九年级反比例函数单元测试题及答案

合集下载

第一章反比例函数单元测试2022-2023学年鲁教版(五四制)九年级数学上册(含答案)

第一章反比例函数单元测试2022-2023学年鲁教版(五四制)九年级数学上册(含答案)

鲁教版五四制九年级数学第一章反比例函数单元测试一、选择题1. 下列函数:①y =2x ,②y =15x ,③y =x −1,④y =1x+1.其中,是反比例函数的有( ) A. 0个 B. 1个 C. 2个 D. 3个2. 如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A. 一条直角边与斜边成反比例B. 一条直角边与斜边成正比例C. 两条直角边成反比例D. 两条直角边成正比例3. 如图,等腰三角形△ABC 的顶点A 在原点固定,且始终有AC =BC ,当顶点C 在函数y =kx (x >0)的图象上从上到下运动时,顶点B 在x 轴的正半轴上移动,则△ABC 的面积大小变化情况是( )A. 先减小后增大B. 先增大后减小C. 一直不变D. 先增大后不变4. 如图,点B 在反比例函数y =6x (x >0)的图象上,点C 在反比例函数y =−2x (x >0)的图象上,且BC//y 轴,AC ⊥BC ,垂足为点C ,交y 轴于点A.则△ABC 的面积为( )A. 3B. 4C. 5D. 65. 如图,点P 是反比例函数图象上的一点,过点P 分别向x 轴、y 轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是( ) A. y =3xB. y =−3x C. y =±3x D. y =3x6. 如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为y =2x−1的函数图象.根据这个函数的图象,下列说法正确的是( ) 7. A. 图象与x 轴没有交点B. 当x >0时,y >0C. 图象与y 轴的交点是(0,−12)D. y 随x 的增大而减小8. 2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m 3土石方的任务,该运输公司平均运送土石方的速度v(单位m 3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是( )A. v =106tB. v =106tC. v =1106t 2 D. v =106t 2第3题第4题第5题9.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(ℎ)变化的函数图象,其中BC段是双曲线y =kx(k≠0)的一部分,则当x=16时,大棚内的温度约为( )A.18℃B. 15.5℃C. 13.5℃D. 12℃10.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).血液中药物浓度不低于6微克毫升的持续时间为( )A. 73B. 3 C. 4 D. 16311.在平面直角坐标系中,点A是双曲线y1=k1x (x>0)上任意一点,连接AO,过点O作AO的垂线与双曲线y2=k2x(x<0)交于点B,连接AB,已知AOBO =2,则k1k2=( )A. 4B. −4C. 2D. −2二、填空题(12.若函数y=(m−2)x m2−5是反比例函数,则m=______.13.下列函数,①x(y+2)=1②y=1x+1③y=1x2④y=−12x⑤y=−x2⑥y=13x;其中是y关于x的反比例函数的有:______.14.已知反比例函数y=kx 在第一象限的图象如图所示,点A是在图象上AB⊥OB,且S△AOB=3,则k=______.第6题第9题第10题第11题第14题15. 设函数y =x −3与y =2x 的图象的两个交点的横坐标为a ,b ,则1a +1b=______.16. 在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点P(4,3)在图象上,则当力达到10N 时,物体在力的方向上移动的距离是 m.者之间的关系:I =UR ,测得数据如下: 17. 科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三R(Ω) 100 200 220 400 I(A)2.21.110.55那么,当电阻R =55Ω时,电流I =______A .三、解答题18.如图,△AOB 的边OB 在x 轴上,且∠ABO =90°反比例函数y =kx(x >0)的图象与边AO 、AB 分别相交于点C 、D ,连接BC.已知OC =BC ,△BOC 的面积为12. (1)求k 的值;(2)若AD =6,求直线OA 的函数表达式.19.为了预防新冠病毒,某中学对教室进行药熏消毒,已知药物燃烧阶段,教室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧完后,y(mg)与时间x(min)成反比例(如图所示),现测得药物10min 燃烧完,此时教室内每立方米空气中的含药量达到最大,为8mg ,根据图象,解答下列问题:(1)求药物燃烧时y(mg)与x(min)的函数关系式及药物燃烧完后y(mg)与时间x(min)的函数关系式,并写出它们自变量x 的取值范围; (2)据测定,只有当教室内每立方米空气中的含药量不低于4 mg ,且至少持续作用10分钟以上,才能完全杀死病毒,请问这次药熏消毒是否有效?20.如图,正方形AOCB 的边长为4,反比例函数的图像过点E (3,4).。

(必考题)初中数学九年级数学上册第六单元《反比例函数》测试题(有答案解析)

(必考题)初中数学九年级数学上册第六单元《反比例函数》测试题(有答案解析)

一、选择题1.函数5y x =的图象位于() . A .第三象限B .第一、三象限C .第二、四象限D .第二象限【答案】B【分析】根据直角坐标系、反比例函数的性质分析,即可得到答案.【详解】 ∵5y x=∴5xy =,即x 和y 符号相同 ∴5y x=的图象位于第一、三象限 故选:B .【点睛】 本题考查了反比例函数、直角坐标系的知识;解题的关键是熟练掌握反比例函数、直角坐标系的性质,从而完成求解.2.如图,在平面直角坐标系中,直线y x =与反比例函数1(0)y x x=>的图象交于点A ,将直线y x =沿y 轴向上平移k 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若3OA BC =,则k 的值为( )A .2B .32C .3D .83【答案】D【分析】解析式联立,解方程求得A 的横坐标,根据定义求得C 的横坐标,把横坐标代入反比例函数的解析式求得C 的坐标,代入y x k =+即可求得k 的值.【详解】 解:直线y x =与反比例函数1(0)y x x=>的图象交于点A , ∴解1x x=求得1x =±(经检验,符合题意) , A ∴的横坐标为1,A ∴的坐标为(1,1),如图,过C 点、A 点作y 轴垂线,垂足为G ,H ,OA//BC ,∠CGB=∠AHO=90°∴CBG AOH ∠=∠,∴OHA BGC ∽,3OA BC =,∴3OA AH BC GC ==, ∴1=3GC, 解得GC =13, C ∴的横坐标为13, 把13x =代入1y x =得,3y =, 1(,3)3C ∴, 将直线y x =沿y 轴向上平移k 个单位长度,得到直线y x k =+,∴把C 的坐标代入得133k =+,求得83k =, 故选择:D .【点睛】 本题考查了反比例函数与一次函数的综合问题,涉及函数的交点、一次函数平移、待定系数法求函数解析式,三角形相似的判定与性质等知识,求得交点坐标是解题的关键.3.如果点()12,A y -,()21,B y -,()33,C y 都在反比例函(0)k y k x=<的图象上,那么1y 、2y 与3y 的大小关系是( )A .123y y y <<B .312y y y <<C .213y y y <<或312y y y <<D .123y y y == 【答案】B【分析】根据k <0,判定图像分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,从判定120y y <<,3y <0,整体比较判断即可.【详解】∵k <0,∴反比例函(0)k y k x=<的图象分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,∴120y y <<,3y <0,∴312y y y <<,故选B .【点睛】本题考查了反比例函数图像的分布,函数的增减性,熟练掌握图像的分布和增减性是解题的关键.4.若反比例函数1y k x +=(k 是常数)的图象在第一、三象限,则k 的取值范围是( ) A .0k <B .0k >C .1k <-D .1k >- 【答案】D【分析】先根据反比例函数的性质得出k+1>0,再解不等式即可得出结果.【详解】解:∵反比例函数1y k x+=(k 为常数)的图象在第一、三象限, ∴k+1>0,解得k>-1.故选:D .【点睛】本题考查了反比例函数的图象和性质:当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.5.如图,直线()30y kx k =-≠与坐标轴分别交于点,B C ,与若双曲线()20y x x=-<交于点(),1A m ,则AB 为( )A .5B 13C .213D 26【答案】A【分析】 由A 为直线y=kx ﹣3(k≠0)与双曲线y=﹣2x(x <0)的交点可求得A 点坐标与一次函数的解析式,可求得B 点坐标,用两点间距离公式可求得AB 的长.【详解】 解:A 为直线y=kx ﹣3(k≠0)与双曲线y=﹣2x (x <0)的交点,可得A 满足双曲线的解析式, 可得:21m=-, 解得:2m =-,即A 点坐标为(-2,1),A 点在直线上,可得A 点满足y=kx ﹣3(k≠0),可得:123k =--,解得:k=-2,∴一次函数的解析式为:y=-2x ﹣3,B 为直线与y 轴的交点,可得B 点坐标(0,-3),由A 点坐标(-2,1),可得AB 22(20)[1(3)]--+--=5故选:A..【点睛】本题考查一次函数与反比例函数的综合,注意求出A 、B 两点坐标后用距离公式求解.6.某口罩生产企业于2020年1月份开始了技术改造,其月利润y (万元)与月份x 之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是( )A .4月份的利润为45万元B .改造完成后每月利润比前一个月增加30万元C .改造完成前后共有5个月的利润低于135万元D .9月份该企业利润达到205万元【答案】D【分析】先根据图象求出反比例函数的解析式,将横坐标为4代入求得利润即可判断A ,根据图象求出一次函数的解析式,即可判断B ,将135代入两个函数求对应的x 的值即可;将x=9代入求利润即可;【详解】A 、由图象得反比例函数经过点(1,180),∴ 反比例函数的解析式为:180y x= , 将x=4代入得:y=45,故该选项不符合题意;B 、将(4,45),(5,75)代入一次函数解析式,45=4755k b k b +⎧⎨=+⎩, 解得3075k b =⎧⎨=-⎩, 求得一次函数解析式为:3075y x =- ,故该选项不符合题意;C 、将y=135代入180y x=和3075y x =-中, 180135x = 解得:x=43; 135=3075x - 解得:x=7,故该选项不符合题意;D 、将x=9代入3075y x =-,求得y=270-75=195≠205,故该选项符合题意; 故选:D .【点睛】本题考查了反比例函数与一次函数的图象的性质,以及函数的解析式的求法;正确理解图是解题的关键;7.若点1(,1)A x -,2(,2)B x ,3(,3)C x 都在反比例函数6y x =的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .231x x x <<D .312x x x << 【答案】B【分析】根据反比例函数的增减性解答.【详解】 ∵6y x=,k=6>0, ∴该反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小, ∵点1(,1)A x -,2(,2)B x ,3(,3)C x ,∴点A 在第三象限内,且x 1最小,∵2<3,∴x 2>x 3,∴132x x x <<,故选:B .【点睛】此题考查反比例函数的增减性,掌握反比例函数增减性及判断方法是解题的关键.8.若双曲线5m y x -=在每一个象限内,y 随x 的增大而减小,则m 的取值范围是( ) A .5m <B .5m ≥C .5m >D .5m ≠ 【答案】C【分析】根据反比例函数的性质可解.【详解】解:∵双曲线5m y x -=在每一个象限内,y 随x 的增大而减小, ∴50m ->,解得5m >,故选:C .【点睛】 本题考查了反比例函数的性质,掌握反比例函数k y x=,当k >0,双曲线的两支分别位于第一、三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、四象限,在每一象限内y 随x 的增大而增大.9.如图,Rt △AOB 中,∠AOB =90°,且点A 在反比例函数8y x =的图象上,点B 在反比例函数18y x=-的图象上,则tan B 的值是( )A .12B .13C .23D .49【答案】C【分析】过A 、B 作AC y ⊥轴,BD y ⊥轴,根据条件得到:ACO ODB ∽,根据反比例函数比例系数k 的几何意义得出:4:9S ACO S ODB =,利用相似三角形面积比等于相似比的平方即可求解.【详解】过A 、B 作AC y ⊥轴,BD y ⊥轴,∵∠AOB =90°,∴90AOC BOD ∠+∠=︒,∵90DBO BOD ∠+∠=︒,∴DBO AOC ∠=∠,∵90BDO ACO ∠=∠=︒,∴ACO ODB ∽,∵A 在反比例函数8y x =的图象上,点B 在反比例函数18y x =-的图象上, ∴:4:9S ACO S ODB =,∴2tan 3OA ABO OB ==∠, 故选:C .【点睛】本题考查的是相似三角形的判定和性质,反比例函数、比例函数k 的几何意义,反比例函数图像上点的坐标特征,利用相似三角形的性质得到两边之比是解答本题的关键.10.已知反比例函数6y x=-,下列说法中正确的是( ) A .该函数的图象分布在第一、三象限 B .点()2,3在该函数图象上C .y 随x 的增大而增大D .该图象关于原点成中心对称 【答案】D【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x 的增大而增大,再逐个判断即可.【详解】解:A .∵反比例函数6y x=-中-6<0, ∴该函数的图象在第二、四象限,故本选项不符合题意;B .把(2,3)代入6y x=-得:左边=3,右边=-3,左边≠右边, 所以点(2,3)不在该函数的图象上,故本选项不符合题意; C .∵反比例函数6y x=-中-6<0, ∴函数的图象在每个象限内,y 随x 的增大而增大,故本选项不符合题意;D .反比例函数6y x =-的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D .【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.11.已知反比例函数6y x =-,下列结论中不正确的是( ) A .图象必经过点()3,2-B .图象位于第二、四象限C .若2x <-,则0<3y <D .在每一个象限内,y 随x 值的增大而减小【答案】D【分析】利用反比例函数图象上点的坐标特征对A 进行判断;根据反比例函数的性质对B 、C 、D 进行判断.【详解】解:A 、当x=-3时,y =−6x =2,所以点(-3,2)在函数y =−6x的图象上,所以A 选项的结论正确,不符合题意; B 、反比例函数y =−6x分布在第二、四象限,所以B 选项的结论正确,不符合题意; C 、若x <-2,则0<y <3,所以C 选项的结论正确,不符合题意; D 、在每一个象限内,y 随着x 的增大而增大,所以D 选项的结论不正确,符合题意. 故选:D .【点睛】本题考查了反比例函数的性质:反比例函数y=-k x(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.12.函数k y x=与y kx k =-(k 为常数且0k ≠)在同一直角坐标系中的图象可能是( ) A . B .C .D .【答案】C【分析】分k >0和k <0两种情况,分别判断反比例函数()0k y k x=≠ 的图象所在象限及一次函数y kx k =-的图象经过的象限.再对照四个选项即可得出结论.【详解】当k >0时, -k <0,∴反比例函数k y x =的图象在第一、三象限,一次函数y kx k =-的图象经过第一、三、四象限;当k <0时, -k >0,∴反比例函数k y x=的图象在第二、四象限,一次函数y kx k =-的图象经过第二、三、四象限.故选:C .【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.二、填空题13.如图,菱形OABC 的顶点O 在原点,A 点坐标为(4,0),反比例函数y=k x(k≠0)的图像经过AC 、BO 的交点D ,且与AB 边交于点E ,连接OE 交AD 于点F ,若F 恰为AD 中点,则k=______________;14.如图,点A 在反比例函数k y x=(k ≠0)的图象上,且点A 是线段OB 的中点,点D 为x 轴上一点,连接BD 交反比例函数图象于点C ,连接AC ,若BC :CD =2:1,S △AD C =53.则k 的值为________.15.如图,点A B 、分别在反比例函数()110k y k x =>和()220k y k x=<的图象上,连接AB 交y 轴于点P ,且点A 与点B 关于P 成中心对称.若AOB ∆的面积为S ,则12k k -=_____.16.如图,反比例函数(0)ky x x=>的图象经过ABC 的顶点A ,点C 在x 轴上,//AB x轴.若点B 的坐标为(1,3),2ABCS=,则k 的值为______.17.双曲线2y x=-经过点A(-1,1y ),B(2,2y ),则1y ________2y (填“>”,“<”或“=”). 18.已知点A 的坐标为()0,2,点B 的坐标为()0,2-,点P 在函数1y x=-的图象上,如果PAB △的面积是6,则点P 的坐标是__________.19.如图,在平面直角坐标系中,直线y =ax +b 交坐标轴于A 、B 点,点C(-4, 2 )在线段AB 上,以BC 为一边向直线AB 斜下方作正方形BCDE .且正方形边长为5,若双曲线y =kx经过点E ,则k 的值为_______.20.如图,边长为1的正方形拼成的矩形如图摆放在直角坐标系里,A ,B ,C ,D 是格点.反比例函数y =kx(x >0,k >0)的图象经过格点A 并交CB 于点E .若四边形AECD 的面积为6.4,则k 的值为_____.三、解答题21.某地建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式;(2)当运输公司平均每天的工作量是15万米3时,完成任务所需的时间是多少? 22.如图,已知点()3,1A -,()2,2B -,反比例函数()0k y x x=<的图象记为L . (1)若L 经过点A . ①求L 的解析式;②L 是否经过点B ?若经过,说明理由;若不经过,请判断点B 在L 的上方,还是下方.(2)若L 与线段AB 有公共点,直接写出k 的取值范围.23.如图,在平面直角坐标系中,点A ,B 是一次函数和反比例函数图象的两个交点,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,画出一个平行四边形,使点A ,B 都是该平行四边形的顶点;(2)在图②中,画出一个菱形,使点A 在该菱形一边所在的直线上. 24.如图,直线y =﹣12x +7与反比例函数y =m x(m ≠0)的图象交于A ,B 两点,与y 轴交于点C ,且点A 的横坐标为2. (1)求反比例函数的表达式;(2)求出点B 坐标,并结合图象直接写出不等式m x<﹣12x +7的解集;(3)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.25.如图,已知(,2)A n -,(1,6)B 是一次函数y kx b =+的图象和反比例函数ky x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式; (2)求AOB 的面积; (3)若kkx b x+<,直接写出x 的范围. 26.如图,在直角坐标系中,Rt ABC 的直角边AC 在x 轴上,∠ACB =90°,AC =1,点B(3,2),反比例函数y =kx(k >0)的图象经过BC 边的中点D . (1)求这个反比例函数的表达式;(2)若ABC 与EFG 成中心对称,且EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上,①求OF 的长;②连接AF ,BE ,证明:四边形ABEF 是正方形.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.【分析】利用菱形的性质可知D为OB的中点设可分别表示F和B点从而可表示出直线OE和直线AB的解析式联立可求得a的值即可表示D点坐标在Rt△OAD中利用勾股定理即可求得k 【详解】解:∵四边形OABC 为解析:12825【分析】利用菱形的性质可知D 为OB 的中点,设(,)k D a a,可分别表示F 和B 点,从而可表示出直线OE 和直线AB 的解析式,联立可求得a 的值,即可表示D 点坐标,在Rt △OAD 中利用勾股定理即可求得k . 【详解】解:∵四边形OABC 为菱形, ∴AC ⊥OB ,2OB OD =,设(,)k D a a,则2(2,)k B a a, ∵A (4,0),F 为AD 中点,∴4(,)22a kF a+, ∴直线OE 的解析式为:242(4)k a a ky x x a a +==+,直线AB 的解析式为:2(4)(4)24(2)k aky x x a a a =-=---,联立得(4)(4)(2)k y x a a k y x a a ⎧=⎪+⎪⎨⎪=-⎪-⎩,解得2(4)323x a k y a ⎧=+⎪⎪⎨⎪=⎪⎩,∴22((4),)33k E a a+, ∴223(4)3k ka a =+,解得165a =,∴165(,)516k D , 在Rt △OAD 中,根据勾股定理222OD AD OA +=,即2222165165()()(4)()16516516k k ++-+=,解得12825k =±, ∵题中反比例函数图象在第一象限,∴12825k =, 故答案为:12825.【点睛】本题考查反比例函数综合,菱形的性质.本题较难,在解题过程中需掌握中点坐标公式和两点之间距离公式.14.8【分析】作AE⊥OD于ECF⊥OD于F由BC:CD=2:1S△ADC=可求S△ACB=由OA=OBS△AOC=S△ACB=设B(2m2n)可得A(mn)由AC在y=上BC=2CD可求k=mnC(m解析:8【分析】作AE⊥OD于E,CF⊥OD于F.由BC:CD=2:1,S△ADC=53,可求S△ACB=103,由OA=OB,S△AOC=S△ACB=103,设B(2m,2n),可得A(m,n),由A、C在y=kx上,BC=2CD,可求k=mn,C(32m,23n),可推得S△AOC= S梯形AEFC即可解决问题.【详解】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=53,∴S△ACB=103,∵OA=OB,∴B(2m,2n),S△AOC=S△ACB=103,A(m,n),∵A、C在y=kx上,BC=2CD,∴k=mn,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴12•(n+23n)×12m=103,∴mn=8,∴k=8.故答案为:8.【点睛】过反比例函数y=kx(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,矩形的面积S=x y k=.过反比例函数过一点,作垂线,三角形的面积为12k.所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数从而有k的绝对值.在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便.15.【分析】作AC⊥y轴于CBD⊥y轴于D如图先证明△ACP≌△BDP得到S△ACP=S△BDP利用等量代换和k的几何意义得到S△AOB=S△AOC+S△BOD=×|k1|+|k2|=S然后利用k1>0解析:2S【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,先证明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代换和k的几何意义得到S△AOB=S△AOC+S△BOD=12×|k1|+12|k2|= S,然后利用k1>0,k2<0可得到k1-k2的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A与点B关于P成中心对称,∴AP=BP,在△ACP和△BDP中,ACP BDPAPC BPDAP BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BDP(AAS),∴S△ACP=S△BDP,∴S △AOB =S △APO +S △BPO =S △AOC +S △BOD =12×|k 1|+12|k 2|=S , ∵k 1>0,k 2<0, ∴k 1-k 2=2S . 故答案为:2S . 【点睛】本题考查了比例系数k 的几何意义:在反比例函数ky x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是1k 2,且保持不变.也考查了反比例函数的性质.16.7【分析】根据题意可求出A 点坐标为再结合三角形的面积公式即可求出k 的值【详解】由题意可知A 点纵坐标为3∵A 点在反比例函数的图象上∴A 点横坐标为即A ∴AB=∴解得:故答案为:7【点睛】本题考查了反比例解析:7 【分析】根据题意可求出A 点坐标为(3)3k ,,再结合三角形的面积公式即可求出k 的值. 【详解】由题意可知A 点纵坐标为3, ∵A 点在反比例函数的图象上, ∴A 点横坐标为3k,即A (3)3k ,. ∴AB=13k-, ∴1(1)3223ABCk S=⨯-⨯=, 解得:7k =.故答案为:7. 【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,熟练运用反比例函数的性质解决问题是本题的关键.17.【分析】把点AB 的坐标代入函数解析式求出比较大小即可【详解】解:把点AB 的坐标代入函数解析式得∴>故答案为:>【点睛】本题考查了根据函数解析式比较函数值的大小本题也可以画出函数图象描点借助图象比较函 解析:>【分析】把点A 、B 的坐标代入函数解析式求出1y ,2y ,比较大小即可. 【详解】解:把点A 、B 的坐标代入函数解析式2y x=-得 122y =x 1=2=---,222y ==1x 1=---,∴1y >2y . 故答案为:> 【点睛】本题考查了根据函数解析式比较函数值的大小,本题也可以画出函数图象,描点,借助图象比较函数值的大小.18.(-3)或(-3)【分析】根据题意可得AB 的长根据△PAB 的面积是6可求得点P 的纵坐标代入反比例函数解析式可得点P 的横坐标从而得点P 的坐标【详解】∵A 的坐标为点B 的坐标为∴AB =4设点P 坐标为(ab解析:(-13,3)或(13,-3). 【分析】根据题意可得AB 的长,根据△PAB 的面积是6可求得点P 的纵坐标,代入反比例函数解析式可得点P 的横坐标,从而得点P 的坐标. 【详解】∵A 的坐标为()0,2,点B 的坐标为()0,2-, ∴AB =4.设点P 坐标为(a ,b),则点P 到x 轴的距离是|b|,又△PAB 的面积是6, ∴12×4|b|=6. ∴|b|=3. ∴b =±3. 当b =3时,a =-13; 当b =-3时,a =13. ∴点P 的坐标为(-13,3)或(13,-3). 故答案为:(-13,3)或(13,-3). 【点睛】本题考查反比例函数与坐标轴围成的几何图形面积问题,数形结合、分类讨论思想是解题常用方法.19.3【分析】作CF ⊥y 轴于FEG ⊥y 轴于G 根据勾股定理求得BF 证得△BCF ≌△EBG (AAS )从而求得E 的坐标然后代入y=即可求得k 的值【详解】解:作CF ⊥y 轴于FEG ⊥y 轴于G 如图∵C(-42)∴C解析:3 【分析】作CF ⊥y 轴于F ,EG ⊥y 轴于G ,根据勾股定理求得BF ,证得△BCF ≌△EBG (AAS ),从而求得E 的坐标,然后代入y=kx,即可求得k 的值. 【详解】解:作CF ⊥y 轴于F ,EG ⊥y 轴于G ,如图.∵C(-4, 2 ) ∴CF=4,OF=2.∵正方形BCDE 的边长为5, ∴BC=BE=5,∴2222543BC CF -=-= ∵∠BFC=90°, ∴∠BCF+∠CBF=90°, ∵∠CBE=90° ∴∠EBG+∠CBF=90°, ∴∠BCF=∠EBG , 在△BCF 与△EBG 中90BCF EBG BFC EGB BC EB ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△BCF ≌△EBG (AAS ), ∴BF=EG=3,CF=BG=4, ∴FG=BG-BF=4-3=1 ∴OG=OF-FG=2-1=1 ∴E (3,1) ∴双曲线y=kx经过点E ,∴k=3×1=3.故答案为:3.【点睛】本题考查一次函数与反比例函数的交点,正方形的性质,勾股定理,全等三角形的判定与性质,待定系数法求反比例函数的解析式,解题关键是求得E的坐标.20.6【分析】根据四边形的面积求得CE=54设A(m3)则E(m+441)根据反比例函数系数k的代数意义得出k=3m=m+44解得即可【详解】解:由图象可知AD=1CD=2∵四边形AECD的面积为64∴解析:6【分析】根据四边形的面积求得CE=5.4,设A(m,3),则E(m+4.4,1),根据反比例函数系数k的代数意义得出k=3m=m+4.4,解得即可.【详解】解:由图象可知AD=1,CD=2,∵四边形AECD的面积为6.4,∴12(AD+CE)•CD=6.4,即12⨯(1+CE)×2=6.4,∴CE=5.4,设A(m,3),则E(m+4.4,1),∵反比例函数y=kx(x>0,k>0)的图象经过格点A并交CB于点E.∴k=3m=m+4.4,解得m=2.2,∴k=3m=6.6,故答案为6.6.【点睛】本题考查了反比例函数系数k的代数意义,梯形的面积,表示点A、E点的坐标是解题的关键.三、解答题21.(1)360yx=;(2)24天【分析】(1)根据题意直接写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式;(2)根据题意把x=15代入求出答案;【详解】解:(1)运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式为:360xy =, 故360y x=; (2)当运输公司平均每天的工作量是15万米3时, 完成任务所需的时间是:360=2415y =(天), 答:完成任务所需的时间是24天.【点睛】本题考查了反比例函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的相关知识解答.22.(1)①3y x =-(0x <);②点B 在图象L 上方,理由见解析;(2)43k -≤≤-. 【分析】(1)①将点A 坐标代入图象L 解析式中,解得,即可得出结论;②将x=-2代入图象L 解析式中,求出y ,再与2比较大小,即可得出结论;(2)求出图象L 过点A ,B 时的k 的值,再求出图象L 与线段AB 相切时的k 的值,即可得出结论.【详解】解:(1)①∵L 过点A (-3,1),∴313k =-⨯=-,∴图象L 的解析式为3y x =-(0x <); ②点B 在图象L 上方,理由:由(1)知,图象L 的解析式为3y x=-, 当2x =-时,33222y =-=<-, ∴点B 在图象L 上方;(2)当图象L 过点A 时, 由(1)知,3k =-,当图象L 过点B 时,将点B (-2,2)代入图象L 解析式k y x=中,得224k =-⨯=-, 当线段AB 与图象L 只有一个交点时,设直线AB 的解析式为y mx n =+,将点A (-3,1),B (-2,2)代入y mx n =+中, 3122m n m n -+=⎧⎨-+=⎩,∴14m n =⎧⎨=⎩, ∴直线AB 的解析式为4y x =+,联立图象L 的解析式和直线AB 的解析式得,4k y x y x ⎧=⎪⎨⎪=+⎩,化为关于x 的一元二次方程为240x x k +-=,∴1640k =+=,∴4k =-, 即满足条件的k 的范围为:43k -≤≤-.【点睛】本题是反比例函数综合题,主要考查了待定系数法,找出图象L 与线段AB 有公共点的分界点是解本题的关键.23.(1)见解析;(2)见解析.【分析】(1)根据平行四边形的性质对角线互相平分即可得出;(2)根据菱形的性质对角线垂直平分即可得出.【详解】解:(1)连接BO 并延长交反比例函数的第二象限的线于点1B ;连接AO 并延长交反比例函数的第二象限的线于点1A ;根据反比例函数图象性质,两条曲线关于原点中心对称,故1OB OB =,1OA OA =, 因为两条直线互相平分,故四边形11ABA B 为平行四边形;(2)如图,四边形CDEF 为菱形;【点睛】本题考查了反比例函数的图象性质及平行四边形的判定及性质、菱形的判定及性质,熟练掌握性质是解题的关键.24.(1)12yx=;(2)x<0或2<x<12;(3)E(0,6)或(0,8)【分析】(1)由直线y=﹣12x+7求得A的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)解析式联立,解方程组即可求得B的坐标,然后根据图象即可求得不等式mx<﹣12x+7的解集;(3)设E(0,n),求得点C的坐标,然后根据三角形面积公式得到S△AEB=S△BCE﹣S△ACE=12|7﹣n|×(12﹣2)=5,解得即可.【详解】解:(1)把x=2代入y=﹣12x+7得,y=6,∴A(2,6),∵反比例函数y=mx(m≠0)的图象经过A点,∴m=2×6=12,∴反比例函数的表达式为12yx =;(2)由12172yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,得26xy=⎧⎨=⎩或121xy=⎧⎨=⎩,∴B(12,1),由图象可知,不等式mx<﹣12x+7的解集是:x<0或2<x<12;(3)设E(0,n),∵直线y=﹣12x+7与y轴交于点C,∴C(0,7),∴CE=|7﹣n|,∴S△AEB=S△BCE﹣S△ACE=12|7﹣n|×(12﹣2)=5,解得,n=6或n=8,∴E (0,6)或(0,8).【点睛】本题主要考查反比例函数与一次函数的综合,掌握反比例函数图像上的点的坐标特征以及待定系数法,是解题的关键.25.(1)6y x =,24y x =+;(2)8;(3)3x <-或01x << 【分析】(1)根据B 的坐标求出反比例函数的解析式,求出A 点的坐标,再把A 、B 的坐标代入y =kx +b ,求出一次函数的解析式即可;(2)先求出点C 的坐标,再根据三角形的面积公式求出即可;(3)根据A 、B 的坐标和图象得出即可.【详解】解:(1)(1,6)B 在反比例函数上,166m xy ∴==⨯=,6y x∴=. 点A 在反比例函数上,26n ∴-=,解得3n =-,即(3,2)A --.设直线:AB y kx b =+,代入点(3,2)A --,(1,6)B ,326k b k b -+=-⎧⎨+=⎩ 解得:24k b =⎧⎨=⎩∴24y x =+(2)在直线24y x =+中,令0x =,得4y =,即(0,4)C .()114(31)822AOB OCA OCB A B S S S OC x x ∴=+=+=⨯⨯+=△△△ (3)(1,6)B ,(3,2)A --∴当k kx b x+<时,x 的取值范围是3x <-或01x <<. 【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数与反比例函数的图象和性质等知识点,能求出B 、C 的坐标是解此题的关键.26.(1)见解析;(2)①1;②见解析.【分析】(1)先求出点D 坐标,再代入反比例函数解析式中,即可得出结论;(2)①先判断出△ABC ≌△EFG ,得出GF=BC=2,GE=AC=1,进而得出E (1,3),即可得出结论;②先判断出△AOF ≌△FGE (SAS ),得出∠GFE=∠FAO ,进而得出∠AFE=90°,同理得出∠BAF=90°,进而判断出EF ∥AB ,即可得出结论.【详解】解:(1)∵点B (3,2),BC 边的中点D ,∴点D (3,1),∵反比例函数y =kx (k >0)的图象经过点D (3,1), ∴k=3×1=3,∴反比例函数表达式为y =3x; (2)①∵点B (3,2),∴BC=2,∵△ABC 与△EFG 成中心对称,∴△ABC ≌△EFG (中心对称的性质),∴GF=BC=2,GE=AC=1,∵点E 在反比例函数的图象上,∴E (1,3),即OG=3,∴OF=OG-GF=1;②如图,连接AF 、BE ,∵AC=1,OC=3,∴OA=GF=2,在△AOF 和△FGE 中AO FG AOF FGE OF GE =⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△FGE (SAS ),∴∠GFE=∠FAO ,∵∠FAO+∠OFA=90°,∴∠GFE+∠OFA=90°,∴∠AFE=90°,∵∠EFG=∠FAO=∠ABC ,∵∠BAC+∠ABC=90°,∴∠BAC+∠FAO=90°,∴∠BAF=90°,∴∠AFE+∠BAF=180°,∴EF∥AB,∵EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点睛】本题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,正方形的判定,全等三角形的判定和性质,判断出△AOF≌△FGE是解题的关键.。

人教新版九年级数学下册《反比例函数》单元测试及答案

人教新版九年级数学下册《反比例函数》单元测试及答案

人教版 九下第二十六章《反比例函数》单元测试及答案【2】一、选择题(本题共10小题,每小题3分,共30分.每小题给出的4 个选项中只有一个是符合题目要求的。

)1、下列函数中,反比例函数是( ) (A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 2、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )3、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) (A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 4、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是( )(A )-1或1 (B )小于21的任意实数 (C ) -1 (D) 不能确定 5、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) (A )(-a ,-b ) (B )(a ,-b ) (C )(-a ,b ) (D )(0,0) 6、若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数k y x =(k>0)的图象上,则1y 、2y 、3y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >> 7、如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点。

若AOB S ∆=5,则k 的值为( ) (A )10 (B )10-(C )5- (D )25-8、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )9、如图是三个反比例函数312,,k k ky y y x x x===,在x 轴上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( ) (A )k 1>k 2>k 3 (B )k 3>k 1>k 2 (C )k 2>k 3>k 1 (D )k 3>k 2>k 110、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )(A) 1k 、2k 异号 (B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D) 1k <0, 2k >0二、填空题(本大题共6小题,每小题3分,共18分.请把下列各题的正确答实填写在横线上) 11、已知22)1(--=a xa y 是反比例函数,则a=____ .12、在函数y=25x -+13x -中自变量x 的取值范围是_________. 13、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若120x x <<时,210y y >>,则k 的取值范围是 .14、已知圆柱的侧面积是π102cm ,若圆柱底面半径为r cm ,高为h cm ,则h 与r 的函数关系式是 。

第一章《反比例函数》(基础卷)(解析版)

第一章《反比例函数》(基础卷)(解析版)

2022-2023学年湘教版九年级上册期末真题单元冲关测卷(基础卷)第一章反比例函数一、选择题(每小题4分,共40分)1.(2021-2022·湖南·期末试卷)下列函数中,是反比例函数的是()A.y=5B.y=x2C.y=2x+1D.2y=xx【答案】A【解析】根据反比例函数的定义,可得答案.解:形如y=k(k≠0)的函数是反比例函数,故只有选项A符合题意.x2.(2021-2022·广东·单元测试)若函数y=(m2−1)x m2−m−3是反比例函数,则m的值是()A.±1B.2C.−1或2D.−1【答案】B【解析】因为函数y=(m2−1)x m2−m−3是反比例函数,所以m2−m−3=−1,m2−1≠0,所以m=2.3.(2021-2022·河南·月考试卷)下列关于反比例函数y=−3的结论中正确的是()xA.图象过点(1,3)B.图象在一、三象限内C.当x<0时,y随x的增大而增大D.当x>−1时,y>3【答案】C4.(2021-2022·河南·月考试卷)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=U,当电压为定值时,关于R的函数图象是()RA. B. C. D.【答案】A5.(2021-2022·广东·单元测试)已知反比例函数y=kx的图象经过点P(3,−4),则这个反比例函数的解析式为()A.y=12x B.y=−12xC.y=3xD.y=4x【答案】B【解析】将P(3,−4)代入y=kx,得k=3×(−4)=−12.故反比例函数解析式为y=−12x.6.(2021-2022·安徽·期末试卷)若点A(−3,2)关于x轴的对称点A′恰好在反比例函数y=kx(k≠0)的图象上,则k的值为()A.−5B.−1C.6D.−6【答案】C7.(2021-2022·广东·同步练习)如图,点P在反比例函数y=kx(k≠0)的图象上,PA⊥x轴于点A ,△PAO的面积为2,则k的值为()A.1B.2C.4D.6【答案】C【解析】根据反比例函数系数k的几何意义可知,△PAO的面积=12|k|,再根据图象所在象限求出k的值既可.解:依据比例系数k的几何意义可得,△PAO的面积=1|k|,2即1|k|=2,解得,k=±4,由于函数图象位于第一、三象限,故k=4.28.(2021-2022·广东·月考试卷)若点A(−3,y1),B(−1,y2),C(3,y3)都在反比例函数y=k(k>0)的x图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y1>y3>y2【答案】B9.(2021-2022·安徽·月考试卷)已知正比例函数y=k1x和反比例函数y=k2,在同一直角坐标x系下的图象如图所示,其中符合k1⋅k2>0的是()A.①②B.①④C.②③D.③④【答案】B【解析】根据正比例函数和反比例函数的图象逐一判断即可.10.(2021-2022·广东·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=k(k>0)的图象上与正方形的一个交点,若x图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.−16【答案】C【解析】根据正方形的对称性及反比例函数的的对称性,由割补法可以得出阴影部分的面积就是一个小正方形的面积,又阴影部分的面积是16,故一个小正方形边长为4,根据点的坐标与图形的性质即可得出|4a=4,求解得出a的值,再根据反比例函数图象上的点的坐标特点即可求出k的值.解:如图:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16.∵P点坐标为(4a, a),∴OA=OC=4a,∴4a×4a=16,∴a=1(a=−1舍去),∴P点坐标为(4, 1).把P(4, 1)代入y=kx,得k=4×1=4.二、填空题(本题共计6小题,每题4分,共计24分)11.(2021-2022·广东·期末试卷)若函数y=mx m2+3m−1是反比例函数,则m=________.【答案】−3【解析】直接利用反比例函数的定义分析得出即可.【解答】解:∵函数y=mx m2+3m−1是反比例函数,∴m2+3m−1=−1且m≠0,解得:m=−3.12.(2020-2021·湖南·期中试卷)已知反比例函数y=(m−2)x m2−10的图象,在每一象限内y随x 的增大而减小,则反比例函数的解析式为________.【答案】y=1x【解析】根据反比例函数的定义得到得m−2≠0m2−10=−1,可解得m=3或−3,再根据反比例函数的性质得到m−2>0,则m=3,然后把m=3代入y=(m−2)x m2−10即可.解:根据题意得m−2≠0,m2−10=−1,解得m=3或−3,∵反比例函数在每一象限内y随x的增大而减小,∴m−2>0,∴m>2, ∴m=3,∴y=(3−2)x−1=1x,13.(2021-2022·全国·中考复习)计划修建铁路1200km,那么铺轨天数y(d)是每日铺轨量x的________比例函数解,其表达式为________.【答案】反,y=1200x【解析】本题考查反比例函数的定义.解:故答案为:反,y=1200x.14.(2021-2022·河南·中考复习)已知函数y=−1x,当自变量的取值为−1<x<0或x≥2时,函数值y的取值为________.【答案】y>1或−12≤y<0解:画出函数y=−1x的图象,如图所示:当x=−1时,y=1,当x=2时,y=−12.由图象可得:当−1<x<0时,y>1,当x≥2时,−12≤y<0.15.(2021-2022·河南·月考试卷)已知(−3, y1),(−2, y2),(1, y3)是抛物线y=3x2+12x+m上的点,则y1,y2,y3的大小关系为________.A.y2<y3<y1B.y1<y2=y3C.y2<y1<y3D.y3<y2<y1【答案】C【解析】利用二次函数解析式求出其对称轴,再利用二次函数的对称性可得到点(−3,y1)关于对称轴对称的点的坐标(−1y1);利用二次函数的增减性比较−2,−1,1的大小关系,就可得到y1,y2,y3的大小关系.解:A(−3,y1),B(−2,y2),C(1,y3)在二次函数y=3x2+12x+m的图象上,=−2,开口向上,y=3x2+12x++m的对称轴x=−b2a∴当x=−3与x=−1关于x=−2对称,:A在对称轴左侧,y随x的增大而减小,则y1>y2C在对称轴右侧,y随x的增大而增大,1>−1, ∵y3>y1, ∵y3>y1>y216.(2021-2022·河南·中考复习)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半的图象经过菱形OB-CD对角线的交点A,若点D的坐标为(6,8),则k 轴上,反比例函数y=kx的值为________.【答案】32解:∵点D的坐标为(6, 8),∴OD==10,∵四边形OBCD是菱形,∴OB=OD=10,∴点B的坐标为:(10, 0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8, 4),的图象上,∵点A在反比例函数y=kx∴k=xy=8×4=32.三、解答题(本题共计8小题,每题10分,共计86分)17.(2021-2022·广东·单元测试)已知函数y=(m2+2m)x m2−m−1.(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.解:(1)由y=(m2+2m)x m2−m−1是正比例函数,得m2−m−1=1且m2+2m≠0,解得m=2或m=−1;(2)由y=(m2+2m)x m2−m−1是反比例函数,得m2−m−1=−1且m2+2m≠0,解得m=1,.故y与x的函数关系式y=3x18.(2020·广东·单元测试)已知函数y=(k−2)x k2−5为反比例函数.(1)求k的值;(2)它的图象在第________象限内,在各象限内,y随x增大而________;(填变化情况)时,y的取值范围.(3)求出−2≤x≤−12解:由题意得:k2−5=−1,解得:k=±2,∵k−2≠0,∴k=−2;∵k=−2<0,∴反比例函数的图象在二、四象限,在各象限内,y随着x增大而增大;故答案为:二、四,增大;∵反比例函数表达式为y=−4,x时,y=8,∴当x=−2时,y=2,当x=−12时,2≤y≤8.∴当−2≤x≤−1219.(2021-2022·吉林·月考试卷)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象与在第一象限内的图象交于点C,连接CO x轴交于点A(−4,0),与y轴交于点B,与反比例函数y=kx.(1)求b的值;(2)若S△OBC=2,则k的值是________.解:(1)∵一次函数y=x+b经过点A(−4,0)∴0=−4+b∴b=4.∴B(0,4).(2)∵S△OBC=2 ∴1×4×x C=2 ∴x C=12∴点C横坐标为1.把x=1代入y=x+4得,y=5 ∴C(1,5).∵反比例函数y=k过点C,∴k=1×5=5,x20.(2021-2022·甘肃·月考试卷)如图,一次函数y=kx+b与反比例函数y=m的图象相交于xA(−1, 4),B(2, n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B 作BC ⊥y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S · .解:(1)把A(−1, 4)代入反比例函数y =mx 得,m =−1×4=−4所以反比例函数的解析式为y =4x ;把B(2, n)代入y =−4x 得,2n =−4.解得n =−2,所以B 点坐标为(2, −2),把A(−1, 4)和B(2, −2)代入一次函数y =kx +b 得{−k +b =42k +b =−2,解得{k =−2b =2,所以一次函数的解析式为y =−2x +2;(2)∵ BC ⊥y 轴,垂足为C ,B(2, −2),∴ C 点坐标为(0, −2).设直线AC 的解析式为y =px +q ,∵ A(−1, 4),C(0, −2),∴ {−p +q =4q =−2,解得{p =−6q =−2∴ 直线AC 的解析式为y =−6x−2,当y =0时,−6x−2=0,解得x =−13,∴ E 点坐标为(−13, 0),∵ 直线AB 的解析式为y =−2x +2,∴ 直线AB 与x 轴交点D 的坐标为(1, 0)·∴ DE =1−(−13)=43,∴ △AED 的面积s =12×43×4=83.21.(2021-2022·山东·月考试卷)Rt△OAB在直角坐标系内的位置如图所示,BA⊥OA,反比例函数y=k(k≠0)在第一象限内的图像与AB交于点C(8,1)与OB交于点D(4,m).x(1)求该反比例函数的解析式及图像为直线OB的正比例函数解析式;(2)求BC的长., 解得:k=8,解:(1)将点C(8,1)代入反比例函数解析式中,得1=k8∴反比例函数解析式为y=8,x,解得:m=2,将点D(4,m)代入反比例函数解析式中,得m=84∴点D(4,2),设直线OB的正比例函数解析式为y=ax,将点D(4,2)代入,得2=4a,解得:a=1,2∴直线OB的解析式为y=1x;2(2)∵BA⊥OA即BC⊥x轴,∴点B的横坐标等于点C的横坐标8,将x=8代入y=1x中,解得y=4,∴点B的坐标为(8, 4),2∴AB=4,∵点C(8,1),∴AC=1,∴BC=AB−AC=3.22.(2021-2022·河南·月考试卷)如图,平行四边形OABC的边OA在x轴上,点D是对角线OB 的中点,反比例函数y=k(x>0)的图象经过点D.点B的坐标为(10,4),点C的坐标为(3,4)x(1)求反比例函数的解析式;(2)求平行四边形OABC 的周长.解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,∵ 点D 是OB 的中点∴ 点E 是OF 的中点,且DE =12BF ,∴ OE =5, DE =2 ∴ 点D 的坐标为(5,2).∵ 反比例函数y =k x (x >0)的图象经过点D ,∴ 2=k 5,解得k =10,∴ 反比例函数的解析式为y =10x .(2)∵ 点B 的坐标为 (10,4),点C 的坐标为 (3,4) ,∴ BC =10−3=7.由勾股定理易得OC ==5,所以平行四边形OABC 的周长为 (5+7)×2=24.23.(2021-2022·山东·月考试卷)如图,在平面直角坐标系中,直线y =x +2与双曲线y =k x 交于A ,B 两点,已知点A 的横坐标为1.(1)求k 的值; (2)求△OAB 的面积;(3)直接写出关于x 的不等式x +2>k x 的解集.解:(1)∵ 点A 的横坐标为1,∴ 将x =1二代入y =x +2中,得y =3,∴ 点A 的坐标为(1,3),∵ 直线y =x +2与双曲线y =k x 交于A ,B 两点∴ 将A (1,3)代入y =k x 中,得k =3.(2)∵直线y=x+2与双曲线y=3x交于A,B两点∴解y=x+2y=3x,得x=1x=−3∴点A的坐标为(1,3)点B的坐标为(−3,−1)∵如图,直线y=x+2与y轴交于点C∴点C的坐标为(0,2),∴OC=2,∴S△OAB=CO⋅(x A−x B)2=2×[1−(−3)]2=4,即△OAB的面积为4.(3)x>1或−3<x<0.24.(2021-2022·安徽·月考试卷)校园里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∘C,加热到100∘C停止加热,水温开始下降,此时水温y(∘C)与开机后用时x(min)成反比例关系,直至水温降至40∘C,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为40∘C时接通电源,水温y(∘C)与时间x(min)的关系如图所示:(1)分别写出图中水温上升和下降阶段y与x之间的函数关系式;(2)小明同学想喝高于50∘C的水,请问他最多需要等待多长时间?解:(1)观察图象,可知:当x=6(min)时,水温y=100(∘C),当0≤x≤6时,设y关于x的函数关系式为:y=kx+b,b=40,6k+b=100,得k=10,b=40,即当0≤x≤6时,y关于x的函数关系式为y=10x+40;当x>6时,设y=ax,100=a6,得a=600,即当x>6时,y关于x的函数关系式为y=600x,∴ y与x的函数关系式为:y=10x+40,600x.(2)将y=50代入y=10x+40,得x=1,∴P(1,50),将y=50代入y=600x,得x=12,∴M(12,50),当y=40时,x1=0,x2=15,∴Q(15,40),因为饮水机关机即刻自动开机,重复上述自动程序,如图,∴N(16,50),∴MN=4,∴他最多要等4分钟.。

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。

《反比例函数》单元测试题(含答案)

《反比例函数》单元测试题(含答案)

反比例函数基础练习1. 双曲线ky x=经过点(2-,3),则_____=k ; 2. 已知y 与x 成反比例,当1=y 时,4=x ,则当2=x 时,_____=y ;3. 反比例函数和正比例函数的图象都经过点A(1-,2-),则这两个函数的解析式分别是_________和_________;4. 某厂有煤1500吨,求这些煤能用的天数y 与每天用煤的吨数x 之间的函数关系式为_________;5. 若点(3,6)在反比例函数xky =(k ≠0)的图象上,那么下列各点在此图象上的是( ) (A )(3-,6) (B ) (2,9) (C )(2,9-) (D )(3,6-)6. 已知反比例函数的图象过(2,-2)和(-1,n ),则n 等于 ( ) (A )3 (B )4(C )6(D )127. 反比例函数xk y =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;8. 已知2-y 与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ; 9. 如果函数22(1)m y m x -=-是反比例函数,那么m 的值是_________ ;10. 反比例函数xky =(k ≠0)的图象是__________,当k >0时,图象的两个分支分别在第__________、__________象限内,在每个象限内,y 随x 的增大而__________;当k <0时,图象的两个分支分别在第__________、__________象限内,在每个象限内,y 随x 的增大而__________; 11. 已知函数1k y x+=的图象两支分布在第二、四象限内,则k 的范围是_________ 12. 反比例函数 2k y x= (0≠k )的图象的两个分支分别位于 ( )(A ) 第一、二象限 (B ) 第一、三象限 (C ) 第二、四象限 (D ) 第一、四象限 13. 若反比列函数1232)12(---=k k xk y 的图像经过二、四象限,则k = _______14. 已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) (A ) (a -,b -) (B ) (a ,b -) (C ) (a -,b ) (D ) (0,0) 15. 反比例函数422)1(---=m mx m y ,当x <0时,y 随x 的增大而增大,则m 的值是( )(A ) 1- (B ) 3(C ) 1-或3 (D ) 216. 若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都是反比例函数xy 1-=的图象上的点,且 x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是 ; 17. 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________18. 点A 为反比例函数图象上一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内.则这个反比例函数的解析式为 ( )(A ) 12y x =(B ) 12y x =- (C ) 112y x= (D ) 112y x =- 19. 反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 ;20. 如图2所示,A 、B 是函数xy 1-=的图象上关于原点O 对称的任意两点,AC ∥x 轴,BC ∥y 轴,△ABC 的面积为S ,则 ( ) (A ) S =1 (B ) S =2(C ) 1<S <2(D ) S <221. 已知12y y y =+,其中1y 与1x成反比例且比例系数为1k ,2y 与2x 成正比例且比例系数为2k ,若1-=x 时,0=y ,则1k 与2k 的关系为 ( )(A ) 12k k =- (B ) 12k k ≠ (C ) 121k k =- (D ) 12k k = 22. 若ab <0,则函数ax y =与xby =在同一坐标系内的图象大致可能是下图中的 ( )(A ) (B ) (C ) (D )23. 函数2x y -=和函数xy 2=的图像有 个交点; 24. 已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ; 25. 直线x y 2=与双曲线xy 1=的交点为_________; yO PM26. 如图1,正比例函数)0(>=k kx y 与反比例函数xy 1=的图象相交于 A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC ,则△ABC 的面积S =_________. 27. 在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )A B C D28. 已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-2;当x =2时,y=-7,求y 与x 间的函数关系式.29. 反比例函数y =-x6与直线y =-x +2的图象交于A 、B 两点,点A 、B 分别在第四、二象限,求:(1)A 、B 两点的坐标; (2)△ABO 的面积.30. 如图2,第一象限的角平分线OM 与反比例函数的图象相交于点A ,已知OA =22. (1)求点A 的坐标; (2)求此反比例函数的解析式.如图,Rt ⊿ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点,AB ⊥x 轴于B 且S △ABO =23 (1)求这两个函数的解析式(2)求直线与双曲线的两个交点A ,C 的坐标和△AOC 的面积。

反比例函数单元测试卷含答案

反比例函数单元测试卷含答案

反比例函数单元测试卷含答案一、选择题1. 反比例函数的一般形式是:A. y = kxB. y = ax + bC. y = k/xD. y = mx + c答案: C2. 当x为0时,反比例函数的值为:A. 0B. 1C. 无定义D. 任意值答案: C3. 若反比例函数的k值为正数,x趋近于无穷大,y会趋近于:A. 正无穷大B. 负无穷大C. 0D. 不存在极限答案: B4. 反比例函数的图像是一条:A. 直线B. 抛物线C. 余弦曲线D. 双曲线答案: D5. 若反比例函数的x值为正数,y值为负数,那么k值是:A. 正数B. 负数C. 零D. 无法确定答案: B二、计算题1. 已知反比例函数y = 5/x,当x = 2时,求y的值。

答案: 2.52. 已知反比例函数y = 3/x,当y = 6时,求x的值。

答案: 0.5三、简答题1. 什么是反比例函数?答案: 反比例函数是一种函数关系,当自变量x的值增大时,因变量y的值会减小,并且二者之间呈现出一种倒数关系。

它的一般形式为y = k/x,其中k为常数。

2. 反比例函数的图像有什么特点?答案: 反比例函数的图像是一条双曲线。

当x趋近于无穷大或无穷小时,函数的值趋近于零。

两支曲线的对称轴为y轴,并在y 轴上有一个渐近线。

3. 如何确定反比例函数的常数k的值?答案: 可以通过已知点的坐标进行求解。

将已知的x和y的值代入反比例函数的一般形式中,解方程得到k的值。

以上就是反比例函数单元测试卷的答案。

希望能对你的学习有所帮助!。

(完整word版)九年级数学反比例函数单元测试题及答案

(完整word版)九年级数学反比例函数单元测试题及答案

反比例函数综合检测题一、选择题(每小题3分,共30分)1、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2)C 、(-2,-1)D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h)与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m 为( ).A 、1。

4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C(-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 29、已知反比例函数y =xm21-的图象上有A(x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21D 、m >2110、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).Qp xy o t /h Ot /hOt /hOt /hv /(km/h)OA .B .C . .A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而(填“增大”或“减小”或“不变").13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b= .14、反比例函数y =(m +2)xm2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)xm2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B(x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例:函数表达式:23、(10分)如图,已知A(x 1,y 1),B(x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P(4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B;9、D ; 10、D . 二、填空题 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12.三、解答题21、y =-x6.22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y(米)之间的函数关系式为y =x2(x >0).x…21 123 2 … y … 4 234 1…(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D,则OD =x 1,AD =y 1,因为点A(x 1,y 1)在双曲线y =x k 上,故x 1=1y k,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM |=2,于是S △AOB =S △AOM +S △BOM =21|OM |·|y A |+21|OM |·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =x k ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P(4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。

九年级上册数学单元测试卷-第六章 反比例函数-北师大版(含答案)

九年级上册数学单元测试卷-第六章 反比例函数-北师大版(含答案)

九年级上册数学单元测试卷-第六章反比例函数-北师大版(含答案)一、单选题(共15题,共计45分)1、若点A(﹣6,y1),B(﹣2,y2),C(3,y3)在反比例函数(a为常数)的图象上,则y1, y2, y3大小关系为()A.y1>y2>y3B.y2>y3>y1C.y3>y2>y1D.y3>y1>y22、如图,正方形ABCD的顶点B、C在x轴的正半轴上,反个比例函数y= (k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,),过点E作直线l∥BD交y轴于点F,则点F的坐标是( )A.(0,- )B.(0,- )C.(0,-3)D.(0,- )3、已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y= 在同一坐标系内的大致图象是()A. B. C. D.4、如图,已知反比例函数y= 的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为4+2 ,AD=2,则△ACO的面积为()A. B. C.1 D.25、如图,在平面直角坐标中,菱形ABCO的顶点O在坐标原点,且与反比例函数y=的图象相交于A(m,3 ),C两点,已知点B(2 ,2 ),则k的值为()A.6B.﹣6C.6D.﹣66、给出下列命题及函数y=x,y=x2和y=的图象.(如图所示)①如果>a>a2,那么0<a<1;②如果a2>a>,那么a>1;③如果a2>>a,那么a<﹣1.则真命题的个数是()A.0B.1C.2D.37、若反比例函数的图像经过点,则它的解析式是()A. B. C. D.8、如图,已知A点是反比例函数的图像上一点,AB⊥y轴于点B,且△ABO的面积为3,则k的值为()A.-3B.3C.-6D.69、已知点A(-1,y1)、B(2,y2)都在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0B.m>0C.m>-D.m<-10、下列函数中,当时,随增大而增大的是()A. B. C. D.11、方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x<1 C.1<x<2 D.2<x<312、反比例函数的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限13、如图,某个反比例函数的图象经过点P,则它的解析式为()A.y= (x>0)B.y= (x>0)C.y= (x<0)D.y=(x<0)14、如图,矩形AOBC的面积为4,反比例函数的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是()A. B. C. D.15、若点A(x1, 1)、B(x2, 2)、C(x3,﹣3)在双曲线y=﹣上,则()A.x1>x2>x3B.x1>x3>x2C.x3>x2>x1D.x3>x1>x2二、填空题(共10题,共计30分)16、如图,点A、B分别在双曲线和上,四边形ABCO为平行四边形,则□ABCO的面积为________17、如图,点A是反比例函数y=(x>0)图象上一点,过点A作AB⊥x轴于点B,连接OA,OB,tan∠OAB=.点C是反比例函数y=(x>0)图象上一动点,连接AC,OC,若△AOC的面积为,则点C的坐标为________.18、如果函数y=x 2m -1 为反比例函数,则m的值是________.19、如图,经过原点O的直线与反比例函数(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则的值为________,的值为________.20、将x1= 代入反比例函数y=﹣中,所得的函数值记为y1,将x2=y1+1代入反比例函数y=﹣中,所得的函数值记为y2,再将x3=y2+1代入函数y=﹣中,所得的函数值记为y3…,将xn=y(n﹣1)+1 代入反比例函数y=﹣中,所得的函数值记为y n (其中n≥2,且n 是整数)如此继续下去,则在2006个函数值y1 . y2 ,…,y2006中,值为2的情况共出现了________次?21、如图,点A是反比例函数y= (k>0)图象第一象限上一点,过点A作AB⊥x轴于B点,以AB为直径的圆恰好与Y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连接CD交AB于点E。

第六章 反比例函数单元测试2024-2025学年北师大版数学九年级上册

第六章 反比例函数单元测试2024-2025学年北师大版数学九年级上册

第六章反比例函数单元测试2024-2025学年北师大版数学九年级上册一、选择题(每题3分,共24分)1.如图,在Rt△AOB中,∠ABO=90°,点B在x轴上,点C(1,a)为OA的中点,反比例函数y=的图象经过点C,交AB于点D,且∠AOD=∠BOD,则k=()A.8B.2C.D.22.如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接O在AO上=12,则四边形OCDF的面积为()取一点F,使得OF=AF若S△ABCA.2B.C.3D.3.如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…P n(n,y n),作x轴的垂线,垂足分别为A1,A2,…A n,连结A1P2,A2P3,…A n-1P n,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3……,以此类推,则点B20的坐标是()A.B.C.D.4.如图是由四个全等的三角形和一个正方形组成的大正方形,连结与交于,射线交于点,交于点,交于点,连接,则与面积相等的图形是()A.B.C.D.5.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<06.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3B.4C.6D.87.如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A,B在函数y=的图象上.那么k的值是()A.3B.6C.12D.8.如图所示,、都是等边三角形,且均在第一象限,若双曲线经过、两点,,则点的坐标为()A.B.C.D.二、填空题(每题3分,共15分)9.一个等腰三角形和一个正方形如图摆放,被分割成了5个部分.①,②,③这三块的面积比为1:4:41,那么④,⑤这两块的面积比是10.已知△ABC的三个顶点为A,B,C,将△ABC向右平移m()个单位后,△ABC某一边的中点恰好落在反比例函数的图象上,则m的值为. 11.已知是在第一象限的图像上的两个点,若是等边三角形,则等边的面积是.12.如图,在▱中,,,点P在边上以每秒的速度从点A向点D运动,点Q在边上以每秒的速度从点C出发,在间往返运动.两个点同时出发,当点P到达点D时停止运动(同时点Q也停止运动).在这段时间内,当运动时间为时,线段.13.如图,在中,,、分别为和的角平分线,的周长为20,,则的长为.三、解答题(共7题,共61分)14.如图,直线y=x+2交x轴于点A,交y轴于点B,点P(x,y)是线段AB上一动点(与A,B不重合),△PAO的面积为S,求S与x的函数关系式,并写出自变量的取值范围.15.如图,在矩形中,,点P从点A沿向点B以的速度移动,同时点Q从点B沿边向点C以的速度移动.当其中一点达到终点时,另一点也随之停止.设P,Q两点移动的时间为,求:(1)当x为何值时,为等腰三角形;(2)当x为何值时,的面积为;(3)当x为何值时,为等腰三角形.16.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散学生注意力指标y随时间x(分钟)变化的函数图象如图所示,当0≤x<10和10≤x<20时,图象是线段;当20≤x≤45时,图象是反比例函数图象的一部分.(1)求点A对应的指标值(2)王老师在一节数学课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题讲解时,注意力指标都不低于36?请说明理由.17.如图,在中,,,,,动点P 从点A 出发,沿方向以每秒6个单位长度的速度向终点B 运动,连结,作点A 关于的对称点,连结,.设点P 的运动时间为t 秒.(1)__________,__________;(2)连结,则的最小值为__________;(3)连结,当在边上时(不包括的顶点),求的长;(4)当时,直接写出的值.18.如图,在并联电路中,电源电压为U 总=6V ,根据“并联电路分流不分压”的原理得到:I 总=I 1+I 2(I 1=,I 2=).已知R 1为定值电阻,当R 变时,路电流I 总也会发生变化,且干路电流I 总与R之间满足如下关系:I 总=1+.(1)【问题理解】定值电阻R 1的阻值为Ω.(2)【数学活动】根据学习函数的经验,参照研究函数的过程与方法,对比反比例函数I 2=来探究函数I 总=1+的图象与性质.①列表:下表列出I 总与R 的几组对应值,请写出m 的值:m =▲.R…3456…I2=…2 1.5 1.21…I总=1+…3m 2.22…②描点、连线:在平面直角坐标系中,以①给出的R的取值为横坐标,以I总相对应的值为纵坐标,描出相应的点,并将各点用光滑曲线顺次连接起来.(3)【数学思考】=1+的图象是由I2=的图象向平移个单位而得观察图象发现:函数I总到.(4)【数学应用】若关于x的方程|1+|=kx+6在实数范围内恰好有两个解,直接写出k的值.19.已知点A(3,2)、点B(m,n)在反比例函数y=(x>0)图象上,点C是x轴上的一个动点.(1)求k的值;(2)若m=1,C(﹣1,0),试判断△ABC的形状,并说明理由;(3)若点C在x轴正半轴上,当△ABC为等腰直角三角形时,求出点C的坐标.20.如图,一次函数的图象与反比例函数的图象相交于点,与x轴交于点C,且.(1)求反比例函数与一次函数关系式;(2)线段AC上是否存在一点D,使以点O、C、D为顶点的三角形是等腰三角形,若存在请求出D点坐标;若不存在,请说明理由.(3)点P是x轴上一点,是否存在以点A、C、P为顶点的三角形与相似,若存在,请求出P点坐标;若不存在,请说明理由.答案解析部分1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】A6.【答案】C7.【答案】D8.【答案】B9.【答案】9:1410.【答案】0.5或411.【答案】12.【答案】3或6或913.【答案】814.【答案】解:∵令y=x+2=0,解得:x=-4,∴点A的坐标为(-4,0),∵令x=0,得y=2,∴点B的坐标为(0,2),∴OA=4,OB=2,∵点P(x,y)是线段AB上一动点(与A,B不重合),∴点P的坐标可表示为(x,x+2),如图,作PC⊥AO于点C,∵点P(x,x+2)在第二象限,∴x+2>0∴PC=x+2∴S=AO•PC=×4×(x+2)=x+4.∴S与x的函数关系式为S=x+4(-4<x<0)15.【答案】(1)当时,是等腰三角形(2)x为1或5时,的面积为(3)x为或时,是等腰三角形16.【答案】(1)设当20≤x≤45时,反比例函数的表达式为y=",将C(20,45)代入,得45=-,解得k=900,∴反比例函数的表达式为y=当x=45时,y==20,∴D(45,20),∴A(0,20),即点A对应的指标值为20.(2)解:设当0≤x<10时,AB的表达式为y=mx+n,将A(0,20),B(10,45)代入,得,解得∴AB的表达式为y=x+20.当y≥36时,x+20≥36,解得x≥,∴≤x<10.当10≤x<20时,y显然大于36.当20≤x≤45时,由(1)得反比例函数的表达式为y=,当y≥36时,≥36,解得x≤25,∴20≤x≤25.综上,当≤x≤25时,注意力指标都不低于36,而25-=>17,∴张老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36.17.【答案】(1)90,10(2)(3)或(4)或18.【答案】(1)6(2)①2.5,②先描出点(3,3),(4,2.5),(5,2.2),(6,2),再顺次连接这些点即可画出所求函数图象,(3)上;1(4)由函数与方程的关系可知,当k<0时,y=|1+|,y=kx+6的函数图象在第一象限恰有一个交点时满足恰有两个实数解;∴1+=kx+6,化简得:kx2+5x﹣6=0,Δ=b2﹣4ac=25+24k=0,∴k=,当k>0时,y=|1+|,y=kx+6的函数图象在第二象限恰有一个交点时满足恰有两个实数解;∴-1-=kx+6,化简得:kx2+7x+6=0Δ=b2﹣4ac=49﹣24k=0,∴k=,当k=0时,y=|1+|,y=kx+6的图象恰好有两个交点.∴k=0或或.19.【答案】(1)解:∵点A(3,2)在反比例函数y=图象上,∴k=3×2=6.(2)解:∵点B(m,n)在反比例函数y=图象上,m=1,∴n=6,∴点B(1,6),∵A(3,2),C(-1,0),∴AB==2,AC==2,BC==2,∴AB=AC,AB2+AC2=BC2,∴△ABC的形状为等腰直角三角形.(3)解:①如图1,当∠ACB=90°时,过点A作AH⊥x轴于点H,过点B作BG⊥x轴于点G,∵A(3,2),∴OH=3,AH=2,又∵△ABC的形状为等腰直角三角形,∴AC=BC,∵∠AHC=∠ACB=∠BGC=90°,∴∠CAH=∠BCG,∴△AHC≌△CGB(AAS),∴CG=AH=2,CH=BG,设CH=BG=m,则OG=OH+HG=3+m+2=5+m,∴点B(5+m,m),∵点B在反比例函数y=图象上,∴m(5+m)=6,整理,解得:m=-6(舍去)或m=1,∴CH=BG=1,∴OC=4,∴C(4,0);②如图2,当∠CAB=90°时,过点B作BG⊥x轴于点G,再过点A作AE⊥GB的延长线交于点E,过点C作CD⊥EA的延长线于点D,同①方法,易证△ADC≌△BEA(AAS),∴CD=AE=2,AD=EB,设AD=EB=m,则OG=3+AE=5,BG=CD-EB=2-m,∴点B(5,2-m),∵点B在反比例函数y=图象上,∴5(2-m)=6,整理,解得:m=,∴AD=EB=,∴OC=OA-AD=3-=,∴C(,0);③如图3,当∠ABC=90°时,过点B作BG⊥x轴于点G,再过点A作AE⊥GB的延长线交于点E,同①方法,易证△AEB≌△BGC(AAS),∴AE=BG,EB=CG,∴EG=2,设EB=CG=m,则AE=BG=EG-EB=2-m,∴OG=3+2-m=5-m∴点B(2-m,5-m),∵点B在反比例函数y=图象上,∴(2-m)(5-m)=6,整理,解得:m=(舍去,不符合题意)或m=,∴EB=CG=,OG=,∴OC=OG-CG=-=-2,∴C(-2,0),综上所述,点C坐标为(4,0)或(,0)或(-2,0).20.【答案】(1)解:作轴于点B,由点可知,,,.又,,所以.即,所以,则,所以反比例函数与一次函数关系为,.(2)解:当时,,则,当时,点D在OC的垂直平分线上,故,当时,设,则,又,则,即,所以,综上,,或(3)解:存在.设,则,又,,则,则。

2024-2025北师大版九年级(上)第六单元 反比例函数 单元测试卷(含答案)

2024-2025北师大版九年级(上)第六单元 反比例函数 单元测试卷(含答案)

第六单元反比例函数测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.下列函数中,y 是x 的反比例函数的是 ( )A. x(y-1)=1B.y =1x +1 C.y =1x2 D.y =13x 2.已知甲、乙两地相距s( km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度 v( km/h)的函数关系图象大致是 ( )3.已知反比例函数 y =kx(k ≠0)的图象经过点(2,3),若点(1,n)在反比例函数的图象上,则n 等于( )A.(-2,3)B.(-2,-3)C.(2,3)D.(3,2)5.已知反比例函数 y =−3x,则下列描述不正确的是 ( )A.图象位于第二、第四象限B.图象必经过点(-3,1)C.图象不可能与坐标轴相交D. y 随x 的增大而增大6.如果等腰三角形的面积为10,底边长为x ,底边上的高y ,则y 与x 的函数关系式为( )A.y =10xB.y =5xC.y =20xD.y =x 207.如图,在同一平面直角坐标系中,直线y =k ₁x (k ₁≠0)与双曲线y =k 2x(k 2≠0)相交于A ,B 两点,已知点 A 的坐标为(1,2),则点B 的坐标为 ( )A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)8.如图所示,A ,B 是函数 y =1x的图象上关于原点O 的任意一对对称点,AC 平行于y 轴,BC平行于x 轴,△ABC 的面积为S ,则 ( )A. S=1 B. S=2 C.1<S<2 D. S>29.在同一直角坐标系中,函数y= kx-k 与 y =kx (k ≠0)的图象大致是 ( )10.如图,在第一象限内,A 是反比例函数y= k1x (k 1⟩0)图象上的任意一点,AB 平行于 y 轴交反比例函数 y =k 2x(k 2<0)的图象于点 B ,作以 AB 为边的平行四边形 ABCD,其顶点 C,D在 y 轴上,若 S ABCD =7,则这两个反比例函数可能是 ( )A.y =2x 和y =−3x B.y =3x 和y =−4x C.y =4x 和y =−5x D.y =5x和y =−6x 二、填空题(本大题共5小题,每小题3分,共15分)11.反比例函数 y =(m +2)x m 2−10的图象分布在第二、四象限内,则m 的值为 .12.若A(-2,y ₁),B(--1,y ₂),C(1,y ₃)三点都在函数 y =kx(k<0)的图象上,则 y ₁,y ₂,y ₃的大小关系是 (用“>”“<”或“=”连接)。

第六章反比例函数 单元测试 2024-2025学年北师大版数学九年级上册

第六章反比例函数 单元测试 2024-2025学年北师大版数学九年级上册

第六章反比例函数(单元测试)2024-2025学年九年级上册数学北师大版一、单选题1.反比例函数y =mx的图象如图所示,以下结论:①常数m <﹣1;②在每个象限内,y 随x 的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h <k ;④若点P(x ,y)在上,则点P′(﹣x ,﹣y)也在图象.其中正确结论的个数是()A .1B .2C .3D .42.如图,Rt AOC 的直角边OC 在x 轴上,90ACO ∠=︒,反比例函数3y x=经过AC 的中点D ,则AOC △的面积为()A .2B .3C .4D .63.如图,正比例函数11y k x =的图象与反比例函数22k y x=的图象相交于A ,B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是()A .2x <-或2x >B .22x -<<C .20x -<<或02x <<D .20x -<<或2x >4.若函数()54m y m x -=+是反比例函数,则m 的值为()A .4B .4-C .4或4-D .05.关于反比例函数1y x=,下列说法不正确的是()A .函数图象分别位于第二、四象限B .函数图象关于原点成中心对称C .函数图象经过点()11,D .当x >0时,y 随x 的增大而减小6.已知正比例函数()0y mx m =≠的图象与反比例函数()0ky k x=≠的图象的一个交点坐标为()24,,则它们的另一个交点坐标是()A .()24-,B .()42,C .()24-,D .()24--,7.反比例函数y 1=kx和正比例函数y 2=mx 的图象如图,根据图象可以得到满足y 1<y 2的x 的取值范围是()A .x >1B .-<x <1或x <-1C .-1<x <0或x >1D .x >2或x <18.在函数(0)ky k x=>的图象上有1122,,A x y B x y ()、()两点,已知120x x <<,则下列各式中,正确的是()A .12y y <B .120y y <<C .12y y >D .120y y >>9.如图,在平面直角坐标系中,函数6y x =-(0x <)与23y x =-+的图像交于点(),P a b ,则代数式12a b+的值为()A .12-B .12C .2-D .210.反比例函数(0)ky k x=>图象上有三个点()()()112233,,,,,A x y B x y C x y ,其中1230x x x <<<,则123,,y y y 的大小关系是()A .123y y y <<B .231y y y <<C .321y y y <<D .132y y y <<二、填空题11.如图,正方形ABOC 的边长为2,反比例函数y=kx过点A ,则k 的值是.12.如图,在平面直角坐标系中有Rt ABC ,90BAC ∠=︒,45B ∠=︒,A (3,0)、C (1,12),将ABC V 沿x 轴的负方向平移,在第二象限内B 、C 两点的对应点1B 、1C 正好落在反比例函数ky x=的图象上,则k =.13.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而增大,这个函数的解析式为.14.正比例函数1y k x =的图象经过点()1,2A -和点(),4B m -,反比例函数2k y x=的图象经过点B ,则此反比例函数的解析式为.15.已知点()())1232,1,3A y B y y --,,,都在反比例函数4y x=的图像上,用“<”表示123,,y y y 的大小关系:16.A 、B 两地相距120千米,一辆汽车从A 地去B 地,则其速度v (千米/时)与行驶时间t (小时)之间的函数关系可表示为;17.已知直线(0)y mx m =≠与反比例函数(0)ky k x=≠的图象的一个交点坐标为()3,4,则它们的另一个交点坐标为.18.反比例函数2y x-=(0)x >的图象经过第象限,y 随x 的增大而;19.如图,第一象限内的点E 在反比例函数(0)ky k x=≠的图象上,点F 在x 轴的正半轴上,O 是坐标原点,若EO EF =,EOF 的面积等于2,则k =.20.定义:若一个矩形中,一组对边的两个三等分点...........在同一个反比例函数ky x=的图象上,则称这个矩形为“奇特矩形”.如图,在直角坐标系中,矩形ABCD 是第一象限内的一个“奇特矩形”、且点()4,2A ,()7,2D ,则AB 的长为.三、解答题21.如图:一次函数y ax b =+的图象与反比例函数ky x=的图象交于(2,)A m 、(1,6)B --两点.(1)求反比例函数和一次函数的解析式;(2)求AOB V 的面积;(3)根据图象直接写出,当x 为何值时,0kax b x+->.22.九年级某数学兴趣小组研究了函数2y x=的图象与性质,其探究过程如下:(1)绘制函数图象,如图1.列表:下表是x 与y 的几组对应值,其中m =_________;x…3--2-112-12123…y…2312442m23…描点:根据表中各组对应值(),x y ,在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;(2)通过观察图1,写出该函数的两条性质:①___________________;②___________________;(3)①观察发现:如图2,若直线2y =交2y x=的图象于A ,B 两点,连接OA ,OB ,则OAB S =△___________;②探究思考:将①中“直线2y =”改为“直线()0y a a =>”,其他条件不变,则OAB S =△___________;③类比猜想:若直线()0y a a =>交函数()0ky k x=>的图象于A ,B 两点,连接OA ,OB ,则OAB S =△___________.23.一次函数y kx b =+的图象经过点()A 2,0,且与二次函数2y ax =的图象相交于B 、()C 2,4-两点.(1)求这两个函数的表达式及B 点的坐标;(2)在同一坐标系中画出这两个函数的图象,并根据图象回答:当x 取何值时,一次函数的函数值小于二次函数的函数值;(3)求△BOC 的面积.24.如图,一次函数()1y kx b k 0=+≠与反比例函数()2my m 0x=≠的图像交于点()1,2A 和(),1B a -,与y 轴交于点M .(1)求一次函数和反比例函数的解析式.(2)在x 轴上求一点N ,当ABN 的面积为3时,则点N 的坐标为______.(3)将直线1y 向下平移2个单位后得到直线3y ,当函数值123y y y >>时,求x 的取值范围.25.商场出售一批进价为2元的贺卡,在市场营销中发现此商品日销售单价x (元)与日销售量y (张)之间有如下关系:x /元3456y /张20151210(1)写出y 关于x 的函数解析式______;(2)设经营此贺卡的日销售利润为W (元),试求出W 关于x 的函数解析式,若物价局规定此贺卡的日销售单价最高不能超过10元/张,请你求出当日销售单价x 定为多少元时,才能获得最大日销售利润,并求出最大日销售利润.参考答案:1.B 2.B 3.D 4.A 5.A 6.D 7.C 8.D 9.A 10.D 11.-412.53-/213-13.1y x=-(答案不唯一)14.8y x=-15.213y y y <<16.v =120t17.()3,4--18.四增大19.220.95或1321.(1)6y x=;33y x =-;(2)92;(3)10x -<<或2x >.22.(1)1(2)①函数的图象关于y 轴对称(答案不唯一);②当0x <时,y 随x 的增大而增大,当0x >时,y 随x 的增大而减小(答案不唯一)(3)①2;②2;③k23.(1)y =﹣x +2,y =x 2,B (1,1);(2)2x <-或>1;(3)324.(1)11y x =+,22y x=(2)()1,0或()3,0-(3)2<<1x --或12x <<25.(1)60y x=(2)W =60﹣120x,当日销售单价x 定为10元时,才能获得最大日销售利润,最大日销售利润为48元.。

人教版初中数学九年级数学下册第一单元《反比例函数》测试题(包含答案解析)

人教版初中数学九年级数学下册第一单元《反比例函数》测试题(包含答案解析)

一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.在同一平面直角坐标系中,函数y =kx +1(k ≠0)和ky x=(k ≠0)的图象大致是( )A .B .C .D .3.如图,正比例函数y = ax 的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<kx的解集为( )A .x < - 2或x > 2B .x < - 2或0 < x < 2C .-2 < x < 0或0 < x < 2D .-2 < x < 0或 x > -24.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<5.对于反比例函数21k y x+=,下列说法错误的是( )A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值6.如图,过y 轴上一个动点M 作x 轴的平行线,交双曲线y=4x-于点A ,交双曲线10y x=于点B ,点C 、点D 在x 轴上运动,且始终保持DC =AB ,则平行四边形ABCD 的面积是( )A .7B .10C .14D .287.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =- B .2y x =+C .2y x=D .22y x x =-8.若函数5y x=与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( )A .15-B .15C .5-D .59.同一坐标系中,函数()1y k x +=与ky x=的图象正确的是( ) A . B .C .D .10.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,111.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③12.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数ky x=(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0二、填空题13.双曲线y =kx经过点A (a ,﹣2a ),B (﹣2,m ),C (﹣3,n ),则m _____n (>,=,<).14.若点()()125,,3,A y B y --在反比例函数3y x=的图象上,则12,y y ,的大小关系是_________.15.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0ky x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.16.有5张正面分别有数字-1,14-,0,1,3的卡片,它们除数字不同外全部相同,将它们背面朝上,洗匀后从中随机的抽取一张.记卡片上的数字为a ,则使以x 为自变量的反比例函数37a y x-=经过二、四象限,且关于x 的一元二次方程2230ax x -+=有实数解的概率是__________.17.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.18.反比例函数16y x =与2ky x=()0k <的图像如图所示,点P 是x 正半轴上一点,过点P 作x 轴的垂线,分别交反比例函数16y x =与2ky x=()0k <的图像于点A ,B ,若4AB PB =,则k 的值为_______.19.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y kx=(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴,若菱形ABCD 的面积为9.则k 的值为____.20.如图,点()11,P x y ,点()22,P x y ,…点(),n n P x y 在函数()90y x x=>的图象上, 112123231,,n n n POA P A A P A A P A A -⋅⋅⋅都是等腰直角三角形,斜边112231,,,n n OA A A A A A A -⋅⋅⋅都在x 轴上(n 是大于或等于2的正数数),则12n y y y ++⋅⋅⋅+=__________.(用含n 的式子表示)三、解答题21.如图,一次函数y kx b =+的图象交反比例函数()0ay x x=>的图象于()()2,4,,1A B m --两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式. (2)求ABO ∆的面积.(3)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值? 22.如图,Rt △ABO 的顶点A 是双曲线y =kx与直线y =﹣x +(k +1)在第四象限的交点,AB ⊥x 轴于点B ,且S △ABO =32.(1)求这两个函数的表达式;(2)求直线与双曲线的交点A 和C 的坐标及△AOC 的面积. (3)写出反比例函数y =kx的值大于一次函数y =﹣x +(k +1)时的x 的取值范围. 23.已知A (-2n ,n )、B (n ,-4)两点是一次函数y kx b =+和反比例函数my x=图像的两个交点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积;(3)观察图像,写出不等式0mkx b x+->的解集.24.已知:如图,一次函数的图象与反比例函数ky x=的图象交于A 、B 两点,且点B 的坐标为.(1)求反比例函数ky x=的表达式; (2)点在反比例函数ky x=的图象上,求△AOC 的面积;(3)在(2)的条件下,在坐标轴上找出一点P ,使△APC 为等腰三角形,请直接写出所有符合条件的点P 的坐标.25.某校园艺社计划利用已有的一堵长为10m 的墙,用篱笆围一个面积为212m 的矩形园子.(1)如图,设矩形园子的相邻两边长分别为()x m 、()y m . ①求y 关于x 的函数表达式; ②当4y 时,求x 的取值范围;(2)小凯说篱笆的长可以为9.5m ,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?26.已知反比例函数y =12mx-(m 为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(﹣2,0),求出该反比例函数的解析式;(3)若E(x1,y1),F(x2,y2)都在该反比例函数的图象上,且x1>x2>0,则y1和y2有怎样的大小关系?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论.【详解】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),∴正比例函数12y x=,反比例函数28yx=,∴两个函数图象的另一个交点为(−2,−4),∴A,B选项错误;∵正比例函数12y x=中,y随x的增大而增大,反比例函数28yx=中,在每个象限内y随x的增大而减小,∴D选项错误;∵当x<−2或0<x<2时,y1<y2,∴选项C正确;故选:C.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.C解析:C 【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案. 【详解】①当k> 0时,y=kx+1过第一、二、三象限,ky x =过第一、三象限; ②当k<0时,y= kx+1过第一、二、四象限,ky x=过第二、四象限,观察图形可知,只有C 选项符合题意, 故选:C . 【点睛】此题考查了依据一次函数与反比例函数的图象,正确掌握各函数的图象与字母系数的关系是解题的关键.3.B解析:B 【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象即可得出结论. 【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称, ∵点A 的横坐标为2, ∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方, ∴2x <-或02x <<, 故选:B . 【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.4.A解析:A 【分析】 根据反比例函数2y x=和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 在第一象限,得出x1<x2<0<x3,再选择即可.【详解】解:∵反比例函数2yx=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.5.B解析:B【分析】先判断出k2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A、∵k2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=-1<0,∴y1<0,∵x2=1>0,x3=2>0,∴y2>y3,∴y1<y3<y2故本选项正确;D、∵P为图象上任意一点,过P作PQ⊥y轴于Q,∴△OPQ的面积=12(k2+1)是定值,故本选项正确.故选B.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=kx(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.6.C解析:C【分析】设出M点的坐标,可得出过M与x轴平行的直线方程为y=m,将y=m代入反比例函数y=4x-中,求出对应的x的值,即为A的横坐标,将y=m代入反比例函数10yx=中,求出对应的x 的值,即为B 的横坐标,用B 的横坐标减去A 的横坐标求出AB 的长,根据DC=AB ,且DC 与AB 平行,得到四边形ABCD 是平行四边形,过B 作BN 垂直于x 轴,平行四边形底边为DC ,DC 边上的高为BN ,由B 的纵坐标为m得到BN=m ,再由求出的AB 的长,得到DC 的长,利用平行四边形的面积等于底乘以高可得出平行四边形ABCD 的面积. 【详解】解:设M 的坐标为(0,m )(m >0)则直线AB 的方程为:y=m , 将y=m 代入y=4x-中得:4x m =-,∴A (4m -,m )将y=m 代入10y x=中得:10x m =,∴B (10m ,m )∴DC=AB=10m -(4m -)=14m过B 作BN ⊥x 轴,则有BN=m ,则平行四边形ABCD 的面积S=DC·BN=14m×m=14. 故选C . 【点睛】本题考查反比例函数综合题.7.B解析:B 【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合; C 、2x x=,解得:2x =2x =“好点”22)和(2,2),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B. 【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.8.B解析:B【分析】先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b -得到b a ab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1, 所以11a b -=b a ab -=15. 故选:B.【点睛】 本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.9.D解析:D【分析】先根据四个选项的共同点确定k 的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】解:A 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项错误;B 、反比例函数图象位于二、四象限,k 0<,则一次函数图象应该交y 轴于负半轴,故本选项错误;C 、反比例函数图象位于二、四象限,k 0<,则一次函数应该是个减函数,故本选项错误;D 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项正确;故选:D .【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k 的取值确定函数所在的象限.10.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键. 11.B解析:B【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 12.B解析:B【分析】首先根据系数判定函数的图象在二、四象限,再根据x 1<0<x 2,可比较出y 1、y 2的大小,进而得到答案.【详解】 解:由反比例函数k y x=(k <0),可知函数的图象在二、四象限, ∵x 1<0<x 2,∴A (x 1,y 1)在第二象限,y 1>0,B (x 2,y 2)在第四象限,y 2<0,∴y 2<0<y 1,故选:B .【点睛】此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键.二、填空题13.>【分析】先求出反比例函数解析式判断函数的增减性﹣2>﹣3即可判断mn 的大小【详解】∵双曲线y =经过点A (a ﹣2a )∴k =﹣2a2<0∴双曲线在二四象限在每个象限内y 随x 的增大而增大∵B (﹣2m )C解析:>.【分析】先求出反比例函数解析式,判断函数的增减性﹣2>﹣3,即可判断m ,n 的大小..【详解】∵双曲线y =k x经过点A (a ,﹣2a ), ∴k =﹣2a 2<0, ∴双曲线在二、四象限,在每个象限内,y 随x 的增大而增大,∵B (﹣2,m ),C (﹣3,n ),﹣2>﹣3,∴m >n ,故答案为:>.【点睛】本题利用函数的性质比较大小,关键是求出函数解析式,掌握反比例函数的性质. 14.【分析】根据反比例函数的性质解答【详解】∵反比例函数中∴此函数图象的两个分支分别位于一三象限并且在每一象限内随的增大而减小这两点都在反比例函数的图象上在第三象限故答案为:【点睛】此题考查反比例函数的 解析:21y y <【分析】根据反比例函数的性质解答.【详解】∵反比例函数3y x=中30k =>, ∴此函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小. ()()125,,3,A y B y --这两点都在反比例函数3y x =的图象上,A B ∴、在第三象限,21y y ∴<,故答案为:21y y <.【点睛】此题考查反比例函数的性质:当k>0时,函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小;当k<0时,函数图象的两个分支分别位于二四象限,并且在每一象限内,y 随x 的增大而增大.15.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫ ⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解.【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒ ∴9045BAE DAE ∠=︒-∠=︒∴ABE △为等腰直角三角形∴45ABE ∠=︒∴45CBE ∠=︒∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫ ⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++=∴322,22x x D ++⎛⎫ ⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x⎛⎫ ⎪⎝⎭ ∴2k AE x x ==+ ∴()2k x x =+ ∴()7436255x x k x x ++=⋅=⋅+ ∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去)∴()()233215k x x =+=⨯+=.【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.16.【分析】根据反比例函数图象经过第二四象限关于x 的一元二次方程ax2-2x+3=0有实数解列出不等式求出a 的取值范围从而确定出a 的值再根据概率公式计算即可【详解】解:∵反比例函数图象经过第二四象限∴3 解析:25【分析】根据反比例函数图象经过第二、四象限,关于x 的一元二次方程ax 2-2x+3=0有实数解,列出不等式求出a 的取值范围,从而确定出a 的值,再根据概率公式计算即可.【详解】解:∵反比例函数图象经过第二、四象限,∴3a-7<0,解得73a < 关于x 的一元二次方程ax 2-2x+3=0有实数解,则△=4-12a≥0,且a≠0,解得:,a≤13,且(a≠0), 综上,a≤13,且(a≠0), ∴ a 可取-1,-14,∴使以x 为自变量的反比例函数37a y x -=经过二、四象限,且关于x 的一元二次方程ax 2-2x+3=0有实数解的概率是25. 故答案为:25. 【点睛】 本题考查了概率公式,用到的知识点是反比例函数图象的性质、根的判别式、概率公式,熟记性质以及判别式求出a 的值是解题的关键.17.y =【分析】设A 坐标为(xy )根据四边形OABC 为平行四边形利用平移性质确定出A 的坐标利用待定系数法确定出解析式即可【详解】解:设A 坐标为(xy )∵B (2﹣2)C (30)以OCCB 为边作平行四边形O解析:y =2x【分析】设A 坐标为(x ,y ),根据四边形OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.【详解】解:设A 坐标为(x ,y ),∵B (2,﹣2),C (3,0),以OC ,CB 为边作平行四边形OABC ,∴x+3=0+2,y+0=0﹣2,解得:x =﹣1,y =﹣2,即A (﹣1,﹣2), 设过点A 的反比例解析式为y =k x, 把A (﹣1,﹣2)代入得:k =2, 则过点A 的反比例函数解析式为y =2x , 故答案为:y =2x. 【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键. 18.-2【分析】设点A 横坐标为m 分别表示出ABPB 根据得到关于k 的方程解方程即可【详解】解:设点A 横坐标为m 则点A 纵坐标为∵AB ⊥x 轴∴点B 纵坐标为∴AB=PB=∵∴∴∴故答案为:-2【点睛】本题考查了解析:-2【分析】设点A 横坐标为m ,分别表示出AB 、PB ,根据4AB PB =,得到关于k 的方程,解方程即可.【详解】解:设点A 横坐标为m ,则点A 纵坐标为6m , ∵ AB ⊥x 轴,∴点B 纵坐标为k m , ∴AB =66k k m m m--= ,PB =k k m m =-, ∵4AB PB =,∴64k k m m-=- , ∴64k k -=- ,∴2k =-.故答案为:-2【点睛】本题考查了反比例函数图象上点的表示,解题的关键是根据4AB PB =列出方程,注意表示PB 时,注意式子符号问题.19.2【分析】根据题意利用面积法求出AE 设出点B 坐标表示点A 的坐标应用反比例函数上点的横纵坐标乘积为k 构造方程求k 【详解】连接AC 分别交BDx 轴于点EF 由已知AB 横坐标分别为14∴BE=3∵四边形ABC解析:2.【分析】根据题意,利用面积法求出AE ,设出点B 坐标,表示点A 的坐标.应用反比例函数上点的横纵坐标乘积为k 构造方程求k .【详解】连接AC 分别交BD 、x 轴于点E 、F .由已知,A 、B 横坐标分别为1,4,∴BE =3.∵四边形ABCD 为菱形,AC 、BD 为对角线,∴S 菱形ABCD =412⨯AE •BE =9,∴AE 32=,设点B 的坐标为(4,y ),则A 点坐标为(1,y 32+) ∵点A 、B 同在y k x =图象上, ∴4y =1•(y 32+), ∴y 12=, ∴B 点坐标为(4,12), ∴k =2故答案为:2.【点睛】 此题考查菱形的性质,反比例函数图象上点的坐标与k 之间的关系,解题关键在于掌握其性质定义.20.【分析】过过点P1作P1E ⊥x 轴于点E 过点P2作P2F ⊥x 轴于点F 过点P3作P3G ⊥x 轴于点G 根据△P1OA1△P2A1A2△P3A2A3都是等腰直角三角形可求出A1A2A3的横坐标从而总结出一般规解析:3n【分析】过过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,,根据△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3都是等腰直角三角形,可求出A 1,A 2,A 3的横坐标,从而总结出一般规律得出点A n 的坐标,再求12n y y y ++⋅⋅⋅+的值即可.【详解】解:过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,∵△P 1OA 1是等腰直角三角形,∴P 1E=OE=A 1E ,设点P 1的坐标为(a,a),(a>0),将点P 1(a,a)代入()90y x x=>,可得a=3, 故点A 1的坐标为(6,0), 设点P 2的纵坐标为b ,则P 2的横坐标为6+b ,将点(b+6,b)代入()90y x x=>,可得b=3,故点A 2的横坐标为同理可以得到A 3的横坐标是A n 的横坐标是,根据等腰三角形的性质得到12n y y y ++⋅⋅⋅+=A n 的横坐标的一半,∴12n y y y ++⋅⋅⋅+=故答案为:【点睛】本题考查了反比例函数的综合应用,涉及了点的坐标的规律变化,解答本题的关键是根据等腰三角形的性质结合反比例函数解析式求出A 1,A 2,A 3的横坐标,从而总结出一般规律,难度较大.三、解答题21.(1)81;52y y x x =-=-;(2)15;(3)02x <<或8x > 【分析】(1)根据点A 坐标求出反比例函数的系数,再利用反比例函数解析式求出点B 坐标,再用待定系数法求出一次函数解析式;(2)分别过A 点,B 点作x 轴的垂线,垂足为,E F ,可知三角形ABO 的面积等于梯形ABFE 的面积,就可以算出结果;(3)根据图象找出一次函数在反比例函数上面时x 的取值范围,就可以得到结果.【详解】(1)∵()2,4A -在反比例函数()0a y x x =>上, ∴代入得24k -=, ∴8k =-,∴反比例函数的关系数8y x =-, ∵(),1B m 在8y m =-上, ∴代入得81m -=-, ∴8m =,∴()8,1B -,又∵()()2,4,8,1A B --在一次函数y kx b =+上,∴代入得4218k bk b-=+⎧⎨-=+⎩,解得125kb⎧=⎪⎨⎪=-⎩,∴一次函数的解析式为152y x=-;(2)如图,分别过A点,B点作x轴的垂线,垂足为,E F,∵()()2,4,8,1A B--,∴ABO EABFS S∆=梯()()141822=⨯+⨯-1562=⨯⨯15=,∴ABOS∆的面积是15;(3)一次函数的值大于反比例函数的值,即一次函数的图象在上方,∴由图知02x<<或8x>.【点睛】本题考查反比例函数和一次函数综合,解题的关键是掌握反比例函数的图象和性质,特殊三角形的面积求法,利用函数图象解不等式的方法.22.(1)y=3x-和y=-x-2;(2)交点A为(1,-3),C为(-3,1);4;(3)-3<x<0或x>1.【分析】(1)设出A坐标(x,y),表示出OB与AB,进而表示出三角形ABO面积,由已知面积确定出反比例函数k的值,进而确定出一次函数;(2)联立反比例函数与一次函数解析式,求出A与C坐标即可;由一次函数解析式求出交点的坐标,然后三角形AOC面积=两个三角形面积的和,求出即可;(3)根据图象即可求得.【详解】解:(1)设A 点坐标为(x ,y ),且x >0,y <0, 则113||||(),222ABO S OB AB x y ∆=⋅⋅=⋅⋅-= ∴xy=-3,∴k=xy=-3,代入y =﹣x +(k +1),得y=-x-2;∴所求的两个函数的解析式分别为y=3x-和y=-x-2; (2)解:求两个函数图象交点,得 32y x y x ⎧=-⎪⎨⎪=--⎩ 13,?31x x y y ==-⎧⎧⎨⎨=-=⎩⎩∴交点A 为(1,-3),C 为(-3,1);由y=-x-2,令x=0,得y=-2.∴直线y=-x+2与y 轴的交点的坐标为(0,-2), 则112123422AOC S ∆=⨯⨯+⨯⨯= (3)∵交点A 为(1,-3),C 为(-3,1),∴由图象可知:反比例函数y=k x的值大于一次函数y=-x+(k+1)时, x 的取值范围为-3<x <0或x >1.【点睛】 此题考查了一次函数与反比例函数的交点问题,以及三角形面积,解题关键是熟练掌握待定系数法.23.(1)8y x=-,2y x =--;(2)6AOB S ∆=;(3)4x <-或02x << 【分析】(1)根据反比例函数图像上任意一点的横坐标与纵坐标的乘积相等可得到-2n²=-4n 求出n 的值,进而确定A 、B 两点坐标,求出反比例函数的解析式,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=-x-2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <-4或0<x <2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】解:(1)由“反比例函数上任意一点的横坐标与纵坐标的乘积相等”可知:-2n²=-4n ,求得n=0(舍去)或n=2,∴A(-4,2),B(2,-4),∴m=-4×2=-8,故反比例函数的解析式为:8y x =-, 将A 、B 两点代入一次函数y kx b =+中: ∴2442k b k b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为:2y x =--,故答案为:8y x=-,2y x =--; (2) y=-x-2中,令y=0,则x=-2, 即直线y=-x-2与x 轴交于点C (-2,0),∴S △AOB =S △AOC +S △BOC =112224622⨯⨯+⨯⨯=, 故答案为:6;(3)0m kx b x+->,变形为:m kx b x +>, 观察图形,即要求一次函数的图像在反比例函数图像的上方,∴解集为:x <-4或0<x <2,故答案为:x <-4或0<x <2.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.24.(1);(2)32;(3)(-1,0)、(0,0)、(0,1). 【详解】(1)一次函数的图象过点B , ∴∴点B 坐标为∵反比例函数k y x=的图象经过点B反比例函数表达式为(2)设过点A 、C 的直线表达式为,且其图象与轴交于点D ∵点在反比例函数的图象上 ∴∴点C 坐标为∵点B 坐标为∴点A 坐标为解得:过点A 、C 的直线表达式为∴点D 坐标为∴(3)①当点P 在x 轴上时,设P(m ,0)∵AC=2,AP=22(1)2m ++,CP=22(2)1m ++,∴22(1)2m ++=22(2)1m ++或22(2)1m ++=2,解得:m=0或-1 ②当点P 在y 轴上时,设P(0,n),∵AC=2,AP=221(2)n +-,CP=222(1)n +-,∴221(2)n +-=222(1)n +-或221(2)n +-=2解得:n=0或1 综上所述:点P 的坐标可能为、、 25.(1)①1265y x x ⎛⎫=⎪⎝⎭,②635x ;(2)小凯的说法错误,洋洋的说法正确. 【分析】(1)①根据矩形的面积公式计算即可,注意自变量的取值范围;②构建不等式即可解决问题;(2)构建方程求解即可解决问题;【详解】(1)①由题意xy =12, 1265y x x ⎛⎫∴= ⎪⎝⎭②y ⩾4时,124x ≥,解得3x ≤ 所以635x . (2)当1229.5x x +=时,整理得:2419240,0x x -+=∆<,方程无解.当12210.5xx+=时,整理得2421240,570x x-+=∆=>,符合题意;∴小凯的说法错误,洋洋的说法正确.【点睛】本题考查反比例函数的应用.(1)①中需注意,因为墙的宽度为10m,所以y≤10,据此可求得自变量x的取值范围;②中求得x的取值要与①中取公共解集;(2)能根据根的判别式判断一元二次方程解的情况是解决此问的关键.26.(1)m<12;(2)该反比例函数的解析式为y=6x;(3)y1<y2.【分析】(1)由图象在第一、三象限可得关于m的不等式,然后解不等式即可;(2)先根据平行四边形的性质求出D点的坐标,然后将D点的坐标代入y=12mx-可求得1-2m的值即可;(3)利用反比例函数的增减性解答即可.【详解】解:(1)∵y=12mx-的图象在第一、三象限,∴1﹣2m>0,∴m<12;(2)∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴该反比例函数的解析式为y=6x;(3)∵x1>x2>0,∴E,F两点都在第一象限,又∵该反比例函数在每一个象限内,函数值y都随x的增大而减小,∴y1<y2.【点睛】本题考查了反比例函数的解析式、反比例函数的性质以及反比例函数与几何的综合,掌握反比例函数的定义及性质是解答本题的关键.。

第二十六章 反比例函数数学九年级下册-单元测试卷-人教版(含答案)

第二十六章 反比例函数数学九年级下册-单元测试卷-人教版(含答案)

第二十六章反比例函数数学九年级下册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个2、反比例函数的图象如图所示,则K的值可能是()A. B.1 C.2 D.-13、如图,反比例函数的图象与矩形ABCO的边AB、BC相交于E、F两点,点A、C 在坐标轴上.若,则四边形OEBF的面积为()A.1B.2C.3D.44、设P是函数在第一象限的图象上的任意一点,点P关于原点的对称点为P′,过P作PA平行于y轴,过P′作P′A平行于x轴,PA与P′A交于A点,则△PAP′的面积()A.随P点的变化而变化B.等于1C.等于2D.等于45、若反比例函数y=﹣的图象上有3个点A(x1, y1),B(x2, y2),C(x3,y3),且满足x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y36、已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( )A.y=B.y=C.y=D.y=2x7、关于函数,下列说法中错误的是()A.函数的图象在第二、四象限B. 的值随值的增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称8、已知反比例函数y=﹣,下列各点中,在其图象上的有()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(1,6)9、已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A,那么用电器的可变电阻R应控制在什么范围?()A.R≥3ΩB.R≤3ΩC.R≥12ΩD.R≥24Ω10、已知双曲线y=过点A(1,1),那么过点A的直线y=kx+b经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限11、如图,一块含有30°的直角三角板的直角顶点和坐标原点重合,30°角的顶点在反比例函数的图象上,顶点B在反比例函数的图象上,则k的值为()A.-4B.4C.-6D.612、反比例函数是y= 的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限13、在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度(单位:)与体积(单位:)满足函数关系式(为常数,),其图象如图所示,则的值为()A. B. C. D.14、如图,A、B两点在双曲线上,分别经过点A、B两点向x、y轴作垂线段,已知,则( )A.6B.5C.4D.315、已知y=2x,z=,那么z与x之间的关系是()A.成正比例B.成反比例C.有可能成正比例有可能成反比例D.无法确定二、填空题(共10题,共计30分)16、如图,点A是反比例函数(x>0)图象上一点,过点A作x轴的平行线,交反比例函数(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为________.17、如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数y= (k>O,x>O)的图象与线段OA、OB分别交于点C、D,过点C作CE⊥x轴于E.若AB=3BD,则△COE的面积为________.18、某公司有500吨煤,这些煤所用天数y(天)与平均每天用煤量x(吨)的函数解析式为________ ,自变量x的取值范围是________ .19、如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y =的图象交于A,B两点,则四边形MAOB的面积为________.20、为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过________分钟后,学生才能回到教室.21、如图,直线与轴、轴分别相交于点A,B,四边形ABCD是正方形,曲线在第一象限经过点D,则=________.22、若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为________23、司机老王驾驶汽车从甲地去乙地,他以80km/h的平均速度用6h达到目的地.当他按原路匀速返回时,汽车的速度v与时间t之间的函数关系式为________ .24、已知y与 2x成反比例,且当x=3时,y=,那么当x=2时,y=________,当y=2时,x=________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级反比例函数综合检测题
姓名 班级 得分
一、选择题(每小题3分,共30分) 1、反比例函数y =
x n 5
图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、1
2、若反比例函数y =x
k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).
A 、(2,-1)
B 、(-
21,2) C 、(-2,-1) D 、(2
1
,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )
4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).
A 、成正比例
B 、成反比例
C 、不成正比例也不成反比例
D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =
x
k
满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限
6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =
x
1
于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ).
A 、逐渐增大
B 、逐渐减小
C 、保持不变
D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量
m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.
ρ与V 在一定范围内满足ρ=
V
m
,它的图象如图所示,则该 气体的质量m 为( ).
A 、1.4kg
B 、5kg
C 、6.4kg
D 、7kg
8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-
x
1
的图象上,则y 1,y 2,y 3的大小关系是( ).
A 、y 1>y 2>y 3
B 、y 1<y 2<y 3
C 、y 1=y 2=y 3
D 、y 1<y 3<y 2
Q p
x
y o
t /h O
t /h O t /h
O t /h v /(km/h) O A . B . C . .
9、已知反比例函数y =
x
m
21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <
21 D 、m >2
1 10、如图,一次函数与反比例函数的图象相交于A 、B 两
点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).
A 、x <-1
B 、x >2
C 、-1<x <0或x >2
D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)
11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数x
k
y =
的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).
13、若反比例函数y =x
b 3
-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐
标为6,则b = . 14、反比例函数
y =(m +2)x m
2
-10
的图象分布在第二、四象限内,则m 的值为 .
15、有一面积为S 的梯形,其上底是下底长的3
1
,若下底长为x ,高为y ,则y 与x 的函数关系是 . 16、如图,点M 是反比例函数y =
x
a
(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .
17、使函数y =(2m 2-7m -9)x m
2
-9m +19
是反比例函数,且图象在每个象限内y 随x 的增
大而减小,则可列方程(不等式组)为 .
18、过双曲线y =x
k
(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 19. 如图,直线y =kx(k >0)与双曲线x
y 4
=
交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.
20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、 y 轴上,点B 的坐标为B (-
3
20
,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点D 在一反比例函数的图象上,那么该函数的解析 式是 .
三、解答题(共60分) 21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例:
函数表达式:
23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =x
k
在第一象限内的分支上的两点,连结OA 、OB . (1)试说明y 1<OA <y 1+
1
y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.
24、(10分)如图,已知反比例函数y =-
x
8
与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.
25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =
x
k
的图象交于M 、N 两点.
(1)求反比例函数与一次函数的解析式; (2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.
26、(12分)如图, 已知反比例函数y =
x
k
的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;
(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.
参考答案:
一、选择题
1、D ;
2、A ;
3、C ;
4、B ;
5、D ;
6、C
7、D ;
8、B ;
9、D ; 10、D . 二、填空题
11、y =x 1000
; 12、减小; 13、5 ; 14、-3 ;15、y =x
s 23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0
97211992
2>m m m m ; 18、|k|; 19、 20; 20、y =-x 12

三、解答题 21、y =-
x
6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =
x
2
(x >0). x (2)
1 1 23
2 … y

4
2
3
4 1

(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示. 23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =
x
k
上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k ;
(2)△BOC 的面积为2.
24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB
=S △AOM +S △BOM =
21|OM|·|y A |+2
1|OM|·|y B |=21
×2×4+21×2×2=6.
25、(1)将N (-1,-4)代入y =x
k ,得k =4.∴反比例函数的解析式为y =x 4
.将M
(2,m )代入y =x 4
,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨
⎧-=+-=+.
b a ,b a 422解得⎩⎨
⎧-==.
b ,
a 22∴一次函数的解析式为y =2x -2.
(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.
26、解(1)由已知,得-4=
1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =2
4=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨
⎧-=+-=+b a b a 解之得,2
2
⎩⎨⎧-==b a ∴y =2x -2.
(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △
NOA =
21
OA ·MC +21OA ·ND =21×1×2+2
1×1×4=3. (3)将点P (4,1)的坐标代入y =x
4
,知两边相等,∴P 点在反比例函数图象上.。

相关文档
最新文档