容栅传感器说明书
容栅位移传感器

第17卷 第1期桂 林 电 子 工 业 学 院 学 报V o l .17,N o .1 1997年3月JOURNAL OF GU I L IN INSTITUTE OF EL ECTRON I C TECHNOLOG Y M ar .1997 1996-08-26收稿,1997-01-07修改定稿作者 男 32岁 大学本科 工程师 桂林 541004容栅位移传感器郝卫东(电子机械工程系)摘 要通过对容栅专用集成电路78102的内部结构的分析,得出实际数显卡尺位移测量的工作原理和实际测量数据的取得过程,依此推导出容栅的栅条宽度尺寸和对动栅、定栅的具体要求,最后对串行数据输出口扩展应用作了探讨。
关 键 词 电子数显卡尺;容栅传感器;专用集成电路中图法分类 TN 454引 言目前许多文章和教科书都提到容栅的工作原理,但不论是调幅式还是调相式,介绍都不深入,离实际应用还有很大距离。
对于容栅研究者来说,想设计专用容栅集成块完全不可能,如果用一般硬件,如单片机、PC 机和数字电路来设计容栅位移传感器,由于杂散电容影响也无法实现。
现有的数显卡尺芯片对栅条的宽度有固定而严格的要求,这一点在设计滚动式容栅直线位移传感器时,作者有较深的体会。
对容栅的研究是从1989年容栅数显卡尺开始的。
当时查阅了大量资料并请人帮助查找各国专利资料,收集到的有价值的资料有限,无法帮助解开其中之谜,于是便开始了对容栅数显卡尺的测试分析实验。
在研究过程中内部资料RCL SE M I CONDU CTOR S L I M IT ED 给予了很大帮助。
1 工作原理容栅数显卡尺动尺和定尺的结构和安装示意图如图1所示。
图中动尺上排列一系列尺寸相同、宽度为l 0的发射极片1,2,3…8,用E 表示,公共接收极为R ,定尺上均匀排列着一系列尺寸相同、宽度和间隙各为4l 0的反射电极片M 1,M 2,…电极片间互相电绝缘。
动尺和定尺的电极片面相对,平行安装。
容栅传感器简介

容栅传感器Capacitive容栅传感器是一种新型位移数字式传感器,它是一种基于变面积工作原理的电容传感器。
因为它的电极排列如同栅状,故称此类传感器为容栅传感器。
与其他大位移传感器,如光栅、磁栅等相比,虽然准确度稍差,但体积小、造价低、耗电省和环境使用性强,广泛应用于电子数显卡尺、千分尺、高度仪、坐标仪和机床行程的测量中。
11.5.1 结构及工作原理根据结构形式,容栅传感器可分为三类,即直线容栅、圆容栅和圆筒容栅。
其中,直线容栅和圆筒容栅用于直线位移的测量,圆容栅用于角位移的测量,直线型容栅传感器结构简图如图11-25所示。
图11-23 直线型容栅传感器结构简图a)定尺、动尺上的电极b)定尺、动尺的位置关系c)发射电极和反射电极的相互关系1-反射电极2-屏蔽电极3-接收电极4-发射电极容栅传感器由动尺和定尺组成,两者保持很小的间隙δ,如图11-23b所示。
动尺上有多个发射电极和一个长条形接收电极;定尺上有多个相互绝缘的反射电极和一个屏蔽电极(接地)。
一组发射电极的长度为一个节距W,一个反射电极对应于一组发射电极。
在图11-23中,若发射电极有48个,分成6组,则每组有8个发射电极。
每隔8个接在一起,组成一个激励相,在每组相同序号的发射电极上加一个幅值、频率和相位相同的激励信号,相邻序号电极上激励信号的相位差是45°(360°/8)。
设第一组序号为1的发射电极上加一个相位为0°的激励信号,序号为2的发射电极上的激励信号相位则为45°,以次类推,则序号为8的发射电极上的激励信号相位就为315°;而第二组序号为9的发射电极上的激励信号相位与第一组序号为1的相位相同,也为0°,以次类推,直到第6组的序号48为止。
发射电极与反射电极、反射电极与接收电极之间存在着电场。
由于反射电极的电容耦合和电荷传递作用,使得接收电极上的输出信号随发射电极与反射电极的位置变化而变化。
电容式传感器

电容值与电极材料无关,仅取决于电极的几何尺寸,且空 气等介质的损耗很小。因此仅需从强度、温度系数等机械性考 虑,合理选择尺寸即可,本身发热极小,影响稳定性甚微。 2)结构简单,适用性强。
3)动态响应好。 (固有频率很高,动态响应时间很短外,又由于其介质损耗小, 可以用较高频率供电,因此系统工作频率高。 4)可以实现非接触式测量,具有平均效应。
d d0
d d0
2
d d0
3
C
C1
C2
C0
2
d d0
2
d d0
3
2
d d0
C
0
1
d d0
2
d d0
4
略去高次项,则
C
2
d d0
C0
传感器的灵敏度为 K C 2C0 d d0
其非线性误差为
( d )3
d 0 (d /d 0)2 100%
( d ) d0
灵敏度较单组变极距型提高了一倍,非线性大大减小。
②等有U关sc ,与任电何源这电些压参U数的、波固动定都电将容使C0及输电出容特式性传产感生器误的差ε,0因、此A 固定电容C0必须稳定,且需要高精度的交流稳压源。 ③由于电容传感器的电容小,容抗很高,故传感器与放大器之 间的联结,需要有屏蔽措施。 ④不适用于差动式电容传感器的测量。
五、电容式传感器的特点及设计要点
主要缺点:
输出阻抗高,负载能力差 寄生电容影响大
输出特性是非线性
2、设计要点
设计时可从以下几个方面考虑:
1)减小环境温度、湿度等变化所产生的误差,保证绝缘材料
的绝缘性能;
2)消除和减小边缘效应 边缘效应不仅使电容传感器灵敏度降低而且产生非线性,
LRD6300传感器中文说明书

LRD6300和LRD6300C标签传感器说明书产品描述:精密LRS6300标签传感器使用电容技术是利用感应标签边缘以登记、计数、拼接检测或其他的应用程序。
电容技术是提供最快的和最精确的边缘检测方法。
区别:LRD6300拥有一根整体的电缆;LRD6300C拥有一个M12连接器规格:电源电压12-24VDC(反向极性保护)电流最大80毫安响应时间打开或关闭最快20微秒开关频率10kHz输出输出电源150mA max(负荷保护)开关切换PNP或NPN,暗或亮切换温度工作范围40℉~140℉(4℃~60℃)保护供给反极性保护开关切换短路及负荷保护切换输出:机械的细节:连接到传感器:注意事项:1、传感器的主件连接到地面2、传感器不能连接到电压超过30VRMS或60伏直流3、在安装传感器时都必须将所有的电源关闭4、在任何其他方式使用的设备可能影响其安全性和EMI的保护传感器配置:亮/暗的开关切换在“灯”开关模式下,传感器输出在间隙期间处于激活/打开状态。
在“黑暗”中切换模式时,传感器输出在标签期间处于激活/打开状态。
切换模式按下按钮。
当机器运转时请勿切换开关高增效模式:仅在必要时使用高增益模式。
非常小或非常薄的标签可能不会始终在标签和间隙区域之间移动灯指示杆。
在这种情况下,使用按下按钮可进入高增益模式。
当机器运转时请勿切换开关。
必须在激活高增益后执行自动间隙安装设置:1、在操作过程中,腹板必须与底座/安装板保持接触。
2、标签必须通过[-SENSOR-]指示器下方。
3、小标签应位于[-SENSOR-]指示器的中心。
4、正确设置后,当出现标签时,灰色标签区域的灯将亮起,当存在间隙时,灰色间隙区域的灯将亮起。
5、所有指示灯快速闪烁表示电流过大,可能是由于接线错误造成的。
自动间隙设置:1、从高增益模式开始关闭。
2、从网页上移除标签。
3、将缺失标签的区域放在传感器中(线内)。
4、按下G键至少1秒钟(灯开始来回移动)。
容栅位移传感器的工作原理及其特点

c=
!(R2- r2)θ 8πd
Δc=
!(R2- r2)Δθ 8πd
则 C=Kθ(θ是一个供给电极极板所对应角度,
是常量)
ΔC=KΔθ(Δθ是角位移,是变量)
VX=V
高=
2Δθθ=-
V
低
2Δθ θ
3 容栅位移传感器设计需要注意的地方
①输出信号弱,输出阻抗高,带负载能力差
电容式传感器有一个重要特征,就是电容变化 量很小,只有几十 pF 甚至几 pF,也就是说检测的是 电容的微小变化。此特征使它极易受外界干扰,而且 其容抗为 Xc=1/jwc,由于 C 很小,Xc 很大,则阻 抗 很高,带负载能力差。这一点采用场效应管就近将输 出信号放大,再采取电容电压转换放大器,它具有低 噪 声 、输 入 阻 抗 高 、单 位 增 益 带 宽 高 等 特 点 ,这 些 特 点可使其作为电容传感器理想的测量电路,从而克 服和减小外界对输出信号的干扰,保证了测量信号 的非失真。
CLS2容电水位传感器安装和操作指南说明书

Series CLS2 Capacitive Level SwitchSpecifications - Installation and Operating InstructionsBulletin L-26The CLS2 Capacitive Level Switch was designed to sense material level in a wide range of applications and environments using the dielectric properties of the sensed material. State of the art sensing technology in the CLS2, using impulse RF admittance measurement combined with an active guard, provides excellent level measurement and stability while being insensitive to material buildup. This technology also provides immunity to external RF sources like walkie-talkies and cell phones as well as minimal interference with radio communication or other electronic systems.The product features automatic calibration and 8 selectable sensitivity levels. Calibration may be initiated with either the internal switch or using the external calibration magnet allowing calibration without removing the cover. A selectable failsafe mode allows the relay to be active either normally open or normally closed. The unit also features an active guard mechanism that effectively eliminates the effects of material buildup on the probe. A selectable delay is provided to ensure false detection due to splashing or other tank disturbances will not cause nuisance triggering. A high brightness LED indicator is provided externally so that the level status can be easily seen even in bright sunlight. Three multicolored LEDs are provided internally for maintenance anddiagnostic use.OPERATING PRINCIPLECapacitance and DielectricsCapacitance is the property of two or more conductors to store a charge when there is a voltage difference between the conductors. In other words, capacitance relates the voltage between two conductors and the amount of charge that can be held on the conductors (i.e., the number of electrons). Capacitance is measured in Farads, but since a Farad of capacitance represents a very large charge storage capacity, most capacitance encountered is generally measured in micro Farads (µF, 10-6) or pico Farads (pF, 10-12). Capacitances encountered in level sensing applications are generally in the pico Farad range.The material between the conductors also affects the capacitance. Insulating materials do not allow free movement of electrons, however, in an electric field the molecules of these materials will tend to align with the field, thus storing energy. This is called the dielectric effect and these materials are often referred to as dielectrics. When placed between two conductors the energy storage capability of these dielectrics will allow more charge to be stored on the conductors for a given voltage difference thus increasing the capacitance between the conductors. The ratio of capacitance change caused by these dielectrics is referred to as the dielectric constant. Different materials have differing dielectric constants and will consequently change the capacitance between two conductors more or less depending on the value of this constant. This value ranges from 1.0 for a vacuum to over 100 for certain materials. The dielectric constant for air is very close to 1.0 and usually assumed to be exactly 1.0.Capacitive level sensors determine the level of material by changes in probe capacitance resulting from the movement of dielectric materials between the probe and the reference ground such as a tank wall. Since measuring very small capacitance changes (less than 1 pF) can be problematic in industrial environments, capacitance level sensing tends to be most effective for materials with a dielectric constant greater than about 1.2. Since the difference in capacitance is being measured, it is also possible to detect the level of two immiscible liquids that have different dielectricconstants such as oil and water.Level DetectionThe CLS2 uses the capacitance difference between the uncovered sensor and covered sensor to sense level such as the probe in air verses the probe in oil. This would allow, for instance, detection when the level in a tank is below a threshold and a pump must be started or when the level is above a threshold where the pump must be turned off.The CLS2 can be used in applications were the probe gets coated or covered with sticky, dusty, or clingy materials. The CLS2 has an active guard near the top that compensates for material that coats the probe preventing false alarms.When detecting level, two critical items must be established: a reference capacitance and the sensitivity. The reference capacitance is set through an automatic calibration process. The sensitivity is selected using an internal DIP switch which provides 8 sensitivity levels to accommodate differing material dielectric constants. See the calibration section for specific calibration instructions.The level detection is available to external systems through a double pole double throw (2-form C) relay. In any alarm or control system some consideration must be made for a power failure in one or more elements of the system. The CLS2 provides a fail-safe selection that allows the relay to operate in either a normally open or a normally closed state when the probe is uncovered.INSTALLATION UnpackingRemove the CLS2 from the shipping carton and inspect for damage. If damage is found, notify the carrier immediately.Mounting LocationThe CLS2 is designed to be mounted in a tank and is rated for industrial environments with few restrictions, however certain considerations must be made to ensure optimal sensing and extended operational life.• The process temperature and ambient temperature must be within the specified limits for the instrument.• Avoid locating the unit near or in high mechanical shock or vibration areas. • The probe must be located away from tank inlets or chutes where material may fall on the probe during filling or emptying.• Avoid mounting the probe close to tank structures as conductive product bridging between the guard and tank structure can cause false alarms. • In nonmetallic tanks a ground reference must generally be provided. If the probe is near the wall of the tank an adhesive backed metallic sheet may be applied to the outside of the tank wall nearest to the probe. Other metallic objects may be used also if they are in close proximity to the tank wall. If the probe is located further than 10 inches from the wall, an internal conductor must be providedparallel to and within 10 inches of the probe. These conductors must be connected to the case ground of the sensor. An external ground clamp is provided for this ifother grounding is not available.Note: Installation must be made in accordance with National Electric Code and local codes and regulations. When fishing wire through the conduit connection do not allow the wire to touch or press on components on the boards. Damage to the circuitry may result.The unit is to be wired to a switch or circuit breaker in close proximity to the unit. The switch or circuit breaker shall be marked as the disconnections device for the unit.The CLS2 has a 1/2˝ female NPT conduit connection. The conduit connection must be made such that condensation is not allowed to enter the housing.Grounding: The case of the CLS2 must be wired to a protective earth ground. This may be done by using a metal conduit or by wiring to one of the protective earth groundscrews in Figure 1 or Figure 2.The terminal block may be removed for easier connection. To remove, place a small screwdriver between the terminal block and the connector base and pry the terminal block forward. This will unlatch the block from the base allowing it to be removed. When installing the block, tip it forward on the connector base to snap it in the forward locking tab then rock the connector back onto the contacts until it snaps in place. Make sure the terminal block is securely in place.Strip 0.25˝ of insulation from the wires. Connect the power wires to terminals 1 and 2. If powered by DC, the polarity is not critical and either terminal may be selected for positive or negative. Connect control lines to the relay contact terminals (see Figure 1 for terminals). Torque terminals to 5 in-lb.Controls and Indicators (See Figure 2 and 3)Calibrate Switch —Pressing this switch twice initiates the automatic calibration process.Time Delay Potentiometer—This control selects a delay time from 0 to 60 seconds from the detection of a level change to the output.Dip Switch —This four section switch selects the sensitivity level and failsafe mode.Sensor LED —Yellow. This LED is illuminated immediately when the probe capacitance exceeds the setpoint threshold.Output LED —Red. This LED is illuminated when the relay is powered. It is affected by the failsafe setting and the delay.Power LED —Green. This LED is illuminated when the unit is powered and indicates that power is being supplied to the sensing circuitry.External LED—Red. The external LED indicator operates in conjunction with the internal Output LED.External Calibration Magnet —An external magnet is provided on the end of a chain to initiate calibration without having to open the case. Calibration is started by touching the magnet to the label target twice.Always install or service this device with the power off and whererequired install a disconnect lockout.For power line connections use NEC Class 1 wiring rated 75°C. Use 12 to 20 AWG copper only for line and load connections.Torque terminals to 5 in-lb. Strip the wires 0.25˝.Protective earthL1Figure 1: TerminalsExternal LED(YELLOW)Power LED (GREEN)(RED)Calibrate Time delay External calibration magnetProtective earthground screwFigure 2: Swiches and LED’sPrinted in U.S.A. 10/20FR# 443401-00 Rev. 9©Copyright 2020 Dwyer Instruments, Inc.Setup and Calibration1. Fail Safe Mode Selection: The relay will always be off when the power fails. In this case the contacts identified as normally open will be open. The fail safe switch selects whether the normally open contacts are open or closed when the probe is uncovered. There are two options for the failsafe condition that are selected by DIP switch S4 (see Figure 2). Selecting normally open (NO) will force the relay contacts to be open when the probe is uncovered and the output status LED to be off.Selecting normally closed (NC) will energize the relay when the probe is uncovered and light the output status LED.2. Sensitivity Selection: The sensitivity must be selected to match the dielectric constant of the material and its density. Eight sensitivity levels are provided by positioning DIP switches S1, S2, and S3 (see Figure 2). A high sensitivity setting is a low pF, and a low sensitivity setting would be a high pF. High sensitivity is used for materials such as plastic pellets, light powders, and dry grain. Mediumsensitivity is used for materials such as cement, petroleum products, and flour. Low sensitivity is used for products such as aqueous solutions. The switchpositions are summarized in Table 1. For best operation use the minimal sensitivity required for reliable operation.3. Calibration: Calibrate with the probe uncovered and the material at least 5 inches below the probe.To start the automatic calibration process press the calibrate switch twice (see Figure 2) or press the external magnet up to the housing at the marked location on the housing twice (see Figure 3). The external magnet is attached to the housing by a chain. The output status LEDs will begin to blink slowly, about once per second, when the calibration process has started. The automatic calibration will take approximately 10 to 15 seconds, and the output status LEDs will stop flashing at the end of the calibration process. If during the calibration process the tank level changes or a sensor failure has occurred, the calibration process may fail. The output status LEDs will begin to flash rapidly (about 4 times per second). Makesure the probe is uncovered and retry the calibration step.Table 1: Switch position for sensitivityFigure 3: Magnent location4. Time Delay Selection: The time delay is the programmed time between when the probe senses the material and when the relay changes state from the sensed material. A time delay of 3 seconds or greater is required to meet CE requirements. Choose a delay setting appropriate for the specific application. Adjust the delay potentiometer to the desired delay (see Figure 2). The delay can be set anywhere from 0 to 60 seconds and a scale is printed on the sensor board. For verification of delay programming the yellow sensor LED will come on when material is sensed and the red output LED will come on with the relay after the programmed time delay.5. Verify Operation: Make sure the probe is uncovered, material at least 5 inches below the probe, and that the yellow sensor LED is off. Fill the tank until thematerial is at the desired threshold level and verify that the sensor LED is illuminated. If the sensor LED turns on before the material reaches the probe, reduce the sensitivity as needed. If when the probe is covered the sensor LED is notilluminated, increase the sensitivity. Water or other conductive liquids will activate the sensor when they just contact the probe. Low density and dielectric constantmaterial may require more of the probe to be covered.Note: Default values as the product ships from the factory is a follows: S1:off, S2:off, S3:on, S4:on, and time delay off.MAINTENANCEOther than the controls mentioned in this manual there are no user maintenance adjustments or routine servicing required for this product. Very heavy buildup on the probe may ultimately reduce sensitivity. Moderate buildup is compensated for by the active guard.The Series CLS2 Capacitive Level Switch is not field serviceable and should be returned if repair is needed (field repair should not be attempted and may void warranty). Be sure to include a brief description of the problem plus any relevant application notes. Contact customer service to receive a return goods authorization (RGA) number before shipping.When the CLS2 with a Sanitary Process Connection is to be used in a sanitary or hygienic application, the unit must be cleaned and/or sanitized in accordance with appropriate guidelines prior to installation. The CLS2 with a Sanitary ProcessConnection is suitable for “Clean In Place” methods.Explanation of Symbols:。
Ceracore USC70 电容式玂璃压力传感器说明书

Products Solutions ServicesTI01651O/00/EN/01.21715413192022-04-06Technical Information Ceracore USC70Process pressure measurementCapacitive, ceramic pressure sensorApplicationPressure sensor for use in the pressure measurement of liquid and gaseous media.Your benefitsDry capacitive ceramic sensor with ultrapure (99.9%) Al 2O 3 ceramic •High overload resistance•Very good long-term stability •High corrosion resistance•Digital/analog signal output (SPI, UART, U)•Measuring ranges from 0 to 0.1bar (0 to 1.5psi) to 0 to 40bar (0 to 580psi)•Optional temperature output, switch outputCeracore USC702Endress+HauserTable of contentsAbout this document . . . . . . . . . . . . . . . . . . . . . . . . . . . .3Document function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Symbols used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Function and system design . . . . . . . . . . . . . . . . . . . . . .4Measuring principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4CARMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5Measured process variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Measuring range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Sensor connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Signal range and signal on alarm of voltage output . . . . . . . . . 7Behavior in case of an error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Dead time, time constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Dynamic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Noise filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Switch-on time and Warm-up period . . . . . . . . . . . . . . . . . . . . . 8Performance characteristics . . . . . . . . . . . . . . . . . . . . . .9Reference operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 9Reference accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Long-term stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Total Error Band (TEB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Influence of the installation position . . . . . . . . . . . . . . . . . . . . 11Installation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Process temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Ambient temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Climate class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Electromagnetic compatibility (EMC) . . . . . . . . . . . . . . . . . . . . 11Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Safety notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Mechanical construction . . . . . . . . . . . . . . . . . . . . . . . 12Device dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Certificates and approvals. . . . . . . . . . . . . . . . . . . . . . 13RoHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Other standards and guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 13Calibration; unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . 14Disposal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Accessories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Contact addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Explanations and supplementary documentation. . 15Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Turn down calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Supplementary documentation . . . . . . . . . . . . . . . . . . . . . . . . . 16CARMEN sensor settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Ceracore USC70Endress+Hauser 3About this documentDocument functionThis document contains all the technical data for the device and provides an overview of the device versions and accessories that can be ordered.Symbols usedSafety symbolsSymbols for certain types of informationSymbols in graphicsSymbolMeaning 1, 2, 3, …Item numbers A, B, C, …ViewsCeracore USC704Endress+HauserFunction and system designMeasuring principleA capacitive ceramic sensor element is at the core of the USC70. The basic material is (Al 2O 3), an ultra-pure (99.9%) aluminum oxide ceramic that is highly resistant to many aggressive gases and liquids. Two cylindrical ceramic components (process isolating diaphragm and ceramic substrate) are hermetically sealed together. In the case of absolute pressure sensors, the reference vacuum of3.0x 10-6mbar that is generated in the production process between the process isolating diaphragm and the ceramic substrate becomes permanent, thereby enabling precise pressure measurement relative to the vacuum. In the case of gauge pressure sensors, the back of the process isolating diaphragm is ventilated, i.e. this sensor measures the gauge pressure relative to the atmospheric pressure.In electrical terms, the sensor element represents a plate capacitor whose change in capacitance is a measure for the change in pressure. The capacitive measurement method satisfies the highestrequirements with regard to resolution and reproducibility. Together with the hysteresis-free behavior of the Al 2O 3 material, it forms the basis for the excellent technical specifications of the pressure sensor. Furthermore, the sensor element is a dry measuring cell, i.e. there is no separating diaphragm or oil filling which could influence the measurement. Another advantage of the capacitive ceramic sensor is its high overload resistance.A Gauge pressure cellB Absolute pressure cell 1Cr electrode 2Cp electrode3Brazing ring preform 4Counterelectrode 5Ceramic substrate6Process isolating diaphragm p Process pressurep atmAtmospheric pressureCARMENThe CARMEN ASIC is used in sensor applications to measure physical variables (e.g. pressure) with external capacitive or resistive sensors in industrial environments.Each sensor has its individual properties. CARMEN compensates for these physical properties individually. To do so, CARMEN performs the following steps:•Measurement of the external sensor (capacitance difference, voltage difference, temperature)•Compensation of the sensor offset •Gain adjustment•Linearization of the sensor characteristics •Compensation of temperature effects•Output of the corrected and compensated measured values •Additional functions (damping, filtering, etc.)For the standard settings of the sensor, →ä16.The functionality and communication are explained in the S&C CARMEN Manual.Ceracore USC70Endress+Hauser 5InputMeasured process variable•Gauge pressure or absolute pressure •TemperatureMeasuring rangeWARNING!The maximum pressure for the measuring device depends on the lowest-rated element with regard to pressure.‣The measuring device must be operated only within the specified limits!SensorMaximumsensor measuring range Lowest calibratable spanMWPOPLVacuum resistancelower (LRL)upper (URL) 1)[bar (psi)][bar (psi)][bar (psi)][bar (psi)][bar (psi)][bar (psi)][bar abs (psi abs )]Sensors for gauge pressure measurement 0.1 (1.5)-0.1 (-1.5)+0.1 (+1.5)0.02 (0.3) 2.7 (40.5) 4 (60)0.7 (10.5)0.25 (4)-0.25 (-4)+0.25 (4)0.05 (0.73) 3.3 (49.5) 5 (75)0.5 (7.5)0.4 (6)-0.4 (-6)+0.4 (+6)0.08 (1.2) 5.3 (79.5)8 (120)01 (15)-1 (-15)+1 (+15)0.2 (2.9) 6.7 (100.5)10 (150)02 (30)-1 (-15)+2 (+30)0.4 (6)12 (180)18 (270)04 (60)-1 (-15)+4 (+60)0.8 (12)16.7 (250.5)25 (375)010 (150)-1 (-15)+10 (+150) 2 (30)26.7 (400.5)40 (600)040 (600)-1 (-15)+40 (+600)8 (120)40 (600)60 (900)Sensors for absolute pressure measurement 0.1 (1.5)0+0.1 (+1.5)0.02 (0.3) 2.7 (40.5) 4 (60)00.25 (4)0+0.25 (4)0.05 (0.73) 3.3 (49.5) 5 (75)00.4 (6)0+0.4 (+6)0.08 (1.2) 5.3 (79.5)8 (120)01 (15)0+1 (+15)0.2 (2.9) 6.7 (100.5)10 (150)02 (30)0+2 (+30)0.4 (6)12 (180)18 (270)04 (60)0+4 (+60)0.8 (12)16.7 (250.5)25 (375)010 (150)0+10 (+150) 2 (30)26.7 (400.5)40 (600)040 (600)0+40 (+600)8 (120)40 (600)60 (900)1)If the maximum sensor measuring range is exceeded or undershot by up to 10%, digital measured values are still provided. In this range, however, the performance characteristics of the measured values can deviate by a factor of up to 3.Ceracore USC706Endress+HauserPower supplySupply voltageCurrent consumption < 1.6mASensor connectionIncorrect polarity can damage the ASIC!‣Ensure polarity is correct.Incorrect analog measured value due to cable break from GND!‣Prevent cable break from GND.Female header strip 2x5 pins (1.27mm (0.05in) spacing)•Socket type: SAMTEC SFML-105-02-L-D •Insertion force (axial only): max.40NType Value Digital output 2.9 … 5.5V DC Analog output2.9 … 5.5V DCPIN Designation Explanation Application Digital AnalogUARTSPI 1GND Negative supply voltage X X X 2RESET_N Reset (low active)optional optional optional 3VDD Positive supply voltageX X X 4DAC Analog output (Digital to analog converter)optional optional optional 5SW_OUT Switch output (open drain)optional optional optional 6SPI_SEL Communication mode selection (UART "GND" or SPI "VDD")force to "GND"force to "VDD"force to "GND"7SCK SPI clock, must be connected to GND if SPI is not used –X –8CS_N Chip select (low active)optional optional –9TxD/SO_RDY Digital communication outputX X –10RxD/SIDigital communication input, must be connected to GND if not usedXXforce to "GND"Ceracore USC70Endress+Hauser 7OutputOutput signalSignal range and signal onalarm of voltage output1Calibrated measuring range 2Extended measuring range DAC Digital-to-analog converterThe signal range and the signal on alarm are based on NAMUR NE 43. The error value of the signal on alarm can be configured and is displayed in the illustration for the example >95%VDD (CARMEN standard sensor setting).Behavior in case of an errorSee the S&C CARMEN ManualTypeOutputVoltage output (pressure) 1)1)Max. load: min. 1M Ω, max. 1nF10 to 90% VDD (ratiometric, VDD = 5.0V DC)10 to 90% VDDA (absolut, VDDA = 2.65V DC)Digital output (pressure & temperature)SPI UARTSwitch output (pressure) 2)2) On requestSwitch (via CARMEN)Ceracore USC708Endress+HauserDead time, time constant Presentation of the dead time and the time constant:1% of the measured valuet timeDynamic behaviorDamping Customizable setting: 0 to 40sNoise filter A noise filter is optionally available as a sensor add-on function (see S&C CARMEN Customer Manual).Switch-on time and Warm-up periodThe switch-on time is the time that elapses from when the supply voltage is switched on to when the first digital value or initial analog value is available.The warm-up period is the time that elapses from when the supply voltage is switched on to the first digital measured value or analog value within the specified reference accuracy (e.g. 0.1% span).Output Sampling rate [ms]Dead time (t 1) [ms]Time constant T63 (t 2) [ms]Time constant T90 (t 3) [ms]Time constant T99 (t 4) [ms]Digital204074889951018.522251.25 1)3.75678Analog20296375885815.519221.2524.568.51)The maximum sampling rate that can be configured for measured value recording is 1.25ms, but the maximum speed of the digital output is limi-ted to 2.5ms.Output Sampling rate [ms]Switch-on time [ms]Warm-up period [ms]Digital2038.7598.75523.7538.751.252023.75Analog201050510351.251030Ceracore USC70Endress+Hauser 9Performance characteristicsReference operating conditions•As per DIN EN IEC 62828•Ambient temperature T A = constant, in range: +23 to +27°C (+73 to +81°F)•Relative humidity ϕ = constant, in range: 5 to 80% RH.•Ambient pressure p A = constant, in range: 860 to 1 060mbar (12.47 to 15.37psi)•Position of measuring cell = constant, in range: process isolating diaphragm pointing downwards (see also the "Influence of installation position" section →ä11)•Analog output supply voltage: 4.9 to 5.1V DC •Digital output supply voltage: 2.9 to 5.5V DC•Reference installation of Endress+Hauser (Components and Mounting instructions SD02509P)Reference accuracyThe reference accuracy includes the terminal-based non-linearity, the non-repeatability and the pressure hysteresis according to DIN EN IEC 62828-1.Long-term stability ≤0.1%/year related to the upper range limit (URL).Total Error Band (TEB)The Total Error Band includes the following influencing factors:Measured process variable Sensor measuring range Reference accuracy in % of calibrated span Gauge pressure all ±0.2 x TD 1) for TD 1:1 to TD 5:11)TD = Turn Down, →ä16.Absolute pressure ≥ 400mbar ±0.2 x TD 1) for TD 1:1 to TD 5:1Absolute pressure 100mbar, 250mbar±0.3 x TD 1) for TD 1:1 to TD 5:1Ceracore USC7010Endress+HauserTotal Error Band•Sensor measuring range: 0.1to 0.4bar•Process and ambient temperature: -20to 80°CTotal Error Band•Sensor measuring range: 1to 40bar•Process and ambient temperature: -20to 80°CError in % of the calibrated spanTemperature range Typ. value Max. value –20to +80°C(–4to +176°F)±0.35x TD±0.70x TDError in % of the calibrated spanTemperature range Typ. value Max. value –20to +80°C(–4to +176°F)±0.20x TD±0.40x TDCeracore USC70Endress+Hauser 11InstallationInfluence of the installation positionAny installation position is possible but it may cause a zero point shift.Installation conditions•During installation, electrical connection and operation, no moisture may penetrate the device.•The back of the sensor element must not be encapsulated.ProcessProcess temperature range–40 to +125°C (–40 to +257°F)Compensated range –20 to +80°C (–4 to 176°F)EnvironmentAmbient temperature range–40 to +125°C (–40 to +257°F)Compensated range –20 to +80°C (–4 to 176°F)Storage temperature range –40 to +125°C (–40 to +257°F)Climate classElectromagnetic compatibility (EMC)No specifications (open system)Overvoltage protection 6V DC (maximum voltage for CARMEN ASIC)Safety notesFor work on and with the device:Process isolating diaphragm pointing downwards (A)Process isolating diaphragm axis is horizontal (B)Process isolating diaphragm pointing upwards (C)≤1bar (15psi)Reference position, no effect Up to +0.3mbar (0.0044psi)Up to +0.6mbar (0.0088psi)>1bar (15psi)Reference position, no effectUp to +3mbar (0.0435psi)Up to +6mbar (0.087psi)System Climate class NoteOpenClass 3K3Air temperature: 5 to 40°C (41 to 104°F),relative humidity: 5 to 85%satisfied according to 60721-3-3 (condensation not permitted)Ceracore USC7012Endress+HauserMechanical constructionDevice dimensionsMaterials Materials in contact with processTSE free (Transmissible Spongiform Encephalopathy)The following applies to all device components in contact with the process:•They do not contain any materials derived from animals.•No additives or operating materials derived from animals are used in production or processing.Sensor [bar (psi)]Y [mm]Z [mm]0.1 (1.5) 5.2713.020.25 (4) 5.3313.080.4 (6) 5.4113.161 (15) 5.5413.292 (30) 5.6813.434 (60) 5.8413.5910 (150) 6.1313.8840 (600)6.7814.53Component partMaterialProcess isolating diaphragm Al 2O 3 aluminium oxide ceramic FDA, ultra-pure 99.9% 1)1)The US Food & Drug Administration (FDA) has no objections to the use of ceramics made of aluminum oxide as a surface material in contact with foodstuffs. This declaration is based on the FDA certificates of our ceramic suppliers.Ceracore USC70Endress+Hauser 13Certificates and approvalsRoHSThe measuring system complies with the substance restrictions of the Restriction on Hazardous Substances Directive 2011/65/EU.Other standards and guidelinesThe applicable European guidelines and standards can be found in the relevant EU Declarations of Conformity. The following were also applied:DIN EN IEC 62828-1, 62828-2:Reference conditions and procedures for testing industrial and process measurement transmitters Part 1: General procedures for all types of transmitters Part 2: Specific procedures for pressure transmitters DIN 16086:Electrical pressure measuring instruments, pressure sensors, pressure transmitters, pressure measuring instruments, concepts, specifications on data sheets.Procedure for writing specifications in data sheets for electrical pressure measuring instruments, pressure sensors and pressure transmitters.EN 61010-1 (IEC 61010-1):Protection Measures for Electrical Equipment for Measurement, Control, Regulation and Laboratory EquipmentCalibration; unitDesignation Nominal range; mbar Nominal range; bar Nominal range; psi Nominal range; Pa Nominal range; kPa Nominal range; MPa Nominal range; mmH 2O Nominal range; mH 2O Nominal range; inH 2O Nominal range; ftH 2O Nominal range; mmHgCeracore USC7014Endress+HauserOrdering informationDetailed ordering information is available from the following sources:In the Product Configurator on the Endress+Hauser website:Product Configurator - the tool for individual product configuration • Product-specific configuration data• Depending on the device: direct input of information specific to measuring point, such as measuring range•Automatic verification of exclusion criteriaDisposalAccording to the directive 2012/19/EU on waste electrical and electronic equipment (WEEE), our products are marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Such products may not be disposed of as unsorted municipal waste and can bereturned to Endress+Hauser for disposal at conditions stipulated in our General Terms and Conditions or as individually agreed.AccessoriesContact addressesInternet: E-mail:**********************************DesignationType Process temperature range Installation componentsL-ring –40 to +125°C (–40 to +257°F)PTFE foil –40 to +125°C (–40 to +257°F)Ceramic ring –40 to +125°C (–40 to +257°F)Thread ring–40 to +125°C (–40 to +257°F)O-ringFKM –20 to +100°C (–4 to +212°F)EPDM–25 to +100°C (–13 to +212°F)CableAdapter cable for female header strip 2x5 pins (1.27mm spacing)Mating connector for SAMTEC–10 to +80°C (+14 to +176°F)Ceracore USC70Endress+Hauser 15Explanations and supplementary documentationTerms and abbreviationsItem Term/abbreviation Explanation1OPLThe OPL (over pressure limit = sensor overload limit) for the measuring device depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection has to be taken into consideration in addition to the measuring cell. Also observe pressure-temperature dependency.The test pressure corresponds to the overload limit of the sensor (OPL =1.5x MWP) and may only be applied for a limited period of time so that no permanent damage occurs.2MWPThe MWP (maximum working pressure) for the sensors depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection has to be taken into consideration in addition to the measuring cell. Also observe pressure-temperature dependency.The Pressure Equipment Directive (2014/68/EU) uses the abbreviation "PS", which corresponds to the MWP of the measuring instrument.The MWP refers to a reference temperature of +20°C (+68°F) and may be applied at the device for an unlimited period.3Maximum sensor measuring range Span between LRL and URLThis sensor measuring range is equivalent to the maximum calibratable/adjustable span.4Calibrated/adjusted span Span between LRV and URV Default setting: 0 to URLOther calibrated spans can be ordered as customized spans.–p Pressure –LRL Lower range limit –URL Upper range limit –LRV Lower range value –URV Upper range value–TD Turn DownExample →ä16.–CARMEN C apacitive A nd R esistive M easurement EN dress+Hauser →ä4–Sampling rateThe sampling rate is the integration time for recording the measured value and also the update interval for the output of measured values.Exception: If a sampling rate of 1.25ms is configured, the integration time is 1.25ms but the update interval 2.5ms.–ASICApplication-specific integrated circuitCeracore USC7016Endress+HauserTurn down calculation1Calibrated/adjusted span 2Upper range limitFor TD <1, the performance characteristics of TD =1 apply.Supplementary documentation•Mounting instructions SD02509PCARMEN sensor settingsThe sensor setting is configurable, see S&C CARMEN Customer Manual.Example•Sensor: 10bar (150psi)•Upper range limit (URL) = 10bar (150psi)•Lower range limit (LRL) = -1bar (-15psi)•Calibrated/adjusted span:0 to 5bar (0 to 75psi)•Lower range value (LRV) = 0bar (0psi)•Upper range value (URV) = 5bar (75psi)Turn Down (TD):TD =URL | URV − LRV |TD =10bar (150psi)= 2| 5bar (75psi) − 0bar (0psi) |In this example, the TD is 2:1.Default settings Measuring mode Continuous Damping0Analog initial value <5%Analog error value>95%Analog error behavior (status flags)0, 1, 2, 4, 5, 9, 10, 15, 17, 18Digital error behavior (status flags)0, 1, 2, 4, 5, 9, 10, 15, 17, 18UART baud rate57.6kBd Digital continuous transmission Activated Switching threshold, on 0%Switching threshold, off 0%Switching delay 0s Noise filterDeactivatedCeracore USC70Endress+Hauser17Ceracore USC70 18Endress+HauserCeracore USC70Endress+Hauser1971541319 71436431。
875F矩形电容式传感器说明书

Installation InstructionsOriginal InstructionsRectangular Capacitive SensorsBulletin Number 875FProduct OverviewThe 875F rectangular capacitive sensor is designed for detecting water-based (conductive) liquids through a non-metallic container wall, and it automatically adapts to various thicknesses of plastic or glass walls. The universal mounting brackets allow the sensor to be mounted on multiple tubes or containers of plastic or glass materials.The 875F sensor reliably detects the liquids while compensating for residue film, moisture, or foam build-up from liquids such as water, milk, body fluids (blood), acid or alkaline solutions with conductivity as high as 50 ms/cm inside, or outside the container wall.The 875F sensor can be mounted using the universalmounting bracket that comes with the unit. The 875F sensor can also be flush mounted without a bracket with the two screw holes in the sensor housing.ApplicationsThe sensor and bracket can be installed in any position and mounted in the following ways:•Adhesive surface mounting •Velcro strap mounting •Cable tie mounting on small tubes and pipesPackage ContentsEach 875F sensor is packaged with the following:•Universal mounting bracket •Two foam pads (3 mm [0.12 in.] thick) for pipe mounting •Two adhesive pads (1 mm [0.04 in.] thick) for surface mountingSpecificationsATTENTION: This sensor must not be used in applications where personal safety depends on proper function of the sensor. The sensor is not designed according to the EU Machinery Directive.Only trained technical personnel with basic electrical installation knowledge should install and use the sensor.The installer is responsible for correct installation according to local safety regulations and must verify that a defective sensor does not result in hazards to people or equipment. If the sensor is defective, it must be replaced and secured against unauthorized use.Screw HolesAttribute ValueCertificationscULus (UL508), CSA-C22.2 No.14-13, ECOLABDetection•Pipes diameter: Ø8 mm (0.31 in.), min •Wall thickness (factory settings):–Non-conductive plastic: 0.5…6 mm (0.02…0.24 in.)–Non-conductive glass: 0.5…4 mm (0.02…0.16 in.)•Wall thickness (manual setup):–Plastic wall: ≤10 mm (0.4 in.) (best case)–Glass wall: ≤10 mm (0.4 in.) (best case)•Liquids: Water-based liquids such as water, milk, syrup, honey, milkshakes, lubricates, acids, alkaline fluids, body fluids, and other high-conductive liquids (≤50 ms)Effective operation distance (Sr)0.9 x Sn ≤ Sr ≤ 1.1 x Sn Usable operation distance (Su)0.85 x Sr ≤ Su ≤ 1.15 x Sr Repeat accuracy (R)≤5%Rated operational volt (UB)10…30V DC (ripple included)Ripple ≤10%Output functions NPN or PNP by sensor type Output switching function N.O. and N.C. by sensor type Rated operating current (Ie)≤100 mA No load supply current (Io)≤13 mA Rated insulation voltage (UI)75V DC Power-ON delay (tv)≤300 ms Voltage drop (Ud)≤1.5VStatus indicators •Green: Power•Yellow: Output function Protection •Short circuit •Reverse polarity •TransientDegree of protection IP65,IP66,IP67,*********(4.27ft)and24h;IP69K (NEMA 1, 2, 4, 4x, 5, 12)Temperature •Operating: -25…+80 °C (-13…+176 °F)•Storage: -40…+85 °C (-40…+185 °F)Humidity range 35…95%Material •Body: PC/PBT•Mounting bracket: PC/PBTConnectionPVC, 2 m (6.6 ft), 4 x 0.14 mm², Ø=3.4 mm (0.13 in.) / M8 - 4 pin, male, stainless steel2Rockwell Automation Publication 875F-IN001A-EN-P - February 2022Rectangular Capacitive Sensors Installation InstructionsInstallationTo secure the 875F sensor in the bracket, follow these steps:1.Slide the sensor down and forward into the bracket and push down. Thesensor clicks into place and is difficult to remove by hand.2.To remove the sensor from the bracket, use a small screwdriver and dislodge the sensor.Status IndicatorsThe 875F sensor has two status indicators:•The yellow status indicator lights up when the output is active. If theoutput is short-circuited, the yellow status indicators flashes.•The green status indicator lights up when power is connected to thesensor.Sensor SettingsOut of the Box (Factory Settings)The sensor can be used without any additional calibration. It is designed to work with plastic tank walls of approximately 0.5…6 mm (0.02…0.24 in.) and glass walls of approximately 0.5…4 mm (0.02…0.16 in.).Full CalibrationThe sensor switch point is set below the actual detection value to ensure that slight changes in the application do not affect the sensing performance.In most applications, the full calibration on a full tank or tube is sufficient.In critical applications with large variations in media type and temperature, it may be better to teach the full level with approximately 50% of the active sensing surface covered.Full calibration procedure:1.Connect teach wire to V+ for 2…7 seconds.2.The green status indicator flashes and the yellow status indicator is OFF.3.After successful calibration, the yellow status indicator flashes threetimes (with 1 Hz).Empty CalibrationThe sensor switch point is set above the actual detection value to ensure that slight changes in the application do not affect the sensing performance.In most applications, the empty calibration on an empty tank or tube is sufficient.In critical applications with a high amount of residue film, moisture or foam build-up, an empty calibration can be performed with the build-up present.Empty calibration procedure:1.Connect teach wire to V+ for 7…12 seconds.2.Green status indicator flashes and yellow status indicator is ON.3.After successful calibration, the yellow status indicator flashes threetimes (with 1 Hz).Cancel Calibration Procedure1.Keep the teach wire connected to V+ for more than 14 seconds to cancel the teach procedure. The switch points remain unchanged.2.Green status indicator is off and yellow status indicator flashes (4 Hz).Factory SettingsFull teach at 2 mm (0.08 in.) distance to metal target.WiringIMPORTANTThe glass or plastic must be nonconductive.Pin Color Description 1BN (Brown)Supply (V+)2WH (White)Teach input3BU (Blue)Supply (V-)4BK (Black)OutputIMPORTANT When not used, permanently connect the teach wire to V-.PNP NO NPN NO PNP NCNPN NCRockwell Automation Publication 875F-IN001A-EN-P - February 20223Rectangular Capacitive Sensors Installation InstructionsApproximate DimensionsDimensions are shown in mm (in.). Dimensions are not intended to be used for installation purposes.Figure 1 - SensorFigure 2 - Mounting Bracket1.13416.3 3.6 6.6Publication 875F-IN001A-EN-P - February 2022Copyright © 2022 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.Rockwell Otomasyon Ticaret A.Ş. Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400 EEE Yönetmeliğine UygundurAllen-Bradley, expanding human possibility, and Rockwell Automation are trademarks of Rockwell Automation, Inc.Trademarks not belonging to Rockwell Automation are property of their respective companies.Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at rok.auto/docfeedback .For technical support, visit rok.auto/support .Waste Electrical and Electronic Equipment (WEEE)Rockwell Automation maintains current product environmental compliance information on its website at rok.auto/pec.At the end of life, this equipment should be collected separately from any unsorted municipal waste.。
容栅式传感器的原理

容栅式传感器容栅式传感器是在变面积型电容传感器的基础上发展起来的一种新型传感器。
它在具有电容式传感器优点的同时,又具有多极电容带来的平均效应,而且采用闭环反馈式等测量电路减小了寄生电容的影响、提高了抗干扰能力、提高了测量精度(可达5?m)、极大地扩展了量程(可达1m),是一种很有发展前途的传感器。
现已应用于数显卡尺、测长机等数显量具。
将电容传感器中的电容极板刻成一定形状和尺寸的栅片,再配以相应的测量电路就构成了容栅测量系统。
正是特定的栅状电容极板和独特的测量电路使其超越了传统的电容传感器,适宜进行大位移测量。
一、工作原理及转换电路(一) 开环调幅式测量原理传感器电容极板的基本结构示于图4-23。
在图中左侧,一个极板由均匀排列电极的长栅(定栅)组成,另一个极板由一对相同尺寸的交错对插电极梳(动栅对)组成。
运行时,传感器的两个电极栅片相对按装如图中右侧,其中暗区域是两个电极栅的重叠面积,从而形成一对随位移反向变化的差动电容器C1和C2。
传感器仍采用传统差动变压器测量电路,但通过将电容极板刻成栅状提高了测量精度并实现了大位移测量。
(二) 闭环调幅式测量原理其测量原理如图4-24所示,其中左侧是系统原理图、右侧是电极栅片原理结构。
图中A、B为动尺上的两组电极片,P为定尺上的一片电极片,它们之间构成差动电容器CA、CB。
两组电极片A和B各由四片小电极片组成,在位置a时,一组为小电极片1~4,另一组为5~8。
方波脉冲控制开关S1和S2,轮流将参考直流电压±U0和测量转换系统的直流输出电压Um 分别接入两个小电极组A和B。
若系统保证电容极板P为虚地,则在一个周期内,激励信号通过差动电容CA和CB在电容极板P上产生的电荷量QP为(CAU0-CBU0+CAUm+CBUm)。
当QP为零时,测量转换电路保证Um不变;否则导致测量转换电路使Um改变,并保证其变化使QP的值减小,直至为零。
这时,由上面可推导出(4-20)则输出直流电压与位移成线性关系。
ATEX 直接指令认证的容量感应传感器说明书

Specifications are subject to change without notice (16.11.2016)1Proximity Sensors Capacitive • Capacitive level sensor for solid, fluid or granulated substances• Approved according to ATEX directive 2014/34/U for operation in potential explosive dusty atmospheres • Classified as equipment for use in atmospheres with continuous presence of explosive dust with an ignition temperature above 85o C• Adjustable sensing distance: 4-20 mm • With or without adjustable time delay• Featuring TRIPLESHIELD ™ Sensor Protection • Protection: Transients and reverse polarity • 5 years of warrantyProduct DescriptionATEX approved Capacitive sensor in thermoplastic polyester for mounting in PG 36 screw gland. Available with adjustable sensing distance and with/ w ithout built-in time delay (ON orOFF delay). The relay output ensures that the load can be driven directly. Ex c ellent for use in the agriculture area (detection of grains, fluids etc.).Supply voltage Cable Ordering no. Ordering no. Ordering no. length With ON delayWith OFF delayWithout time delay120 VAC 2 m CB32CLN20SUAX CB32CLN20SVAX CB32CLN20S T AX 230 VAC 2 m CB32CLN20RUAX CB32CLN20RVAX CB32CLN20R T AX 24 VAC/DC 2 m CB32CLN20QUAX CB32CLN20QVAX CB32CLN20Q T AX 120 VAC 5 m CB32CLN20SUAX5M CB32CLN20SVAX5M CB32CLN20S T AX5M 230 VAC 5 m CB32CLN20RUAX5M CB32CLN20RVAX5M CB32CLN20R T AX5M 24 VAC/DC 5 m CB32CLN20QUAX5M CB32CLN20QVAX5M CB32CLN20Q T AX5M 120 VAC 10 m CB32CLN20SUAX10M CB32CLN20SVAX10M CB32CLN20S T AX10M 230 VAC 10 m CB32CLN20RUAX10M CB32CLN20RVAX10M CB32CLN20R T AX10M 24 VAC/DC10 mCB32CLN20QUAX10M CB32CLN20QVAX10M CB32CLN20Q T AX10MType SelectionThermoplastic PolyesterTypes CB32, ATEXSpecifications2Specifications are subject to change without notice (16.11.2016)Mode of OperationCB32 with no delay output:The relay operates (connec-tion between black and yel-low wires) and remains ON until the sensor is activated. After activation of the sen-sor, the relay releases and the LED goes ON.CB32 with ON-delay out-put:When the sensor is not acti-vated, the relay operates (connection between black and yellow wires) and the LED is OFF. When the sen-sor is activated, the time measurement starts and the LED flashes. After expi-ration of the set time, the relay releases and the LEDgoes ON. The relay remains released until the sensor is deactivated.CB32 with OFF-delay output:The time measurement starts and the LED flash-es when power supply is applied to the sensor. When the set time has expired, the relay operates (connection between black and yellow wires) and the LED goes OFF. When the sensor is activated, the relay releases and the LED goes ON. As soon as the sensor is deac-tivated, the measurement of the set time starts.AdjustmentOperation DiagramsCB32Delivery Contents• Capacitive switch: CB32• Screwdriver• Packaging: Plastic bag • User manualWiring DiagramBN BU WH YE Relay output Power supply BK+-Dimensions。
感应同步器_容栅_谐振式传感器PPT

感应同步器的信号处理原理
滑尺正、余旋绕组上同时加激磁电压U 滑尺正、余旋绕组上同时加激磁电压Us、 Uc时,根据叠 加原理,则与之相耦合的定尺绕组上的总感应电压为: 加原理,则与之相耦合的定尺绕组上的总感应电压为: 定尺绕组上的总感应电压为 Uo =Uos+ Uos=KUScosθ1-K Ucsinθ1 K— 电磁感应系数 θ1 —定尺绕组上的感应电压的相位角
感应同步器的应用方式
很小, 令 ∆θ = α − θ ,当 ∆θ 很小, sin(α − θ ) = sin ∆θ ≈ ∆θ 可近似表示为U Ud可近似表示为Ud≈Um ∆θ sinωt 将式 代入上式得 U d ≈ U m ∆x
π sin ωt τ
当位移量Δ 很小时, 幅值与 成正比, 当位移量Δx很小时,感应电压Ud的幅值与Δx成正比,因 此可以通过测量Ud的幅值来测定位移量Δx的大小。从而实 的幅值来测定位移量Δ 的大小。 现精确测量。 现精确测量。
1)鉴相工作方式 根据感应输出电压的相位来检测位移量 供给滑尺的正、余弦绕组的激磁信号是频率、幅值相同, 供给滑尺的正、余弦绕组的激磁信号是频率、幅值相同, 频率 相位相差90°的交流励磁电压 相位相差90° 90 Us=Umsinωt sinωt+π/2 /2) Uc=Um(sinωt+π/2)=Umcosωt 距离时, 当滑尺移动x距离时,则定尺上的感应电压为 cosθ= sinωtcosθ Ud1=k Uscosθ=k Umsinωtcosθ Ud2=k Uccos(θ+π/2)=-kUmcosωtsinθ cos( π/2)=-kU cosωtsinθ )=-
x xp q = ( )2p = t 2t
根据滑尺正、余旋绕组上激磁电压Us、 Uc供电方式的不 根据滑尺正、余旋绕组上激磁电压Us、 Uc供电方式的不 Us 同可构成不同检测系统——鉴相型系统和鉴幅型系统。 同可构成不同检测系统——鉴相型系统和鉴幅型系统。 ——鉴相型系统和鉴幅型系统
SN6600数显卡尺容栅传感器

1、容栅位移传感器工作原理以电容器为敏感元件,将机械位移量转换为电容量变化,可进行位移的测量。
平行板电容器的电容与极板面积成正比,与极板间距成反比。
由一个固定极板和一个可移动极板,可以组成变面积式电容传感器。
改变两极板的对应面积,传感器的电容随之变化。
容栅位移传感器是基于变面积工作原理的电容传感器,其电极的排列如同栅状,相当于多个变面积型电容传感器的并联。
容栅结构如图2.2.1所示,定极板为两组等间隔交叉的极栅,动极板的极距相同且栅宽相同。
动极板相对于定极板移动时,机械位移量转变为电容值的变化,通过电路转化得到电信号的相应变化量。
物理实验中使用的一种电子数显尺,就是采用如图2.2.2所示的多级片型容栅作为传感器,动尺的多组栅片并联是为了提高测量精度及降低对传感器制造精度的要求。
动极板在移动的过程中,始终与不同的小电极组成差动电容器。
动尺相对于定尺移动时,电容周期变化,产生的脉冲信号通过电路转化放大及芯片计算得到位移值的变化,并显示出来。
2、容栅传感器应运详细介绍(Capacitive)容栅传感器是一种新型位移数字式传感器,它是一种基于变面积工作原理的电容传感器。
因为它的电极排列如同栅状,故称此类传感器为容栅传感器。
与其他大位移传感器,如光栅、磁栅等相比,虽然准确度稍差,但体积小、造价低、耗电省和环境使用性强,广泛应用于电子数显卡尺、千分尺、高度仪、坐标仪和机床行程的测量中。
结构及工作原理根据结构形式,容栅传感器可分为三类,即直线容栅、圆容栅和圆筒容栅。
其中,直线容栅和圆筒容栅用于直线位移的测量,圆容栅用于角位移的测量,直线型容栅传感器结构简图图11-23所示。
容栅传感器由动尺和定尺组成,两者保持很小的间隙δ,如图11-23b所示。
动尺上有多个发射电极和一个长条形接收电极;定尺上有多个相互绝缘的反射电极和一个屏蔽电极(接地)。
一组发射电极的长度为一个节距W,一个反射电极对应于一组发射电极。
在图11-23中,若发射电极有48个,分成6组,则每组有8个发射电极。
一种数显卡尺用的容栅传感器[实用新型专利]
![一种数显卡尺用的容栅传感器[实用新型专利]](https://img.taocdn.com/s3/m/54f284ddf9c75fbfc77da26925c52cc58ad69073.png)
[19]中华人民共和国国家知识产权局[12]实用新型专利说明书[11]授权公告号CN 2526779Y[45]授权公告日2002年12月18日[21]ZL 专利号02226160.5[21]申请号02226160.5[22]申请日2002.03.14[73]专利权人陈熠地址510310广东省广州市海珠区广州大桥东汇美街2号801房[72]设计人王昭进 陈熠 [51]Int.CI 7G01B 3/20权利要求书 1 页 说明书 3 页 附图 1 页[54]实用新型名称一种数显卡尺用的容栅传感器[57]摘要本实用新型涉及一种数显卡尺用的容栅传感器,它公开了一种数显卡尺用的容栅传感器在同一节距T 内相邻的发射电极分别交错排列在接收电极的两侧,在以NT(N为整数)个节距为一组内各个节距的发射电极的排列顺序相同,而每隔一组发射电极的排列顺序相交错,在2N(N为整数)组内相邻发射电极在测量方向上有间隙地排列,在每个节距T内、节距与节距之间和组与组之间相邻发射电极在测量方向上的间隙相同。
这种排列方式,可增大测量信号的强度从而提高测量灵敏度,而且不会增加制作的难度和成本。
02226160.5权 利 要 求 书第1/1页 1.一种数显卡尺用的容栅传感器,包括设在副标尺上的动栅线路板和设在主标尺上的定栅线路板,上述动栅线路板上设有与测量方向垂直的在每个节距T内有2N(N为整数)个发射不同信号的发射电极、一个矩形的接受电极以及进行数据处理的电子电路,定栅线路板上设有面向上述发射电极和接收电极并在沿测量方向上依次排列的反射电极,接收电极的长度是发射电极的节距T的整数倍,其两端分别比发射电极的两外端短T/2,反射电极的间距与发射电极的节距T相等,其特征在于:在同一节距T内相邻的发射电极分别交错排列在接收电极的两侧,在以NT(N为整数)个节距为一组内各个节距的发射电极的排列顺序相同,而每隔一组发射电极的排列顺序相交错,在2N(N为整数)组内相邻发射电极在测量方向上有间隙地排列。
第四章 位移传感器

第一节 电容式传感器 (capacitive sensors) 特点:结构简单、灵敏度高、动态响应好、可实现非接触 测量、具有平均效应,能在高温、辐射等恶劣条件工作。 应用:可用来检测位移 、压力等参量。 一、工作原理 从结构上来分有:平板式、园柱式电容器。以平板式电容 器为例:平板电容器的容量
C r 0
螺管式 L=KX 几十毫米 线性灵敏度小
二、互感式传感器(差动变压器) (LVDT) 1.原理: 衔铁位移x变化=>互感(M1,M2)变化,如图所示。
I 1 + U 1 L1
x
R1
M1 L21 + U - 21 + U o L22 M2 + U 22 -
说明: (1)与变压器的区别:变压器:闭合磁路,M 为常数; M f ( x) 。 差动变压器:开磁路, (2)输出端采用“反向串联”:其输出为电压,和差动电 桥方式相比,后者灵敏度低一倍: 反向串联与交流电桥的比较如图所示。
(2)相敏检波电路 交流电桥输出的相量可反映被测量的大小和方向,但用一般 的指示仪表却丢失了方向信号。 当衔铁居中时,Z1=Z2。当Z1↑,Z2↓时:
正半周 Ua正,Ub负 VD1、VD4导通 Ua负,Ub正 VD2、VD3导通
AECB支路: Uc↓ AFDB支路: Ud↑ BCFA支路: ↓ BDEA支路: ↑
E Z1 A +
Z2 U
u0 负 u0
u0 负
负半周
负
同理,当Z1↓,Z2↑时, UO 为正。故UO不仅反映线 圈阻抗变化大小,还能反映 变化方向。
VD1 VD2
C Z3 + B U o Z4 D -
A VD3 F VD4
壅压传感器D8M系列产品说明书

Solid State Pressure Sensors withAnalog, Pulse or Frequency Outputs•Compact housing measures 30L x 30W x 12.4H mm. •Accept 4 mm OD tubing (D8M-A1, -R1); 3 mm OD tubing for (D8M-D1, -D2), 6 mm OD tubing for D8M-D82.•Chemical-resistant plastic (PBT) body.•Metal shield mounted version (D8M-D82) available.•IP40 enclosure rating for embedded applications.•Pre-wired and PCB mounting models available.Ordering InformationOperating pressurerange Output signal Output frequencyPower supply voltage Withstand pressureModel0 to 4.9 kPa (0 to 0.71 psi)Analog,15 to 1247 mV -- 2.2 ±0.1 VDC 58.8 kPa (8.53 psi) for 3 minutesD8M-A10 to 5.88 kPa (0 to 0.85 psi)Pulse count, 1 pulse/9.81 Pa (1/0.0014 psi)-- 2.2 to 3.4 VDC with regulator58.8 kPa(8.53 psi) for 3 minutes D8M-D10 to 5.88 kPa (0 to 0.85 psi)Pulse count,1 pulse/9.81 Pa (1/0.0014 psi)-- 2.2 to 3.4 VDC with regulator58.8 kPa(8.53 psi) for 3 minutesD8M-D20 to 4.9 kPa (0 to 0.71 psi)Pulse count,1 pulse/9.81 Pa (1/0.0014 psi)--2.2 to3.4 VDC with regulator19.6 kPa (2.84 psi) for 5 minutesD8M-D820 to 196.13 Pa (0 to 0.028 psi)Frequency,1 kHz/9.81 Pa (1 kHz/0.0014 psi)80 to 300 kHz4.2 to5.5 VDC with regulator3 kPa (0.435 psi) for 10 secondsD8M-R1Specifications■Electrical RatingsNote:1.Output voltage (mV) = Supply voltage V (2.2) x (2.464 x Pressure (kPa)/9.8 x 1000 + 15)2.Values measured during and after testing.■Operating CharacteristicsNote:With no icing or condensationItemD8M-A1D8M-D1D8M-D2D8M-D82D8M-R1Power supply voltage 2.2 ±0.1 VDC 2.2 to 3.4 VDC with regulator 2.2 to 3.4 VDC with regulator 2.2 to 3.4 VDC with regulator 4.2 to 5.5 VDC with regulator Current consumption 2.5 mA max.25 mA max.25 µA 100 mA ±5% at 3 VDC 10 mA max.Load resistance 1 M Ω min.--------Output resistance 500 Ω max.--------Leakage current 1 mA or less 1 mA or less 1 mA or less 1 mA or less 1 mA or less Output voltage 15 to 1247 mV --------Output pulses --------80 to 300 kHz Output resolution (Note 1)1 pulse/9.81 Pa1 pulse/9.81 Pa 1 pulse/9.81 Pa 1 kHz/9.81 Pa Output voltage rate of change with resistance load change1 M Ω or more into 30 k Ω is made within 2.5%--------Output voltage by input pressure0.98 kPa = 261 mV 1.96 kPa = 508 mV 3.73 kPa = 951 mV 4.9 kPa = 1247 mV (Note 1)--------Operating characteristics ±62 mV initial --------±37 mV during test and after0 kPa = 30 pulses 0.59 kPa = 60 ±32 pulses1.96 kPa = 200 ±24 pulses3.73 kPa = 380 ±24 pulses5.39 kPa = 530 ±82 pulses (Note 2)0 kPa = 30 pulses 0.59 kPa = 60 ±32 pulses1.96 kPa = 200 ±24 pulses3.73 kPa = 380 ±24 pulses5.39 kPa = 550 ±82 pulses (Note 2)0 kPa = 30 pulses 0.15 kPa = 45 ±30 pulses2 kPa = 204 ±15 pulses4 kPa = 438 ±46 pulses0 Pa =180 ±100 kHz;Incremental change from 0 value: 49.03 Pa = 5 ±0.9 kHz 73.55 Pa = 7.5 ±1.0 kHz 147.10 Pa = 15 ±0.8 kHz 196.13 Pa = 20 ±1.4 kHz (Note 2)±62 mV temperature influence--------ItemD8M-A1D8M-D1D8M-D2D8M-D82D8M-R1Pressure type Gauge Pressure range 0 to 4.9 kPa (0 to 0.71 psi)0 to 5.88 kPa (0 to 0.85 psi)0 to 5.88 kPa (0 to 0.85 psi)0 to 4.9 kPa (0 to 0.71 psi)0 to 196.13 Pa (0 to 0.028 psi)Withstand pressure 5.88 kPa for 3 minutes 58.8 kPa for 3 minutes 58.8 kPa for 3 minutes 19.6 kPa for 5 minutes 3 kPa for 10 seconds Repeatability/hystersis ±0.5% FS ±0.5% FS NA ±0.5% FS ±0.5% FS Non-linearity characteristics ------±2% FS max.±2% FS max.Response time3.0 ms2.5 ms (pressure)18 ms max. (switch)100 ms (discharge) 3 ms (pressure) 32 ms max. (switch) 250 ms (discharge) 1.5 ms (pressure) 30 ms max. (switch) 45 ms (discharge) 3 seconds max.Operating temperature (Note)-30° to 70°C -30° to 70°C -30° to 70°C -10° to 60°C -20° to 70°C Storage temperature (Note)-40° to 80°C -40° to 80°C -40° to 80°C -20° to 70°C -30° to 80°C Operating humidity25 to 95%25 to 95%25 to 95%25 to 95%25 to 95%■Environmental CharacteristicsOperation■Response Timing ChartsD8M-D1, D2, D82Legend:T1, Pressure measurement timeT2, Response timeT3, Electrical discharge timeD8M-R1■Interface Circuit DiagramD8M-R1Application ExamplesCompact D8M solid state pressure sensors provide reliable detection for gas and air inflow for burner controls in water heaters, furnaces and other gas-fired devices. They can also be used in gas usage meters.ItemD8M-A1D8M-D1D8M-D2D8M-D82D8M-R1Insulation resistance 100 m Ω min., 250 VDC between lead terminals and the base Dielectric strength250 VAC, 50/60 Hz for 1 minute between lead terminals and the base500 VAC, 50/60 Hz for 1 minute between ter-minals and the baseDegree of protection NA IP40IP40IP40IP40Pressure port 4 mm OD3 mm OD3 mm OD6 mm OD4 mm ODConnection method Solder on PC boards Wiring connector ontop Wiring connector on top Three AWG26 wires, 115 mm long Wiring connector on bottom Weight NANANANANAMaterialPBT (polybutylene terephthalate)ModelT1T2T3D8M-D1 2.5 ms min.18 ms max.100 ms min.D8M-D2 3.0 ms min.32 ms max.250 ms min.D8M-D82 1.5 ms min.30 ms max.45 ms max.Response time to 90% of 0.2kPaMax. 3 seconds (excluding time for pressure change)Dimensions Unit: mm (inch)■D8M-D130 (1.18)23 (0.92) ±0.230 (1.18)23 (0.92) ±0.2T wo 3.2 (0.13) dia.mounting holes17.7 (0.70)10.1 (0.40)4 (0.16) ODLOT NUMBERTYPE NAME4 (0.16) OD18.8 (0.74)18.6 (0.73)11.6 (0.46)2 (0.08)5 (0.20)1.6 (0.06)4.4 (0.17)7 (0.28)T wo, 1.5 (0.06) dia.standoff pinsThree, 0.635 (0.025)square terminal leadsGNDV OUTV CCT wo, M3 holes23 (0.91) ±0.1T wo, 3 (0.12) dia.10.7 (0.42)23 (0.91) ±0.15.08 (0.20)5.08 (0.20)15.6 (0.61) ±0.01Terminal Arrangement(T op View)Mounting Holes(T op View)2 (0.08)■D8M-D2■D8M-D82D8M-R1PrecautionsBe sure to abide by the following precautions for the safe operation of the Sensor.■SolderingSolder D8M-A1 on PC boards within 5 seconds using a soldering iron whose tip temperature is adjusted to 345° to 355°C.■MountingFor proper operation, mount the sensor within ±10 degrees of level.30 (1.18)23 (0.91)30 (1.18)23 (0.91)T wo, 3.2 (0.13) dia.TYPE NAME17.7 (0.70)10.1 (0.40)5 (0.20) dia.2 (0.08)2 (0.08) dia.4 (0.16) ODLOT NUMBER5 (0.20)1.6 (0.06)7 (0.28)18.8 (0.74)18.6 (0.73)11.6 (0.46)CONNECTOR(Pin 1) (Pin 2)GND (Pin 3)2 (0.08)ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. T Cat. No. T026-E3-1Printed in USA OMRON ELECTRONICS LLCOne East Commerce Drive 1-800-55-OMRON07/02/7.5M Specifications subject to change without notice o convert millimeters into inches, divide by 25.4Cat. No. CS01WAD1OMRON CANADA, INC.885 Milner Avenue Toronto, Ontario M1B 5V8416-286-6465Schaumburg, IL 60173847-882-2288OMRON ON-LINE Global - USA - /oei Canada - /oci 10/02 Specifications subject to change without notice OMRON ON-LINEGlobal - USA - /oeiCanada - http://www.omron.ca Cat. No. CS01WAD1(A)Printed in USAOMRON CANADA, INC.885 Milner Avenue T oronto, Ontario M1B 5V8416-286-6465One Commerce Drive 11/02 Specifications subject to change without notice。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概述
1、用途:
JCQ-203型十六点位移测试仪是专为需要多点位移测试的有关检测部门研制的一种智能化仪器。
它配合容栅式位移传感器可进行多点位移测试及单点位移显示(可换点),并可随时打印十六点位移数据。
也可以通过仪器上的RS-232串行口将数据传到PC机由PC机全屏显示全部十六点位移数据。
2、特点:
本仪器具有十六个独立的位移测试通道,可直接显示各测试通道的位移值。
仪器与传感器间用电缆连接,测试人员可远距离操作,既提高了工作效率,又大大提高了测试精度。
本仪器位移测试通道使用本所研制的容栅式位移传感器,具有高精度、大量程、无时漂、温漂等优点,完全满足了野外昼夜连续观测对时漂、温漂的严格要求。
仪器具有标准打印机接口,可随时打印原始数据不需人工记录。
因为本仪器使用环境恶劣,电源电压波动大,昼夜、季节温差大。
为了保证仪器的高精度、高稳定和可靠性,采取了一系列技术措施予以保证。
仪器面板采用封闭式轻触面板,操作简便,性能可靠,结构牢固,体积小巧,便于安装、携带。
机内采用进口工业级超低漂移集成电路芯片及计算机处理技术,具有良好的抗干扰性能及适应恶劣环境的能力。
二、主要技术指标
1、测试通道:位移16个
2、量程:位移0—50mm
3、精度:位移≤0.1 %(含传感器)
4、显示:8位液晶显示屏
5、功能键:2个
6、输出接口:标准打印机接口1个
7、串行口:标准RS-232接口1个
8、电源:AC 220V(-20% —+10%)
9、功率:交流≤10V A
10、环境温度:0℃—+40℃允许长时间连续工作
11、体积:335×325×115mm
12、重量:约4.2 kg
三、仪器功能键
仪器具有3个功能键。
1、位移上下换点键
按上面的换点键时显示下一个位移通道号及位移值,按下面的换点键时显示上一个位移通道号及位移值,显示通道范围在1-16之间,位移单位为mm。
2、打印键
该键用于数据的随时打印。
每按一次此键,打印机打印1-16点各点位移值。
四、现场试验的操作使用
1、仪器系统配套性
(1)JCQ-203十六点位移测试仪1台
(2)容栅式位移传感器16个
(3)打印机1台
(4)传感器屏蔽电缆1套
(5)RS-232串口通信电缆1根
(6)仪器电源线1根
2、开机前的准备
(1)仪器接入单相交流220V电源,并可靠接地。
(2)位移传感器就位后,将各自的屏蔽电缆插入仪器后面板对应插座。
(3)将打印机与本仪器后面板打印机插座联通。
(4)如需由PC机全屏显示全部位移数据需将RS-232串口通信线连接仪器及PC机上串口插座。
3、系统设备的检查
(1)打开仪器电源开关,显示器应显示JCQ-203,按换点键应依次显示各点位移值。
(2)若接有打印机可按打印键,检查打印机是否打印(打印机电源应先打开)。
(3)在位移传感器端按清零键,对位移传感器清零。
4、主机程序操作
(1)进入监控后系统首先提示是否删除历史记录,如选择“是”则清除历史记录,否则系统将恢复上次试验的数据设置,并在原有数据后继续追加数据。
当进行新的试验时应选择清除历史记录,防止上次试验的数据设置影响本次试验。
数据自动保存在系统程序所在目录下,文件名为WYDAT.dat。
WYDAT.bak为上次试验的备份数据。
(2)从通道选择中选择使用的位移通道(应将不使用的位移通道关闭)。
(3)设定定时记录时间,系统根据定时自动记录。
如定时为0,则不作自动记录。
另外随时可使用保存命令来保存当前数据。
(4)根据使用的串口来选择进行通讯的串口号。
如选择正确应该能在位移显示区看到相应的位移值。
否则应检查串口或连线是否正确,直到能够看到位移值为止。
然后即可进入正常测试工作。
(5)选择打印命令时将打印采集的所有数据。
(6)记录的数据可在文字处理系统处理如WORD、写字板、Excel中打开使用。
(7)如果位移量程不足,可以通过数据设置来扩大量程,方法如下:
A、记下需要调整位移通道的位移值。
B、调整该位移表并将它清零。
C、选择“数据设置”命令,在该位移的修改值中输入第一步记下的位移值,确
定即可。
五、注意事项
1、系统应具有可靠的安全接地以确保人身安全。
2、如遇停电应关闭电源开关,以免突然来电时的冲击损坏仪器。
3、系统安装完毕后仪器应加电预热30分钟再使用以保证测试精度。
4、仪器发生故障,请首先检查传感器连线和插头是否有短路或断路现象,若排除后
仍不正常,请不要自行拆卸可送回我所维修。