)分子势能与体积的关系分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。
而分子力与分子间距有关,分子间距的'变化则又影响着大量分子所组成的宏观物体的体积。
这就在分子势能与物体体积间建立起某种联系。
因此分子势能分子势能跟体积有关系,由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加;体积变化时,分子势能发生变化,因而物体的内能发生变化.此外, 物体的内能还跟物体的质量和物态有关。
二.改变物体内能的两种方式1.做功可以改变物体的内能.2.热传递也做功可以改变物体的内能.能够改变物体内能的物理过程有两种:做功和热传递.注意:做功和热传递对改变物体的内能是等效的.但是在本质上有区别:做功涉及到其它形式的能与内能相互转化的过程,而热传递则只涉及到内能在不同物体间的转移。
大学物理知识点归纳总结
大学物理知识点归纳总结### 大学物理知识点归纳总结#### 一、经典力学1. 牛顿运动定律- 第一定律:惯性定律- 第二定律:动力定律- 第三定律:作用与反作用定律2. 功与能- 功的定义与计算- 动能定理- 势能与机械能守恒3. 动量守恒定律- 动量守恒的条件- 动量守恒的应用4. 角动量守恒定律- 角动量的定义- 角动量守恒的条件与应用5. 刚体的转动- 转动惯量- 转动定律- 角动量守恒在转动中的应用6. 振动与波动- 简谐振动- 阻尼振动与共振- 波动的基本概念- 波的干涉与衍射#### 二、热力学与统计物理1. 热力学第一定律- 能量守恒- 热机与制冷机2. 热力学第二定律- 熵的概念- 熵增原理3. 理想气体定律- 状态方程- 理想气体的热力学性质4. 相变与临界现象- 相变的条件- 临界点与相图5. 统计物理基础- 微观状态与宏观状态 - 玻尔兹曼分布- 配分函数#### 三、电磁学1. 电场- 电场强度- 高斯定理- 电势与电势能2. 磁场- 磁感应强度- 安培环路定理- 洛伦兹力3. 电磁感应- 法拉第电磁感应定律- 楞次定律- 自感与互感4. 麦克斯韦方程组- 电场与磁场的产生与传播 - 电磁波的产生5. 电路分析- 直流电路- 交流电路- 复杂电路的分析方法#### 四、量子力学1. 波函数与薛定谔方程- 波函数的概念- 薛定谔方程的形式2. 量子态与测量- 量子态的叠加原理- 测量问题3. 量子力学的基本原理- 波粒二象性- 不确定性原理4. 原子结构与光谱- 玻尔模型- 量子数与能级5. 固体物理基础- 晶体结构- 能带理论#### 五、相对论1. 狭义相对论- 洛伦兹变换- 时间膨胀与长度收缩2. 质能等价原理- 质能方程- 质量与能量的关系3. 广义相对论简介- 引力与时空弯曲- 黑洞与宇宙学#### 六、现代物理专题1. 粒子物理- 基本粒子- 标准模型2. 宇宙学- 大爆炸理论- 宇宙背景辐射3. 凝聚态物理- 超导现象- 磁性材料4. 量子信息与量子计算- 量子比特- 量子纠缠与量子隐形传态以上是对大学物理主要知识点的归纳总结,每个部分都包含了物理学中的核心概念和原理,为进一步深入学习提供了基础。
大学物理大一知识点总结笔记手写
大学物理大一知识点总结笔记手写笔记一:力学1. 牛顿运动定律- 第一定律:物体保持静止或匀速直线运动的状态,除非有外力作用。
- 第二定律:物体的加速度与作用力成正比,与物体的质量成反比。
- 第三定律:作用力与反作用力大小相等,方向相反,且作用在两个不同的物体上。
2. 运动学- 位移:物体从初始位置到最终位置的变化矢量。
- 速度:单位时间内物体位移的大小,是矢量量。
- 加速度:单位时间内速度的变化量,是矢量量。
- 匀速直线运动:速度恒定,加速度为零。
- 自由落体运动:物体仅受重力作用下落,加速度为重力加速度。
3. 力的分解与合成- 重力分解:将一个斜面上的重力分解成垂直分力和平行分力。
- 合力:多个力合成的结果,可通过合力的矢量和来求解。
笔记二:热学1. 热量与温度- 热量:物体之间因温度差而传递的能量。
- 温度:物体分子热运动的强弱程度,可用摄氏度或开尔文度来表示。
2. 热传递- 热传导:物体内部分子间的能量传递,沿温度梯度从高温区向低温区传导。
- 热辐射:热量通过电磁波的辐射进行传递,无需介质。
- 热对流:在液体或气体中,因流体分子热运动引起的热传递。
3. 热容与热容量- 热容:物体单位温度升高所吸收的热量,常见单位为焦/开尔文。
- 热容量:物体所含热能的大小,等于热容与温度变化的乘积。
笔记三:电磁学1. 静电学- 电荷:描述物体带有正电或负电性质,同性相斥、异性相吸。
- 库仑定律:两点电荷间的相互作用力与电荷间的距离成反比,与电荷量成正比。
- 电场:电荷周围所产生的物理场,描述了电荷受力的情况。
2. 电路基础- 电流:单位时间内电荷通过导体的数量。
- 电阻:导体抵抗电流流动的能力。
- 电压:单位电荷在电路中所具有的势能差。
3. 磁场与电磁感应- 磁场:由磁体产生的物理场,描述磁力作用的情况。
- 安培环路定理:磁场环路上的磁场线积分等于通过环路的总电流。
- 法拉第电磁感应定律:变化磁场可以诱发电流。
大学物理知识点汇总
大学物理知识点汇总一、质点运动学1、描述质点运动的物理量位置、速度、加速度、动量、动能、角速度、角动量2、直线运动与曲线运动的分类直线运动:加速度与速度在同一直线上;曲线运动:加速度与速度不在同一直线上。
3、速度与加速度的关系速度与加速度方向相同,物体做加速运动;速度与加速度方向相反,物体做减速运动。
二、牛顿运动定律1、牛顿第一定律:力是改变物体运动状态的原因。
2、牛顿第二定律:物体的加速度与所受合外力成正比,与物体的质量成反比。
3、牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在同一条直线上。
三、动量1、动量的定义:物体的质量和速度的乘积。
2、动量的计算公式:p = mv。
3、动量守恒定律:在不受外力作用的系统中,动量守恒。
四、能量1、动能:物体由于运动而具有的能量。
表达式:1/2mv²。
2、重力势能:物体由于被举高而具有的能量。
表达式:mgh。
3、动能定理:合外力对物体做的功等于物体动能的改变量。
表达式:W = 1/2mv² - 1/2mv0²。
4、机械能守恒定律:在只有重力或弹力对物体做功的系统中,物体的动能和势能相互转化,机械能总量保持不变。
表达式:mgh + 1/2mv ² = EK0 + EKt。
五、刚体与流体1、刚体的定义:不发生形变的物体。
2、刚体的转动惯量:转动惯量是表示刚体转动时惯性大小的物理量,它与刚体的质量、形状和转动轴的位置有关。
大学物理电磁学知识点汇总一、电荷和静电场1、电荷:电荷是带电的基本粒子,有正电荷和负电荷两种,电荷守恒。
2、静电场:由静止电荷在其周围空间产生的电场,称为静电场。
3、电场强度:描述静电场中某点电场强弱的物理量,称为电场强度。
4、高斯定理:在真空中,通过任意闭合曲面的电场强度通量等于该闭合曲面内电荷的代数和除以真空介电常数。
5、静电场中的导体和电介质:导体是指电阻率为无穷大的物质,在静电场中会感应出电荷;电介质是指电阻率不为零的物质,在静电场中会发生极化现象。
大学物理学知识点总结
大学物理学知识点总结### 大学物理学知识点总结#### 一、力学基础1. 牛顿运动定律:- 第一定律(惯性定律):物体保持静止或匀速直线运动状态,除非外力作用。
- 第二定律(动力定律):物体的加速度与作用力成正比,与物体质量成反比。
- 第三定律(作用与反作用定律):作用力与反作用力大小相等、方向相反。
2. 功和能量:- 功:力在位移方向上的分量与位移的乘积。
- 动能:\[ E_k = \frac{1}{2}mv^2 \]- 势能:由物体位置决定的能量,如重力势能。
3. 动量和冲量:- 动量:\[ p = mv \]- 冲量:力与作用时间的乘积。
4. 角动量和角动量守恒:- 角动量:\[ L = r \times p \]- 角动量守恒:在没有外力矩作用下,系统的总角动量保持不变。
#### 二、热力学1. 热力学第一定律:能量守恒定律,热量可以转化为其他形式的能量。
2. 热力学第二定律:自发过程总是向着熵增的方向进行。
3. 理想气体定律:\[ PV = nRT \]- 其中 \( P \) 是压强,\( V \) 是体积,\( n \) 是摩尔数,\( R \) 是理想气体常数,\( T \) 是温度。
4. 熵:系统无序度的量度,与系统微观状态的多样性有关。
#### 三、电磁学1. 库仑定律:电荷间作用力与电荷量的乘积成正比,与距离的平方成反比。
2. 电场和电势:- 电场:电荷周围空间的力场。
- 电势:单位正电荷在电场中从无穷远处移动到某点所做的功。
3. 磁场和磁感应强度:- 磁场:由磁体或电流产生的力场。
- 磁感应强度:磁场对运动电荷的作用力。
4. 法拉第电磁感应定律:变化的磁场产生感应电动势。
#### 四、波动学1. 波的基本特性:- 波长、频率、速度。
2. 干涉和衍射:- 干涉:两个或多个波相遇时,波的振幅相加。
- 衍射:波绕过障碍物传播的现象。
3. 多普勒效应:波源和观察者相对运动时,观察者接收到的波频率发生变化。
完整版)大学物理笔记
完整版)大学物理笔记Chapter 1: Proton Kinematics1.Reference frame: A standard object chosen to describe the n of an object.2.Coordinate system3.Particle: Under certain ns。
the n of an object can be represented by the n of any point on the object。
which can be treated as a point with mass。
This point is called a particle (ideal model).4.n vector (displacement vector): A vector pointing from the origin of the coordinate system to the n of the particle.5.Displacement: The increment of the n vector in the timeint erval Δt.6.Velocity: Speed of n.7.XXX: The average rate of change of velocity.8.XXX quantities.9.ns of n.10.Principle of n of n.n vector: r = r(t) = x(t)i + y(t)j + z(t)k Displacement: Δr = r(t+Δt) - r(t) = Δxi + Δyj + Δzk In general。
Δr ≠ ΔrVelo city: v = lim Δr/Δt = i(dx/dt) + j(dy/dt) + k(dz/dt) XXX: a = lim dv/dtCircular nj + k = xi + yj + zkXXX: ω = dθ/dtXXX: α = dω/dtXXX: a = an + atNormal n: an = v^2/R pointing towards the center of the circleXXX: at = Rα along the XXXLinear velocity: v = RωArc length: s = RθChapter 2: XXX1.XXX:XXX's First Law: An object at rest will remain at rest。
大学物理笔记(可编辑修改word版)
第一章质子运动学1.参考系:为描述物体的运动而选的标准物2.坐标系3.质点:在一定条件下,可用物体上任一点的运动代表整个物体的运动,即可把整个物体当做一个有质量的点,这样的点称为质点(理想模型)4.位置矢量(位矢):从坐标原点指向质点所在的位置5.位移:在∆t 时间间隔内位矢的增量6.速度速率7.平均加速度8.角量和线量的关系9.运动方程10.运动的叠加原理第二章牛顿运动定律1.牛顿运动定律:牛顿第一定律:任何物体都保持静止或匀速直线运动的状态,直到其他物体作用的力迫使它改变这种状态牛顿第二定律:当质点受到外力的作用时,质点动量p 的时间变化率大小与合外力成正比,其方向与合外力的方向相同牛顿第三定律:物体间的作用时相互的,一个物体对另一个物体有作用力,则另一个物体对这个物体必有反作用力。
作用力和反作用力分别作用于不同的物体上,它们总是同时存在,大小相等,方向相反,作用在同一条直线上。
2.常见的力:万有引力:弹性力摩擦力第三章动量守恒定律和能量守恒定律1.动量:p =mv 描述物体运动状态的物理量2.冲量:力对时间的积累效应I =⎰Fdt3.动量定理:质点动量的增量等于合力对质点作用的冲量,质点系动量的增量等于合外力的冲量⎰Fdt =p -p04.动量守恒定律:若质点系所受的合外力为零,系统的动量是守恒量5.功:描述力对空间的累积效应的物理量W =⎰f dr 保守力的功:只于物体的始末位置有关,与路径无关非保守力的功:与物体的始末位置有关,与路径无关6.势能:与物体位置有关的能量。
当质点从A 点运动到B 点时保守力所做的功等于势能增量的负值引力势能重力势能弹性势能7.动能定理:质点的动能定理是合外力对质点做的功等于质点动能的增量;质点系的动能定理是外力及内力对质点系所做的总功等于系统动能的增量功能原理:系统外力的功与非保守内力的功之总和等于系统机械能的增量机械能守恒定律:如果系统外力的功与非保守内力的功之总和等于零,则系统的机械能不变8.质心第四章 刚体1. 刚体:受力时大小和形状保持不变的物体(理想模型)2. 刚体的运动:平动,转动(含定轴转动,定点转动)和平面平行转动3. 刚体的定轴转动:刚体绕一固定轴转动,此时刚体上所以的点都绕一固定不变的直线做圆周运动。
大一物理知识点总结笔记
大一物理知识点总结笔记大一物理知识点总结笔记正文:物理学是研究自然界最基本的规律和性质的学科。
在大一阶段,学生将会学习许多重要的物理知识点,这些知识点将对他们的未来学习和理解更深入的物理学知识打下坚实的基础。
以下是一些重要的物理知识点,学生应该牢记:1. 牛顿第一定律:也称为惯性定律。
它表明,一个物体如果没有受到外力的作用,将保持静止或匀速直线运动的状态。
这个定律可以用来解释许多现象,如汽车在行驶时没有加速的原因,以及运动员在赛跑时保持恒定速度的原因。
2. 牛顿第二定律:也称为运动定律。
它描述了物体受到力的作用时的加速度,即加速度与作用在物体上的力成正比,与物体的质量成反比。
这个定律可以用来计算物体的加速度,以及预测物体将如何运动。
3. 库仑定律:它描述了电荷之间的相互作用,可以用来解释电现象,如电流、电压、电阻等。
4. 热力学定律:它描述了热量的传递和转化,可以用来解释许多物理现象,如温度的变化、热传递等。
5. 光学:光学是研究光的性质和作用的学科,包括光的反射、折射、干涉和衍射等。
学生应该掌握光的反射和折射定律,以及干涉和衍射定律。
6. 波动光学:波动光学是研究光的波动性质和作用的学科,包括干涉、衍射和偏振等。
学生应该掌握光的干涉和衍射定律,以及偏振定律。
除了以上知识点,学生还应该熟悉其他重要的物理概念和定律,如相对论、量子力学等。
此外,学生还应该掌握一些实验方法和技能,如光学实验、电学实验等,以便更好地理解物理学的概念和定律。
拓展:1. 相对论:相对论是研究物理现象时间和空间如何相互作用的学科。
它包括狭义相对论和广义相对论,提出了一些惊人的物理发现,如时间膨胀、光速不变等。
相对论在物理学的各个领域都有广泛的应用,如宇宙学、天体物理学等。
2. 量子力学:量子力学是研究物理现象的最小粒子行为的学科。
它提出了一些新的物理定律和概念,如波粒二象性、不确定性原理等。
量子力学在化学、材料科学、半导体等领域都有广泛的应用。
大学物理大一知识点总结笔记
大学物理大一知识点总结笔记引言:大学物理是理工科大一学生必修的一门课程,对于初次接触物理学的同学们来说,掌握基本的知识点是非常重要的。
本文将对大学物理大一的知识点进行总结和归纳,以帮助同学们更好地学习和掌握这门课程。
一、力学1. 运动的描述在力学中,我们需要了解运动的基本概念和描述方法。
运动的基本描述包括位移、速度和加速度,它们分别表示物体在时间内的位置变化、位置变化的快慢和变化速率的快慢。
2. 牛顿定律牛顿定律是力学的基石,包括牛顿第一定律(惯性定律)、牛顿第二定律(力的概念和F=ma)、牛顿第三定律(作用力与反作用力)等。
掌握这些定律对于分析和解决物体运动问题至关重要。
3. 力的合成与分解力的合成与分解是力学中非常重要的概念和方法,可以帮助我们更好地理解和计算多个力的作用效果,解决力平衡和力和运动问题。
二、热学1. 温度与热量温度和热量是热学中的基本概念。
温度表示物体内部分子、原子的平均动能的大小,常用温标有摄氏度和开尔文度。
热量表示物体之间由于温度差异而传递的能量,热量的单位为焦耳。
2. 物态变化物质在不同温度下会经历不同的物态变化,包括固体的熔化和凝固、液体的沸腾和凝结、气体的蒸发和凝华等。
掌握这些物态变化的规律可以帮助我们理解物质的性质和热力学的基本原理。
3. 热量传递热量传递有三种方式:导热、对流和辐射。
导热是指热量通过固体的直接接触传递,对流是指液体或气体中的大量粒子在传热过程中的运动传递热量,辐射是指热量通过电磁波辐射传递。
理解热量传递的方式对于解释自然界中的现象和应用于工程技术中具有重要意义。
三、光学1. 光的反射与折射光的反射和折射是光学中基本的现象,可以用光的几何光学理论进行描述。
反射是指光线遇到物体时发生方向改变的现象,折射是指光线从一种介质传到另一种介质时改变传播方向的现象。
2. 球面镜和薄透镜球面镜和薄透镜是光学中常用的光学元件。
球面镜包括凸透镜和凹透镜,可以用来成像和放大物体。
大学物理复习笔记
⼤学物理复习笔记刚体1 定轴转动定律(转动惯量如:滑轮问题J =1/2MR^2)常⽤列⽅程组解题M=Jα;F=Ma;a=rα2 刚体定轴转动的功和能E=1/2 Jw^2例棒⼦质量M,⼩球质量m1/2(mglsinθ)=1/2(Jw^2)J=1/12(ML^2)+m(L/2)^23 转动惯量J(会判断谁⼤谁⼩)4 ⾓动量守恒(例如圆盘与⼦弹考虑圆盘与⼦弹同向与反向同向时,L增⼤但J也增⼤,不好判断⾓速度变⼤还是变⼩,反向时⼀定变⼩创新实验:⾓动量合成,⼤⼩⽅向,旋转转轮的⾓动量合成实验室有⼏个⾓动量演⽰仪,这是其中⼀个。
两边的圆盘分别可以逆时针或顺时针转动,上⾯的⼿柄可以将圆盘拉起来。
这⾥只介绍其中⼀种转动情况,其他情况可以类⽐。
假设两侧转盘都逆时针转动,则当转盘的⽅向是斜向下时,他们的合⾓动量是向下的,由于系统所受的合外⼒矩为零,所以系统⾓动量守恒。
故从空中俯看,会看到整个装置逆时针转动。
当⽤⼿柄将转盘拉起时,转盘的合⾓动量为向上,整个装置会顺时针转。
当转盘⽔平时,整个装置不转动。
其他的装置也是利⽤⾓动量守恒的原理,可以去看下振动1 简谐振动表达式x=Acos(wt+φ) 会判断运动⽅向,(旋转圆⽮量法)2 相位相位差3 振动的合成(已知A和φ)画图法波动1 写波函数y(x,t)=Acos [w(t-x/u)+ φ]=Acos[wt-2πx/λ+φ]、某⼀点的振动表达式;速度(对t求偏导,把对应t,x带⼊)2 介质元的能量特征平衡位置,动能最⼤势能最⼤,且⼀样⼤作业第四章⼆第5条3 波动图像(给出波动图像判断初相时要注意波的传播⽅向)静电场1 场强E (导体球(电荷表⾯分布),带点球壳,球体)⾼斯定理2 电势U⽆限⼤带电平板,沿垂直于平板⽅向的场强分布,电势分布电势(0电势定在板的位置)场强3 平板电容器板间作⽤⼒F=σq/(2ε。
)σ为⾯电荷密度板间场强E=σ/(2ε。
)C=Q/U =εs/d4 两个带电体电场⼒电势能例如:两带电体,⼀个带点球壳电量为Q,⼀导体细棒,延长线过球⼼,电荷线密度为λ细棒端和尾离圆⼼分别为r1 r2 求电场⼒电势能dF =Edq; dq=λdr;dF =EλdrF=对dF的积分(r1到r2)dW=Uλdr5 电场的能量W=Q^2/(2c)=cU^2/2:有介质时W=DE/2=εE^ 2/2 (另外,page 215 还有充介质的情况,充两层呢(关于计算单位体积的能量;能量的密度)6 探索实验带电乒乓(这是静电乒乓。
大学物理一笔记整理
第一章 静力学1.R1(x1i,y1j, z1h) R2(x2i,y2j.z2h); R1*R2= | i j h ||x1 y1 z1| |x2 y2 z2| 2.求:船速靠岸的速率3.自然坐标下的表示第二章质点动力学1.牛顿第二定律在受到外力作用时,物体所获得的加速度的大小与外力成正比,与物体的质量成反比;加速度的方向与外力的矢量和的方向相同。
2 3.4. 合力的功为各分力的功的代数和。
5.6.几种保守力和相应的势能 重力的功和重力势能M 在重力作用下由a 运动到b ,取地面为坐标原点,y 轴向上为正,a 、b 的坐标分别为ya 、yb 重力势能以地面为零势能点, na a nv t v t v t v t v a v v n+=+=+===τρτττττ2d d d d d d d d 因为反映速度方向的变映ρ2v n a 法向加速度=的变化反映速度大小(速率)切向加速度 d d tva =τ a a a +=总加速度0022v l slv sh l s ==-=,mr m mr m r N i ii Ni iN i ii c ∑∑∑=====111⎰⎰⎰⎰⎰⎰===zdm ;ydm ;cccz y x ⎰++=baz y x dz F dy F dx F W )(右手螺旋法则方向:大小:称为角动量,或动量矩 sin ,θmvr mvr L v m r p r L ==⨯=⨯=⊥ 方向:右手螺旋法则大小:力矩:θsin Fr Fr M Fr M ==⨯=⊥ mgyy mg mgdy E y P =--=-=⎰)0(0引力的功和引力势能1.刚体的回转半径 = 半径为 Rg 的薄圆环的转动惯量2.纯滚动的主要特征:(条件:足够大的摩擦力) ①在滚动中接触点P 始终是相对静止的,没有滑动。
②发生在P 点的摩擦力为静摩擦力(0~fmax),不作功。
③同时,P 点的线速度始终为零。
④ xC= R θ, vC=R ω, aC=R α3. 特别注意:绕质心轴和绕瞬时轴的角速度等是相同的第四章 狭义相对论1.运动长度的测量必须同时记录首尾坐标!2、爱因斯坦的两个基本假设及本质含义:①相对性原理:所有物理规律对所有惯性系都是3.两个事件的 时空间隔在 所有惯性系 中都相同, 即时空间隔 是绝对的。
高等物理归纳笔记(全)
高等物理归纳笔记(全)第一章: 力学1. 牛顿定律- 牛顿第一定律:物体在无外力作用下保持匀速直线运动或静止。
- 牛顿第二定律:力等于质量乘以加速度,即 $F=ma$。
- 牛顿第三定律:作用力与反作用力大小相等、方向相反,作用在不同物体上。
2. 动能与功- 动能定律:物体的动能等于其质量乘以速度的平方的二分之一,即 $E_k=\frac{1}{2}mv^2$。
- 功的定义:力对物体所做的功等于力与物体位移的乘积,即$W=Fs$。
- 动能定理:净功等于物体动能变化量,即$W_{\text{净}}=\Delta E_k$。
3. 圆周运动- 离心力:沿心向外的力,大小等于质点做匀速圆周运动时所需的力,即 $F_r=mv^2/r$。
- 向心力:指向圆心的力,大小等于离心力的反向,即 $F_c=-F_r$。
第二章: 热力学1. 温度与热量- 温度的定义:反映物体热运动程度的物理量。
- 热量的定义:能量由高温物体传向低温物体的过程中所传递的能量。
2. 热力学定律- 第一定律:能量守恒定律,即能量不会凭空产生或消失,只能从一种形式转变为另一种形式。
- 第二定律:热能不能自动从低温物体传向高温物体。
3. 热力学循环- 等温过程:系统与外界保持温度不变。
- 绝热过程:系统与外界不进行热量交换。
- 等容过程:系统体积保持不变。
第三章: 光学1. 光的性质- 光的传播方式:直线传播,可以反射、折射和散射。
- 光的折射定律:光线从一种介质进入另一种介质时,入射角和折射角满足 $n_1\sin\theta_1=n_2\sin\theta_2$。
2. 光的成像- 凸透镜成像:物距大于焦距时,形成实像;物距小于焦距时,形成虚像。
- 凹透镜成像:物距大于焦距时,形成虚像;物距小于焦距时,形成实像。
3. 光的干涉- 杨氏实验:光的干涉现象,两条光线的相干性决定了干涉条纹的产生。
第四章: 电磁学1. 电场与电势- 电场强度:单位正电荷在某点产生的力,单位为牛顿/库仑。
大一物理知识点总结手写版
大一物理知识点总结手写版(此处省略封面和目录)一、运动学1. 一维运动1.1 匀速直线运动1.2 一维加速直线运动1.3 自由落体运动2. 二维运动2.1 矢量与标量2.2 平抛运动2.3 简谐振动二、力学1. 牛顿三定律1.1 第一定律:惯性定律1.2 第二定律:动量定律1.3 第三定律:作用与反作用定律2. 平衡力学2.1 物体平衡条件2.2 受力分析法2.3 完整静力图法三、功和能量1. 功1.1 功的计算1.2 弹力做功1.3 重力做功2. 势能与动能2.1 势能的定义与计算2.2 动能定理2.3 势能曲线与平衡位置四、热学与分子运动论1. 热学基本概念1.1 温度与热平衡1.2 热传导与热传递1.3 热力学第一定律2. 理想气体状态方程2.1 理想气体的基本性质2.2 理想气体状态方程2.3 分子速率与温度关系五、电学1. 电荷与电场1.1 基本电荷1.2 电场的性质1.3 电势与电势差2. 电流与电阻2.1 电流的定义与计算2.2 电阻与电阻定律2.3 欧姆定律六、电磁学1. 静电场1.1 高斯定律1.2 电场能2. 磁场与电磁感应2.1 磁场的定义与性质2.2 磁感应强度与电流关系2.3 楞次定律与法拉第定律七、光学1. 几何光学1.1 光的传播与反射1.2 折射定律1.3 透镜与成像2. 光的波动性2.1 互ference2.2 衍射与干涉2.3 光的偏振八、原子物理与量子力学1. 原子物理基本概念1.1 原子结构与元素周期表1.2 辐射与吸收1.3 能级与谱线2. 量子力学基本原理2.1 波粒二象性与波函数2.2 不确定性原理2.3 德布罗意假设(此处省略参考文献)以上是大一物理知识点的手写版总结,请仔细阅读。
大一物理知识点总结笔记大全
大一物理知识点总结笔记大全大一物理是大学物理学的入门课程,是学习物理学的基础。
在这门课程中,我们将学习到许多重要的物理知识点和理论。
为了帮助大家更好地掌握这些知识,我为你准备了一份大一物理知识点总结笔记大全。
下面是对这些知识点的详细梳理:1. 运动学- 一维运动:位移、速度、加速度的定义和计算公式。
- 二维运动:向量、位移、速度、加速度的定义和计算公式,以及它们在平抛运动、斜抛运动中的应用。
2. 牛顿力学- 牛顿三定律:惯性定律、动量定理、作用-反作用定律的介绍和应用。
- 受力分析:力的合成与分解,静摩擦力、动摩擦力、弹簧力、重力、压力等常见力的计算。
- 运动方程:力的合成与分解,静摩擦力、动摩擦力、弹簧力、重力、压力等常见力的计算。
3. 力学能量- 动能和势能的定义及其计算公式。
- 机械能守恒定律在简单机械系统中的应用。
4. 物体的平衡- 平衡力的概念和条件。
- 物体在水平面上的平衡和悬挂平衡条件及其应用。
5. 简谐振动- 简谐运动的定义和特点。
- 单摆、弹簧振子的运动规律和计算公式。
6. 流体静力学- 浮力和压力的概念和计算公式。
- 管道和水压的应用。
7. 热学基础- 温度和热量的概念和计算公式。
- 热平衡、热力学第一定律和第二定律的介绍。
8. 热力学- 理想气体状态方程和理想气体的性质。
- 理想气体的等温过程、绝热过程和绝热膨胀等热力学过程的计算。
9. 电磁学基础- 电荷和电场的概念,库仑定律和电场强度的计算。
- 静电场中的电势能和电势的关系及其计算。
10. 直流电路- 电流、电势差和电阻的概念,欧姆定律的应用。
- 串、并联电路的计算。
11. 电磁感应- 磁场和磁感线的概念。
- 法拉第电磁感应定律和楞次定律的应用。
12. 交流电路- 交流电路中的电压、电流、功率等概念。
- 电阻、电感、电容元件在交流电路中的特性和计算。
通过对这些大一物理的知识点进行总结和梳理,希望能够帮助到大家更好地理解和记忆这些重要的物理知识。
大学物理大一知识点总结笔记大全
大学物理大一知识点总结笔记大全第一章线性运动1.1 位置、位移和速度在物理学中,我们通常使用位置、位移和速度这三个概念来描述物体的运动。
位置是指物体所处的空间位置,位移是指物体从初始位置到结束位置的变化量,速度是指物体单位时间内位移的大小。
1.1.1 位置的表示在一维情况下,我们可以用实数轴上的一个坐标来表示物体的位置。
在二维或三维情况下,我们可以使用坐标系来表示位置。
1.1.2 位移和速度的关系位移是一个矢量量,它有大小和方向。
速度则是位移的导数,表示单位时间内位移的变化率。
速度的大小可以用平均速度和瞬时速度来描述。
1.2 加速度和速度的变化1.2.1 加速度的概念加速度是速度的变化率,表示单位时间内速度的变化量。
1.2.2 加速度和速度的关系在匀变速运动下,速度的变化是均匀的,加速度保持不变。
在非匀变速运动下,速度的变化不是均匀的,加速度可能会变化。
1.3 物体的简谐振动1.3.1 简谐振动的定义简谐振动是指物体围绕平衡位置做周期性振动的运动。
1.3.2 简谐振动的特点简谐振动的特点包括振幅、周期、频率和相位等。
第二章力学2.1 牛顿定律2.1.1 牛顿第一定律牛顿第一定律也被称为惯性定律,它描述了在没有外力作用时物体将保持静止或匀速直线运动的状态。
2.1.2 牛顿第二定律牛顿第二定律描述了物体在受力作用下产生加速度的关系,力等于物体的质量乘以加速度。
2.1.3 牛顿第三定律牛顿第三定律描述了物体之间相互作用的力是大小相等、方向相反的。
2.2 动能和势能2.2.1 动能的定义和计算动能是指物体由于运动而具有的能量,它的大小与物体的质量和速度相关。
2.2.2 劢能定理动能定理描述了物体受到的外力做功等于其动能的变化量。
2.2.3 势能的定义和计算势能是指物体由于位置而具有的能量,常见的势能有重力势能和弹性势能等。
2.3 弹性碰撞和不可恢复碰撞2.3.1 弹性碰撞的定义和特点弹性碰撞是指两个物体发生碰撞后能够完全弹开并保持动能守恒的碰撞。
大学物理课程必背必考知识点整理汇总
大学物理课程必背必考知识点整理汇总
本文整理了大学物理课程中的必背必考知识点,供学生参考和复。
1. 力学
- 牛顿三定律
- 动能和势能
- 重力和运动
- 物体在斜面上的运动
- 摩擦力和牛顿第二定律
- 线性动量和动量守恒
- 圆周运动
2. 热学
- 温度和热量
- 理想气体状态方程
- 热力学第一定律
- 热力学第二定律
- 热传导、对流和辐射3. 光学
- 光的传播和反射
- 光的折射和光的速度- 干涉和衍射
- 空气和水中的光
- 球面镜和透镜
- 光的波粒二象性4. 电磁学
- 静电场和电场力
- 电势和电势能
- 电流和电阻
- 电路中的功率和能量- 麦克斯韦方程组
- 平面电磁波
5. 原子物理
- 原子结构和原子模型
- 量子力学的基本原理
- 能级和辐射
- 原子核和放射性衰变
- 核反应和核能
6. 环境物理
- 大气物理学
- 地球物理学
- 宇宙物理学
以上为大学物理课程中的必背必考知识点的简要整理,建议学
生们使用这份汇总作为复习的参考资料,并结合教材进行深入学习。
注意理解知识点之间的联系和应用,提升问题解决能力。
大一物理知识点笔记手抄
大一物理知识点笔记手抄一、力学1. 牛顿第一定律:物体保持静止或匀速直线运动的状态,除非有外力的作用。
2. 牛顿第二定律:物体受力与加速度成正比,力的方向与加速度方向相同。
3. 牛顿第三定律:物体间的相互作用力大小相等、方向相反。
二、运动学1. 速度:物体单位时间内位移的变化量。
2. 加速度:物体单位时间内速度的变化量。
3. 位移:物体从起始位置到终止位置的位移大小和方向。
三、力学与运动学的应用1. 摩擦力:阻碍物体相对滑动的力,分为静摩擦力和动摩擦力。
2. 弹力:物体受到形变后的恢复力。
3. 重力:地球对物体施加的吸引力。
4. 斜面运动:物体在倾斜平面上运动,可以利用分解力的方法求解。
四、能量与功1. 功:力在物体上做功的量,可以表示为力与位移的乘积。
2. 功率:单位时间内做功的多少,即功除以时间。
3. 动能:物体由于运动而具有的能量。
4. 势能:物体由于位置而具有的能量。
五、静电学1. 电荷:电子带负电,质子带正电。
2. 库仑定律:两个电荷间的作用力与它们的电荷量成正比,于它们的距离的平方成反比。
3. 电场:电荷周围的区域,具有电场力。
六、电流与电阻1. 电流:单位时间内电荷通过导体横截面的多少。
2. 电阻:物体对电流的阻碍程度。
3. 欧姆定律:电流与电阻成正比,电流与电压成正比。
七、磁场与电磁感应1. 磁场:磁体周围的区域,具有磁场力。
2. 磁感线:用来表示磁场的线条,从磁北极指向磁南极。
3. 电磁感应:导体中的电荷受到磁力作用而产生电势差。
八、光学1. 平面镜:镜面是一个平面的镜子。
2. 凸透镜:厚中心,使光线会聚。
3. 凹透镜:薄中心,使光线发散。
九、波动1. 机械波:需要介质传播的波动。
2. 声波:由物体振动引起的机械波。
3. 光波:由电磁振荡产生的波动。
以上是大一物理知识点的笔记手抄,希望对你有所帮助。
通过学习和掌握这些物理知识点,可以更好地理解自然界中存在的各种现象和规律,为后续的学习和进一步探索打下坚实的基础。
大学物理知识点总结
大学物理知识点总结大学物理是一门重要的基础课程,涵盖了众多的知识点,下面就为大家总结一下其中的主要内容。
一、力学1、运动学位移、速度和加速度:位移是位置的变化,速度是位移对时间的变化率,加速度是速度对时间的变化率。
匀变速直线运动:速度与时间的关系、位移与时间的关系等公式要牢记。
曲线运动:平抛运动、圆周运动的特点和规律,如线速度、角速度、向心加速度等。
2、牛顿运动定律牛顿第一定律:惯性定律,物体不受力或所受合外力为零时,将保持静止或匀速直线运动状态。
牛顿第二定律:力与加速度的关系,F = ma。
牛顿第三定律:作用力与反作用力大小相等、方向相反、作用在同一直线上。
3、功和能功:力在位移方向上的积累,W =Fs cosθ。
动能定理:合外力对物体做功等于物体动能的变化。
重力势能、弹性势能:其表达式和特点要清楚。
机械能守恒定律:在只有重力或弹力做功的系统内,机械能守恒。
4、动量动量和冲量:动量 p = mv,冲量 I = Ft。
动量定理:合外力的冲量等于物体动量的变化。
动量守恒定律:系统不受外力或所受合外力为零时,动量守恒。
二、热学1、热力学第一定律内能的改变:包括做功和热传递两种方式。
热力学第一定律表达式:ΔU = Q + W 。
2、热力学第二定律两种表述方式:克劳修斯表述和开尔文表述。
揭示了热现象的方向性和不可逆性。
3、理想气体状态方程表达式:pV = nRT ,其中 p 为压强,V 为体积,n 为物质的量,R 为普适气体常量,T 为温度。
三、电磁学1、静电场库仑定律:描述真空中两个点电荷之间的静电力。
电场强度:定义为电场力与电荷量的比值。
电场线:形象地描述电场的分布。
电势和电势能:电势是电场的属性,电势能与电荷和电势有关。
电容:电容器容纳电荷的本领。
2、恒定电流电流:电荷的定向移动形成电流,I = q / t 。
电阻定律:R =ρL / S ,ρ 为电阻率。
欧姆定律:U = IR 。
焦耳定律:电流通过导体产生的热量 Q = I²Rt 。
(完整版)大学物理笔记
1. 参考系:为描述物体的运动而选的标准物2. 坐标系3. 质点:在一定条件下,可用物体上任一点的运动代表整个物体的运动,即可把整个物体当做一个有质量的点,这样的点称为质点(理想模型)4. 位置矢量(位矢):从坐标原点指向质点所在的位置5. 位移:在t ∆时间间隔内位矢的增量6. 速度 速率7. 平均加速度8. 角量和线量的关系9. 运动方程10. 运动的叠加原理位矢:k t z j t y i t x t r r ϖϖϖϖϖ)()()()(++==位移:k z j y i x t r t t r r ϖϖϖϖϖϖ∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆ϖ速度:k z j y i x k dt dz j dtdy i dt dx dt r d t r t ϖϖϖϖϖϖϖϖϖ•••→∆++=++==∆∆=0lim υ 加速度:k z j y i x k dtz d j dt y d i dt x d dtr d dt d t a t ϖϖϖϖϖϖϖϖϖϖ••••••→∆++=++===∆∆=222222220lim υυ 圆周运动 角速度:•==θθωdtd 角加速度:••===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a ϖϖϖ+= 法向加速度:22ωυR R a n ==指向圆心 切向加速度:αυR dtd a t == 沿切线方向 线速率:ωυR =弧长:θR s =1.牛顿运动定律:牛顿第一定律:任何物体都保持静止或匀速直线运动的状态,直到其他物体作用的力迫使它改变这种状态牛顿第二定律:当质点受到外力的作用时,质点动量p的时间变化率大小与合外力成正比,其方向与合外力的方向相同牛顿第三定律:物体间的作用时相互的,一个物体对另一个物体有作用力,则另一个物体对这个物体必有反作用力。
作用力和反作用力分别作用于不同的物体上,它们总是同时存在,大小相等,方向相反,作用在同一条直线上。
大学物理笔记归纳总结
大学物理笔记归纳总结一、力学1. 牛顿第一定律牛顿第一定律,也称为惯性定律,它规定了物体如何保持其状态。
根据该定律,一个物体如果没有受到外力作用,将保持静止或匀速运动的状态。
2. 牛顿第二定律牛顿第二定律给出了物体的加速度与作用在物体上的合外力之间的关系。
该定律可以用以下公式表示:F = ma其中,F表示物体所受的合外力,m表示物体的质量,a表示物体的加速度。
3. 牛顿第三定律牛顿第三定律,也称为作用与反作用定律,指出了物体之间相互作用的特性。
根据该定律,对于任何作用在物体上的力,物体都会对作用力产生同等大小、相反方向的反作用力。
4. 动量守恒定律动量守恒定律描述了封闭系统中动量的守恒性质。
在一个没有外力作用的系统中,物体的总动量保持不变。
5. 力的合成与分解力的合成是指当多个力作用在同一物体上时,它们可以相互叠加,得到一个合力。
而力的分解是将一个力分解为多个分力的过程。
二、热力学1. 温度与热量温度是物体热平衡状态的度量,可以用来描述物体的热态。
而热量是指物体之间的能量传递,是由于温度差异导致的。
2. 理想气体状态方程理想气体状态方程描述了理想气体在不同条件下的状态。
该方程可以用来计算气体的压强、体积和温度之间的关系,其表达式为:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的物质量,R表示气体常量,T表示气体的绝对温度。
3. 热力学第一定律热力学第一定律,也称为能量守恒定律,规定了能量在物体间的转化与传递。
根据该定律,能量可以从一个物体转移到另一个物体,但总能量的大小保持不变。
4. 热传导、对流和辐射热传导是指热量通过物体中分子之间的碰撞传递。
对流是通过物体内部流动的液体或气体传递热量。
辐射则是指热能以电磁波的形式传播。
5. 熵的概念熵是一个描述系统有序程度的物理量,也可以理解为系统的混乱程度。
根据热力学第二定律,任何孤立系统的熵都不会减小。
三、电磁学1. 库仑定律库仑定律描述了两个电荷之间的相互作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚体
1 定轴转动定律(转动惯量如:滑轮问题J =1/2MR^2)
常用列方程组解题M=Jα;F=Ma;a=rα
2 刚体定轴转动的功和能E=1/2 Jw^2
例棒子质量M,小球质量m
1/2(mglsinθ)=1/2(Jw^2)
J=1/12(ML^2)+m(L/2)^2
3 转动惯量J(会判断谁大谁小)
4 角动量守恒(例如圆盘与子弹
考虑圆盘与子弹同向与反向同向时,L增大但J也增大,不好判断角速度变大还是变小,反向时一定变小
创新实验:角动量合成,大小方向,
旋转转轮的角动量合成
实验室有几个角动量演示仪,这是其中一个。
两边的圆盘分别可以逆时针或顺时针转动,上面的手柄可以将圆盘拉起来。
这里只介绍其中一种转动情况,其他情况可以类比。
假设两侧转盘都逆时针转动,则当转盘的方向是斜向下时,他们的合角动量是向下的,由于系统所受
的合外力矩为零,所以系统角动量守恒。
故从空中俯看,会看到整个装置逆时针转动。
当用手柄将转盘拉起时,转盘的合角动量为向上,整个装置会顺时针转。
当转盘水平时,整个装置不转动。
其他的装置也是利用角动量守恒的原理,可以去看下
振动
1 简谐振动表达式x=Acos(wt+φ) 会判断运动方向,(旋转圆矢量法)
2 相位相位差
3 振动的合成(已知A和φ)画图法
波动
1 写波函数y(x,t)=Acos [w(t-x/u)+ φ]=Acos[wt-2πx/λ+φ]、
某一点的振动表达式;速度(对t求偏导,把对应t,x带入)
2 介质元的能量特征平衡位置,动能最大势能最大,且一样
大作业第四章二第5条
3 波动图像(给出波动图像判断初相时要注意波的传播方向)
静电场
1 场强E (导体球(电荷表面分布),带点球壳,球体)高斯定理
2 电势U无限大带电平板,沿垂直于平板方向的场强分布,电势分布
电势(0电势定在板的位置)场强
3 平板电容器
板间作用力F=σq/(2ε。
)σ为面电荷密度
板间场强E=σ/(2ε。
)
C=Q/U =εs/d
4 两个带电体电场力电势能例如:
两带电体,一个带点球壳电量为Q,一导体细棒,延长线过球心,电荷线密度为λ
细棒端和尾离圆心分别为r1 r2 求电场力电势能
dF =Edq; dq=λdr;dF =Eλdr
F=对dF的积分(r1到r2)
dW=Uλdr
5 电场的能量
W=Q^2/(2c)=cU^2/2:
有介质时W=DE/2=εE^ 2/2 (另外,page 215 还有充介质的情况,充两层呢
(关于计算单位体积的能量;能量的密度)
6 探索实验带电乒乓(这是静电乒乓。
两边分别是两个极板,中间悬挂着一个用铝箔包住的乒乓球。
分别将两极板与电源正负极相连。
(假设左侧带负电),这时会在小球左侧感应出
正电荷,右侧感应出负电荷,达到静电平衡状态。
刚刚接通电源时,由于导体表面产生了感应电荷,使两平行极板间的电场产生了扰动,会发现小球在平衡位置左右摆动了一下,当离开平衡位置后当小球离某一极板更近时小球受到该侧极板的吸引力大与右侧,小球将运动到该极板上。
随后,乒乓球带上了与极板相同的电荷,立即被排斥向另一极板运动。
如此,撞上另一极板后又会排斥开来,循环往复,乒乓球就在极板间弹来弹去了。
)简单点说(小球不在正中,比如离正极板近些,被吸引,碰撞后带正电,又被负极板吸引,在碰撞带上负电,被正极板吸引,如此往复)
磁场
典型电流磁场分布
P232
r已知求中心磁场强度;半圆的情况呢
2 安培环路定律磁场大作业选择题5
3 求安培力用直的电流代替弯的
4 磁能密度(线,圆筒)
安培环路定律求B(r)
We=B^2/(2μ)=BH/2
电磁感应
1 法拉第电磁感应定律ε=-dΦ/dt 选择题2
2 一个例题大作业第八章计算题2
3自感互感
自感互感定义关系
ε1=-Ldi1/dt
求左边的线圈中电流i1变化,右边产生电动势ε2=Mdi1/dt (M为互感电动势)
知道M与L1 L 2的关系
探索实验傅科摆
这是实验室中用来演示傅科摆的仪器。
它是用来说明地球在自转,每隔一段时间过来观察其摆动的角度,发现其会稍微变化一个角度。
我们知道一个摆在不受到其他因素影响的情况下,其摆动角度是保持不变的。
我们站在地球上,以我们自己为基准,上图所示的基座是不转的。
因此当摆动角度发生变化时,我们以为是摆的变化,实际上是我们自己转了,是基座在转。
所以这便说明了地球在不断的自转中。
这个现象在南北极最为明显,在赤道最不明显。
且在南半球,摆动平面逆时针转;在北半球,摆动平面顺时针转动。
简单点说(北半球顺时针,南半球逆时针,赤道不转,两级最明显,可以想象摆座就放在极点,球摆动平面不变而地球自转带动底座转动,人以地球为参考系,觉得摆球摆动平面在转动
傅科摆摆动平面偏转的角度可用公式θ°=15tsinφ来求,单位是度。
式中φ代表当地地理纬度,t为偏转所用的时间,用小时作单位,因为地球自转角速度1小时等于15°,所以,为了换算,公式中乘以15。
纬度越高,转动速度越快
静电场计算题1。