华南理工大学《高等数学》试卷A+答案
华南理工大学高数习题册答案汇总
第七章 多元函数微分学作业1 多元函数1.填空题(1)已知函数22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则(),f x y =()()22211x y y -+; (2)49arcsin2222-+++=y x y x z 的定义域是(){}22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是(){}(){},,0,1,0,1x y x y x x y x x y x >>+⋃<<≤+;(4)函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x x xyy x f 的连续范围是 全平面 ;(5)函数2222y x z y x+=-在22y x =处间断.2.求下列极限(1)00x y →→;解:000016x t t y →→→→===-(2)22()lim (ex y x y x y -+→+∞→+∞+).解:3y x =22()2()lim (e lim (e 2x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-⎣⎦)) 由于1lim e lim lim 0tt t t t t t t e e-→+∞→+∞→+∞===,2222lim e lim lim lim 0tt t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====,故22()2()lim (elim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3.讨论极限26300lim y x yx y x +→→是否存在.解:沿着曲线()()3,,0,0y kx x y =→,有336626262000lim lim 1x x y kx x y kx kx y x k x k →→=→==+++因k 而异,从而极限26300lim y x yx y x +→→不存在4.证明⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xyy x f 在点)0,0(分别对于每个自变量x 或y都连续,但作为二元函数在点)0,0(却不连续.解:由于(,0)0,(0,)0,f x f y ≡≡从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线()(),,0,0y kx x y =→,有2222222000222lim lim 1x x y kx xy kx kx y x k x k →→=→==+++因k 而异, 从而极限()0lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.作业2 偏导数1.填空题(1)设22),(y x y x y x f +-+=,则=)4,3(x f 25; (2)(3)设(),ln 2y f x y x x ⎛⎫=+⎪⎝⎭,则1x y f y==∂=∂12; (3)设2sin x u xz y =+,则42ux y z∂=∂∂∂ 0 ;(4)曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是4π. 2.设2e xyu =, 证明 02=∂∂+∂∂yu y x u x. 证:因为222312,xxy yu ux e e x y y y∂∂-==∂∂ 所以222223221222220x x x xy y y y u u x x x x y xe ye e e x y y y y y ∂∂--+=+=+=∂∂3. 设xyz ln =,求22x z ∂∂,yx z∂∂∂2.解:ln ln x yz e⋅=,从而222ln ln ln ln ln ln ln 222ln ln ln ln ln ,,x y x y x y x z y z y y y y e e e y x x x x x x ⋅⋅⋅∂∂--⎛⎫=⋅=⋅+⋅= ⎪∂∂⎝⎭2ln ln ln ln ln ln ln 11ln ln 1x y x y x z y x y x e e y x y x y x y xy⋅⋅∂⋅+=⋅⋅+⋅⋅=∂∂4.设y x z u arctan =, 证明 0222222=∂∂+∂∂+∂∂zuy u x u . 解:因为()()2222222222211022,1uyz u yz x xyzz xy x y x x x y x y y ∂∂-⋅-=⋅⋅===∂+∂⎛⎫+++ ⎪⎝⎭()()2222222222221022,1u x xz u xz y xyzz yy x y y x x y x y y ∂--∂-⋅=⋅⋅==-=∂+∂⎛⎫+++ ⎪⎝⎭22arctan ,0,u x uz y x∂∂==∂∂ 所以()()2222222222222200u u u xyz xyzx y z x y x y ∂∂∂-++=++=∂∂∂++ 5.设函数()()2221sin ,0,0,x x y x f x y xx ⎧+≠⎪=⎨⎪=⎩.(1)试求(),f x y 的偏导函数; 解:当()()()3222221110,,42sin cos x x f x y x xyx x y xx x-≠=+++⋅()21,2sin y f x y x y x =,()()()322211,42sin cos x f x y x xy x y x x=+-+当()()()()222001sin 0,0,0,0,lim lim 00x x x x x y f x y f y x x f y x x→→+--≠===-()()()000,0,000,lim lim 0y y y f y y f y f y y y ∆→→+∆--===∆-∆,()()()322211,42sin cos x f x y x xy x y x x=+-+(2)考察偏导函数在()0,3点处是否连续.()()200331lim ,lim 2sin00,3y y x x y y f x y x y f x→→→→===,故(),y f x y 在()0,3点处连续, ()()()3222003311lim ,lim 42sin cos x x x y y f x y x xy x y x x →→→→⎡⎤=+-+⎢⎥⎣⎦不存在,从而(),x f x y 在()0,3点处不连续作业3 全微分及其应用1.填空题(1)),(y x f z =在点),(00y x 处偏导数存在是),(y x f z =在该点可微的必要 条件;(2)函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量z ∆=0.2040402004-,全微分d z =0.20-;(3)设),(y x f z =在点),(00y x 处的全增量为z ∆,全微分为dz ,则),(y x f 在点),(00y x 处的全增量与全微分的关系式是()z dz o dz ∆=+;(4)22yx x u +=在点)1,0(处的d u =dx ;(5)xy u cos )(ln =,则d u =cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦; (6)zyx u )(=,则d u =()ln zx z z x dx dy dz y x y y ⎛⎫-+⎪⎝⎭;(7)2221zy x u ++=,则d u = ()()3222212x y z -++ .2.证明:(),f x y =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证:由于(0,)0,(,0)0,f y f x ==从而(0,0)0,(0,0)0.y x f f ==但是limlimx x y y ∆→∆→∆→∆→=不存在,从而在()0,0处不可微.3.设函数()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩试证:(1)函数(),f x y 在点()0,0处是可微的;证:因为 ()()()()22001sin0,00,00,0limlim 0,0,000x y x x x f x f x f f x x →→--====-- 又()()()()()22221sinlimlim0x x y y x y x y ∆→∆→∆→∆→∆+∆∆+∆==所以函数(),f x y 在点()0,0处是可微的(2)函数(),x f x y 在点()0,0处不连续.证:当()222222221210,,2sincos x x x y f x y x x y x y x y+≠=-+++ ()2222220000121lim ,lim 2sin cos x x x y y x f x y x x y x y x y ∆→∆→∆→∆→⎛⎫=- ⎪+++⎝⎭不存在, 故(),x f x y 在点()0,0处不连续作业4 多元复合函数的求导法则1.填空题(1)设2ln ,,32yz u v u v y x x===-,则 z x ∂=∂()()223222ln 3232y y y x x x y x ----; (2)设22,cos ,sin z x y xy x u v y u v =-==,则zv∂=∂()333sin cos sin 2sin sin 2cos u v v v v v v +--; (3)设()22,zu x y z x y =-=+,则u x ∂=∂()()222ln z x y x y x x y x y ⎡⎤+--+⎢⎥-⎣⎦;(4)设2sin z x y x ==,则dd zx =2x . 2.求下列函数的偏导数(1)设,,x y u f y z ⎛⎫=⎪⎝⎭其中f 具有一阶连续偏导数,求,u x ∂∂u y ∂∂和uz ∂∂; 解:111,f u f x y y ∂=⋅=∂121222222211,u x x u y yf f f f f f y y z y z z z z∂--∂--=⋅+⋅=+=⋅=∂∂ (2)设(),,,u f x y z =()(),,,z y t t y x ϕψ==,其中,,f ϕψ均可微,求u x ∂∂和uy∂∂. 解:因为1231212,,du f dx f dy f dz dz dy dt dt dy dx ϕϕψψ=++=+=+ 从而()1231212du f dx f dy f dy dy dx ϕϕψψ=++++⎡⎤⎣⎦()()1322231321f f dx f f f ϕψϕϕψ=+++++所以1322231321,u u f f f f f x yϕψϕϕψ∂∂=+=++∂∂ 3.验证下列各式(1)设()22yz f x y =-,其中()f u 可微,则211z z z x x y y y ∂∂+=∂∂; 证:因为222212,z xyf z y f x f y f f ''∂-∂==+∂∂ 所以222211121121z z z xyf y f zx x y y x x f y f f yf y ''⎛⎫∂∂∂-+=++== ⎪∂∂∂⎝⎭ (2)设()23y z xy x ϕ=+,其中ϕ可微,则220z zx xy y x y ∂∂-+=∂∂. 证:因为()()222,33z y z y y xy x xy x x y xϕϕ∂∂''=-+=+∂∂ 所以22z z x xy y x y ∂∂-+=∂∂()()2222233y y x y xy xy x xy y x x ϕϕ⎛⎫⎛⎫''-+-++ ⎪ ⎪⎝⎭⎝⎭()()22222033y y x y xy y x y xy y ϕϕ''=-+--+=4.设22,,y z xf x x ⎛⎫= ⎪⎝⎭其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂. 解:因为221212222,z y y f x f f f xf f x x x ⎛⎫∂-=++⋅=+- ⎪∂⎝⎭所以22212212222222222z y y y y y y f xf f f xf f f x y y x x x x x x⎡⎤∂∂=+-=+⋅--⋅⎢⎥∂∂∂⎣⎦ 31222224y yf f x=-4.设)()(xy x x y u ψϕ+=其中函数ψϕ,具有二阶连续偏导数,试证:022222222=∂∂+∂∂∂+∂∂y u y y x u xy x u x . 证:因为222223432,u y y u y y y x x x x x x x ϕψψϕϕψ∂-∂'''''''=+-=++∂∂222322211,,u y y u u x y x x x y x y x xϕψϕϕψϕψ''''∂∂∂'''''''=---=+=+∂∂∂∂ 从而左边222234323222120y y y y y x xy y x x x x x x x x ϕψϕϕψϕϕψ''''⎛⎫⎛⎫⎛⎫''''''''''=+++---++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭作业5 隐函数求导法1.填空题(1)已知3330x y xy +-=,则d d y x =22x yx y--; (2)已知20x y z ++-=,则x y ∂=∂(3)已知xzz y =,则d z =2ln ln z dy yz zdxxy yz y--;(4)已知222cos cos cos 1x y z ++=,则d z =sin 2sin 2sin 2xdx ydyz+-;(5)已知(),z f xz z y =-,其中f 具有一阶连续偏导数,则d z =12121zf dx f dyxf f ---.2.设(),0,F y z xy yz ++=其中F 具有二阶连续偏导数,求22zx∂∂.解:212120,yF z z z F F y y x x x F yF -∂∂∂⎛⎫+⋅+=⇒= ⎪∂∂∂+⎝⎭ ()()[]()22122122122221212x x x F z F y yz F yF F F yF F z y y x x F yF F yF '⋅+++-+⎡⎤⎛⎫∂∂⎣⎦=-=- ⎪∂∂++⎝⎭()()()()()2222112111222212221231212y F F F yF F F yF y F F F F F yF F yF -+++⎡⎤-⎣⎦=+++3.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x .解:由已知()2222222602460dz xdx ydydz xdx ydy xdx dz xdx zdz xdx ydy zdz -=⎧=+⎧⎪⇒⎨⎨+-+=++=⎪⎩⎩()()22606,132623220xdx z dz dz x dy x xy dx z dx y yz xdx ydy z xdx ydy -++=⎧+⎪⇒⇒==-⎨+++++=⎪⎩4.设函数()z f u =,又方程()()d xy u u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),P t u ϕ'连续,且()1u ϕ'≠. 试证:()()0z zP y P x x y∂∂+=∂∂. 证:因为()(),z u z uf u f u x x y y∂∂∂∂''=⋅=⋅∂∂∂∂, ()()()(),1P x u u uu P x x x x u ϕϕ∂∂∂'=⋅+='∂∂∂- ()()()(),1P y u u uu P y y y y u ϕϕ-∂∂∂'=⋅-='∂∂∂- ()()()()()()()()()()011P x P y z zP y P x P y f u P x f u x y u u ϕϕ-∂∂''+=+=''∂∂-- 5.设函数()f u 具有二阶连续偏导数,而()e sin xz f y =满足方程22222e xz z z x y∂∂+=∂∂,求()f u . 解:因为()()()()222sin ,sin sin x xx z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )x x x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,u u r r r f u c e c e --===-=+作业6 方向导数与梯度1.填空题(1)在梯度向量的方向上,函数的变化率 最大 ; (2)函数在给定点的方向导数的最大值就是梯度的 模 ; (3)函数2249z x y =+在点()2,1的梯度为grad z ={16,18};(4)函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是cos cos cos αβγ++,且函数u 在该点的梯度是{1,1,1};(5)函数e cos()xu yz =在点)0,0,0(处沿方向}2,1,2{-=l的方向导数是23; (6)函数)ln(22z y x u ++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是12. 2.求222z y x u -+=在点)0,0,(a A 及点)0,,0(a B 处的梯度间的夹角.解:{}2,2,2{2,0,0}AAgradux y z a =-={}2,2,2{0,2,0}B Bgradu x y z a =-=夹角余弦为cos 02A B A Bgradu gradu gradu gradu πϕϕ⋅==⇒=⋅3.求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及梯度,并指出z 在该点沿那个方向减少得最快沿那个方向z 的值不变 解:(){}(){}1,11,12,23,3gradz x y y x --=--=-25l ⎧=⎨⎩,{3,3}5zl ∂=-⋅=-∂z 在该点沿梯度相反方向,即方向减少得最快;沿与梯度垂直的那个方向,即±方向z 的值不变 4.设x轴正向到l 得转角为α,求函数()22220,0,x y f x y x y +>=+=⎩在点()0,0处沿着方向l 的方向导数.解:{}cos ,sin ,cos l αααα===由于该函数在点()0,0处不可微,从而不能用公式,只能由定义得出沿着方向l 的方向导数:()()00,0,0lim x y f x y f fl ρρρ→→→→-∂===∂1cos sin sin 22ααα==作业7 偏导数的几何应用1.填空题(1)已知曲面224z x y =--上点P 的切平面平行于平面221x y z ++=,则点P的坐标是(1,1,2);(2)曲面e 23zz xy -+=在点()1,2,0处的切平面方程是24x y +=;(3)由曲线223212x y z ⎧+=⎨=⎩绕y轴旋转一周所得到的旋转曲面在点(M处的指向内侧的单位法向量为0,⎧⎪⎨⎪⎩; (4)曲面2222321x y z ++=在点()1,2,2-处的法线方程是122146x y y -+-==-; (5)已知曲线23,,x t y t z t ===上点P 的切线平行于平面24x y z ++=,则点P的坐标是()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 2.求曲线22sin ,sin cos ,cos x t y t t z t ===在对应于的点π4t =处的切线和法平面方程.解:切点为{}224111,,,2sin cos ,cos sin ,2cos sin {1,0,1}222T t t t t t tπ⎛⎫=--=- ⎪⎝⎭,从而切线为11110222,11012x z x y z y +-=⎧---⎪==⎨-=⎪⎩, 法平面为110,022x z x z ⎛⎫---=-= ⎪⎝⎭3.求两个圆柱面的交线22221:1x y x z ⎧+=⎪Γ⎨+=⎪⎩在点M 处的切线和法平面的方程.解:1{2,2,0}|//{1,1,0}M n x y =,2{2,0,2}|//{1,0,1}M n x z ={}{}1,1,01,0,1{1,1,1}T =⨯=--==,法平面为0x y z --+= 4.求曲面()22210ax by cz abc ++=≠在点()000,,x y z 处的切平面及法线的方程. 解:000000{2,2,2}//{,,}n ax by cz ax by cz =切平面为0001ax x by y cz z ++=,法线为000000x x y y z z ax by cz ---== 5.求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点M 处沿曲线22221x y a b +=在此点的外法线方向的方向导数.解:2222,,MM x y gradza b a b ⎧⎪⎧⎫=--=--⎨⎬⎨⎩⎭⎪⎪⎩⎭2222,M x y n a b a b ⎧⎫==⎨⎬⎩⎭⎪⎪⎩⎭指向外侧为此点的外法线方向,方向导数为(2a z n gradz n n∂=⋅=-∂6.证明:曲面y z xf x ⎛⎫=⎪⎝⎭在任意点处的切平面都通过原点,其中f 具有连续导数. 证:设切点为()000,,x y z ,则000000000000,,1,y y y y y n f f f z x f x x x x x ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪''=--=⎨⎬⎪ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭ 切平面为()()()000000000000y y y y f f x x f y y z z x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''--+---=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦令0x y z ===,得左边等于右边,从而原点在任意点处的切平面上,也即任意点处的切平面都通过原点。
华南理工大学高等数学统考试卷上2007期中答案.
姓名学号学院专业座位号( 密封线内不答题……………………………………………………密………………………………………………封………………………………………线……………………………………线………………………………………_____________ ________…华南理工大学期中考试2007-2008学年第一学期《高等数学》期中试卷简单答案一. 解答下列各题 (每小题6分,共36分1. 当时,无穷小量与是等价无穷小,求常数.解2.指出函数的间断点,并判断它们的类型.解为跳跃间断点.3. 求过坐标原点且与曲线相切的切线方程.解或4. 设函数, 求.解.5. 设函数由所确定,求.解.6. 设函数由方程确定,求在处的值.解在处的值为.二. 解答下列各题(每小题8分,共24分7. 求极限.解.8.(A)求函数的极值.解极小值,极大值.(B)已知,求使成立的被积函数.解.9. 设,(1)讨论在处的可导性,(2)讨论在处的连续性.解在处的不连续.三. (本题10分10(A).当时,证明不等式成立.证明设,在连续,可导.,,于是在单调增加,,从而在单调增加,.10(B).设在上连续,证明:存在,使.证明设,在上连续,且,.由闭区间上连续函数的零值定理知存在,使.四. (本题10分11(A). 曲线在点处的切线和法线分别与轴交于点和点,求常数的值,使三角形的面积最小.解为最小.11(B)设函数由方程所确定,求.解,.五. (本题10分12(A)讨论曲线与的交点的个数.解设,当,无实根,没交点.当,有唯一实根,一个交点当,,有两个实根,两个交点12(B)(1)设,求的表达式;解(2)求不定积分.解六. (本题10分13(A)设在上有界且可导,证明方程至少有一个实根.解设,在可导,.由在上有界知,.若在上,则,对任意的实数.若在上不恒等于零,不妨设,可知在上必有最大值,最大值点为.13(B)设函数在上连续,且,证明存在一点,使.证明在上连续,有最值,,,,由介值定理知存在一点,使.。
华南理工大学高等数学统考试卷下
,考试作弊将带来严重后果!华南理工大学期末考试《高等数学(下)》试卷A15分,每小题3分)若(),z f x y =在点()00,x y 处可微,则下列结论错误的是 () )(),z f x y =在点()00,x y 处连续; ()(),,,x y f x y f x y 在点()00,x y 处连续; ()(),,,x y f x y f x y 在点()00,x y 处存在;曲面(),z f x y =在点()()0000,,,x y f x y 处有切平面二重极限22400lim x y xy x y →→+值为( ))0; (B) 1; (C)12; (D)不存在 已知曲面()22:10z x yz ∑=--≥,则222dS ∑=())2π; (B) π; (C) 1; (D)12π 已知直线34:273x y zL ++==--和平面:4223x y z ∏--=,则( ) )L 在∏内; (B) L 与∏平行,但L 不在∏内;L 与∏垂直; (D) L 与∏不垂直,L 与∏不平行(斜交)、 用待定系数法求微分方程232y y y x '''++=的一个特解时,应设特解的形式y = ( ) (A) 2ax ;(B )2ax bx c ++;(C )2()x ax bx c ++;(D )22()x ax bx c ++(本大题共15分,每小题3本分). arctanxz y=,则dz = . 曲线L 为从原点到点(1,1)的直线段,则曲线积分L⎰的值等于3. 交换积分次序后,ln 1(,)e x dx f x y dy =⎰⎰4. 函数22z x xy y =-+在点(1,1)-沿方向{}2,1l =的方向导数为 5. 曲面23z z e xy -+=在点(1,2,0)处的法线方程是三、(本题7分)计算二重积分Dxyd σ⎰⎰,其中D 是由抛物线2y x =及直线2y x =-所围成的闭区域四、(本题7分)计算三重积分zdv Ω⎰⎰⎰,其中Ω是由柱面221x y +=及平面0,1z z ==所围成的闭区域五、(本题7分)计算xdydz ydzdx zdxdy ∑++⎰⎰,其中∑为旋转抛物面()221z x y z =+≤的上侧六、(本题7分)计算()()3133xy xy Lye x y dx xe x y dy +-+++-+⎰,其中L 为从点(),0a -沿椭圆y =-(),0a 的一段曲线七、(本题6分)设函数()22220,0,0x y f x y x y +≠=+=⎩,证明:1、(),f x y 在点()0,0处偏导数存在,2、(),f x y 在点()0,0处不可微八、(本题7分)设,,y z xf xy f x ⎛⎫= ⎪⎝⎭具有连续二阶偏导数,求2,z z y y x ∂∂∂∂∂九、(本题7分)设x y e =是微分方程()xy p x y x '+=的一个解,求此微分方程的通解十、(本题8分)在第一卦限内作椭球面2222221x y z a b c++=的切平面,使该切平面与三个坐标平面围成的四面体的体积最小,求切点的坐标十一、(非化工类做,本题7分)求幂级数()321111321nn x x x n +-++-++的收敛域及其和函数解:收敛域[1,1]-上()()321111321nn S x x x x n +=-++-++()()()21,00,arctan 1S x S S x x x '===+ 十二、(非化工类做,本题7分)设函数()f x 以2π为周期,它在[,]ππ-上的表达式为()1,00,0,,1,0x f x x x πππ<<⎧⎪=±⎨⎪--<<⎩求()f x 的Fourier 级数及其和函数在x π=-处的值解:()021120,sin n n n a b nxdx n πππ⎡⎤--⎣⎦===⎰ ()f x 的Fourier 级数为411sin sin 3sin 535x x x π⎡⎤+++⎢⎥⎣⎦和函数在x π=-处的值为0十一、(化工类做,本题7分)已知直线1210:320x y L x z +-=⎧⎨+-=⎩和212:123y z L x +--== 证明:12//L L ,并求由1L 和2L 所确定的平面方程十二、(化工类做,本题7分)设曲线积分()2Lxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ连续可导,且()00ϕ=,计算()()()1,120,0xy dx y x dy ϕ+⎰一1B 2D3B 4B5B二122ydx xdyx y-+21e - 310(,)ye e dyf x y dx ⎰4 5-512,021x y z --== 三解:2221458y y I dy xydx +-==⎰⎰四、解:11201,.22DI z dz or d zdz πππσ===⎰⎰⎰⎰五、解:32xyD I dv dxdy πΩ=-+=-⎰⎰⎰⎰⎰六、解:4(31)22aaDI dxdy x dx ab a π-=++=+⎰⎰⎰七、解:()()()0,00,00,0lim0x x f x f f x →-==,()()()00,0,00,0lim 0y y f y f f y→-==,0,00,0limx y f x y f x f y∆→∆→∆∆-∆-∆22200lim()x y x yx y ∆→∆→∆∆=∆+∆极限不存在故不可微八解:22212111222,2z z y x f f xf x yf f y y x x ∂∂'''''''=+=+-∂∂∂ 九、解:()()1x xx e p x e -=,求10xx e y y e-'+=得x x e y ce -+=从而通解为xx e x y ce e -+=+十解:设切点()000,,x y z ,切平面方程为0002221xx yy zz a b c++=,四面体体积为2220006a b c V x y z =令2222221x y z F xyz a b c λ⎛⎫=+++- ⎪⎝⎭2200x y z x F yz a F F F λλ⎧=+=⎪⎨⎪===⎩()000,,x y z =⎝⎭ 十一、证:{}{}121,2,3,1,2,3s s =--=-,故12//L L由这两条直线所确定的平面方程为210x y +-=十二解:()()22,,xy y x x x ϕϕ'==()()()1,120,012xy dx y x dy ϕ+=⎰1.产品成本是指为制造一定数量、一定种类的产品而发生的以货币表现的()。
华南理工大学网络教育专科-高等数学B(下)第二学期
华南理工大学网络教育专科 高等数学B(下)第二学期(单选题) 函数定义域为( )(A ) (B ) (C )(D )答题:A.B.C 。
D. (已提交)参考答案:D 问题解析:2。
(单选题) 函数定义域为( )(A) (B ) (C )(D )答题:A.B 。
C.D. (已提交)参考答案:B 问题解析:3.(单选题)(A ) (B ) (C ) (D )答题:A 。
B 。
C.D 。
(已提交)参考答案:A 问题解析:4。
(单选题)(A ) (B )(C)(D )答题:A 。
B.C.D. (已提交)参考答案:C 问题解析:5。
(单选题)(A)(B)(C) (D)答题: A. B. C。
D. (已提交)参考答案:A问题解析:6.(单选题)(A)(B)0 (C) (D)答题: A。
B. C. D. (已提交)参考答案:C问题解析:7。
(单选题)(A)(B)(C)(D)答题: A。
B. C. D. (已提交)参考答案:A问题解析:8.(单选题)(A) (B)(C)(D)答题: A。
B. C. D. (已提交)参考答案:C问题解析:9。
(单选题),则(A)(B)(C)(D)答题: A. B. C. D。
(已提交)参考答案:B问题解析:10.(单选题)若,则(A)(B) (C)(D)答题: A。
B. C。
D. (已提交)参考答案:A问题解析:11.(单选题)若,则(A) (B)(C)(D)答题: A. B。
C. D. (已提交)参考答案:B问题解析:12。
(单选题) 若,则(A)(B) (C)(D)答题: A. B。
C. D. (已提交)参考答案:C问题解析:13.(单选题)若,则(A) (B) (C)(D)答题: A。
B. C. D. (已提交)参考答案:B问题解析:14.(单选题) 若,则(A) (B)(C) (D)答题: A. B。
C. D. (已提交)参考答案:A问题解析:15。
华南理工大学高等数学习题册第9章详细答案
解: Γ 是
1
原式 =
1
⎣(1 + t ) + 2 (1 + 2t ) + 3 (1 + t + 1+ 2t − 1) ⎤ ⎦ dt ∫⎡
0 1
= ∫ ( 6 + 14t ) dt = ( 6t + 7t 2 ) = 13
0 0
(3)
∫
Γ
ydx − xdy + dz ,其中 Γ 是圆柱螺线 x = 2cost , y = 2sin t, z = 3 t 从 t = 0 到
院 系
班级
姓 名
作业编号
第九章
1.计算
曲线积分与曲面积分
2
作业 13 对弧长的曲线积分
Ñ ∫ L x d s ,其中 L 为直线 y = x 及抛物线 y = x
所围成的区域的整个边界.
解: L 可以分解为 L1 : y = x, y′ = 1, x ∈ [0,1] 及 L2 : y = x 2 , y′ = 2 x, x ∈ [0,1]
0 2π
⎛ a2 + b2 ⎞ ⎛ ab sin 2t a 2 + b 2 ⎞ = ∫ ⎜ ab cos 2t − sin 2t ⎟ dt = ⎜ + cos 2t ⎟ = 0 2 2 4 ⎠ ⎝ ⎠0 0 ⎝
(2)
2π
∫
Γ
xdx + ydy + ( x + y − 1) dz ,其中 Γ 是从点 (1,1,1) 到点 ( 2, 3, 4) 的一段直线; x −1 y −1 z −1 = = , x = 1 + t , y = 1+ 2t , z = 1+ 3t ,t : 0 → 1 2 − 1 3 − 1 4 −1
华南理工大学成人高等教育
华南理工大学成人高等教育《高等数学》作业复习题(专科)(理工类专科各专业适用)第一章 函数与极限一、选择题1、函数11y x =-的定义域是[ ]. A 、[2,1)(1,2]- , B 、[2,2]-,C 、[2,1)(1,2]- ,D 、(1,2].2、函数sin(32)y x =-的定义域是[ ].A 、2[0,)3,B 、2(,)3+∞,C 、(2,3),D 、(,)-∞+∞.3、设函数()20320x x f x x x <⎧=⎨>⎩,-,,则()1f -为[ ]. A 、 2, B 、 -2, C 、0, D 、1.4、下列函数中,[ ]是奇函数.A 、31y x =-,B 、2cos x y e x x =-,C 、1cosy x x=, D 、x x y cos sin +=.5、下列函数中, [ ]是周期函数.A 、1sin y x =+,B 、cos y x x =,C 、2cos y x =,D 、2sin y x =.二、填空题1、方程函数]1,(,)1(2-∞∈-=x x y 的反函数为_________.2、极限2lim 34n n n →∞=+________. 3、极限10lim ln[(1)]xx x →+= .4、极限1lim sin x x x→∞=________. 5、函数2(1)x y x =+的间断点是 . 三、计算题 1、求下列数列的极限:(1)212lim()n n n→∞-;(2)21lim1n n n →∞++;(3)n →∞;(4)lim 2n n→∞;(5)n →∞.2、求下列函数的极限:(1) 323lim(28)x x x →+-;(2) 0lim()xx e x →+;(3) 0lim x x →(4)224lim 2x x x →--;(5) 2221lim 23x x x x x →∞+-++;(6)lim x →+∞.3、利用两个重要极限求下列极限:(1) 0tan 2lim x xx →;(2) 201cos lim x xx →-;(3) 2lim(1)xx x →∞+;(4)21lim 1x x x +→∞⎛⎫+ ⎪⎝⎭;(5)1lim(12)x x x →+.4、 当0x →时,下列哪个函数是比x 的高阶无穷小?哪个函数是x 的等价无穷小.(1) 2()x x =α, (2)()sin x x =α.5、讨论下列分段函数在分段点的连续性:(1) ()31,110,1x x f x x x ⎧-≠⎪=-⎨⎪=⎩;(2)sin ,0()0,0x x x f x x ≥⎧=⎨<⎩.参考答案:一.选择题1-5 ADBCD .二、填空题1、1y =[0,)x ∈+∞,2、23,3、1,4、0,5、1x =-. 三、计算题1、(1)0;(2)0;(3)0;(4)12;(5)0.2、(1) 1;(2) 1 ;(4)4;(5)12,(6) 0.3、(1) 2;(2)12;(3)2e ;(4)e ;(5)2e .4、()2x o x =;故函数()sin x x α=是x 的等价无穷小即sin x x . 5、(1)1x =为间断点;(2)0x =为连续点.第二章 导数与微分一、选择题1、若函数)(x f 在某点可导,则函数在该点( ).A 、极限不一定存在,B 、不一定连续,C 、一定连续,D 、不可微.2、设0(2)(0)lim1,h f h f h→-=则(0)f '=( ). A 、2, B 、12, C 、1, D 、0. 3、设(0)2f '=,则0()(0)lim 2h f h f h→-( ). A 、2, B 、12, C 、1, D 、0. 4、函数y x =在点0x = 处( );A 、连续,B 、可导,C 、不一定可导,D 、间断.5、设A xx f x =→)(lim 0,其中0)0(=f ,则A 可表示为( ). A 、)(x f , B 、0, C 、)(x f ', D 、)0(f '.二、填空题1、方程函数2ln 2sin y e x =++,则()f x '=_________.2、极曲线x y e =在点(0,1)处的切线方程是 .3、设2ln y x =,则dy = .4、设曲线21y x =+在点M 的切线的斜率为2,则点M 的坐标为________.5、设23(1)y x =-,则'y = .三、计算题1、求下列函数的导数: (1);(2) 2(sin(12))y x =-;(3)3sin 2x y e x -=;(4).2、方程23ln y x y =+确定了y 是x 的函数()y y x =,求函数的导数y '.3、参数方程1sin cos x t y t t =-⎧⎨=-⎩所确定的函数()y y x =,求函数的导数y '.4、 设x y xe =,求,,y y y '''''' 及(4)y.参考答案:一.选择题1-5 CACAD .二、填空题1、cos x ,2、1y x =+,3、2x ,4、()1,2,5、226(1)x x -. 三、计算题1、(1)213x x ⎛⎫+ ⎪⎝⎭;(2)()()4sin 12cos 12x x ---;(3)333sin 22cos 2x x e x e x ---+;(4)()2222x x x e +. 2、22321yx y y '=-. 3、1sin cos dy t dx t+=-. 4、(4)(1),(2),(3),(4)x x x x y x e y x e y x e y x e ''''''=+=+=+=+.第三章 中值定理与导数应用一、选择题1、函数2y x =的单调增加的区间是( ).A 、()+∞∞-,’B 、(]0,∞-,C 、[)+∞,0,D 、[)+∞-,1.2、函数x y e =的图形在()+∞∞-,( ).A 、下凹,B 、上凹,C 、有拐点,D 、有垂直渐近线.3、如果00()0,()0f x f x '''=>,则( ).A 、0()f x 是函数()f x 的极小值,B 、0()f x 是函数()f x 的极大值,C 、0()f x 不是函数()f x 的极值,D 、不能判定0()f x 是否为函数()f x 的极值. 4、函数ln y x =的单调区间是( ). A 、 [2,)-+∞, B 、 (0,)+∞, C 、 [1,)-+∞,D 、 (1,)-+∞. 5、函数3y x =在点0x = 处( ).A 、取得最小值,B 、导数为零,C 、取得极大值,D 、间断.二、填空题1、3y x =的驻点是_________.2、函数sin y x x =+单调增加的区间是 .3、当1x =时,函数221y x px =++取得极值,则常数p = .4、函数2()f x x =在闭区间[2,1]-上的最大值点为x =5、曲线31x y x =-的渐近线为 .三、计算题1、求下列函数的极限: (1) 2123lim 1x x x x→+--; (2) 201lim sinx x e x x →--; (3) 011lim()sin x x x →-;(4) 30lim sin x x x x →-.2、求下列函数的极值.(1))1(3x x y -=;(2)3(1)y x =-;(3)y x ;3、求下列函数在给定区间上的最大值和最小值.(1)2()32f x x x =-+,在[10,10]-上;(2)8434+-=x x y , ]1,1[-∈x .四、证明:当 0x >时,112x +>参考答案:一.选择题1-5 CAABB .二、填空题1、0x = ,2、(.)-∞+∞,3、1p =-,4、2x =-,5、1x =.三、计算题1、(1)4;(2)12;(3)0;(4)6. 2、(1)函数的极大值为333327(1)444256y ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭;(2)该函数没有极值;(3)函数的极小值为()222y e e e---==. 3、(1)函数最大值为132,函数最小值为0.25-;(2)最大值为13,函数最小值为5.第四章 不定积分一、选择题1、若()f x 是()g x 的一个原函数,则下列选项正确的是( ).A 、d ()(())d f x g x C x =+ ;B 、d g()(())d x f xC x=+; C 、()d ()f x x g x =⎰; D 、g()d ()x x f x =⎰.2、 已知()f x 是2x 的一个原函数,且()10ln 2f =,则()f x =( ) A 、2ln 2x c +; B 、2ln 2x; C 、2ln 2x c +; D 、2ln 2x. 3、若()d ()f x x F x C =+⎰,则(2)d f x x ⎰=( )A 、(2)F x C + ;B 、 2()F xC +;C 、 1(2)2F x C +;D 、1()2F x C +. 4、sin d d x x dx x ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦⎰=( ) A 、sin x x; B 、 cos x x ; C 、sin x C x +; D 、cos x C x +. 5、d(arccos )x =⎰( )A 、arccos x C +;B 、 arccos x ;C 、arccos d x x ;D 、C +.二、填空题1、设12(),()F x F x 是()f x 的两个不同的原函数,且()0f x ≠,则12()()F x F x -= .()d f x x = ;()d f x x '⎰= . 3、 '(1)d f x x +⎰= .4、 若()d ()f x x F x C =+⎰,则2()d xf x x ⎰= . 5、 若2()d e x f x x C =+⎰,则()f x =.三、计算题1、用第一换元法求下列不定积分:(1) 2(21)d x x +⎰;(2)222d (2)x x x +⎰;(3) 34d 1x x x+⎰;(4) x ;(5) d ln xx x ⎰;(6) 3sin d x x ⎰.2、用第二换元法求下列不定积分:(1)x ;(2)x;(3).3、用分部积分法求下列不定积分:(1) ln d x x x ⎰;(2) 1e d x x x +⎰;(3)cos d 3x x x ⎰.4、已知f (x )的一个原函数为x x sin ,计算'()xf x dx ⎰..参考答案:一.选择题1-5 BBCAA .二、填空题1、 C ;2、(),()f x f x C +, 3、(1)f x C ++;4、 21()2F x C +;5、22x e . 三、计算题 1、(1)31(21)6x C ++; (2) 212C x -++;(3) 41ln(1)C 4x ++; (4) arcsin 3x C +;(5) ln ln x C +;(6) 31cos cos 3x x C -+.2、(1)322(1)3x x C --++;(2) 4C x-+;(3) 1arcsin x C x x-+++. 3、(1)2211ln 24x x x C -+; (2) 11e e x x x C ++-+;(3)3sin 9cos 33x x x C ++ . 4、C xx x dx x xf +-=⎰sin 2cos )('.第六章 定积分及其应用一、选择题1、设()f x 连续,则1100()d ()d f x x f t t -=⎰⎰( ). A 、等于0 ; B 、大于0; C 、 小于0; D 、 不确定.2、 设0()sin xf x t dt =⎰,则'2f π⎛⎫= ⎪⎝⎭ ( ).A 、 不存在;B 、 -1;C 、 0;D 、 1.3、11x -=⎰ ( ).A 、 0;B 、 4π;C 、 2π;D 、 π.4、若()f x 在[0,1]上连续,则10d ()d d f x x x ⎰=( ).A 、 ()f x ;B 、 (1)(0)f f -;C 、 1; D、 0.5、设()f x 连续,则0d ()d tf x x ⎰=( ).A 、 ()d f x x ;B 、 (t)d f t ;C 、 '()f x ;D 、 ()f t .二、填空题1、20d()d x t x ⎰= .2、设0(1)d xy t t t =-⎰,则'(1)y = .3、 00sin d lim x x ttt x →⎰= .4、根据定积分的几何意义知1x -=⎰__________.5、 11(sin )d x x x -+=⎰ .三、计算题1、已知sin ,22(),22x x f x x x ππ⎧-≤≤⎪⎪=⎨ππ⎪-<≤π⎪⎩ 求2()d f x x ππ-⎰.2、计算311d x x --⎰.3、求()dx x f ⎰-11,其中()21,10e ,01x x x f x x ---≤<⎧=⎨≤≤⎩.4、用换元法计算下列定积分:(1)0x ⎰;(2)81x ⎰;(3) 21x ⎰;(4) 1202sin d x x x ⎰.5、用分部积分法计算下列定积分:(1)π0(21)sin d x x x +⎰;(2)120e d x x x ⎰;(3) 20e sin d x x x π⎰.6、求由e x y =,e,0y x ==所围成平面图形的面积.7、求由1y x =,,2y x x ==所围成的图形的面积.8、求a 值,使抛物线2y x =与直线x a =及1,0x a y =+=所围成的平面图形面积最小.9、求由3,2,0y x x y ===所围成的图形绕x 轴旋转一周所形成的旋转体体积.10、求由sin (0),0y xx y =≤≤π=所围成的图形绕x 旋转一周所得旋转体的体积.参考答案:一.选择题1-5 ADCDB .二、填空题1、2;2、 0 ;3、15、 0. 三、计算题 1、28π. 2、4.3、11e --- .4、(1) 13;(2)35ln 22;(3);(4) 1cos1-.5、(1)22+π; (2)21(e 1)4+; (3) 21(e 1)2π+. 6、1.7、3ln 22-. 8、12a =-. 9、1287π. 10、2π2.。
2011年华南理工大学考研试题 (单考)高等数学答案
解:对式子 的x求导,则有 ,故而我们有
选C
(6)下列积分发散的是
A. ;B. ;C. ;D.
解:选A
,
但是由于
和 不存在。所以A发散
B.
C. ,所以
所以
D.
(7)
A.不存在;B. 3;C. 6:D. 0
解:
选B
(8)级数 为
A.绝对收敛;B.条件收敛;C.收敛性与b无关;D.发散
解:
绝对收敛,而 条件收敛
所以 条件收敛。
选B
(9)曲线 与直线 ( )所围成的图形的面积情况为
A. 时,面积最大;B. 时,面积最小
C. 时,面积最大;B. 时,面积最小
解:
,而 。
这个题目有问题
(10)设曲线 为圆周 ,取顺时针,则
A. 0;B. ;C. ;D.
解:令 , 。记
(因为D关于x=0对称,且被积函数关于x为奇函数,所积分等于零)
A. 6/11; B. 5/10; C. 5/11; D. 4/11
解:若有r只铜螺母,则取得铜螺母的概率是 ;则
;故选C
二、解答
(13)(14ຫໍສະໝຸດ 设函数 由 确定,求 ,, ;则
而
所以
(15)计算 ,其中 是由曲线 及直线 围成的平面区域
解:
(16)求幂级数 的和函数,并求 的和
解:令 ,则
即 。
令 ,则
i)试确定b;
ii)求边缘概率密度
iii)求函数 的分布密度
解:i)
所以
ii)当 时,
。
因而 时, 的边缘概率密度
当 时,
。
因而当 时, 的边缘概率密度
华南理工大学高等数学统考试卷下1994
1994高等数学下册统考试卷及解答一、在下列各题的横线上填上最合适的答案(12分)1.与三点)3,1,3(),1,3,3(),2,1,1(321M M M -决定的平面垂直的单位向量=︒a2.设1:22=+y x L 正向一周,则⎰=Lx dy e 2答:2,0x e Q P ==22x xe yPx Q =∂∂-∂∂ 3.级数∑∞=12)!()!2(n n x n n 的收敛半径=R 41二、计算下列各题(本大题分4小题,共21分)1.计算二次积分⎰⎰πθ022dr r d解 ππθπ383203022=⎥⎦⎤⎢⎣⎡=⎰⎰r dr r d2.设L 是连结点)0,3(),1,2(),0,1(C B A 的折线,计算曲线积分()⎰+Lds y x 22解 1,010121:-=--=--x y y x AB x y y x BC -=--=--3,101232: 3.求微分方程2=+x dydx满足0)1(=y 的的特解 解,2dy x dx-=- y e x c c y x -=---=-)2(,ln )2ln( 将1,0==y x 代入得1,1-==-c c ;特解:y e x --=24.设)(2u f x z =,而xyu =,其中)(u f 二阶可导,求y x z ∂∂∂2三、证明下列各题(共10分)1.求证:()()b a b a b a⨯=+⨯-2)(证明:()()()()a b a b a b a a b b -⨯+=-⨯+-⨯2.设)(1x y 与)(2x y 函数都是方程)()()()(21x Q y x P y x P y x P =+'+''的解,试证明函数)()(21x y x y -是其对应的齐次方程的解。
证明:由已知11121()()()()P x y P x y Px y Q x '''++=两式相减()()()12112212()()()0P x y y P x y y P x y y '''-+-+-=即)()(21x y x y -满足12()()()0P x y P x y Px y '''++=,是对应的齐次方程的解 四、根据题目要求解答下列各题(共10分)1.写出方程x y y y =-'-''32的待定特解的形式。
华南理工大学2010-2011学年第二学期《高等数学》期末考试
2010-2011学年第二学期《高等数学》答案一.填空题(每小题4分,共20分)1.函数2249z x y =+在点()2,1的梯度为grad z ={16,18};2.函数44222z x y x xy y =+---的极值点是()()1,1,,1,1--;3.假设L 为圆222x y a +=的右半部分,则22Lx y ds +=⎰2a π;4.设22e sin (2)x A y xy z xzy =+++i j k ,则(1,0,1)div |A = 0 ,5.设13y =,223y x =+,233e x y x =++都是方程22(2)(2)(22)66x x y x y x y x '''---+-=-的解,则方程的通解为2123e x y c x c =++.二.(本题8分)计算三重积分222()x y z dv Ω++⎰⎰⎰,其中Ω是由2221x y z ++=所围成的闭球体.解:⎰⎰⎰⋅=122020sin dr r r d d ϕϕθπππ54=三. (本题8分)证明:(),f x y xy =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证 ()0l i m 00,0x y x y f →→== ,故(),f x y 在点()0,0处连续;又由定义()()(),00,00,0lim00x x f x f f x →-==-, ()0000,0lim00y y y f y →⋅-==-;但22000limxy x yx yρ→--⋅-⋅+不存在,故在()0,0 处不可微。
四.(本题8分)设函数),(y x u 有连续偏导数,试用极坐标与直角坐标的转化公式θθsin ,cos r y r x == ,将xuyy u x∂∂-∂∂变换为θ,r 下的表达式. 解,u u r u u u r ux r x x y r y yθθθθ∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂ 再由cos ,sin x r y y θθ==,分别对,x y 求导数,得1cos sin 0sin cos r r x x r r x x θθθθθθ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩和0cos sin 0sin cos r r y y r r y y θθθθθθ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解得sin cos ,r x x r θθθ∂∂==-∂∂,cos sin ,r y x rθθθ∂∂==∂∂从而sin cos u u u x r r θθθ∂∂∂=-∂∂∂,cos sin u u u y r r θθθ∂∂∂=+∂∂∂, 所以x u yy u x ∂∂-∂∂=θ∂∂u五.(8分)计算22d d L x y y xx y -+⎰ ,其中L 为(1)圆周()()22111x y -+-=(按反时针方向);解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,而且原点不在该圆域内部,从而由格林公式,原式0= (2)闭曲线1x y +=(按反时针方向).解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,原式()1122d d d d 1001120.01L L Dx y y x x y y xdxdy x y π--===+=+⎰⎰⎰⎰ 六.(8分)计算d y S ∑⎰⎰,∑是平面4=++z y x 被圆柱面122=+y x 截出的有限部分. 解: 4,1,1x y z x y z z =--=-=-,1113dS dxdy dxdy =++=,:01,02D r θπ≤≤≤≤ 原式3D ydxdy =⎰⎰1232203sin 3cos 03ard r dr ππθθθ==-⋅=⎰⎰七.(8分)计算曲面积分2I yzdzdx dxdy ∑=+⎰⎰,其中∑为上半球面224z x y =--的上侧解 取1∑为xOy 平面上圆224x y +≤的下侧,记Ω为1∑与∑所围的空间闭区域。
华南理工大学高数上册答案
A 第一章 函数与极限作业1 函 数1.填空题 (1)函数31arcsin11)(2+−−=x x x f 的定义域为]2,1()1,4[∪−−; (2)没x x x x f ln ln 1ln 1=⎟⎠⎞⎜⎝⎛+−,则=)(x f t te t t +−+−1111; (3)设2()e x f x =,x x f 31)]([−=ϕ,且0)(≥x ϕ,则=)(x ϕ()x 31ln −,(4)函数3sin 22cos xx y+=的周期为π12;(5)函数)2ln(1++=x y的反函数=y 21−−x e ;(6)将函数|2|2x x y −+=用分段函数表示为=y ⎩⎨⎧<+≥−2,22,23x x x x . 2.设函数)(x f y=的定义域为[0,2],求下列函数的定义域:(1))(2x f y=;解:由202≤≤x ,知该函数的定义域为]2,2[− (2))()(a x f a x f y−++=,(0>a );解:由⎩⎨⎧≤−≤≤+≤2020a x a x ,知⎩⎨⎧+≤≤−≤≤−ax a ax a 22,从而该函数的定义域:当10≤<a 时为]2,[a a −,否则为空集(3))(sgn x f y =, 其中⎪⎩⎪⎨⎧<−=>=0,10,00,1sgn x x x x .解:由2sgn 0≤≤x ,知该函数的定义域为),0[+∞ 3.判定下列函数的奇偶性: (1))(log )(22a x x x f a ++=;解:由()()()x f ax x a a x x x f a a −=++=⎟⎠⎞⎜⎝⎛+−+−=−2log log 22222,知该函数非奇非偶 (2)3cos ()|sin |e x f x x x =.解:由()()()()x f e x x e x x x f x x ==−−=−−cos 3cos 3sin sin ,知该函数为偶4.设⎩⎨⎧>++≤−=0),1ln(20,sin 2)(x x x x x f , ⎩⎨⎧≥−<=0,0,)(2x x x x x ϕ, 求)]([x f ϕ.解:()⎩⎨⎧<++≥+=⎩⎨⎧>++≤−=0,1ln 20,sin 20)]([)]},([1ln{20)]([)],(sin[2)]([2x x x x x x x x x f ϕϕϕϕϕ5.没⎪⎩⎪⎨⎧>−≤≤−−<−=2,121021,1,21)(32x x x x x x x f ,求)(x f 的反函数. 解:因为,当1−<x 时21,12,12122yx y x x y −−=−=−<−= 当21≤≤−x 时33],8,1[y x x y =−∈=;当2>x 时1012,81210+=>−=y x x y 故反函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>+≤≤−−<−−==8,101281,1,213x x x x x xy6.证明函数x x f 31)(−=在其定义域内无界.证明:由无界的定义,D x M ∈∃>∀0,0,使()M x x f >−=0031 因为133113000+≤−≤−x x x ,只要M x >−130,即310+>M x 因而只要取320+=M x 即有()M M x f =−+>13130 从而x x f 31)(−=在其定义域R 内无界作业2 数列的极限1. 用数列极限的“N −ε”定义证明下列极限:(1)nn n n −→∞224lim =4;证明:因为n n n n n x n 81444422<−=−−=−0>∀ε,要ε<−4n x ,只要εε8,8><n n取⎦⎤⎢⎣⎡+=ε82N ,则当N n >时81n N ε≥+>从而ε<−4n x ,由定义nn n n −→∞224lim(2)()n n n −+→∞1lim=0;证明:因为0n x −==<0>∀ε,要0n x ε−<取211N ε⎡⎤=+⎢⎥⎣⎦,则当N n >时211n N ε≥+>从而0n x ε−<,由定义lim0n →∞−=(3)nn n 3lim 2→∞=0.证明:因为,当6n >时,()()()()3231121212222!3!2nn n n n n n n −−−+=+⋅+++>L 2203n n n x n−=<0>∀ε,要0n x ε−<,只要22,n n εε<>,取26N ε⎡⎤=+⎢⎥⎣⎦,则当N n >时21n N ε≥+>,从而0n x ε−<,由定义2lim 03n n n →∞=2.证明:若A u n n =→∞lim ,则||||lim A u n n =→∞,并举例说明其逆命题不成立.证明:由A u n n =→∞lim知0>∀ε,存在0N >,当N n >时n u A ε−<,而n n u A u A −≤−,从而n u A ε−<,由定义||||lim A u n n =→∞逆命题不成立,例如:()1nn u =−,虽然lim ||1n n u →∞=,但lim n n u →∞不存在3.设数列}{n u 有界,而0lim =∞→n n v ,求证:0lim =→∞n n n v u .证:{}n u Q 有界,所以存在0,n M u M >≤, 又0lim=∞→n n v ,0>∀ε,对于1Mεε=存在0N >,当N n >时1n v ε<,从而n n n n u v u v MMεε=<=,由定义0lim =→∞n n n v u4.设数列}{n u ,}{n v 有相同的极限为A ,求证:若. n n n v u x −=,则0lim=→∞n n x .证:由已知0>∀ε,对于12εε=存在10N >,当1n N >时2n u ε<,存在20N >,当2n N >时2n v ε<,取12max{,}N N N =,则当N n >时,()0n n n n n x u A v A u A v A ε−=−−−≤−+−<,由定义0lim =→∞n n x5.若0lim>=∞→A u n n ,(1)证明存在0>N ,当N n >时,有02>>Au n ; (2)用数列定义证明1lim1=+∞→nn n u u . 证:(1)由已知,对于02Aε=>存在0N >,当n N >时2n A u A −<即3,2222n n A A A Au A u −<−<<<,从而当N n >时,有02>>A u n(2)由(1)10N ∃>,当1n N >时,有120,02n n A u u A>><<, 从而()111121n n n n n n n n n n u u u A u A u u A u A u u u A++++−−+−−=≤<−+−又0ε∀>,对于14A εε=存在20N >,当2n N >时4n A u A ε−< 因此12124n n u A u A εε+−<⋅⋅=,由定义1lim 1=+∞→nn n u u作业3 函数的极限1. 根据函数极限定义证明: (1)2)54(lim 2=−+++∞→x x x x ;证:不妨设0x >=0ε∀>,要ε<,只要11,x xεε<>取10X ε=>,当x X >ε<由定义2)54(lim 2=−+++∞→x x x x(2)111lim2=−→x x .证:不妨设11312,1,22221x x x −<<−<<−, 这时1212111x x x x −−=<−−− 0ε∀>,要111x ε−<−,只要12x ε−<,取1min{,}022εδ=>,当01x δ<−<时一定有111x ε−<−,由定义111lim2=−→x x 2. 已知1)(lim =→x f ax ,证明(1)存在01>δ,使得当1||0δ<−<a x 时,65)(>x f ; (2) 对任意取定的)1,0(∈K,存在2δ,使得当2||0δ<−<a x 时,K x f >)(.证:由1)(lim =→x f ax ,(1)对16ε=存在01>δ,使得当1||0δ<−<a x 时,()1151,()1666f x f x −<>−= (2)()0,1,10,K K ∀∈−>对10K ε=−>存在20δ>,使得当20||x a δ<−<时,()()11,()11fx K f x K K −<−>−−=3.(1)设⎪⎩⎪⎨⎧>−=<+=2,132,02,12)(x x x x x x f ,研究)(x f 在2=x 处的左极限、右极限及当2→x 时的极限;(2)设⎪⎩⎪⎨⎧≥−<<≤−+=2,2221,1,32)(2x x x x x x x x f ,研究极限)(lim 1x f x →,)(lim 2x f x →,)(lim 3x f x →是否存在,若存在将它求出来.解:(1)()()()()20202020lim lim 215,lim lim 315x x x x f x x f x x →−→−→+→+=+==−=从而()2lim 5x f x →=(2)()()()21010lim 1,101230x f f x f →++==−=+−=,故()1lim x f x →不存在,()()()2202,202222,lim 2x f f f x →−=+=⋅−==,()3lim 2324x f x →=⋅−=4. 设A x f ax =→)(lim,证明存在a 的去心邻域o0U (,)a δ,使得)(x f 在该邻域内是有界的. 证:lim ()x af x A →=Q,由定义对01,0εδ=∃>,当o0U (,)x a δ∈时,()()()1,1f x A f x A f x A −≤−<<+,从而)(x f 在该邻域内是有界的.5. 如果当0x x →时,)(x f 的极限存在.证明此极限值唯一.证:假设极限不惟一,则至少存在两个数A B ≠,使()()0lim ,lim x x x x f x A f x B →→==同时成立,由定义10,0εδ∀>∃>,当o01U (,)x x δ∈时()f x A ε−<,且20δ∃>,当o02U (,)x x δ∈时()f x B ε−<。
高等数学-微积分下-习题册答案-华南理工大学 (6)
《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)1.设有直线3210:21030x y z L x y z +++=⎧⎨--+=⎩ 及平面:4220x y z π-+-=,则直线L ( A )A .平行于平面π;B .在平面π上;C .垂直于平面π;D .与平面π斜交.2.二元函数22,(,)(0,0)(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( C )A .连续、偏导数存在;B .连续、偏导数不存在;C .不连续、偏导数存在;D .不连续、偏导数不存在.3.设()f x 为连续函数,1()d ()d ttyF t y f x x =⎰⎰,则(2)F '=( B )A .2(2)f ;B .(2)f ;C .(2)f -D .0.4.设∑是平面132=++z yx 由0≥x ,0≥y ,0≥z 所确定的三角形区域,则曲面积分(326)d x y z S ∑++⎰⎰=( D )A .7;B .221; C .14; D .21. 5.微分方程e 1x y y ''-=+的一个特解应具有形式( B )A .e x a b +;B .e x ax b +;C .e x a bx +;D .e x ax bx +.二、填空题(每小题3分,本大题共15分)1.设一平面经过原点及点(6,3,2)-,且与平面428x y z -+=垂直,则此平面方程为2230x y z +-=; 2.设arctan1x yz xy-=+,则d |z =24dx dy-; 3.设L 为122=+y x 正向一周,则2e d x Ly =⎰ 0 ;4.设圆柱面322=+y x ,与曲面xy z =在),,(000z y x 点相交,且它们的交角为π6,则正数=0Z 32; 5.设一阶线性非齐次微分方程)()(x Q y x P y =+'有两个线性无关的解21,y y ,若12y y αβ+也是该方程的解,则应有=+βα 1 .三、(本题7分)设由方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩确定了u ,v 是x ,y 的函数,求x u ∂∂及x v ∂∂与yv∂∂. 解:方程两边取全微分,则e cos e sin e sin e cos u uu udx vdu vdvdy vdu vdv⎧=-⎪⎨=+⎪⎩ 解出2222cos e sin ,,e sin e cos u uu u xdx ydy du e vdx vdy x y du dv xdy ydx dv vdx vdy x y ----+⎧=+=⎪+⎪⎨-⎪=-+=⎪+⎩从而222222,,u x v y v x x x y x x y y x y∂∂-∂===∂+∂+∂+ 四、(本题7分)已知点)1,1,1(A 及点)1,2,3(-B ,求函数()3ln 32u xy z =-在点A 处沿AB 方向的方向导数.解:{}2122,1,2,,,333AB AB ⎧⎫=-=-⎨⎬⎩⎭2333336,,323232y x z gradu xy z xy z xy z ⎧⎫-=⎨⎬---⎩⎭,{}3,3,6A gradu =- 从而{}212,,3,3,62147333u AB ∂⎧⎫=-⋅-=++=⎨⎬∂⎩⎭五、(本题8分)计算累次积分24112211d e d d e d x xyy x x y x y y y+⎰⎰⎰).解:依据上下限知,即分区域为1212,:12,1:24,2xD D D D x y D x y =⋃≤≤≤≤≤≤≤≤ 作图可知,该区域也可以表示为2:12,2D y y x y ≤≤≤≤从而()2242222112112111d e d d e d d e d e e d xxxy y y y yx y x y x y y x y y y y +==-⎰⎰⎰⎰⎰⎰()()2222211e e2e e e e yy e =-=---=六、(本题8分)计算d d d I z x y z Ω=⎰⎰⎰,其中Ω是由柱面122=+y x 及平面1,0==z z 围成的区域.解:先二后一比较方便,111220122zD z I zdz dxdy z dz πππ⋅==⋅⋅==⎰⎰⎰⎰七.(本题8分)计算32()d x y z S ++∑⎰⎰,其中∑是抛物面222y x z +=被平面2=z 所截下的有限部分.解:由对称性322d 0,d d x S y S x S ==∑∑∑⎰⎰⎰⎰⎰⎰从而223222()d ()d ()d 2x y x y z S z S x y S +++=+=+∑∑∑⎰⎰⎰⎰⎰⎰222220(2D x y d rr πθπ=+==⎰⎰⎰⎰⎰(40411315t ππ⎛⎫=+-=+ ⎪ ⎪⎝⎭⎰八、(本题8分)计算22222(4cos )d cos d L x x x x x x y y y y y+-⎰,L 是点ππ(,)22A 到点(π,2π)B 在上半平面)0(>y 上的任意逐段光滑曲线.解:在上半平面)0(>y 上2223222322cos cos sin Q x x x x x x x x y y y y y y ⎛⎫∂∂=-=-+ ⎪∂∂⎝⎭223223222(4cos )0cos sin P x x x x x x Qx y y y y y y y y x∂∂∂=+=-+=∂∂∂且连续, 从而在上半平面)0(>y 上该曲线积分与路径无关,取π(π,)2C22222222424415(4cos )d cos d 12L AC CB x x x x y y y πππππππππ=+=+-=-⎰⎰⎰⎰⎰ 九、(本题8分)计算222()d d ()d d ()d d x y y z y z z x z x x y +++++∑⎰⎰,其中∑为半球面221y x z --=上侧.解:补1:0z ∑=取下侧,则构成封闭曲面的外侧11222()d d ()d d ()d d x y y z y z z x z x x y ∑+∑∑+++++=-∑⎰⎰⎰⎰⎰⎰()122223211133132D D x y dv x dxdy dv x dxdy dxdy πΩ∑Ω+=++-=+=⋅⋅+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2113400011922244d r dr r πππθππ=+=+⋅=⎰⎰ 十、(本题8分)设二阶连续可导函数)(x f y =,t s x =适合042222=∂∂+∂∂syt y ,求)(x f y =.解:21,y s y f f t t s t∂-∂''=⋅=⋅∂∂222223222211,y s s s y f f f f f t t t t t s s t t ∂∂--∂∂⎛⎫⎛⎫⎛⎫'''''''==+⋅== ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭ 由已知222223222440,0,y y s s f f f t s t t t∂∂-⎛⎫'''''+=⇒+⋅+= ⎪∂∂⎝⎭即()()()()()()()2221420,40,4x f x xf x x f x x f x c '⎡⎤'''''++=+=+=⎣⎦()()1122,arctan 422c c xf x f x c x '==++ 十一、(本题4分)求方程的x y y 2cos 4=+''通解. 解:解:对应齐次方程特征方程为21,240,2r r i +==±非齐次项()cos2,f x x =,与标准式()()()cos sin x m l f x e P x x P x x αββ=+⎡⎤⎣⎦ 比较得{}max ,0,2n m l i λ===,对比特征根,推得1k =,从而特解形式可设为()()*12cos sin cos 2sin 2,k xn n y x Q x x Q x x e ax x bx x αββ=+=+⎡⎤⎣⎦**(2)cos2(2)sin 2,(44)sin 2(44)cos2y a bx x b ax x y a bx x b ax x '''=++-=--+-代入方程得14sin 24cos 2cos 2,0,4a xb x x a b -+=⇒==121cos 2sin 2sin 24y c x c x x x =+++十二、(本题4分)在球面2222a z y x =++的第一卦限上求一点M ,使以M 为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.解:设点M 的坐标为(),,x y z ,则问题即8V xyz =在22220x y z a ++-=求最小值。
华工高数参考答案答案
华工高数参考答案答案华工高数参考答案高等数学是大部分理工科专业的必修课程,对于很多学生来说,高数是一门相对较难的学科。
华南理工大学(简称华工)是一所以工科为主的综合性大学,其高数课程也备受关注。
本文将提供一份华工高数参考答案,希望能够帮助到正在学习高数的同学们。
第一章:极限与连续1. 极限的概念与性质- 极限的定义:设函数f(x)在点x0的某个去心邻域内有定义,如果存在常数A,对于任意给定的ε>0,都存在常数δ>0,使得当0<|x-x0|<δ时,有|f(x)-A|<ε成立,则称函数f(x)在x0处的极限为A。
- 极限的性质:- 唯一性:如果极限存在,那么极限值唯一。
- 局部有界性:如果函数在某点的极限存在,则函数在该点的某个去心邻域内有界。
- 局部保号性:如果函数在某点的极限存在且大于(或小于)零,则函数在该点的某个去心邻域内大于(或小于)零。
- 四则运算法则:设函数f(x)和g(x)在点x0的某个去心邻域内有定义,且lim(x→x0)f(x)=A,lim(x→x0)g(x)=B,则:- lim(x→x0)(f(x)+g(x))=A+B- lim(x→x0)(f(x)-g(x))=A-B- lim(x→x0)(f(x)g(x))=A*B- lim(x→x0)(f(x)/g(x))=A/B(若B≠0)2. 连续与间断- 连续的定义:设函数f(x)在点x0的某个去心邻域内有定义,如果lim(x→x0)f(x)=f(x0),则称函数f(x)在点x0处连续。
- 连续的性质:- 连续函数的四则运算:若函数f(x)和g(x)在点x0处连续,则f(x)+g(x)、f(x)-g(x)、f(x)g(x)、f(x)/g(x)(若g(x0)≠0)在点x0处也连续。
- 复合函数的连续性:若函数f(x)在点x0处连续,函数g(u)在u=f(x0)处连续,则复合函数g(f(x))在点x0处连续。
(完整版)华南理工大学《高等数学》(下册)期末试题及答案三
《高等数学》(下册)测试题三一、填空题1.若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数a =5-. 2.设1()e d x yxf x y =⎰,则1()f x dx =⎰12e -. 3.设S 是立方体1,,0≤≤z y x 的边界外侧,则曲面积分567d d d d d d sx y z y z x z x y ++=⎰⎰Ò 3 . 4.设幂级数nnn a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为()2,4-.5.微分方程2434exy y y x -'''+-=用待定系数法确定的特解(系数值不求)的形式为()24e x y x ax bx c -=++.二、选择题1.函数22222222sin 2(),0,(,)0,2,x y x y f x y x yx y ⎧++≠⎪=+⎨⎪+=⎩在点(0,0)处( D ).(A )无定义; (B )无极限;(C )有极限但不连续; (D )连续. 2.设sec(1)z xy =-,则zx∂=∂( B ). (A )sec(1)tan(1)xy xy --; (B )sec(1)tan(1)y xy xy --; (C )2tan (1)y xy -; (D )2tan (1)y xy --.3.两个圆柱体222x y R +≤,222x z R +≤公共部分的体积V 为( B ).(A)02d Rx y ⎰; (B)08d Rx y ⎰;(C)d RRx y -⎰; (D)4d R Rx y -⎰.4.若0n a ≥,1nn kk S a==∑,则数列{}n S 有界是级数收敛的( A ).(A )充分必要条件; (B )充分条件,但非必要条件; (C )必要条件,但非充分条件; (D )既非充分条件,又非必要条件.5.函数sin y C x =-(C 为任意常数)是微分方程22d sin d yx x=的( C ).(A )通解; (B )特解; (C )是解,但既非通解也非特解; (D )不是解. 三、求曲面e e4x y zz+=上点0(ln 2,ln 2,1)M 处的切平面和法线方程.解:{}{}022M 11e ,e ,e e 2,2,4ln 2//1,1,2ln 2xy x y z z z zx y n z z z z ⎧⎫=--=--⎨⎬⎩⎭r 切平面为()ln 2ln 22ln 212ln 20x y z x y z -+---=+-= 法线为1ln 2ln 22ln 2z x y --=-=-四、求通过直线 0:20x y L x y z +=⎧⎨-+-=⎩的两个互相垂直的平面,其中一个平面平行于直线1:L x y z ==.解:设过直线L 的平面束为()20,x y z x y λ-+-++= 即()(){}1120,1,1,1x y z n λλλλ+--+-==+-r第一个平面平行于直线1:L x y z ==,即有{}{}111,1,11,1,1210,2n s λλλλ⋅=+-⋅=+==-r r从而第一个平面为{}1111120,324,1,3,223x y z x y z n ⎛⎫⎛⎫--++-=-+==- ⎪ ⎪⎝⎭⎝⎭r 第二个平面要与第一个平面垂直,也即{}{}11,3,21,1,11332260,3n n λλλλλλ⋅=-⋅+-=+-++=-+==r r从而第二个平面为4220x y z ++-=五、求微分方程430y y y '''-+=的解,使得该解所表示的曲线在点(0,2)处与直线2240x y -+=相切.解:直线2240x y -+=为2,1y x k =+=,从而有定解条件()()01,02y y '==, 特征方程为()()212430,310,3,1r r r r r r -+=--===方程通解为312xx y c ec e =+,由定解的初值条件122c c +=3123x x y c e c e '=+,由定解的初值条件1231c c +=从而1215,22c c =-=,特解为31522x x y e e =-+ 六、设函数()f u 有二阶连续导数,而函数(e sin )xz f y =满足方程22222e xz z z x y∂∂+=∂∂ 试求出函数()f u .解:因为()()()()222sin ,sin sin xx x z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )xx x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂ ()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,uur r r f u c e c e --===-=+ 七、计算曲面积分222(cos cos cos )dS xy yx z αβγ∑++⎰⎰Ò, 其中∑是球体2222x y z z ++≤与锥体z ≥Ω的表面,cos α,cos β,cos γ是其外法线方向的方向余弦.解:两表面的交线为222222122122,0,1,1x y z z x y z z z z z z ⎧++=⎧+=⎪⇒===⇒⎨⎨==⎩⎪⎩原式()222xy z dv Ω=++⎰⎰⎰,投影域为22:1D x y +≤,用柱坐标:02,01,1r r z θπΩ≤≤≤≤≤≤原式)()2111122222rrd rdr rz dz r r z zπθπ=+=+⎰⎰⎰()(12220211r r r r dr π⎡⎤=+-⎢⎥⎣⎦⎰()()()113134220013122t t dt r r r dr ππ⎡⎤=--+-+--⎢⎥⎣⎦⎰⎰()()11532452200221113125345t t r r r ππ⎡⎤⎛⎫=--⋅-+-- ⎪⎢⎥⎝⎭⎣⎦21181127022154551010πππππ⎡⎤⎛⎫=--+--=+= ⎪⎢⎥⎣⎦⎝⎭另解:用球坐标:02,0,02cos 4πθπϕρϕΩ≤≤≤≤≤≤原式()2cos 24222000sin 2cos sin d d d πϕπθϕρϕρϕρϕρ=+⎰⎰⎰()2cos 443302sin 2cos sin d d πϕπϕρϕρϕϕρ=+⎰⎰()545735022cos cos 2cos cos 5d ππϕϕϕϕ⎛⎫=--+ ⎪⎝⎭⎰1684579494216555658t t t t dt ππ⎛⎛⎫=-=⋅-⋅ ⎪⎭⎝6831161010t t π⎛=- ⎝2710π=八、试将函数2()e d xt f x t -=⎰展成x 的幂级数(要求写出该幂级数的一般项并指出其收敛区间). 解:()220n=01()e d d n!n xxt n f x t t t ∞-⎛⎫-==⎪ ⎪⎝⎭∑⎰⎰()()()21n=01,,!21nn x x n n ∞+-=∈-∞+∞+∑九、判断级数)0,0(1>>∑∞=βαβαn nn 的敛散性.解:()11lim lim 1n n n n n nu n u n ααβρββ++→∞→∞==⋅=+ 当01,1βρ<<<,级数收敛;当1,1βρ>>,级数发散; 当1,1βα=>时级数收敛;当1,01βα=<≤时级数发散十、计算曲线积分222(1e )d (e 1)d y y Lx x x y ++-⎰,其中L 为22(2)4x y -+=在第一象限内逆时针方向的半圆弧.解:再取1:0,:04L y x =→,围成半圆的正向边界 则 原式11222(1e )d (e 1)d y y L L L x x x y +=-++-⎰⎰()44200101122D dxdy x dx x x ⎛⎫=-+=-+=- ⎪⎝⎭⎰⎰⎰十一、求曲面S :222124x z y ++=到平面π:2250x y z +++=的最短距离.解:问题即求d =在约束222124x z y ++=下的最小值 可先求()()22,,9225f x y z d x y z ==+++在约束222124x z y ++=下的最小值点 取()()2222,,225124x z L x y z x y z y λ⎛⎫=++++++- ⎪⎝⎭()()42250,422520,x y L x y z x L x y z y λλ=++++==++++=()22222250,1224z z x z L x y z y λ=++++=++=0λ≠时212,41,,12x y z y y x z ====±==±,211521151111,,13,1,,123233d d +++---+⎛⎫⎛⎫==---== ⎪ ⎪⎝⎭⎝⎭这也说明了0λ=是不可能的,因为平面与曲面最小距离为13。
华南理工高等数学B(上)参考答案-随堂练习答案
第一章-函数随堂练习答案1.函数的定义域是( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:2.函数的定义域是 ( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:3.函数的定义域是( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:4.函数的定义域为( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:5.函数的定义域是()A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:6.函数的定义域是( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:7.函数的定义域是()A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:8.若,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:9.若,,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:10.设,则( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:11.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:12.( )A. B.不存在 C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:13.( )A.不存在 B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.( )A. B.不存在 C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:15.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.( )A. B. C.不存在 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:17.当时,下列变量是无穷小的是( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:18.当时,与等价的无穷小是( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:19.( )A.0 B. C. D.1答题: A. B. C. D. (已提交)参考答案:B问题解析:20.( )A.8 B.2 C. D.0答题: A. B. C. D. (已提交)参考答案:D问题解析:21.( )A.0 B.1 C. D.2答题: A. B. C. D. (已提交)参考答案:D问题解析:22.下列等式成立的是( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:23.( )A. B.1 C.不存在 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:24.( )A.1 B. C.不存在 D.答题: A. B. C. D. (已提交)参考答案:D问题解析:25.( )A.0 B.1 C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:26.设函数在点处极限存在,则( ) A.2 B.4 C.1 D.0答题: A. B. C. D. (已提交)参考答案:A问题解析:27.设,则 ( ) A.0 B.-1 C.1 D.2答题: A. B. C. D. (已提交)参考答案:C问题解析:28.设,则( )A.1 B.2 C.0 D.不存在答题: A. B. C. D. (已提交)参考答案:A问题解析:29.设在处连续,则=( ) A.1 B.2 C.0 D.不存在答题: A. B. C. D. (已提交)参考答案:A问题解析:第二章极限与连续.曲线在点处的切线的斜率为( )A.-2 B.2 C.-1 D.1答题: A. B. C. D. (已提交)参考答案:B问题解析:2.曲线在点处的切线方程为( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:3.曲线在点处的切线方程为( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:4.曲线在点(1,1)处的切线方程为( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:5.设直线是曲线的一条切线,则常数( ) A. -5 B. 1 C.-1 D.5答题: A. B. C. D. (已提交)参考答案:D问题解析:6.设函数,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:7.设函数,则 ( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:8.设函数,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:9.设函数,则 ( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:10.设函数,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:11.设函数,在( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:12.设函数,则( ) A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:13.设函数,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.设函数,则( )A. B. C.D.答题: A. B. C. D. (已提交)参考答案:D问题解析:15.设函数,则 ( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:16.设函数,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:17.设函数,则( )A. B. C.D.答题: A. B. C. D. (已提交)参考答案:B问题解析:18.设确定隐函数,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:19.设函数,则( )A.4 B.-4 C.1 D.-1答题: A. B. C. D. (已提交)参考答案:C问题解析:20.设方程所确定的隐函数为,则( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:1.设函数由方程所确定,则( )A.0 B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:22.设方程所确定的隐函数为,则( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:23.设方程所确定的隐函数为,则( ) A. B.0 C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:24.设,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:25.设函数,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:26.设函数,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:27.设,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:第三章导数与微分1.( )A. B.0 C. D.1答题: A. B. C. D. (已提交)参考答案:C问题解析:2.( )A.B.0 C. D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:3.( )A. B. C. D.不存在答题: A. B. C. D. (已提交)参考答案:B问题解析:4.( )A. B. C.1 D.不存在答题: A. B. C. D. (已提交)参考答案:A问题解析:5.( )A. B. C.1 D.不存在答题: A. B. C. D. (已提交)参考答案:A问题解析:6.( )A. B. C.1 D.0答题: A. B. C. D. (已提交)参考答案:A问题解析:7.函数的单调减少区间是 ( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:8.函数的单调区间是 ( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:9.函数的单调增加区间是( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:10.函数的单调增加区间为 ( ) .A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:11.函数的单调减区间为( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:12.函数的单调增加区间为( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:13.函数的极值等于( )A.1 B.0 C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.函数的极值为( )A. B. C.0 D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:15.函数的极值为( )A.1 B.0 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.函数的极大值为( )A.-16 B.0 C.16 D.-7答题: A. B. C. D. (已提交)参考答案:B问题解析:17.函数的极大值为( )A.3 B.1 C.-1 D.0答题: A. B. C. D. (已提交)参考答案:A问题解析:18.有一张长方形不锈钢薄板,长为,宽为长的.现在它的四个角上各裁去一个大小相同的小正方形块,再把四边折起来焊成一个无盖的长方盒.问裁去小正方形的边长为( )时,才能使盒子的容积最大.A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:19.设有一根长为的铁丝,分别构成圆形和正方形.为使圆形和正方形面积之和最小,则其中一段铁丝的长为( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:20.欲围一个面积为150m2的矩形场地,围墙高3米.四面围墙所用材料的选价不同,正面6元/ m2,其余三面3元/ m2.试问矩形场地的长为( )时,才能使材料费最省.A.15 B.10 C.5D.8答题: A. B. C. D. (已提交)参考答案:B问题解析:21.设两个正数之和为8,则其中一个数为( )时,这两个正数的立方和最小.A.4 B.2 C.3D.5答题: A. B. C. D. (已提交)参考答案:A问题解析:22.要造一个体积为的圆柱形油罐,问底半径为( )时才能使表面积最小.A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:23.某车间靠墙壁要盖一间方长形小屋,现有存砖只够砌20m长的墙壁.问围成的长方形的长为( )时,才能使这间小屋的面积最大.A.8 B.4 C.5D.10答题: A. B. C. D. (已提交)参考答案:D问题解析:24.曲线的下凹区间为( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:25.曲线的拐点坐标为( )A. B. C. D.不存在答题: A. B. C. D. (已提交)参考答案:B第四章导数的应用1. ( )是的一个原函数.A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:2.下列函数中,()是的原函数A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:3.下列函数中,( )是的原函数A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:4. ( )是函数的原函数.A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:5.下列等式中,( )是正确的A. B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:6.若,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:7.若满足,则().A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:8.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:9.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:10.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:11.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:12.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:13.( )A. B.C.D.答题: A. B. C. D. (已提交)参考答案:A问题解析:14.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:15.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:17.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:18.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:19.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:20.( )A. B.C.D.答题: A. B. C. D. (已提交)参考答案:B问题解析:1.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:22.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A第五章不定积分1.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:2.曲线,直线,及轴所围成的图形的面积是( )A. B. C.D.答题: A. B. C. D. (已提交)参考答案:A问题解析:3.定积分等于( )A.2 B.1 C.0 D.-1答题: A. B. C. D. (已提交)参考答案:C问题解析:4.( )A.2 B.1 C.0 D.-1答题: A. B. C. D. (已提交)参考答案:C问题解析:5.( )A.2 B.0 C.1 D.-1答题: A. B. C. D. (已提交)参考答案:B问题解析:6.设函数在上连续,,则( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:7.设,则等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:8.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:9.B. C.1 D.A.0答题: A. B. C. D. (已提交)参考答案:B问题解析:10.A.1B.0 C. D.-1答题: A. B. C. D. (已提交)参考答案:D11.A. B. C. D.1答题: A. B. C. D. (已提交)参考答案:C问题解析:12.( )A.4 B.9 C.6 D.5答题: A. B. C. D. (已提交)参考答案:A问题解析:13.( )A.1 B.2 C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:14.( )A.2 B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:15.( )A. B. C.1 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.( )A. B. C.1 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:17.( )A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:18.( )A. B.0 C.1 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:19.( )A.0 B. C.1 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:20.( )A.1 B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:1.( )A. B. C. D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:22.( )A. B.1 C. D.2答题: A. B. C. D. (已提交)参考答案:C问题解析:23.( )A. B. C. D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:24.( )答题: A. B. C. D. (已提交)参考答案:A问题解析:25.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:26.( )A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:27.( )A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:28.( )A.1 B. C.0 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:29.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:30.( )A. B.C.1 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:1.( )A. B.C. D.1答题: A. B. C. D. (已提交)参考答案:C问题解析:32.广义积分( )A. B.不存在 C.0 D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:33.广义积分( )A.1 B.不存在 C.0 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:34.广义积分( )A.1 B.不存在 C.0 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:35.由抛物线,直线,及所围成的平面图形的面积等于( )A.2 B.1 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:36.由直线,,及曲线所围成的平面图形的面积等于( ) A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:37.由抛物线与直线及所围成的封闭图形的面积等于( ) A. B. C.2 D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:38.由曲线与直线及所围成的平面图形的面积等于( ) A. B.2 C.1 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:39.由曲线与所围图形的面积等于( )A.1 B. C.3 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:40.由,,所围成的封闭图形的面积等于( )A. B.1 C.3 D.2答题: A. B. C. D. (已提交)参考答案:A问题解析:.由及在点(1,0)处的切线和y轴所围成的图形的面积等于( ) A.1 B. C.2 D.3答题: A. B. C. D. (已提交)参考答案:B问题解析:42.由曲线与所围图形的面积等于( )A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:43.设由抛物线;,及所围成的平面图形为D,则D 绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:44.设由直线,,及曲线所围成的平面图形为D,则D 绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:45.设由曲线与直线及所围成的平面图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:46.设由抛物线与直线及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )答题: A. B. C. D. (已提交)参考答案:D问题解析:47.设由曲线与直线,及所围成的封闭图形为D,则D 绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:48.设由曲线与直线及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A。
华南理工高等数学B(上)参考答案-随堂练习答案
第一章-函数随堂练习答案1.函数的定义域是( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:2.函数的定义域是 ( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:3.函数的定义域是( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:4.函数的定义域为( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:5.函数的定义域是()A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:6.函数的定义域是( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:7.函数的定义域是()A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:8.若,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:9.若,,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:10.设,则( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:11.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:12.( )A. B.不存在 C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:13.( )A.不存在 B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.( )A. B.不存在 C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:15.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.( )A. B. C.不存在 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:17.当时,下列变量是无穷小的是( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:18.当时,与等价的无穷小是( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:19.( )A.0 B. C. D.1答题: A. B. C. D. (已提交)参考答案:B问题解析:20.( )A.8 B.2 C. D.0答题: A. B. C. D. (已提交)参考答案:D问题解析:21.( )A.0 B.1 C. D.2答题: A. B. C. D. (已提交)参考答案:D问题解析:22.下列等式成立的是( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:23.( )A. B.1 C.不存在 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:24.( )A.1 B. C.不存在 D.答题: A. B. C. D. (已提交)参考答案:D问题解析:25.( )A.0 B.1 C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:26.设函数在点处极限存在,则( ) A.2 B.4 C.1 D.0答题: A. B. C. D. (已提交)参考答案:A问题解析:27.设,则 ( ) A.0 B.-1 C.1 D.2答题: A. B. C. D. (已提交)参考答案:C问题解析:28.设,则( )A.1 B.2 C.0 D.不存在答题: A. B. C. D. (已提交)参考答案:A问题解析:29.设在处连续,则=( ) A.1 B.2 C.0 D.不存在答题: A. B. C. D. (已提交)参考答案:A问题解析:第二章极限与连续.曲线在点处的切线的斜率为( )A.-2 B.2 C.-1 D.1答题: A. B. C. D. (已提交)参考答案:B问题解析:2.曲线在点处的切线方程为( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:3.曲线在点处的切线方程为( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:4.曲线在点(1,1)处的切线方程为( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:5.设直线是曲线的一条切线,则常数( ) A. -5 B. 1 C.-1 D.5答题: A. B. C. D. (已提交)参考答案:D问题解析:6.设函数,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:7.设函数,则 ( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:8.设函数,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:9.设函数,则 ( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:10.设函数,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:11.设函数,在( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:12.设函数,则( ) A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:13.设函数,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.设函数,则( )A. B. C.D.答题: A. B. C. D. (已提交)参考答案:D问题解析:15.设函数,则 ( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:16.设函数,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:17.设函数,则( )A. B. C.D.答题: A. B. C. D. (已提交)参考答案:B问题解析:18.设确定隐函数,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:19.设函数,则( )A.4 B.-4 C.1 D.-1答题: A. B. C. D. (已提交)参考答案:C问题解析:20.设方程所确定的隐函数为,则( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:1.设函数由方程所确定,则( )A.0 B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:22.设方程所确定的隐函数为,则( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:23.设方程所确定的隐函数为,则( ) A. B.0 C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:24.设,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:25.设函数,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:26.设函数,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:27.设,则( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:第三章导数与微分1.( )A. B.0 C. D.1答题: A. B. C. D. (已提交)参考答案:C问题解析:2.( )A.B.0 C. D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:3.( )A. B. C. D.不存在答题: A. B. C. D. (已提交)参考答案:B问题解析:4.( )A. B. C.1 D.不存在答题: A. B. C. D. (已提交)参考答案:A问题解析:5.( )A. B. C.1 D.不存在答题: A. B. C. D. (已提交)参考答案:A问题解析:6.( )A. B. C.1 D.0答题: A. B. C. D. (已提交)参考答案:A问题解析:7.函数的单调减少区间是 ( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:8.函数的单调区间是 ( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:9.函数的单调增加区间是( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:10.函数的单调增加区间为 ( ) .A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:11.函数的单调减区间为( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:12.函数的单调增加区间为( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:13.函数的极值等于( )A.1 B.0 C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.函数的极值为( )A. B. C.0 D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:15.函数的极值为( )A.1 B.0 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.函数的极大值为( )A.-16 B.0 C.16 D.-7答题: A. B. C. D. (已提交)参考答案:B问题解析:17.函数的极大值为( )A.3 B.1 C.-1 D.0答题: A. B. C. D. (已提交)参考答案:A问题解析:18.有一张长方形不锈钢薄板,长为,宽为长的.现在它的四个角上各裁去一个大小相同的小正方形块,再把四边折起来焊成一个无盖的长方盒.问裁去小正方形的边长为( )时,才能使盒子的容积最大.A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:19.设有一根长为的铁丝,分别构成圆形和正方形.为使圆形和正方形面积之和最小,则其中一段铁丝的长为( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:20.欲围一个面积为150m2的矩形场地,围墙高3米.四面围墙所用材料的选价不同,正面6元/ m2,其余三面3元/ m2.试问矩形场地的长为( )时,才能使材料费最省.A.15 B.10 C.5D.8答题: A. B. C. D. (已提交)参考答案:B问题解析:21.设两个正数之和为8,则其中一个数为( )时,这两个正数的立方和最小.A.4 B.2 C.3D.5答题: A. B. C. D. (已提交)参考答案:A问题解析:22.要造一个体积为的圆柱形油罐,问底半径为( )时才能使表面积最小.A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:23.某车间靠墙壁要盖一间方长形小屋,现有存砖只够砌20m长的墙壁.问围成的长方形的长为( )时,才能使这间小屋的面积最大.A.8 B.4 C.5D.10答题: A. B. C. D. (已提交)参考答案:D问题解析:24.曲线的下凹区间为( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:25.曲线的拐点坐标为( )A. B. C. D.不存在答题: A. B. C. D. (已提交)参考答案:B第四章导数的应用1. ( )是的一个原函数.A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:2.下列函数中,()是的原函数A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:3.下列函数中,( )是的原函数A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:4. ( )是函数的原函数.A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:5.下列等式中,( )是正确的A. B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:6.若,则( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:7.若满足,则().A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:8.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:9.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:10.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:11.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:12.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:13.( )A. B.C.D.答题: A. B. C. D. (已提交)参考答案:A问题解析:14.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:15.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:17.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:18.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:19.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:20.( )A. B.C.D.答题: A. B. C. D. (已提交)参考答案:B问题解析:1.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:22.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A第五章不定积分1.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:2.曲线,直线,及轴所围成的图形的面积是( )A. B. C.D.答题: A. B. C. D. (已提交)参考答案:A问题解析:3.定积分等于( )A.2 B.1 C.0 D.-1答题: A. B. C. D. (已提交)参考答案:C问题解析:4.( )A.2 B.1 C.0 D.-1答题: A. B. C. D. (已提交)参考答案:C问题解析:5.( )A.2 B.0 C.1 D.-1答题: A. B. C. D. (已提交)参考答案:B问题解析:6.设函数在上连续,,则( ) A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:7.设,则等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:8.( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:9.B. C.1 D.A.0答题: A. B. C. D. (已提交)参考答案:B问题解析:10.A.1B.0 C. D.-1答题: A. B. C. D. (已提交)参考答案:D11.A. B. C. D.1答题: A. B. C. D. (已提交)参考答案:C问题解析:12.( )A.4 B.9 C.6 D.5答题: A. B. C. D. (已提交)参考答案:A问题解析:13.( )A.1 B.2 C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:14.( )A.2 B.C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:15.( )A. B. C.1 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.( )A. B. C.1 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:17.( )A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:18.( )A. B.0 C.1 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:19.( )A.0 B. C.1 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:20.( )A.1 B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:1.( )A. B. C. D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:22.( )A. B.1 C. D.2答题: A. B. C. D. (已提交)参考答案:C问题解析:23.( )A. B. C. D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:24.( )答题: A. B. C. D. (已提交)参考答案:A问题解析:25.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:26.( )A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:27.( )A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:28.( )A.1 B. C.0 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:29.( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:30.( )A. B.C.1 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:1.( )A. B.C. D.1答题: A. B. C. D. (已提交)参考答案:C问题解析:32.广义积分( )A. B.不存在 C.0 D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:33.广义积分( )A.1 B.不存在 C.0 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:34.广义积分( )A.1 B.不存在 C.0 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:35.由抛物线,直线,及所围成的平面图形的面积等于( )A.2 B.1 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:36.由直线,,及曲线所围成的平面图形的面积等于( ) A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:37.由抛物线与直线及所围成的封闭图形的面积等于( ) A. B. C.2 D.1答题: A. B. C. D. (已提交)参考答案:A问题解析:38.由曲线与直线及所围成的平面图形的面积等于( ) A. B.2 C.1 D.答题: A. B. C. D. (已提交)参考答案:A问题解析:39.由曲线与所围图形的面积等于( )A.1 B. C.3 D.答题: A. B. C. D. (已提交)参考答案:B问题解析:40.由,,所围成的封闭图形的面积等于( )A. B.1 C.3 D.2答题: A. B. C. D. (已提交)参考答案:A问题解析:.由及在点(1,0)处的切线和y轴所围成的图形的面积等于( ) A.1 B. C.2 D.3答题: A. B. C. D. (已提交)参考答案:B问题解析:42.由曲线与所围图形的面积等于( )A. B.1 C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:43.设由抛物线;,及所围成的平面图形为D,则D 绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:D问题解析:44.设由直线,,及曲线所围成的平面图形为D,则D 绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:A问题解析:45.设由曲线与直线及所围成的平面图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:B问题解析:46.设由抛物线与直线及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )答题: A. B. C. D. (已提交)参考答案:D问题解析:47.设由曲线与直线,及所围成的封闭图形为D,则D 绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.答题: A. B. C. D. (已提交)参考答案:C问题解析:48.设由曲线与直线及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B.C. D.答题: A. B. C. D. (已提交)参考答案:A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4分,共24分)
432x y x +,则(1,2)
d z
=3412dx dy +
cos sin x a t
y a t z ct
===在点 (,0,0)a 的切线方程为,y z x a a c ==
2222
()(,)0,)0(,)0
x y xy x y y x y x y ⎧-≠⎪
=+⎨⎪=⎩
,则(0,)x f y =y -.
22x y +在点0(1,2)P 处沿从点0(1,2)P 到点1(2,2P 方向的方向导数是
为取逆时针方向的圆周229x y +=,则曲线积分
2
)d (4)d x x
x y +-=18π-
y x =上点(0,0)到点(1,1)之间的一段,则曲线积分2d L
xy s =
⎰4
. 7分) 计算二重积分2
22e d x y D
xy σ⎰⎰,其中D 是由1,0y x x ===所
. 2
2x y xy e dx ------4’
’ 7分)计算三重积分⎰⎰⎰Ωd v z ,其中Ω是由22222
2
x y z z x y
⎧++≤⎪⎨≥+⎪⎩所确定. 2
r rdr ⎰
-------4’
’
四.(本题7分)计算2222d d ()d d (2)d d xz y z x y z z x xy y z x y ∑
+-++⎰⎰,其中∑为半球
面z =.
补面0z =,取下侧,---------------------------1’ =1
22222x y z dv xy y zdxdy Ω
∑++-+⎰⎰⎰⎰⎰-------------3’
=2420
sin a
d d r dr ππθϕϕ⎰⎰⎰---------------------2’
=5
25
a π-------------------------------------1’
五.(本题7分)计算(1)d x y S ∑++⎰⎰,其中∑为抛物面221
()(01)2z x y z =+≤≤.
=
222
(x y x y +≤++⎰⎰
-------------4’
=20
d πθ⎰---------------------2’
=21)3
π
-----------------
六.(本题7分)求22u x y z =-+在约束条件2221x y z ++=下的最大值和最小值.
22222(1)F x y z x y z λ=-++++------------------2’
12000x y z F x F F λ=-=== ---------------------------------------3’
2221x y z ++=
122
(,,)3(max)333u -=---------------------------------1’ 122
(,,)3(min)333u --=-------------------------------1’
七.(本题7分)设(,)x z f x y =,f 具有连续二阶偏导数,求2,.z z
x x y ∂∂∂∂∂
''121
z f f x y
∂=+∂---------------------3’ 2''''
'1222231()z xyf xf yf x y y
∂=-++∂∂--------4’
八. (本题7分)求微分方程2(e )d d 0x y x x x y -+-=的通解.
1
'x y y xe x --
=------------------------1’ 由1
'0y y x -=解出y Cx =--------------3’
常数变易解出()x y x C e -=-------------3’
九.(本题8分)设()f x 具有二阶连续导数,(0)0,'(0)1f f ==,且
2[()()]d ('())d 0xy x y f x y x f x x y y +-++=全微分方程,求()f x 及此全微分方程的
通解.
由x x P Q =得2''()()f x f x x +=-----------2’
2()2cos sin 2f x x x x =++-------------3’
通解22
2sin cos 22
x y y x y x xy c -+++=----3’
十. (非化工类做)(本题7分)求幂级数0
1n
n x n ∞
=+∑的收敛域及其和函数.
收敛域[1,1)------------2’
ln(1)
0()1
0x x S x x
x -⎧-
≠⎪=⎨⎪=⎩,[1,1)x ∈------5’ [1,1)-
十一. (非化工类做)(本题6分)将函数1()ln 1x
f x x
+=-展开成x 的幂级数.
()ln(1)ln(1)f x x x =+----------------2’ 0
((1)1)()1n n
n x f x n ∞
=-+=+∑---------------4’
十二. (非化工类做)(本题6分)证明在区间[,]ππ-上等式122
2
1
(1)cos 124n n x nx n π-∞
=-=-∑成立.
知道将2
4x 在[,]ππ-展开为Fourier 级数-------2’
22
00
2
46x a dx π
ππ
=
=⎰
-----------------2’ 21
2
(1)cos 4n n x a nxdx n
π
π
--=
=⎰
---------2’
十. (化工类做) (本题7分)在曲面22
122
z x y =+上求出切平面,使所得切平面与平面42210x y z ---=平行.
切点1
(,1,1)2
-------------5’
切平面方程210x y z ---=-----------2’
十一. (化工类做)(本题6分)设(,)z z x y =是由方程22()x y z x y z ϕ+-=++所确定的函数,其中()x ϕ可导,求d z .
两边微分22'()xdx ydy dz dx dy dz ϕ+-=++--------------3’
(2')(2')1'
x dx y dy
dz ϕϕϕ-+-=
+--------------------------------3,
十二. (化工类做)(本题6分)
证明函数22
2222()sin 0(,)00
x y x y f x y x y ⎧++≠⎪
=⎨
⎪
+=⎩
在
原点(0,0)处可微,但偏导函数(,)x f x y 在点(0,0)处不连续.
用定义算出(0,0)0x f =,(0,0)0y f =------------------------1’
0→------------------------------------------2’
(,)2x f x y x =
在点(0,0)不连续------------------------------------------------------3’。