正态总体参数的假设检验

合集下载

数理统计17:正态总体参数假设检验

数理统计17:正态总体参数假设检验

数理统计17:正态总体参数假设检验现在,我们对正态分布的参数假设检验进⾏讨论,这也是本系列的最后⼀部分内容。

由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:基本步骤正态总体N (µ,σ2)参数的假设检验不外乎遵循以下的步骤:找到合适的统计量,⽤统计量的取值范围设计拒绝域。

假定原假设为真,考虑这个条件下统计量的分布。

根据统计量的分布,根据检验的⽔平要求设置拒绝域的边界值。

设计检验的核⼼在于假定原假设为真,这是因为检验的⽔平是基于弃真概率定义的,也就是说,要在第三步中写出检验的⽔平,就必须在H 0成⽴的情况下找出⼩概率事件的发⽣条件。

⽐如,对于均值的检验⼀共有三种:1.H 0:µ=µ0↔H 1:µ≠µ0;2.H 0:µ≥µ0↔H 1:µ<µ0;3.H 0:µ≤µ0↔H 1:µ>µ0.每⼀种⼜可以细分为⽅差σ2已知和⽅差σ2未知两种情况,但显然不论⽅差是否已知,最核⼼的统计量都应该是¯X,如果⽅差未知可能还要⽤到⽅差的替代:S 2。

以下,对于这三种问题,拒绝域分别应该是这样的:如果H 0被接受,则¯X 既不应该太⼤,也不应该太⼩,拒绝域的基础形式应该是{¯X >c 1}∪{¯X <c 2}.如果H 0被接受,则¯X 不应该太⼩,⽆论多⼤都可以,拒绝域的基础形式应该是{¯X <c }.如果H 0被接受,则¯X 不应该太⼤,⽆论多⼩都可以,拒绝域的基础形式应该是{¯X>c }.当然,这只是拒绝域的基础形式,实际情况下可能不⽌使⽤¯X,但基本思想应该是这样的。

对于⽅差的检验,则将检验统计量换成了S 2,或者均值已知情况下的离差平⽅和Q 2,步骤也和上⾯的差不多。

正态总体的假设检验

正态总体的假设检验
(Xi μ)2
n
(Xi μ)2
P { i1
σ
2 0
χ
2 1
α 2
(
n)}
P{
i 1
σ
2 0
χ
2
α
(
n)}
α
2
所以拒绝域为: W
{
χ2
χ
2 1
α 2
(
n)
,χ
2
χ
2
α
(n)
}
2
2. μ未知时,总体方差σ2的假设检验 χ2 检验法
类型 原假设 备择假设
H0
H1
检验统计量
双边 检验
σ2
σ
2 0
σ2
得s=0.007欧姆.设总体服从正态分布,参数均未知,
问在显著性水平α=0.05下,能否认为这批导线的
标准差显著地偏大?
解: s2 0.0072 0.0052
原假设 H 0 : σ 2 0.0052,备择假设 H1 : σ 2 0.0052
检验统计量: χ 2 (n 1)S 2
σ2
拒绝域:
第二节 正态总体的假设检验
一、单一正态总体均值μ的假设检验
二、单一正态总体方差σ2的假设检验 三、两个正态总体均值的假设检验 四、两个正态总体方差的假设检验
一、单一正态总体均值μ的假设检验
设总体X~N (, 2). X1 , X2 , … , Xn是取自X的样本,
样本均值 X样,本方差S2
1.已知
T t(α n 1)
例1. 设某次考试的考生的成绩服从正态分布,从中随
机地抽取36位考生的成绩,算得平均成绩为66.5分,标 准差为15分,问在显著性水平0.05下,是否可以认为在 这次考试中全体考生的平均成绩为70分?

单个正态总体的假设检验

单个正态总体的假设检验

计算统计量 Z 的观察值
z0
x 0

n
.
(8.3)
如果:( a ) | z0 |> zα/2,则在显著性水平 α 下,拒绝原假设 H0
(接受备择假设H1),所以| z 0|> zα/2 便是 H0 的拒绝域。
( b ) | z0 | z /2 ,则在显著性水平 α 下,接受原假设 H0,认
=0.05 下 否 定 H0 , 即 不 能 认 为 这 批 产 品 的 平 均 抗 断 强 度 是
32.50kg·cm-2。
把上面的检验过程加以概括,得到了关于方差已知的正态总体期
望值 μ 的检验步骤:
( a )提出待检验的假设 H0 :μ = μ0; H1:μ ≠ μ0。
( b )构造统计量 Z ,并计算其观察值 z0 :
1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?
这里假设测量值 X 服从 X ~ N ( μ , σ2) 分布。

①问题是要检验
提出假设 H0 :μ = μ0=1227; H1:μ ≠ μ0。
由于
σ2
未知( 即仪器的精度不知道 ),我们选取统计量 T
当 H0 为真时,T ~ t ( n -1) ,T 的观察值为
X
X 0

N ( , ) ,
n
Z
n
X 0

n
N (0,1) ,
(8.2)
作为此假设检验的统计量,显然当假设 H0 为真(即μ = μ0正确)
时, Z ~ N ( 0 , 1),所以对于给定的显著性水平 α ,可求出 zα/2,
使
P{| Z | z 2 } .
见图8-3,即

第二节 正态总体均值的假设检验

第二节 正态总体均值的假设检验
α 2 α 2
σ
~ N(0,1)
n
(σ 2 已知)
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
=0 ≠0
X 0 T= ~ T(n 1) S n
接受域
x 0 s n
≤ tα
(σ 2未知)
2
待估参数
枢轴量及其分布 置信区间
X 0 T= ~ T(n 1) S n
( x tα
2
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
U=
X 0
σ
U ≥ zα
2
n
U ≤ zα
N(0,1)
U ≥ zα
未知) T 检验法 (σ2 未知) 原假设 备择假设 检验统计量及其 H0 H1 H0为真时的分布 拒绝域
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
X 0 T= S n ~ t(n 1)
(2)关于 σ
2
χ2检验法 的检验
拒绝域
原假设 备择假设 检验统计量及其在 H1 H0为真时的分布 H0
σ
2=σ 2 0
σ
2≠σ 2 0
χ =
2
∑(X )
i=1 i
n
χ ≤ χ (n)
2 2 1α 2
2
或 χ 2 ≥ χα2 (n)
2
σ 2≥σ 02 σ 2<σ 02
σ
2 0
~ χ (n)
2
χ ≤ χ (n)
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
1 – 2 = δ 1 – 2 ≠ δ 1 – 2 ≥ δ 1 – 2 < δ 1 – 2 ≤ δ 1 – 2 > δ

两个正态总体参数的假设检验 推导

两个正态总体参数的假设检验 推导

两个正态总体参数的假设检验推导一、引言假设检验是统计学中常用的方法,用于检验两个正态总体参数是否具有显著差异。

本文将介绍两个正态总体参数的假设检验的推导过程,主要包括以下步骤:假设提出、样本收集、样本检验、推断结论、结果解释和误差分析。

二、假设提出假设检验的基本思想是通过样本数据对总体参数进行推断。

在这个过程中,首先需要提出假设,即对两个正态总体参数的关系做出假设。

通常,假设检验中包含两个假设:零假设(H0)和备择假设(H1)。

零假设通常表示两个总体参数无显著差异,备择假设则是与零假设相对的假设。

例如,我们可以在零假设中设定两个总体均数相等,备择假设则是均数不等。

三、样本收集在提出假设后,需要收集样本数据以进行检验。

样本收集应遵循随机抽样的原则,以确保样本的代表性。

在收集样本时,还需要注意样本量的大小,以保证推断结论的准确性。

四、样本检验样本检验是假设检验的核心步骤,包括计算样本统计量、确定临界值和做出推断结论等步骤。

样本统计量是根据样本数据计算出的量,用于推断总体参数。

临界值是用于判断样本统计量是否达到显著差异的标准。

在做出推断结论时,需要根据样本统计量和临界值进行比较,以确定零假设是否被拒绝。

五、推断结论根据样本检验的结果,可以做出推断结论。

如果样本统计量超过了临界值,则可以拒绝零假设,接受备择假设;否则,不能拒绝零假设。

推断结论是假设检验的关键步骤之一,要求谨慎和客观地做出判断。

六、结果解释推断结论做出后,需要对结果进行解释。

解释结果时需要关注以下几点:一是理解推断结论的含义,二是明确结果对于实践的意义,三是注意结果的局限性,即样本量和误差范围等因素对结果的影响。

结果解释要求清晰明了地传达结果的含义和应用范围。

七、误差分析误差分析是假设检验中不可或缺的一环。

误差分为两类:一类是随机误差,由随机抽样造成;另一类是系统误差,由样本设计和处理等环节造成。

误差分析的目的是评估结果的可靠性和精确性,从而确定结果在实际应用中的可信度。

正态总体均值的假设检验

正态总体均值的假设检验

假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)

又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验

正态总体的均值和方差的假设检验

正态总体的均值和方差的假设检验

12
n1

2 2
n2
~ N (0,1)
给定α 0.05,
(当H 0成立时)
由 Φ(u0.025 ) 0.975, 查表可得 uα / 2 u0.025 1.96
(3)拒绝域: W1={(x1, x2, ∙∙∙, xn, y1, y2, ∙∙∙, yn)||u| u /2=1.96},
3. μ为未知,关于σ 2的检验(χ 2检验法)
设X 1 , X 2 , , X n是来自正态总体 N ( μ, σ 2 )的一样本,
其中μ, σ 2未知,检验水平为 α,检验σ 2步骤为:
1 假设H0 : 2 0 2 , H1: 2 0 2 ;
X1 , X 2 ,, X n为来自总体X的样本,
2 2 2 2 X ~ N ( μ1 , σ1 ),Y ~ N ( μ2 , σ 2 ), σ1 60, σ 2 80,问
两台机床生产的产品重量有无显著差异( =0.05)? 解 本题归结为检验假设
(1) H0 : 1 2 , H1: 1 2 ,
(2)取检验的统计量为 U ( X Y ) /
解 (1)
本题归结为检验假设
H 0 : μ 800,
H1 : μ 800;
40,n 9 X 800 (2)选择统计量 U 9 40
当H0成立时,U~N(0,1).
(3)给定显著性水平 = 0.05,由正态分布函数表 查得u /2=u0.025 =1.96,从而得检验的拒绝域为 W1={(x1 , x2 , ∙∙∙ , xn) :|u| u 0.025 =1.96 }; (4) 由样本值计算U的观测值为
x 0 s / n

7-2正态总体参数的检验

7-2正态总体参数的检验
第二节 正态总体参数的假设检验
一、单个正态总体均值的检验 二、两个正态总体均值差的检验 三、正态总体方差的检验
同上节) 标准要求长度是32.5毫米 毫米. 例2(同上节 某工厂生产的一种螺钉 标准要求长度是 同上节 某工厂生产的一种螺钉,标准要求长度是 毫米
实际生产的产品,其长度 假定服从正态分布N( σ 未知, 实际生产的产品,其长度X 假定服从正态分布 µ,σ2 ) ,σ2 未知, 现从该厂生产的一批产品中抽取6件 得尺寸数据如下: 现从该厂生产的一批产品中抽取 件, 得尺寸数据如下
(1)与(4); (2)与(5)的拒绝域形式相同 与 的拒绝域形式相同. 与 的拒绝域形式相同
一、单个正态总体均值的检验
是来自N( σ 的样本 的样本, 设x1,…,xn是来自 µ,σ2)的样本 关于µ的三种检验问题是 (µ0是个已知数 是个已知数)
(1) H0 : µ ≤ µ0 vs H1 : µ > µ0 (2) H0 : µ ≥ µ0 vs H1 : µ < µ0 (3) H0 : µ = µ0 vs H1 : µ ≠ µ0
对于检验问题 对于检验问题
(2) H0 : µ ≥ µ0 vs H1 : µ < µ0
x − µ0
仍选用u统计量 u = 选用 统计量 相应的拒绝域的形式为: 相应的拒绝域的形式为
取显著性水平为α 取显著性水平为α,使c满足 P 0 (u ≤ c) = α 满足 µ
由于μ = μ 0时,u ~ N(0,1),故 c = uα,如图 故 , 因此拒绝域为: 因此拒绝域为 或等价地: 或等价地 φ(x)
检 H0 : µ = µ0 vs H1 : µ ≠ µ0 验
x − µ0 s/ n
接受域为: 接受域为

单个正态总体参数的假设检验

单个正态总体参数的假设检验

单个正态总体参数的假设检验1.提出假设:首先,我们需要提出关于总体参数的假设。

在单个正态总体参数的情况下,我们通常对总体的均值(μ)或标准差(σ)进行假设。

2.确定显著性水平:显著性水平(α)是一个事先设定的临界值。

根据显著性水平,我们可以决定接受还是拒绝原假设。

3.构建统计量:接下来,我们需要构建一个适当的统计量来判断总体参数的假设。

在单个正态总体参数的情况下,通常使用t统计量或z统计量。

4.计算统计量的值:根据样本数据,计算所选统计量的值。

如果使用t统计量,则需要计算样本均值和标准差;如果使用z统计量,则只需计算样本均值。

5.确定拒绝域:拒绝域是根据显著性水平和统计量的分布确定的。

根据统计量的值和拒绝域的临界值,我们可以决定是否拒绝原假设。

6.做出决策:根据统计量的值和拒绝域,我们可以做出决策:接受原假设或拒绝原假设。

下面以一个具体的例子来说明单个正态总体参数的假设检验。

假设我们要检验一些公司员工的平均工资是否等于5000元。

我们从公司中随机抽取了50个员工的工资数据,假设工资数据服从正态分布。

现在我们要进行假设检验。

1.假设提出:原假设(H0):员工的平均工资等于5000元;备择假设(H1):员工的平均工资不等于5000元。

2.显著性水平:我们设定显著性水平为0.053.构建统计量:由于样本量较大(n=50),我们可以使用z统计量。

z统计量的计算方法为(样本均值-总体均值)/(总体标准差/根号n)。

4.计算统计量的值:假设我们计算出样本均值为4950元,总体标准差为100元。

5.确定拒绝域:由于显著性水平为0.05,我们需要找出z值对应的临界值。

在标准正态分布表中查找z=1.96对应的值,并根据原假设的双侧检验找出拒绝域的范围。

6.做出决策:根据统计量的值和拒绝域的范围,我们可以判断是否拒绝原假设。

如果统计量的值落在拒绝域之外,我们将拒绝原假设,即认为员工的平均工资不等于5000元。

正态总体均值和方差的假设检验

正态总体均值和方差的假设检验
分布。要根据s的值检验假设H0: 10.00;H1: 10.00
求检验统计量为 2 (n -1)S 2 8 s2 0.08s2
σ02
100
当H0为真时,χ2服从自由度为8的χ2分布
对于α=0.05,
查表得
2 0.975
(8)
2.180,
2 0.025
(8)
17.535
则拒绝域为
W {0.08s2 2.180 U0.08s2 17.535}

W {s 5.220 Us 14.805}
每当测得s的值小于5.220或大于14.805时, 就认为机床的精度发生了变化。应引起注意, 并分析原因。
当方差σ12σ22已知时,用U检验法,构造 统计量
U (X Y)
2 1
2 2
n1 n2
取显著性水平α
P{| U | u /2}
得拒绝域为 | U | u /2
二、正态总体方差的检验
1、单个总体的情况—χ2检验
设总体N(, 2), , 2 未知,x1,L ,xn 是
来自总体X的样本,现要检验假设(显著性
(n
1)S
2 0
2
2/2 (n 1)
2
,
则p{ 2 χ12 (n 1) 2 χ2 (n 1)} α
2
2
得显著性水平为的拒绝域为
2
2 1
/
2
(n
1)或
2
2 / 2 (n 1)。
例3 由以往管理生产过程的大量资料表明某自 动机床产品的某个尺寸X服从正态分布,其标 准差为σ0=10.00毫米,并且把σ0=10.00毫米 定为机床精度的标准。为控制机床工作的稳定 性,定期对其产品的标准差进行检验:每次随 机地抽验9件产品,测量结果为x1,x2,…x9。试 制定一种规则,以便能根据样本标准差s的值 判断机床的精度(即标准差)有无变化(显著 性水平为α=0.05)? 解 依题意,所考虑的产品指标X服从正态

单个正态总体参数的假设检验

单个正态总体参数的假设检验

单个正态总体参数的假设检验一、假设检验的基本概念假设检验是统计推断的一种方法,其基本思想是通过抽样来对总体参数进行推断,并判断总体参数是否满足其中一种假设。

在进行假设检验时,我们首先提出一个原假设(H0),这是一个既定的假设,表示总体参数满足其中一种特定的值或不满足其中一种特定的关系。

同时,我们还提出一个备择假设(H1),表示总体参数不满足原假设。

通过对样本数据的统计推断,我们可以对原假设进行拒绝或不拒绝的判断。

二、假设检验的步骤假设检验一般包括以下步骤:1.提出假设:根据问题的需求和背景条件,提出原假设和备择假设。

2.确定显著性水平:显著性水平(α)是指当原假设成立时,我们愿意犯第一类错误的概率。

一般情况下,我们常使用0.05作为显著性水平。

3.选择检验统计量:根据所需检验的问题,选择适当的检验统计量。

在单个正态总体参数的假设检验中,常用的检验统计量有Z检验和t检验。

4.计算检验统计量的观察值:根据样本数据计算出检验统计量的观察值。

5.根据显著性水平查找拒绝域:根据显著性水平和检验统计量的分布,查找拒绝域的临界值。

6.判断并作出结论:如果检验统计量的观察值落在拒绝域内,则拒绝原假设,否则不拒绝原假设。

三、应用领域1.药物临床试验:在新药物的临床试验中,可以通过对患者进行抽样,检验患者服用药物前后的药效差异是否显著,以判断药物的疗效。

2.市场调研:在市场调研中,可以通过对一定数量的顾客进行问卷调查,检验顾客对其中一种产品的满意度是否显著不同,以了解产品在市场中的竞争力。

3.品质控制:在生产过程中,可以通过抽样检验产品的质量是否符合设定的标准。

例如,食品加工厂可以通过抽样检验产品的营养成分是否达到设定的要求。

4.经济学研究:在经济学研究中,可以通过对一定数量的经济指标进行抽样,检验指标的差异是否显著,以判断宏观经济政策的有效性。

总结:单个正态总体参数的假设检验是统计学中一种重要的方法,通过对样本数据的统计推断,判断总体参数是否满足其中一种假设。

5.4,5.5一个正态总体参数的假设检验

5.4,5.5一个正态总体参数的假设检验

提出待检验假设
H 0 : µ = 23. 取α = 0.05
X − 23 X −µ 如果 H 0成立 U0 = 2 ~ N (0,1) U= ~ N (0,1) 2 6 6 X − 23 P > uα = α 2 2 6
X = 20.5, U 0 = 3.06 > 1.96 X − 23 P > 1.96 = 0.05 2 不能接受 " µ = 23" 这一假设 6
判 等 "EX = 23"成 与 ? 断 式 立 否
例 2, 用传统工艺加工的红果 罐头 , 每瓶平均维生素 C 的含量为 19毫克 , 现改进加工工艺,抽查 16 瓶罐头,测得 VC 含量为 现改进加工工艺, 瓶罐头, 23; .5; ; ; ; .5; ; ; ; .5; .8; ; .5; ; ; .(毫克 ) 20 21 22 20 22 19 20 23 20 18 20 19 22 18 23 若假定新工艺的方差 (1)σ 2 = 4为已知 ; ( 2 )σ 2 未知 , 问新工艺下 VC 的含量是否比旧工艺下 含量高 ?
2. H 0 : µ ≤ µ 0
解 .待检验的假设是 H 0 : µ ≤ 19. 设 α = 0 .05 , σ 2 = 4
分析
U= X −µ
σ
~ N(0,1)
U0 =
X − 19
σ
. U 0的分布不能确定
当H 0 成立时
n
U ≥ U0
P {U 0 > uα } ≤ P{U > uα }
X − 19 > uα ≤ α 则P σ n
α
第二类错误 当原假设 H0 不成立时,而样本值却落入了接受域,从而 不成立时,而样本值却落入了接受域, 的结论。也就是说, 作出接受 H0的结论。也就是说,把不符合 H0 的总体当 成符合 H0 的总体加以接受 . “纳伪”的错 纳伪” 误

第二节 正态总体参数的检验

第二节 正态总体参数的检验
∵ χ > λ2 , ∴ 否定 H 0 , 即认为方差显著地改变了. 即认为方差显著地改变了.
2
9
二、两个正态总体参数的假设检验
2 设 有 两 个 相 互 独 立 的 正 态 总 体 X ~ N ( µ1,σ 1 ) ,
Y ~ N ( µ 2,σ ) , 分别抽取独立的样本 ( X1 , X2 ,⋯, Xn1 ) 和
2
µ 第六章证明, X = ( (− , ) 第六章证明,若 χ 2 ~ Nn−1σS 证明 (2) 检验统计量 2
2 2 H 下 O χ1−α / 2(n−1) 2 0 ), 2 则
x
( n − 1) S

~ χ (n −1) ,
(4) 由样本值算得
χ的值; 的值;
2
则拒绝H 否则 不能 若 χ 2 < λ1 或 χ 2 > λ2 ,则拒绝 0 ; 否则, 拒绝H 拒绝 0 .
− tα / 2 ( n − 1) O
tα / 2 (n − 1)
x
~
(4) 由样本值算得 t 的值; 的值; 则拒绝H 如果 | t |> tα 2 (n − 1) ,则拒绝 0 ; 否则, 不能拒绝H 否则 不能拒绝 0 .
5
两家生产同一类产品, 例2 两家生产同一类产品,其质量指标假定都服从正 态分布,标准规格为均值等于120.现从甲厂抽出5 120.现从甲厂抽出 态分布,标准规格为均值等于120.现从甲厂抽出5件 产品,测得其指标值为119,120,119.2,119.7,119.6; 产品,测得其指标值为119,120,119.2,119.7,119.6; 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 122.2,113.8,117.2。 122.2,113.8,117.2。试判断这两家厂的产品是否符 合标准. 合标准. (α = 0.05 )

7.2正态总体的参数假设检验

7.2正态总体的参数假设检验

∵ X ~ N(µ,σ ),
2
σ2 ) ∴X ~ N(µ, n
X − µ0
当H0 为真 时, 利用 统计 u = 量 这 种检 验法 称为u 检验 . 法
σ/ n
~ N(0,1)来 确定 绝域 , 拒 的
由于µ的点估计是x ,
当H 0:µ = µ 0 为真时,
当 x − µ 0 ≥ k , 拒绝H 0
10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度服从正态分布, 假定切割的长度服从正态分布 且标准差没有变 试问该机工作是否正常? 化, 试问该机工作是否正常 (α = 0.05)
解 依题意 X ~ N ( µ ,σ 2 ), µ ,σ 2均为未知,
要检验假设 H 0 : µ = 10.5, H 1 : µ ≠ 10.5,
一个有用的结论
α , 当显著性水平均为 时
检验问题 H 0 : µ ≤ µ 0 , H 1 : µ > µ 0 和 检验问题 H 0 : µ = µ 0 , H 1 : µ > µ 0
有相同的拒绝域. 有相同的拒绝域
练习:346页6(1)
(3) 假设检验H0 : µ ≥ µ0 , H1 : µ < µ0 .
P( X − µ0 ≤ −k) = P(u = X − µ0
σ/ n

−k
σ/ n
) =α
σx , 当H :µ ≥ µ 为真时, n 由于µ的点估计是 σ σ uα 则x ≤ µ 0 k+拒绝H = µ 0 − u1−α 当x − µ ≤ − ,
0 0
拒绝域为
−k
= uα 即u ≤ uα
0
0
n
n

正态总体中参数的假设检验

正态总体中参数的假设检验

正态总体中参数的假设检验正态总体参数的假设检验是统计推断中的一种方法,用于判断总体参数是否符合我们的假设。

下面将详细介绍正态总体参数的假设检验原理和步骤。

一、假设检验原理正态总体参数的假设检验是通过收集样本数据,计算样本统计量来推断总体参数的方法,其中包括均值和标准差。

在进行正态总体参数的假设检验时,我们首先假设总体参数的值,并设立一个零假设和一个备择假设。

其中零假设(H0)是我们希望证伪的假设,备择假设(H1)是我们希望证明的假设。

然后,我们根据样本数据计算得到样本统计量,比如样本均值和样本标准差,并将其与假设中的总体参数进行比较。

通过计算假设检验统计量的值,我们可以判断是否拒绝零假设,即总体参数是否符合我们的假设。

二、假设检验步骤1.确定假设:我们首先需要确定我们要研究的总体参数是均值还是标准差,并设立零假设和备择假设。

通常情况下,零假设是总体参数等于一些特定值,备择假设可以是总体参数大于、小于或者不等于该特定值。

2.收集样本数据:我们需要从总体中取得一个样本,并记录相应的观测值。

3.计算样本统计量:根据样本数据,我们可以计算得到样本均值和样本标准差。

4.计算假设检验统计量:根据样本数据和零假设中的总体参数值,我们可以计算得到假设检验统计量的值,该值用于判断是否拒绝零假设。

5.设定显著性水平:我们需要设定一个显著性水平,通常为0.05或0.01、显著性水平表示拒绝零假设的程度,如果得到的结果小于显著性水平,则可以拒绝零假设。

6.判断拒绝或接受零假设:根据计算得到的假设检验统计量的值与临界值进行比较,如果假设检验统计量的值小于临界值,则拒绝零假设;如果假设检验统计量的值大于等于临界值,则接受零假设。

7.得出结论:根据拒绝或接受零假设的结果,我们可以得出总体参数是否符合我们的假设。

三、举例说明假设我们要研究厂生产的产品的重量是否符合标准,假设标准重量为500克。

我们收集了一个包含30个产品的样本,并计算得到样本的平均重量为495克,标准差为10克。

正态总体参数假设检验公式

正态总体参数假设检验公式

正态总体参数假设检验公式正态总体参数假设检验,这可是统计学里挺重要的一块知识呢!咱先来说说啥是正态总体。

简单来讲,就是一堆数据形成的分布,长得像个“钟形”,两边低中间高,挺对称的那种。

那为啥要对正态总体的参数进行假设检验呢?比如说,咱们想知道某个班级学生的考试成绩是不是符合某种预期,或者工厂生产的零件尺寸是不是在规定的范围内。

这时候,就需要用假设检验的公式来判断啦。

假设检验的公式有好几个,咱先来说说关于均值的。

比如说,有一个总体的均值我们假设是μ0,然后从这个总体里抽了个样本,算出样本均值是x,样本标准差是 s 。

这时候,就可以用 t 检验的公式:t = (x - μ0) / (s / √n) 。

这里的 n 是样本的数量。

我给您讲个我遇到的真事儿吧。

有一次,我去一个工厂,他们生产一种零件,标准的长度应该是10 厘米。

我随机抽了50 个零件来测量,算出来样本均值是 9.8 厘米,样本标准差是 0.5 厘米。

然后我就用这个t 检验的公式来算算,看这批零件的长度是不是跟标准的有显著差别。

再来说说关于方差的假设检验。

比如说,我们想知道一个总体的方差是不是等于某个值σ0² ,这时候就要用到卡方检验的公式啦。

假设检验可不是随便乱用的哦,得先搞清楚一些条件。

比如说,样本是不是独立的呀,是不是来自正态总体呀等等。

而且,在实际应用中,可不能光套公式,得理解背后的原理。

就像刚才说的工厂零件的例子,如果不理解为啥要这么做,就算算出结果来,也不知道到底意味着啥。

总之,正态总体参数假设检验公式是个很有用的工具,但要用好它,得下点功夫,多练习,多琢磨。

希望您在学习和使用这些公式的时候,能顺顺利利的,别被它们给难住啦!。

正态总体参数假设检验

正态总体参数假设检验
16 July 2012
嘉兴学院
第七章 假设检验
第18页
7.2.2 两个正态总体均值差的检验 检验 法 u检 验 t检 验 条 件 原假 设 备择 假设 检验统 计量 拒绝域
已 知
未 知
嘉兴学院
16 July 2012
第七章 假设检验
第19页
大样 本检 u验 近似 t检 验
未知 m,n充 分大 未知 m,n不 很大
16 July 2012
嘉兴学院
第七章 假设检验
第4页
(a)
16 July 2012
(b)
(c)
嘉兴学院
第七章 假设检验
第5页
该检验用 u 检验统计量,故称为u 检验。 下面以 由 为例说明: 可推出具体的拒绝域为
该检验的势函数是 的函数,它可用正态分布 写出,具体为
16 July 2012
16 July 2012
16.2 16.4 15.8 15.5 16.7 15.6 15.8 15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0
嘉兴学院
第七章 假设检验
第30页
这是两正态总体方差之比的双侧假设检验问题, 待检假设为 此处 m=7,n=8,经计算
于是 查表知 ,若取 =0.05,
通常 , 均未知,记 , 分别是由 算得的 的无偏估计和由 算得的 的无偏估计.
16 July 2012
嘉兴学院
第七章 假设检验
第28页
可建立检验统计量: 三种检验问题对应的拒绝域依次为

16 July 2012
}。
嘉兴学院
第七章 假设检验
第29页
例7.2.5 甲、乙两台机床加工某种零件,零件 的直径服从正态分布,总体方差反映了加工 精度,为比较两台机床的加工精度有无差别, 现从各自加工的零件中分别抽取7件产品和8 件产品,测得其直径为 X (机 床甲) Y (机 床乙)

8.2 正态总体下未知参数的假设检验.

8.2 正态总体下未知参数的假设检验.

解 依题意,假设H0:2=1002,H1:2≠1002,选取
检验统计量
2 (n 1)S 2 ~ 2 (n 1)
2 0
因此对给定检验水平 =0.05,由2分布表求得临界值
2 /2
(n
1)
2 0.025
(15)
27.488
2 1
(n
1)
2 0.975
(15)
6.262
2
又据样本值算得: s2 92.40382
(n 1)S 2
~
2 (n 1)
2 0
2 0
因此对给定检验水平 >0,由2分布表求得临界

2
/
2 (n–1)及
2 1
/2
(n–1)使
P{ 2
2
/
2
(n
1)}
P{ 2
2 1 2
(n
1)}
2
再由样本值(x1, x2, …, xn)具体计算统计量2的观察值
判断:
2
(n
1)s2
2 0

2
2
/
2
依题意建立假设H0: = 0,H1: ≠ 0。
这里2未知,故在H0成立的条件下应选取检验统计量
T X 0 ~ t(n 1)
S/ n
由已知 =0.05,查t分布表得临界值 t/2 =t0.025(6-1)=2.571。
又由样本值算得
x 51.5 s2 8.9
t 51.5 52.0 0.41 8.9 / 6
上例说明: 1)对于同一个问题,同一个样本,由于检验水平不 一样,可能得出完全相反的结论。因此,在实际应用 中,如何合理地选择检验水平是非常重要的。
2) 越大(z 2越小)故拒绝域增大即差异
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正态总体参数的假设检验
1. 选择题
(1)总体2
~(,)X N μσ,对数学期望μ进行假设检验,如果在显著水平0.05α=下接受
了000:(H μμμ=为已知常数),那么在显著水平0.01α=下( A )。

(A ) 必接受0H (B) 必拒接0H
(C) 可能接受也可能拒接0H (D) 不接受也不拒接0H
2 已知某炼铁厂铁水含碳量服从正态分布)108.0,550.4(2N ,现观测了九炉铁水,其平均含碳量为4.484,如果方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.550(α=
在H0成立条件下,U ~N(0,1),查表知: P{|U |>1.96}=0.05.
而|U0|=1.833<1.96,
故接受H0,即不能否认现在生产的铁水平均含碳量仍为4.550.
3. 过去某工厂向A 公司订购原材料,自订货日开始至交货日止,平均为49.1日,现改为向
B 公司订购原料,随机抽取向B 公司订的8次货,交货天数为:46 38 40 39 52 35 48 44, 问B 公司交货日期是否较A 公司为短
(α=0.05)?
解 待检验的假设是H0 : μ≥49.1.
使用统计量
α=0.05
,自由度为7,查t 分布临界值表
t0.1(7)=1.895,故H0在检验水平α=0.05的拒接域为
因此
S =5.7257.
所以应拒接H0,即可以认为B 公司交货日期显著比A 公司要短.
4. 用一台自动包装机包装葡萄糖,假定在正常情况下,糖的净重服从正态分布.根据长期资料表明,标准差为15克.现从某一班的产品中随机取出9袋,测得重量为:497 506 518 511 524 510 488 515 512. 问包装机标准差有无变化?(α=0.05) 解 待检验的假设是H0 : σ2
=152
选取统计量
当H0成立时,
22(1)n χχ-:。

α=0.05,查χ2分布临界值表得临界值
由于22.1817.535χ<<, 故接受H0,即不能认为标准有显著变化.
5.某市质监局接到顾客投诉,对某金商进行质量调查,现从其出售的标志18K 的项链中抽取9件进行检测,检测标准为:标准值18K 且标准差不得超过0.3K 。

检测结果如下:17.3 16.6 17.9 18.2 17.4 16.3 18.5 17.2 18.1,假定项链的含金量服从正态分布,试问检测结果能否认定金商出售的产品存在质量问题?(显著性水平01.0=α)
解: 计算9个数据的均值和标准差:5.17=x ,7416.0=s ,
检验均值:00:μ
μ=H ,01:μμ≠H ,
0226.2-,查表355.3)8(005.0=t ,保留原假设,可以认为商家产品的平均含金量为
18k 。

检验标准差:00:σσ≤H ,01:σσ>H
认为商家产品的标准差过大。

综上分析,尽管由于均值仍可认为是18k,但由于标准差过大,导致产品质量不稳定,故而不合格产品增多。

商家应减少产品质量的波动。

相关文档
最新文档