统计学贾俊平第4章 数据的概括性度量
精选人大版,贾俊平,第五版,统计学第4章数据的概括性度量资料
R
. =
最高组上限
-
最低组下限
2. 平均差
1. 离散程度的测度值之一
2. 各变量值与其均值离差绝对值的平均数
3. 能全面反映一组数据的离散程度
4. 数学性质较差,实际中应用较少
5. 计算公式为
未分组数据 组距分组数据
N
Xi X
M D i1 N K X i X Fi
M D i1 K
QD = QU - QL =3–2 =1
4.2.3 数值型数据:方差和标准差 1.极差
1. 一组数据的最大值与最小值之差
2. 离散程度的最简单测度值
3. 易受极端值影响
4. 未考虑数据的分布 5. 计算公式为
7 8 9 10
7 8 9 10
未分组数据 R = max(Xi) - min(Xi)
组距分组数据
QU位置=3×50/4=37.5
350 30
QU 125
4 10
5 128.75(个)
4.1.3 数值型数据:平均值 1.集中趋势的测度值之一 2.最常用的测度值 3.一组数据的均衡点所在 4.易受极端值的影响 5.用于数值型数据,不能用于定类数据和定
序数据
均值(计算公式)
M0
125
(14
14 10 8) (14
10)
5
123(个)
4.1.2 顺序数据:中位数和分位数 1.中位数
集中趋势的测度值之一 排序后处于中间位置上的值 不受极端值的影响 主要用于定序数据,也可用数值型数据,但不能
用于定类数据
各变量值与中位数的离差绝对值之和最小,即
25% 25% 25% 25%
贾俊平《统计学》考研真题(含复试)与典型习题详解(数据的概括性度量)【圣才出品】
2.统计学期中考试非常简单,为了评估简单程度,教师记录了 9 名学生交上考试试卷
的时间如下(分钟)
33 29
45 60 42 19 52 38 36[东北财经大学
2012 研]
(1)这些数据的极差为( )。
A.3.00
B.-3.00
C.41.00
D.-41.00
【答案】C
【解析】数据按从小到大排序结果如下:
A.0.38
B.0.40
C.0.54
D.2.48
【答案】A
【解析】离散系数也称为变异系数,它是一组数据的标准差与其相应的平均数之比。其
计算公式为: vs
s x
。得到 vs
22.85 0.38 。 12.45
9.已知某工厂生产的某零件的平均厚度是 2 厘米,标准差是 0.25 厘米。如果已知该 厂生产的零件厚度为正态分布,可以判断厚度在 1.5 厘米到 2.5 厘米之间的零件大约占 ( )。[浙江工商大学 2011 研]
圣才电子书 十万种考研考证电子书、题库视频学习平台
5.随机变量 X 的方差为 2,随机变量 Y=2X,那么 y 的方差是( )。[中央财经大学 2011 研]
A.1 B.2 C.4 D.8 【答案】D
【解析】Var(cX ) c2Var(X ) 22 2 8
7.设 X1,X2,…,X n 为随机样本,则哪个统计量能较好地反映样本值的分散程度( )。
[中山大学 2012 研] A.样本平均 B.样本中位数 C.样子书
【答案】C
十万种考研考证电子书、题库视频学习平台
【解析】集中趋势是指 一 组 数 据 向 某 一 中 心 值 靠 拢 的 程 度 ,它 反 映 了 一 组 数 据 中 心
统计学第四章习题答案 贾俊平
第四章 统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15 要求:(1)计算汽车销售量的众数、中位数与平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics汽车销售数量 10 Missing0 Mean 9、60 Median 10、00Mode10 Std 、 Deviation 4、169 Percentiles25 6、25 50 10、00 75单位:周岁19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 41 20 3117 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布与累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6、25,因此Q1=19,Q3位置=3×25/4=18、75,因此Q3=27,或者,由于25与27都只有一个,因此Q3也可等于25+0、75×2=26、5。
(3)计算平均数与标准差;Mean=24、00;Std、Deviation=6、652(4)计算偏态系数与峰态系数:Skewness=1、080;Kurtosis=0、773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6、652、呈右偏分布。
如需瞧清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4、3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图::一种就是所有颐客都进入一个等待队列:另—种就是顾客在三千业务窗口处列队3排等待。
《统计学》(贾俊平第七版)课后题及答案-统计学课后答案第七版
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
《统计学》(贾俊平,第五版)分章习题及答案
《统计学》分章习题及答案(贾俊平,第五版)主编:杨群目录习题部分 (2)第1章导论 (3)第2章数据的搜集 (4)第3章数据的整理与显示 (5)第4章数据的概括性度量 (6)第5章概率与概率分布 (10)第6章统计量及其抽样分布 (11)第7章参数估计 (11)第8章假设检验 (13)第9章分类数据分析 (14)第10章方差分析 (16)第11章一元线性回归 (17)第12章多元线性回归 (19)第13章时间序列分析和预测 (22)第14章指数 (25)答案部分 (30)第1章导论 (30)第2章数据的搜集 (30)第3章数据的图表展示 (30)第4章数据的概括性度量 (31)第5章概率与概率分布 (32)第6章统计量及其抽样分布 (33)第7章参数估计 (33)第8章假设检验 (34)第9章分类数据分析 (34)第10章方差分析 (36)第11章一元线性回归 (37)第12章多元线性回归 (38)第13章时间序列分析和预测 (40)第14章指数 (41)习题部分第1章导论一、单项选择题1.指出下面的数据哪一个属于分类数据()A.年龄B.工资C.汽车产量D.购买商品的支付方式(现金、信用卡、支票)2.指出下面的数据哪一个属于顺序数据()A.年龄B.工资C.汽车产量D.员工对企业某项制度改革措施的态度(赞成、中立、反对)3.某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的人均收入4.了解居民的消费支出情况,则()A.居民的消费支出情况是总体B.所有居民是总体C.居民的消费支出情况是总体单位D.所有居民是总体单位5.统计学研究的基本特点是()A.从数量上认识总体单位的特征和规律B.从数量上认识总体的特征和规律C.从性质上认识总体单位的特征和规律D.从性质上认识总体的特征和规律6.一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。
数据特征的描述和分析 统计学课件
(第四版)
ห้องสมุดไป่ตู้
1. 众数
不受极端值影响
具有不惟一性
数据分布偏斜程度较大且有明显峰值时应用
2. 中位数
不受极端值影响
数据分布偏斜程度较大时应用
3. 平均数
易受极端值影响
数学性质优良
数据对称分布或接近对称分布时应用
4 - 29
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
统计学
STATISTICS (第四版)
数值型数据的四分位数
(9个数据的算例)
【例】:9个家庭的人均月收入数据(4种方法计算)
原始数据: 1500 750 780 1080 850 960 2000 1250 1630 排 序: 750 780 850 960 1080 1250 1500 1630 2000
STATISTICS (第四版)
几何平均数
(geometric mean)
1. n 个变量值乘积的 n 次方根
2. 适用于对比率数据的平均
3. 主要用于计算平均增长率
4. 计算公式为
n
Gm n x1 x2 xn n xi
i1
5. 可看作是平均数的一种变形
n
lg Gm
1 (lg n
几何平均:
G 4 104.5% 102.1% 125.5% 101.9% 1
8.0787%
算术平均:
G 4.5% 2.1% 25.5% 1.9% 4 8.5%
4 - 26
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
统计学第五版(贾俊平)课后习题答案
300~ 350 400
30 -13520652.3 1036628411.8
400~ 450 42 500
533326.9 12442517.1
500~ 550 600
18
33765928.7 4164351991.6
600以上 650 11 122527587.627364086138.8 合计 — 120 38534964.451087441648.4
7.8已知:总体服从正态分布,但未知,为小样本,,。 根据样本数据计算得:,。 总体均值的95%的置信区间为: ,即(7.11,12.89)。
7.9已知:总体服从正态分布,但未知,为小样本,,。 根据样本数据计算得:,。 从家里到单位平均距离的95%的置信区间为: ,即(7.18,11.57)。
7.10(1)已知: ,,,。 由于为大样本,所以零件平均长度的95%的置信区间为: ,即(148.87,150.13)。 (2)在上面的估计中,使用了统计中的中心极限定理。该定理表明: 从均值为、方差为的总体中,抽取容量为的随机样本,当充分大时(通 常要求),样本均值的抽样分布近似服从均值为、方差为的正态分布。
7.13已知:总体服从正态分布,但未知,为小样本,,。 根据样本数据计算得:,。 网络公司员工平均每周加班时间的90%的置信区间为: ,即(10.36,16.76)。
7.14(1)已知:,,,。 总体总比例的99%的置信区间为: ,即(0.32,0.70); (2)已知:,,,。 总体总比例的95%的置信区间为: ,即(0.78,0.86); (3)已知:,,,。 总体总比例的90%的置信区间为: ,即(0.46,0.50)。
500~600 550 18 9900
600以上 650 11 7150
统计学贾俊平考研知识点总结
统计学贾俊平考研知识点总结Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】统计学重点笔记第一章导论一、比较描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。
(1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。
内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。
(2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。
研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。
其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。
(3)两者的关系:描述统计是基础,推断统计是主体二、比较分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
(1)分类数据是只能归于某一类别的非数字型数据。
它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。
(2)顺序数量是只能归于某一有序类别的非数字型数据。
也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。
(3)数值型数据是按数字尺度测量的观察值。
其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。
总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。
贾俊平《统计学》(第7版)考研真题与典型题详解-第4章 数据的概括性度量【圣才出品】
第4章数据的概括性度量一、单项选择题1.一组数据的峰度系数为3.5,则该数据的统计分布应具有的特征是()。
[中央财经大学2018研]A.扁平分布B.尖峰分布C.左偏分布D.右偏分布【答案】B【解析】峰度系数用来度量数据在中心的聚集程度。
在正态分布情况下,峰度系数值是3。
大于3的峰度系数说明观察量更集中,有比正态分布更短的尾部;小于3的峰度系数说明观测量不那么集中,有比正态分布更长的尾部,类似于矩形的均匀分布。
2.某企业男性职工占80%,月平均工资为450元,女性职工占20%,月平均工资为400元,该企业全部职工的平均工资为()。
[中央财经大学2015研] A.425元B.430元C.435元D.440元【答案】D【解析】企业全部职工的平均工资=男性职工比例×男性月平均工资+女性职工比例×女性月平均工资=80%×450+20%×400=440(元)。
3.15位同学的某门课程考试成绩中,70分出现3次,80分出现4次,85分出现6次,90分出现2次,则他们成绩的众数为()。
[华中农业大学2015研] A.80B.85C.81.3D.90【答案】B【解析】众数是一组数据中出现次数最多的变量值。
题中,85分出现次数最多,故成绩的众数为85分。
4.一组样本的变异系数(CV)等于10,样本均值为5,则样本方差为()。
[厦门大学2014研]A.2B.4C.0.5D.2500【答案】D【解析】变异系数是一组数据的标准差与其相应的平均数之比,因而样本标准差=样本均值×变异系数=5×10=50,样本方差=50×50=2500。
5.现抽取了10个同学,每个同学的月生活费数据排序后为:660,750,780,850,960,1080,1250,1500,1630,2000。
则中位数的位置为()。
[重庆大学2013研]A.5.5B.5C.4D.6【答案】A【解析】中位数是将样本排序后处于中间位置的数据,总共有10个样本,因此中位数的位次=(1+10)/2=5.5。
贾俊平第六版统计学课后思考题答案——张云飞
第一章导论1.什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
2.解释描述统计和推断统计描述统计研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计是研究如何利用样本数据来推断总体特征的统计方法。
3.统计数据可以分为哪几种类型?不同类型的数据各有什么特点?分类数据:是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。
顺序数据:是只能归于某一有序类别的非数字型数据。
虽然也有列别,但这些类别是有序的。
数值型数据:是按数字尺度测量的观察值,其结果表现为具体的数值。
4.解释分类数据、顺序数据和数值型数据的含义分类数据和顺序数据说明的是事物的品质特征,通常是用文字来表述的,其结果均表现为类别,因此也可统称为定性数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此也可称为定量数据或数量数据。
5.举例说明总体、样本、参数、统计量、变量这几个概念总体是包含所研究的全部个体(数据)的集合;样本是从总体中抽取的一部分元素的集合;参数是用来描述总体特征的概括性数字度量;统计量是用来描述样本特征的概括性数字度量;变量是说明现象某种特征的概念。
比如我们欲了解某市的中学教育情况,那么该市的所有中学则构成一个总体,其中的每一所中学都是一个个体,我们若从全市中学中按某种抽样规则抽出了10所中学,则这10所中学就构成了一个样本。
在这项调查中我们可能会对升学率感兴趣,那么升学率就是一个变量。
我们通常关心的是全市的平均升学率,这里这个平均值就是一个参数,而此时我们只有样本的有关升学率的数据,用此样本计算的平均值就是统计量。
6.变量可以分为哪几类分类变量:一个变量由分类数据来记录就称为分类变量。
顺序变量:一个变量由顺序数据来记录就称为顺序变量。
数值型变量:一个变量由数值型数据来记录就称为数值型变量。
离散变量:可以取有限个值,而且其取值都以整位数断开,可以一一例举。
贾俊平《统计学》章节题库(数据的概括性度量)详解【圣才出品】
第4章数据的概括性度量一、单项选择题1.某企业男性职工占80%,月平均工资为450元,女性职工占20%,月平均工资为400元,该企业全部职工的平均工资为()。
[中央财经大学2015研] A.425元B.430元C.435元D.440元【答案】D【解析】企业全部职工的平均工资=男性职工比例×男性月平均工资+女性职工比例×女性月平均工资=80%×450+20%×400=440(元)。
2.15位同学的某门课程考试成绩中,70分出现3次,80分出现4次,85分出现6次,90分出现2次,则他们成绩的众数为()。
[华中农业大学2015研] A.80B.85C.81.3D.90【答案】B【解析】众数是一组数据中出现次数最多的变量值。
题中,85分出现次数最多,故成绩的众数为85分。
3.一组样本的变异系数(CV)等于10,样本均值为5,则样本方差为()。
[厦门大学2014研]A.2B.4C.0.5D.2500【答案】D【解析】变异系数是一组数据的标准差与其相应的平均数之比,因而样本标准差=样本均值×变异系数=5×10=50,样本方差=50×50=2500。
4.现抽取了10个同学,每个同学的月生活费数据排序后为:660,750,780,850,960,1080,1250,1500,1630,2000。
则中位数的位置为()。
[重庆大学2013研]A.5.5B.5C.4D.6【答案】A【解析】中位数是将样本排序后处于中间位置的数据,总共有10个样本,因此1 5.5102+==中位数的位次5.哪种频数分布状态下平均数、众数和中位数是相等的?( )[东北财经大学2011研]A .对称的钟形分布B .左偏的钟形分布C .右偏的钟形分布D .U 形分布【答案】A【解析】在频数对称且单峰分布的状态下,平均数、众数、中位数相等。
6.统计学期中考试非常简单,为了评估简单程度,教师记录了9名学生交上考试试卷的时间如下(分钟)[东北财经大学2012研]33,29,45,60,42,19,52,38,36(1)这些数据的极差为( )。
统计学贾俊平第4章 数据的概括性度量
均值(续)
事实上,各个观察值与平均数差的总和为0
证明
( xi x ) 0
i 1
n
x x x n x
x x n
i 1 i i i
n
xi n x
All rights reserved
30
均值(续)
n
各个观察值与平均数差的平方和为最小
员工每人加薪5000元
Income 3 4 5 3 4 3.8
33
Name A B C D E Average
Raise 0.5 0.5 0.5 0.5 0.5
New income 3.5 4.5 5.5 3.5 4.5 4.3
All rights reserved
i
组中值x i 3.5 4.5 5.5 6.5
x i× f i 119 58.5 132 208 517.5
xf x
i
n
517 .5 103
28
All rights reserved
均值(续)
均值的性质
均值是要找到一平衡点
均值 Min(观察值与该点的距离 )
29
All rights reserved
i i
fi 34 13 24 32 103
xi×f i 102 52 120 192 466
n
26
n
i
f x
i
i
i
f x x n
i
All rights reserved
均值(续)
加权(weighted)问题
27
All rights reserved
统计学第四章习题答案解析贾俊平
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075 12.50单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数: ()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
[管理]统计学第四版(贾俊平)课后思考题答案
统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学贾俊平考研知识点总结
统计学重点笔记第一章导论一、比较描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。
(1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。
内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。
(2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。
研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。
其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。
(3)两者的关系:描述统计是基础,推断统计是主体二、比较分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
(1)分类数据是只能归于某一类别的非数字型数据。
它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。
(2)顺序数量是只能归于某一有序类别的非数字型数据。
也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。
(3)数值型数据是按数字尺度测量的观察值。
其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。
总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。
三、比较总体、样本、参数、统计量和变量:(1)总体是包含所研究的全部个体的集合。
通常是我们所关心的一些个体组成,如由多个企业所构成的集合,多个居民户所构成的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计图
统计表
?
2
All rights reserved
三个角度
• 集中趋势 平均值
概括性度量
• 分散趋势
变差
3
形状
• 偏斜问题
All rights reserved
4.1 集中趋势的度量
4
All rights reserved
集中趋势
集中趋势(Central tendency)
一组数据向其中心值靠拢的倾向和程度 测度集中趋势就是寻找数据水平的代表值或中心
值 不同类型的数据用不同的集中趋势测度值 低层次数据的测度值适用于高层次的测量数据,
但高层次数据的测度值并不适用于低层次的测量 数据
5
All rights reserved
集中趋势
集中趋势
均值
n
Xi
X i1 n
N
Xi
i1
N
中位数
众数
几何平均数
1
G n
x1x2 xn
17
15
14
13
13
12
11 10
f 1
f
12
f 1
11
9
7
5
13
All rights reserved
示例
例解:
请问你每星期大约学习几小时? 0.5-10.5小时 10.5-20.5小时 20.5-30.5小时
30.5-40.5小时 40.5-50.5小时 50.5-60.5小时 60.5-70.5小时 70.5-80.5小时 80.5-90.5小时 90.5-100.5小时
合计
50
1
Байду номын сангаас
100
解:这里的变量为“饮 料品牌”,这是个分类 变量,不同类型的饮料 就是变量值
所调查的50人中,购 买碳酸饮料的人数最多 ,为15人,占总被调查 人数的30%,因此众数 为“可口可乐”这一品 牌,即
Mo=碳酸饮料
9
All rights reserved
顺序数据的众数
甲城市家庭对住房状况评价的频数分布
一般以Me来表示 如果一组数列有奇数个观察值,则中位数为排序
后数列的中间值 如果一组数列有偶数个观察值,则中位数为排序
后数列的中间两个观察值的算数平均数
15
All rights reserved
中位数
未分组数据
C
1 f f1 2 f f1
f为众数组的次数
f 1为 前 一 组 的 次 数
f
为
1
后一组的次数
C为组距
12
All rights reserved
数值型数据的众数
Mo
B
1 1 2
C
25 23
23
21
19 1 f f1
2 f f1
18
14
f 27 35 57
172 1001 251
87 71 50 35
F累积次数 27 62 119
291 1292 1543 1630 1701 1751 1786
1786
All rights reserved
中位数
中位数(median)
将一组数字由大排至小,位居中间的数值为该组 数字的中位数。
第4章 数据的概括性度量
4.1 集中趋势的度量 4.2 离散程度的度量 4.3 偏态与峰态的度量
1
All rights reserved 1
引例
男性: 110 109 90 140 105 150 120 110 110 90 115 95 145 140 110 105 85
95 100 115 124 95 100 125 140 85 120 115 105 125 102 85 120 110 120 115 94 125 80 85 140 120 92 130 125 110 90 110 110 95 95 110 105 80 100 110 130 105 105 120 90 100 105 100 120 100 100 80 100 120 105 60 125 120 100 115 95 110 101 80 112 120 110 115 125 55 90
一个众数 原始数据: 1 2 3 3 3 4 5
多于一个众数 原始数据: 1 2 3 3 4 4 5
8
All rights reserved
分类数据的众数
不同品牌饮料的频数分布
饮料品牌
频数 比例 百分比 (%)
果汁 矿泉水 绿茶 其他 碳酸饮料
6 0.12 12 10 0.20 20 11 0.22 22 8 0.16 16 15 0.30 30
All rights reserved
数值型数据的众数
分组数据
先在次数表中找出次数最多的那一组,称为「众 数组」
一般以Mo来表示 若取众数组的组中点为众数,则称为粗众数 Czuber插补法
11
All rights reserved
数值型数据的众数
Czuber插补法
Mo
B
1 1 2
n i1
n xi
6
All rights reserved
众数
众数(Mode)
出现次数最多的变量值 不受极端值的影响 一组数据可能没有众数或有几个众数 主要用于定性数据,也可用于定量数据
7
All rights reserved
众数(续)
未分组数据
无众数 原始数据: 1 2 3 4 5 6 7
回答类别
甲城市 户数 (户) 百分比 (%)
非常不满意
24
8
不满意
108
36
一般
93
31
满意
45
15
非常满意
30
10
合计
300
100.0
解:这里的数据为顺 序数据。变量为“回 答类别”
甲城市中对住房 表示不满意的户数最 多 , 为 108 户 , 因 此 众数为“不满意”这 一类别,即
Mo=不满意
10
女性: 80 75 83 80 100 100 90 75 95 85 90 85 90 90 120 85 100 120 75 85
80 70 85 110 85 75 105 95 75 70 90 70 82 85 100 90 75 90 110 80 80 110 110 95 75 130 95 110 110 80 90 105 90 110 75 100 90 110 85 90 80 80 85 50 80 100 80 80 80 95 100 90 100 95 80 80 50 88 90 90 85 70 90 30 85 85 87 85 90 85 75 90 102 80 100 95 110 80 95 90 80 90