2017-2018学年江苏省常州市七年级(上)期末数学试卷
江苏省常州市七年级数学上学期期中试卷(含解析) 苏科版-苏科版初中七年级全册数学试题
2016-2017学年某某省某某市七年级(上)期中数学试卷一、选择题1.﹣2的相反数是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.﹣3+2=﹣5 B.3×(﹣2)=﹣1 C.﹣1﹣1=﹣2 D.﹣32=93.淹城遗址距今已有2500年的历史,总面积约为650000平方米,650000用科学记数法可以表示为()×106×105×104×1044.下列五个数中:①3.14;②;③3.33333…;④π;⑤3.030030003…如果|a|>0,则a()A.一定是正数B.一定是负数C.一定不是负数 D.不等于06.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A.a2﹣b>0 B.a+|b|>0 C.a+b2>0 D.2a+b>07.某超市8月份营业额为m万元,9月份比8月份增长了20%,则该超市9月份的营业额为()A.(1+20%m)万元B.(m+20%)万元C.m万元D.20% m 万元8.如图是一个计算程序,当输出值y=16时,输入值x为()A.±4 B.5 C.﹣3 D.﹣3或5二、填空题9.﹣3的倒数等于;﹣的绝对值等于.10.单项式﹣的系数与次数的乘积为.11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示.12.比较大小:﹣π﹣.(填“>”、“<”或“=”).14.若x3y a与﹣2x b y2的和仍为单项式,则a﹣b的值为.15.将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是.16.当x=1时,代数式ax2+bx﹣4=0,则当x=﹣1时,代数式﹣ax2+bx+7的值为.17.一个两位数,十位数字是x,个位数字比十位数字的3倍少5,则该两位数的最大值是.18.甲乙两人分别从A、B两地同时出发.相向而行,甲的速度是每分钟60米,乙的速度是每分钟90米,出发x分钟后,两人恰好相距100米,则A、B两地之间的距离是米.三、计算题19.计算(1)2+(﹣3)+(﹣6)+8(2)1﹣(﹣4)÷22×(3)(﹣+)÷(﹣)(4)﹣12×8﹣8×()3+4÷.四、计算与化简(20、21每小题5分,22题6分,共16分)20.计算:﹣x+y﹣2x﹣3y.21.计算:﹣(3xy﹣2x2)﹣2(3x2﹣xy)22.先化简,再求值:5(3a2b﹣ab2)﹣4(ab2+3a2b),其中a=,b=.五、解答题(第23题5分,第24题7分,第25、26各8分,共28分)23.将﹣4,﹣(﹣3.5),﹣1,|﹣2|这些数在数轴上表示出来,并用“<”将它们连接起来.24.某高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):﹣8,+18,+2,﹣16,+11,﹣5.(1)该养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为/km,则这次养护共耗油多少升?25.现有20筐葡萄,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示,与标准质量的差值记录如下:单位(千克)﹣3 ﹣2 0 1筐数 1 5 2 2 4(1)这20筐葡萄中,最重的一筐比最轻的一筐重千克.(2)与标准重量比较,这20筐葡萄总计超过或不足多少千克?(3)若葡萄每千克售价8元,则出售这20筐葡萄可卖多少元?26.如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=,S②=.(2)S①与S②之间有怎样的大小关系?请你解释其中的道理.(3)请你利用上述发现的结论计算式子:20162﹣20142.2016-2017学年某某省某某市七年级(上)期中数学试卷参考答案与试题解析一、选择题1.﹣2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.下列运算正确的是()A.﹣3+2=﹣5 B.3×(﹣2)=﹣1 C.﹣1﹣1=﹣2 D.﹣32=9【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣1,错误;B、原式=﹣6,错误;C、原式=﹣2,正确;D、原式=﹣9,错误,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.淹城遗址距今已有2500年的历史,总面积约为650000平方米,650000用科学记数法可以表示为()×106×105×104×104【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法,可得答案.×105,故选:B.【点评】本题考查了科学记数法,确定n的値是解题关键,n是整数数位减1.4.下列五个数中:①3.14;②;③3.33333…;④π;⑤3.030030003…(2016秋•天宁区期中)如果|a|>0,则a()A.一定是正数B.一定是负数C.一定不是负数 D.不等于0【考点】绝对值.【分析】根据绝对值的定义回答即可【解答】解:∵|a|>0,∴a≠0,故选D.【点评】本题主要考查了绝对值的定义,注意①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)是解答此题的关键.6.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A.a2﹣b>0 B.a+|b|>0 C.a+b2>0 D.2a+b>0【考点】数轴.【分析】根据数轴可得出a<﹣1,0<b<1,再判断a2,b2的X围,进行选择即可.【解答】解:根据数轴得a<﹣1,0<b<1,∴a2>1,b2<1,∴a2﹣b>0,故A正确;∴a+|b|<0,故B错误;∴a+b2<0,故C错误;∴2a+b<0,故D错误,故选A.【点评】本题考查了数轴,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.7.某超市8月份营业额为m万元,9月份比8月份增长了20%,则该超市9月份的营业额为()A.(1+20%m)万元B.(m+20%)万元C.m万元D.20% m 万元【考点】列代数式.【分析】根据题意可知9月份增长了20%m.【解答】解:由题意可知:9月份的营业额为m+20%m=m+m=m,故选(C)【点评】本题考查列代数式,涉及合并同类项.8.如图是一个计算程序,当输出值y=16时,输入值x为()A.±4 B.5 C.﹣3 D.﹣3或5【考点】有理数的混合运算.【专题】推理填空题.【分析】当输出值y=16时,小括号内的数是4或﹣4,据此求出输入值x为多少即可.【解答】解:当输出值y=16时,小括号内的数是4或﹣4,4+1=5,﹣4+1=﹣3,∴输入值x为﹣3或5.故选:D.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.二、填空题9.﹣3的倒数等于﹣;﹣的绝对值等于.【考点】倒数;绝对值.【分析】根据倒数的定义,互为倒数的两数积为1;正数的绝对值是其本身,负数的绝对值是它的相反数.【解答】解:﹣3×(﹣)=1,因此﹣3的倒数等于﹣;﹣的绝对值是它的相反数,即.【点评】本题考查倒数的定义和绝对值的概念.10.单项式﹣的系数与次数的乘积为﹣2 .【考点】单项式.【分析】直接利用单项式的次数与系数的定义分析得出答案.【解答】解:∵单项式﹣的系数为:﹣,次数为:5,∴单项式﹣的系数与次数的乘积为:﹣×5=﹣2.故答案为:﹣2.【点评】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个,故答案为:少跳了8个.【点评】本题考查了正数和负数,确定相反意义的量是解题关键.12.比较大小:﹣π<﹣.(填“>”、“<”或“=”)【考点】实数大小比较.【分析】首先将﹣化为小数,然后依据两个负数绝对值大的反而小进行比较即可.【解答】解:﹣=﹣3.1.∵π>3.1,∴﹣π<﹣3.1.故答案为:<.【点评】本题主要考查的是比较实数的大小,熟练掌握相关法则是解题的关键.24 .【考点】有理数的乘法;绝对值.【专题】计算题;实数.【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【解答】解:绝对值小于4.5的所有负整数为:﹣4,﹣3,﹣2,﹣1,之积为24,故答案为:24【点评】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.14.若x3y a与﹣2x b y2的和仍为单项式,则a﹣b的值为﹣1 .【考点】合并同类项.【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:由题意,得b=3,a=2.a﹣b=2﹣3=﹣1,故答案为:﹣1.【点评】本题考查了合并同类项,利用同类项的定义得出a,b的值是解题关键.15.将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是 6 .【考点】数轴.【专题】推理填空题.【分析】设开始点P表示的数为x,由于在数轴上的点向左移时点表示的数要减小,向右移动时,点表示的数要增大,于是得到x+3﹣5=4,然后解一次方程即可.【解答】解:设点P原来表示的数为x,根据题意,得:x+3﹣5=4,解得:x=6,即原来点P表示的数是6,故答案为:6.【点评】本题考查了数轴:规定了原点、正方向、单位长度的直线叫做数轴;所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数;一般来说,当数轴方向朝右时,右边的数总比左边的数大.16.当x=1时,代数式ax2+bx﹣4=0,则当x=﹣1时,代数式﹣ax2+bx+7的值为 3 .【考点】代数式求值.【分析】由题意可知x=1时,a+b﹣4=0,即a+b=4,然后将a+b=4和x=﹣1代入所求的式子即可求出答案.【解答】解:令x=1代入ax2+bx﹣4=0,∴a+b﹣4=0,∴令x=﹣1代入﹣ax2+bx+7,∴原式=﹣a﹣b+7=﹣(a+b)+7=3,故答案为:3【点评】本题考查代数式求值,涉及整体的思想.17.一个两位数,十位数字是x,个位数字比十位数字的3倍少5,则该两位数的最大值是47 .【考点】列代数式.【分析】根据题意个位数字为3x﹣5,则有0<3x﹣5<10,解不等式,求出x的最大值即可解决问题.【解答】解:由题意个位数字为3x﹣5,则有0<3x﹣5<10,∴<x<5,∴x的最大值为4,∴这个两位数为47,故答案为47【点评】本题考查列代数式、一元一次不等式等知识,解题的关键是把问题转化为不等式解决,属于基础题,中考常考题型.18.甲乙两人分别从A、B两地同时出发.相向而行,甲的速度是每分钟60米,乙的速度是每分钟90米,出发x分钟后,两人恰好相距100米,则A、B两地之间的距离是(150x+100)米.【考点】一元一次方程的应用.【专题】计算题;应用题;一次方程(组)及应用.【分析】根据速度与时间的乘积表示出甲乙两人走的路程,加上100即可得到结果.【解答】解:根据题意得:(60+90)x+100=(150x+100)米,故答案为:(150x+100)【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.三、计算题19.(20分)(2016秋•天宁区期中)计算(1)2+(﹣3)+(﹣6)+8(2)1﹣(﹣4)÷22×(3)(﹣+)÷(﹣)(4)﹣12×8﹣8×()3+4÷.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2+8﹣3﹣6=10﹣9=1;(2)原式=1+4××=1;(3)原式=(﹣+)×(﹣12)=﹣3+10﹣4=3;(4)原式=﹣8﹣1+16=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、计算与化简(20、21每小题5分,22题6分,共16分)20.计算:﹣x+y﹣2x﹣3y.【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣x﹣2x)+(y﹣3y)=﹣3x﹣2y.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.21.计算:﹣(3xy﹣2x2)﹣2(3x2﹣xy)【考点】整式的加减.【分析】去括号、合并同类项可得.【解答】解:原式=﹣3xy+2x2﹣6x2+2xy=﹣4x2﹣xy.【点评】本题主要考查整式的运算,熟练掌握整式的运算法则是解题的关键.22.先化简,再求值:5(3a2b﹣ab2)﹣4(ab2+3a2b),其中a=,b=.【考点】整式的加减—化简求值.【分析】根据去括号,合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:原式=15a2b﹣5ab2﹣4ab2﹣12a2b=3a2b﹣9ab2,当a=,b=时,原式=3×()2×﹣9××()2=﹣=﹣.【点评】本题考查了整式的化简求值,先化简再求值,注意去括号易出错.五、解答题(第23题5分,第24题7分,第25、26各8分,共28分)23.将﹣4,﹣(﹣3.5),﹣1,|﹣2|这些数在数轴上表示出来,并用“<”将它们连接起来.【考点】有理数大小比较;数轴;绝对值.【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【解答】解:如图所示,,故﹣4<﹣1<|﹣2|<﹣(﹣3.5).【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.24.某高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):﹣8,+18,+2,﹣16,+11,﹣5.(1)该养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为/km,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程等于总耗油量,可得答案.【解答】(1)解:﹣8+18+2﹣16+11﹣5=2 km,答:该养护小组最后到达的地方在出发点的东边,距出发点2 km.(2)|﹣8|+18+2|﹣16|+11+|﹣5|=60km,60×0.5=30l,答:这次养护共耗油30升.【点评】本题考查了正数和负数,利用有理数的加法是解题关键.25.现有20筐葡萄,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示,与标准质量的差值记录如下:单位(千克)﹣3 ﹣2 0 1筐数 1 5 2 2 4(1)这20筐葡萄中,最重的一筐比最轻的一筐重 5.5 千克.(2)与标准重量比较,这20筐葡萄总计超过或不足多少千克?(3)若葡萄每千克售价8元,则出售这20筐葡萄可卖多少元?【考点】正数和负数.【分析】(1)根据正负数的意义列式计算即可得解;(2)根据图表数据列出算式,然后计算即可得解;(3)求出20筐葡萄的质量乘以单价,计算即可得解.【解答】解:(1)最轻的是﹣3,最重的是2.5;+3=5.5 (千克),故答案为:5.5;(2)20﹣(1+4+2+2+5)=6 (筐)﹣3×1+1×4+(﹣1.5)×2+(﹣2)×5+×6=3(千克);答:与标准重量比较,这20筐葡萄总计超过了3千克.(3)15×20+3=303(千克);303×8=2424(元),答:出售这20筐葡萄可卖2424元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①= a2﹣b2,S②=(a+b)(a﹣b).(2)S①与S②之间有怎样的大小关系?请你解释其中的道理.(3)请你利用上述发现的结论计算式子:20162﹣20142.【考点】列代数式.【分析】(1)根据长方形和正方形的面积公式列代数式即可;(2)根据(1)得出的结果即可直接得出答案;(3)根据(2)的公式进行计算即可.【解答】解:(1)图①的面积是a2﹣b2;图②的面积是(a+b)(a﹣b);故答案为:a2﹣b2;(a+b)(a﹣b),(2)根据(1)可得:(a+b)(a﹣b)=a2﹣b2;相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和;(3)20162﹣20142=(2016+2014)(2016﹣2014)=4030×2=8060【点评】此题考查了列代数式,用到的知识点是正方形的面积公式,多项式的乘法,关键是根据所给出的图形列出相应的代数式,找出它们之间的规律.。
常州市天宁区正衡中学2017-2018学年七年级上学期期末考试数学试题
绝密★启用前常州市天宁区正衡中学2017-2018学年七年级上学期期末考试数学试题试卷副标题考试范围:xxx ;考试时间:74分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、下列关于单项式一的说法中,正确的是 ( )A .系数是,次数是4B .系数是,次数是3C .系数是,次数是4 D .系数是,次数是32、改革开放30年以来,扬州的城市化推进一直保持着快速、稳定的发展态势.据统计,到2009年底,扬州市的常住人口已达到4 410 000人,这个数据用科学记数法表示为 ( ) A .B .C .D .3、下列图形中,∠1与∠2互为对顶角的是 ( )A .B .C .D .4、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低元后又降20%,现售价为元,那么该电脑的原售价为 ( )A .元B .元C .元D .元5、如图所示,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 等于 ( )A .30°B .45°C .50°D .60°6、下列方程中,解为x=2的方程是( ) A .B .C .D .7、电子跳蚤游戏盘是如图所示的△ABC ,AB =6,AC =7,BC =8。
如果跳蚤开始时在BC 边的P 0处,BP 0=2。
跳蚤第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第3次落点)处,且BP 3=BP 2;……;跳蚤按上述规则一直跳下去,第n次落点为P n(n为正整数),则点P2007与P2010之间的距离为()。
人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案
2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
江苏省常州市度七年级数学上学期期末考试试题(含解析) 苏科版-苏科版初中七年级全册数学试题
某某省某某市2015-2016学年度七年级数学上学期期末考试试题一、填空题:每小题2分,共20分.1.﹣3的绝对值是.2.某天的最高温度是15℃,最低温度是﹣6℃,这一天温差是℃.3.已知∠A=50°,则∠A的补角是度.4.若单项式与单项式﹣5x m y3是同类项,则m﹣n的值为.5.已知点C是线段AB的中点,线段BC=5,则线段AB的长为.6.如图所示,将等边三角形ABC分割成大小相同的9个小等边三角形,分别标上数字1,2,3,…,9,那么标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字的小等边三角形重合.7.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.8.对于有理数a、b,规定一种新运算:a*b=a﹣b﹣2,若a=2,b=﹣3,则a*b=.9.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是.10.若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画条直线.二、选择题:下列各题中都给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在()内,每小题3分,共18分.11.下列式子中,正确的是()A.(﹣2)2=8 B.(﹣3)2=﹣9 C.(﹣3)2﹣9 D.(﹣3)2=﹣612.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.13.下列说法正确的有()①0是绝对值最小的数②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.1个B.2个C.3个D.4个14.某某是“全国文明城市”,在文明城市创建时,X老师特制了一个正方体模型,其展开图如图所示,则正方体中标有“建”字所在的面和标有哪个字所在的面相对?()A.创B.城C.市D.明15.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30° B.40° C.50° D.30°或50°16.已知x=﹣2015,计算|x2+2014x+1|+|x2+2016x﹣1|的值为()A.4030 B.4031 C.4032 D.4033三、解答题:第17(1)(2)题每题4分,第18、19(1)(2)题每题6分,共26分.17.(1)计算:﹣5+(﹣2)2﹣(﹣3)(2)计算:﹣22×7﹣(﹣3)÷6﹣|﹣5|18.先化简,再求值:,其中x=2,y=.19.(1)解方程:2(y+6)=4﹣2(2y﹣1)(2)解方程:.四、解答题:第20题8分,第21题4分,第22题4分,第23题6分,第24题6分,共28分.20.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?21.图①是由大小相同的小正方体搭成的几何体.(1)请在图②中画出该几何体的俯视图和左视图;(2)如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有个正方体恰有两个面是红色,有个正方体恰有三个面是红色.22.如图,在∠AOB内有一点C.(1)过点C画CD垂直于射线OB,垂足为点D;(2)过点C画OB的平行线,交射线OA于点E;(3)过点E画射线OA的垂线,交CD的延长线于点H,试判断线段EH和线段CH的大小,即EHCH.(填<、>或=)23.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?24.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°,求∠EOF的度数.五、操作与探究:本题8分.25.已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD=°.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD 和∠COE之间的数量关系:.某某省某某市2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、填空题:每小题2分,共20分.1.﹣3的绝对值是 3 ﹣.【考点】倒数;绝对值.【分析】求一个数的倒数,即用1除以这个数.【解答】解:﹣3的绝对值是3,﹣1.5的倒数是﹣,故答案为:3;﹣【点评】本题主要考查绝对值,倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.某天的最高温度是15℃,最低温度是﹣6℃,这一天温差是21 ℃.【考点】有理数的减法.【专题】应用题.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为15﹣(﹣6)=21℃.故答案为:21【点评】本题主要考查有理数的减法法则,关键是根据减去一个数等于加上这个数的相反数解答.3.已知∠A=50°,则∠A的补角是130 度.【考点】余角和补角.【专题】计算题.【分析】根据补角定义计算.【解答】解:∠A的补角是:180°﹣∠A=180°﹣50°=130°.【点评】熟知补角定义即可解答.4.若单项式与单项式﹣5x m y3是同类项,则m﹣n的值为 2 .【考点】同类项.【分析】根据同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.【解答】解:与单项式﹣5x m y3是同类项,得m=2,n﹣1=3.解得n=4.m﹣n=4﹣2=2,故答案为:2.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.5.已知点C是线段AB的中点,线段BC=5,则线段AB的长为10 .【考点】两点间的距离.【分析】根据线段中点的性质进行计算即可.【解答】解:∵C是线段AB的中点,线段BC=5,∴AB=2BC=10.故答案为:10.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义和性质是解题的关键.6.如图所示,将等边三角形ABC分割成大小相同的9个小等边三角形,分别标上数字1,2,3,…,9,那么标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字7 的小等边三角形重合.【考点】旋转的性质.【分析】利用等边三角形的性质结合旋转角直接得出答案.【解答】解:由题意可得:标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字7的小等边三角形重合.故答案为:7.【点评】此题主要考查了旋转的性质,正确利用等边三角形的性质得出答案是解题关键.7.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.对于有理数a、b,规定一种新运算:a*b=a﹣b﹣2,若a=2,b=﹣3,则a*b= 3 .【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据已知的新定义得:a*b=a﹣b﹣2,当a=2,b=﹣3时,原式=2+3﹣2=3,故答案为:3【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是﹣2187 .【考点】规律型:数字的变化类.【专题】计算题;推理填空题.【分析】观察所给的数发现:它们的一般式为(﹣3)n﹣1,而其中某三个相邻数的和是5103,设第一个的数为x,由此即可得到关于x的方程,解方程即可求解.【解答】解:设第一个的数为x,依题意得x﹣3x+9x=5103,∴x=729,∴﹣3x=﹣2187.∴最小的数为﹣2187.故答案为:﹣2187.【点评】此题主要考查了数字的变化规律,解题的关键是首先认真观察所给数字,然后找出隐含的规律即可解决问题.10.若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画条直线.【考点】直线、射线、线段.【专题】规律型.【分析】根据直线两两相交且不交于同一点,可得答案.【解答】解:平面内有n个点,过其中两点画直线,最多画条.故答案为:.【点评】本题考查了直线,直线两两相交且不交于同一点,每条直线都有(n﹣1)个交点,n条直线有n(n﹣1)个交点,每个交点都重复了一次,交点的总个数除以2.二、选择题:下列各题中都给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在()内,每小题3分,共18分.11.下列式子中,正确的是()A.(﹣2)2=8 B.(﹣3)2=﹣9 C.(﹣3)2﹣9 D.(﹣3)2=﹣6【考点】有理数的乘方.【分析】根据有理数的乘方计算解答即可.【解答】解:A、(﹣2)2=4,错误;B、(﹣3)2=9,错误;C、(﹣3)2=9,正确;D、(﹣3)2=9,错误;故选C.【点评】此题考查有理数的乘方问题,关键是根据有理数的乘方法则计算.12.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.【考点】方程的解.【分析】把x=2代入方程判断即可.【解答】解:A、把x=2代入方程,12≠3,错误;B、把x=2代入方程,4=4,正确;C、把x=2代入方程,2≠1,错误;D、把x=2代入方程,3≠0,错误;故选B【点评】此题考查方程的解问题,关键是把x=2代入方程,利用等式两边是否相等判断.13.下列说法正确的有()①0是绝对值最小的数②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.1个B.2个C.3个D.4个【考点】绝对值;相反数.【分析】分别根据相反数、绝对值的概念分别判断即可.【解答】解:①任何数的绝对值都是非负数,所以绝对值最小是0,所以①正确;②绝对值等于它本身的数还有0,所以②不正确;③数轴上原点两侧的数,只有到原点的距离相等的数才互为相反数,所以③不正确;④两个负数比较时,绝对值大的反而小,所以④不正确;所以正确的只有一个,故选:A.【点评】本题主要考查绝对值的有关概念,解题时注意0的特殊性.14.某某是“全国文明城市”,在文明城市创建时,X老师特制了一个正方体模型,其展开图如图所示,则正方体中标有“建”字所在的面和标有哪个字所在的面相对?()A.创B.城C.市D.明【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:“创”与“城”是相对面,“建”与“明”是相对面,“文”与“市”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,掌握正方体的相对的面之间一定相隔一个正方形是解题的关键.15.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30° B.40° C.50° D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.【点评】本题考查的是角平分线的定义,解答≜此题时要根据OA与∠BOC的位置关系分两种情况进行讨论,不要漏解.16.已知x=﹣2015,计算|x2+2014x+1|+|x2+2016x﹣1|的值为()A.4030 B.4031 C.4032 D.4033【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把x=﹣2015代入原式,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:当x=﹣2015时,原式=|(﹣2015)2﹣2014×2015+1|+|(﹣2015)2﹣2015×2016﹣1|=20152﹣2014×2015+1﹣20152+2015×2016+1=2015×+2=4030+2=4032.故选C【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.三、解答题:第17(1)(2)题每题4分,第18、19(1)(2)题每题6分,共26分.17.(1)计算:﹣5+(﹣2)2﹣(﹣3)(2)计算:﹣22×7﹣(﹣3)÷6﹣|﹣5|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣5+4+3=﹣5+7=2;(2)原式=﹣4×7+﹣5=﹣28+﹣5=﹣32.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中x=2,y=.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=2,y=时,原式=﹣6+=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(1)解方程:2(y+6)=4﹣2(2y﹣1)(2)解方程:.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2y+12=4﹣4y+2,移项合并得:6y=﹣6,解得:y=﹣1;(2)去分母得:2(x+1)﹣3(2﹣3x)=12,去括号得:2x+2﹣6+9x=12,移项合并得:11x=16,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题:第20题8分,第21题4分,第22题4分,第23题6分,第24题6分,共28分.20.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.图①是由大小相同的小正方体搭成的几何体.(1)请在图②中画出该几何体的俯视图和左视图;(2)如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有 1 个正方体恰有两个面是红色,有 2 个正方体恰有三个面是红色.【考点】作图-三视图.【分析】(1)由已知条件可知,俯视图有2列,每列小正方形数目分别为3,2;左视图有3列,每列小正方形数目分别为3,2,1.据此可画出图形;(2)有2个面是黄色的应该是第一列正方体中最底层中间那个;有3个面是黄色的应是第一列最底层最后面那个和第一列第二层最后面的那个,依此即可求解.【解答】解:(1)如图所示:(2)由分析可知:如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有1个正方体恰有两个面是红色,有2个正方体恰有三个面是红色.故答案为:1,2.【点评】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.22.如图,在∠AOB内有一点C.(1)过点C画CD垂直于射线OB,垂足为点D;(2)过点C画OB的平行线,交射线OA于点E;(3)过点E画射线OA的垂线,交CD的延长线于点H,试判断线段EH和线段CH的大小,即EH >CH.(填<、>或=)【考点】作图—复杂作图.【分析】(1)利用直角三角板,一条边与BO重合,沿OB所在直线平移,使另一条直角边过C,再画直线即可;(2)根据过直线外一点做已知直线平行线的方法过点C画OB的平行线即可;(3)利用直角三角板,一条边与AO重合,沿OA所在直线平移,使另一条直角边过E,再画直线即可;根据垂线段最短可得EH>CH.【解答】解:(1)(2)如图所示:;(3)如图所示:EH>CH.【点评】此题主要考查了复杂作图,以及垂线段的性质,关键是掌握过直线外一点作已知直线平行线和垂线的方法.23.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?【考点】一元一次方程的应用.【分析】分别表示出140元时的利润以及降价后的利润,再利用销量得出利润,进而得出等式求出答案.【解答】解:设剩下的衬衫促销价格定为每件x元时,销售完这批衬衫恰好盈利10800元,根据题意可得:(140﹣120)×500+(x﹣120)×100=10800,解得:x=128.答:剩下的衬衫促销价格定为每件128元时,销售完这批衬衫恰好盈利10800元.【点评】此题主要考查了一元一次方程的应用,根据题意分别表示出降价前后的利润是解题关键.24.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°,求∠EOF的度数.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角的性质和角平分线的定义求出∠BOE,根据图形求出∠BOF的度数,计算即可.【解答】解:∠BOD=∠AOC=74°,∵OE平分∠BOD,∴∠BOE=∠BOD=37°,∠BOF=∠DOF﹣∠BOD=16°,∴∠EOF=∠BOE+∠BOF=53°.【点评】本题考查的是对顶角、邻补角的概念和性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.五、操作与探究:本题8分.25.已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD=40 °.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD 和∠COE之间的数量关系:∠BOD+2∠COE=360°.【考点】角的计算;角平分线的定义;余角和补角;角的大小比较.【专题】推理填空题;开放型;线段、角、相交线与平行线.【分析】(1)由互余得∠DOE度数,进而由角平分线得到∠AOE度数,根据∠AOC=∠AOE﹣∠COE、∠BOD=180°﹣∠AOC﹣∠COD可得∠BOD度数;(2)由互余及角平分线得∠DOE=90°﹣∠COE=∠AOE,∠AOC=∠AOE﹣∠COE=90°﹣2∠COE,最后根据∠BOD=180°﹣∠AOC﹣∠COD可得;(3)由互余得∠DOE=90°﹣∠COE,由角平分线得∠AOD=2∠DOE=180°﹣2∠COE,最后根据∠BOD=180°﹣∠AOC﹣∠COD可得;(4)由互余得∠DOE=∠COE﹣90°,由角平分线得∠AOD=2∠DOE=2∠COE﹣180°,最后根据∠BOD=180°﹣∠AOD可得;【解答】解:(1)∠EOD=∠COD﹣∠COE=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=2×70°=140°,∴∠BOD=180°﹣∠AOD=180°﹣140°=40°.(2)∠BOD=2∠COE.理由如下:∵∠COD=90°,∴∠DOE=90°﹣∠COE,∵OE平分∠AOD,∴∠AOE=∠DOE=90°﹣∠COE,∴∠AOC=∠AOE﹣∠COE=90°﹣2∠COE,∵A、O、B在同一直线上,∴∠BOD=180°﹣∠AOC﹣∠COD=180°﹣90°﹣(90°﹣2∠COE)=2∠COE,即:∠BOD=2∠COE.(3)∠BOD=2∠COE,理由如下;∵OE平分∠AOD,∴∠AOD=2∠EOD,∵∠BOD+∠AOD=180°,∴∠BOD+2∠EOD=180°.∵∠COD=90°,∴∠COE+∠EOD=90°,∴2∠COE+2∠EOD=180°,∴∠BOD=2∠COE;(4)∵∠COD=90°,∴∠DOE=∠COE﹣90°,又∵OE平分∠AOD,∴∠AOD=2∠DOE=2∠COE﹣180°,∴∠BOD=180°﹣∠AOD=180°﹣2∠COE+180°=360°﹣2∠COE,即:∠BOD+2∠COE=180°.故答案为:(1)40°,(4)∠BOD+2∠COE=360°.【点评】本题主要考查利用互余、互补及角平分线进行角的计算,求∠BOD时可逆向推理得到与∠COE 间关系,灵活运用以上三点是关键.。
人教版2017~2018学年七年级上期末考试数学试题及答案
人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
2017-2018学年第一学期初二数学期末试题和答案
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
江苏省常州市七年级上学期期中数学试卷
江苏省常州市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知x=﹣2015,计算|x2+2014x+1|+|x2+2016x﹣1|的值为()A . 4030B . 4031C . 4032D . 40332. (2分)下列各对数中,互为相反数的是()A . +(﹣5)和﹣(+5)B . ﹣|﹣3|和+(﹣3)C . (﹣1)2和﹣12D . (﹣1)3和﹣133. (2分) (2018七上·盐城期中) 有理数a、b在数轴上的位置如图所示,那么下列式子成立的是()A . ab>0B . a-b>0C . a<bD . >04. (2分)次数为3的单项式可以是()A . 3abB . ab2C . a3+b3D . a3b5. (2分) (2019七下·邵阳期中) 不论为何有理数,的值总是非负数,则c的最小值是()A . 4B . 5C . 6D . 无法确定6. (2分) (2017七上·重庆期中) 下列说法中,正确的是()A . 3是单项式B . 的系数是-3,次数是3C . 不是整式D . 多项式2x2y-xy是五次二项式7. (2分) (2017七上·和县期末) 下列各题正确的是()A . 由7x=4x﹣3移项得7x﹣4x=3B . 由 =1+ 去分母得2(2x﹣1)=1+3(x﹣3)C . 由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D . 由2(x+1)=x+7去括号、移项、合并同类项得x=58. (2分)下列四个等式中,一元一次方程是()A . =1B . x=0C . x2﹣1=0D . x+y=19. (2分)如果一个多项式的次数是5,那么这个多项式的任何一项的次数()A . 都小于5B . 都等于5C . 都不小于5D . 都不大于510. (2分) (2019八下·襄汾期中) 化简的结果是()A . 1B .C .D .二、填空题 (共10题;共11分)11. (1分) (2016七上·句容期中) 江苏省的面积约为102 600km2 ,这个数据用科学记数法可表示为________ km2 .12. (1分) (2020七上·嘉兴期中) 通过计算可以得到:,从这些数据可得精确到千分位的近似值是________.13. (1分) (2016七上·磴口期中) 如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2=________.14. (1分)“天上星星有几颗,7后跟上22个0”,这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数________15. (2分)同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=________(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是________16. (1分) (2017七上·新乡期中) 已知;,则a+b= ________;17. (1分) (2018七上·常熟期中) 如果多项式与的差不含项,则m的值为________.18. (1分)礼堂第一排有a个座位,共n排,后面每排都比上一排多1个座位,则n排共有座位________ 个.19. (1分) (2015七上·寻乌期末) 如果互为a,b相反数,x,y互为倒数,则2014(a+b)﹣2015xy的值是________.20. (1分)庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1 ,再过点C1作C1C2⊥BC 于点C2 ,又过点C2作C2C3⊥AB于点C3 ,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假设AC=2,这些三角形的面积和可以得到一个等式是________.三、解答题 (共6题;共65分)21. (10分) (2020七上·洛阳月考) 若a、b是有理数,定义一种新运算“*”: .例如: .试计算:(1) *(-2)(2)22. (10分) (2018七上·洪山期中) 已知:A=2x2+ax﹣5y+b,B=bx2﹣ x﹣ y﹣3.(1)求3A﹣(4A﹣2B)的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+ A)﹣(2b+ B)的值.23. (15分) (2016七上·汉滨期中) 解答题。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
人教部编版七年级数学上册期末测试题 (17)
2017-2018学年江苏省苏州市太仓市七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C. D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知x,y满足,则3x+4y= .14.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E 点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|20.(8分)解方程:(1)7x﹣9=9x﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出来.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg) 3.6 5.4 8 4.8零售价(元/kg) 5.4 8.4 14 7.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?2017-2018学年江苏省苏州市太仓市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解: A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C. D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若x不是整数,则[x]<x,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为 1.062×107.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知x,y满足,则3x+4y= 10 .【解答】解:,①×2﹣②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1014.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a<3 .【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为 1 .【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有 3 种换法.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 36 度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E 点,…,依此类推,经过4035或4036 次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+0.2=+=.20.(8分)解方程:(1)7x﹣9=9x﹣7(2)【解答】解:(1)7x﹣9=9x﹣7 7x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.21.(6分)解不等式,并把它的解集在数轴上表示出来.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.【解答】解:∵|x﹣2|+(y+2)2=0,∴x=2,y=﹣2,=x﹣x+y2﹣x+y2=﹣x+y2,当x=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.【解答】解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24 cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加 2 小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF ,∠BOE的补角是∠AOE和∠DOE .【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg) 3.6 5.4 8 4.8零售价(元/kg) 5.4 8.4 14 7.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 2 (单位长度/秒);点B运动的速度是4 (单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴x≥2,当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:事件A 必然事件 随机事件(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
人教部编版七年级数学上册期末测试题 (13)
河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷一.单选题(共10题;共30分)1.化简的结果是()A. 3B. ﹣3 C. ﹣4 D. 242.“情系玉树,大爱无疆——抗震救灾大型募捐活动”4月20日晚在中央电视台1号演播大厅举行。
据统计,这台募捐晚会共募得善款21.75亿元人民币,约合每秒钟筹集善款16万元。
21.75亿元用科学记数法可以表示为A. 21.75×108B. 2.175×108C. 21.75×109D. 2.175×1093.如图所示的立方体,如果把它展开,可以是下列图形中的()A. B.C. D.4.定义一种运算☆,其规则为a☆b=,根据这个规则,计算2☆3的值是()A. B.C.5 D. 65.规定一种新的运算x⊗y=x﹣y2,则﹣2⊗3等于()A. -11B. -7C. -8D. 256.下列计算正确的是()A. a2•a3=a6B. (x3)2=x6C. 3m+2n=5mnD. y3•y3=y7.计算(-2)×3的结果是()A. -6B.-1 C. 1D. 68.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A. ﹣10℃B. ﹣6℃ C. 10℃ D. 6℃9.减去﹣3x得x2﹣3x+6的式子为()A. x2+6B. x2+3x+6C. x2﹣6xD. x2﹣6x+610.一组按规律排列的多项式:,,,,…,其中第10个式子是( )A. B. C.D.二.填空题(共8题;共24分)11.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,________.12.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆________ g.13.观察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…通过观察,用你发现的规律,写出72004的末位数字是________.14.多项式x4﹣x2﹣x﹣1的次数、项数、常数项分别为________.15.猜谜语(打书本中两个几何名称).剩下十分钱________ ;两牛相斗________ .16.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是________17.﹣1 的相反数是________,倒数是________.18.计算:①1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=________ ;②1﹣22+32﹣42+52﹣…﹣962+972﹣982+992=________三.解答题(共6题;共36分)19.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数(2)若∠BOC=a°,求∠DOE的度数(3)图中是否有互余的角?若有请写出所有互余的角20.若“”是一种新的运算符号,并且规定.例如:,求的值.21.如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.22.已知a,b是实数,且有 |a-|+(b+)2,求a,b的值.23.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.24.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.四.综合题(共10分)25.如图,点O是直线AB上一点,射线OA1, OA2均从OA的位置开始绕点O顺时针旋转,OA1旋转的速度为每秒30°,OA2旋转的速度为每秒10°.当OA2旋转6秒后,OA1也开始旋转,当其中一条射线与OB重合时,另一条也停止.设OA1旋转的时间为t秒.(1)用含有t的式子表示∠A1OA=________°,∠A2OA=________°;(2)当t =________,OA1是∠A2OA的角平分线;(3)若∠A1OA2=30°时,求t的值.河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷参考答案与试题解析一.单选题1.【答案】A【考点】有理数的除法【解析】【解答】解:=(﹣36)÷(﹣12), =36÷12,=3.故选A.【分析】根据有理数的除法运算法则进行计算即可得解.2.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】将21.75亿=2175000000用科学记数法表示为2.175×109.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【考点】几何体的展开图【解析】【解答】解:选项A、C、D中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后与原立方体符合,所以正确的是B.故选:B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.同时注意图示中的阴影的位置关系.4.【答案】A【考点】定义新运算【解析】【分析】由a☆b=,可得2☆3=,则可求得答案.【解答】∵a☆b=∴2☆3=故选A.【点评】此题考查了新定义题型.解题的关键是理解题意,根据题意解题.5.【答案】A【考点】有理数的混合运算【解析】【解答】解:∵x⊗y=x﹣y2,∴﹣2⊗ 3=﹣2﹣32=﹣2﹣9=﹣11.故选A.【分析】根据运算“⊗”的规定列出算式即可求出结果.6.【答案】B【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】A、a2•a3=a5,故本选项错误;B、(x3)2=x6,故本选项正确;C、3m+2n≠5mn,故本选项错误;D、y3•y3=y6,故本选项错误.故选B.【分析】利用同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案.注意排除法在解选择题中的应用.7.【答案】A【考点】有理数的乘法【解析】【分析】根据有理数的乘法法则,异号得负可得。
2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)
2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。
2017---2018学年度第二学期期末考试七年级数学试卷含答案
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析
B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(
)
A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(
)
A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?
最新2018-2019年七年级上期末数学试卷含答案解析
七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。
2017-2018学年第二学期七年级数学期末试题(含答案)
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
江苏省常州市七年级上学期期末考试数学试题附答案
, , 江苏省常州市 2017-2018 学年七年级上学期期末考试数学试题一、选择题(本大题共 8 小题,每小题 2 分,共 16 分)1. 下列各数中,比﹣4 小的数是() A .﹣2.5 B .﹣5C .0D .22. 下列各数中,是无理数的是()A .B .C .3.14D .0. 3. 下列式子中,正确的是()A .﹣1+2=﹣1B .﹣2×(﹣3)=﹣6C .(﹣1 )2=2D .3÷(﹣)=﹣94.一个两位数的个位数字是 x ,十位数字是 y ,这个两位数可表示为( )A .xyB .x +yC .x +10yD .10x +y 5.下图中的图形绕虚线旋转一周,可得到的几何体是()A .B .C .D .6.七年级 1 班有女生 m 人,女生占全班人数的 40%,则全班人数是( )A .B .40%mC .D .(1﹣40%)m7.观察下面的一列数:﹣ ,﹣ ,…,按此规律,第 2018 个数是()A .B .﹣C .D .﹣8. 如图,线段 AB 和 CB 是正方体表面两正方形的对角线,将此正方体沿部分棱剪开 ,展成一个平面图形后,AB 和 CB 可能出现下列关系中的哪几种:①AB⊥CB ②AB∥CB ③AB 和CB 在同一直线上()A.①B.②C.①②D.①②③二、填空题(本大题共8 小题,每小题 2 分,共16 分)9.﹣3 的相反数是.10.已知∠A=50°,则∠A 的余角是度.11.常州地铁2 号线一期工程西起青枫公园,东至五一站,途经市中心文化宫,全线19700m,这个长度用科学记数法可表示为m.12.已知关于x 的一元一次方程x+2m=﹣1 的解是x= 1,则m 的值是.13.请列举一个单项式,使它满足系数为2,次数为3,含有字母a、b,单项式可以为.14.若2a﹣b=2,则6﹣4a+2b= .15.一种长方形餐桌的四周可坐6 人用餐,现把若干张这样的餐桌按如图方式进行拼接.那么需要多少张餐桌拼在一起可坐90 人用餐?若设需要这样的餐桌x 张,可列方程为.16.如图,已知纸面上有一数轴,折叠纸面,使表示﹣2 的点与表示5 的点重合,则3 表示的点与表示的点重合.三、解答题(本大题共9 小题,共68 分,第17,19,22,32,4 题每题8 分,第18、20、21 题每题6 分,第25 题10 分)17.(8 分)计算:(1)﹣1+8﹣4﹣(﹣6)(2)﹣7×(﹣8)﹣13×2÷(﹣)18.(6 分)先化简,再求值:(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m= ﹣3,n=﹣.19.(8 分)解方程:(1)x﹣2(3x﹣1)=6x(2)(x﹣3)﹣2= (2x+3)20.(6 分)甲乙两个旅游团共80 人,甲团比乙团人数的2 倍多5 人,甲乙两团各有多少人?21.(6 分)一个由若干小正方体堆成的几何体,它的主视图和左视图如图①所示(1)这个几何体可以是图②甲、乙、丙中的;(2)这个几何体最多由个小正方体构成,最少由个小正方体构成.请在图③中画出符合最少情况的一个俯视图.22.(8 分)如图,已知CA⊥BA(1)画图:①延长BA 到D,使AD=BA,连接CD;②过点 A 画AE∥BC,AE 与CD 相交于点E;③过点 B 画BF⊥CD,交DC 的延长线于点F.思考:图中有条线段,它们的长度表示点到直线的距离;(2)度量:①你度量的哪些量?;②通过度量你发现:.(写一条发现即可)23.(8 分)如图,已知∠AOB=108°,OE 是∠AOB 的平分线,OC 在∠AOE 内.(1)若∠COE= ∠AOE,求∠AOC 的度数;(2)若∠BOC﹣∠AOC=72°,则OB 与OC 有怎样的位置关系?为什么?24.(8 分)常州每年举行一次“一袋牛奶的暴走”公益活动,用步行的方式募集善款,其中挑战型路线”的起点是淹城站,并沿着规定的线路到达终点吾悦国际站.甲、乙两组市民从起点同时出发,已知甲组的速度为6km/h,乙组的速度为5km/h,当甲组到达终点后,立即以3km/h 的速度按原线路返回,并在途中的P 站与乙组相遇,P 站与吾悦国际站之间的路程为1.5km(1)求“挑战型路线”的总长;(2)当甲组到达终点时,乙组离终点还有多少路程?25.(10 分)如图,已知点O 在直线AB 上,将一副直角三角板的直角顶点放在点O 处,其中∠OCD=60°,∠OEF=45°.边OC、OE 在直线AB 上.(1)如图(1),若CD 和EF 相交于点G,则∠DGF 的度数是°;(2)将图(1)中的三角板OCD 绕点O 顺时针旋转30°至图(2)位置①若将三角板OEF 绕点O 顺时针旋转180°,在此过程中,当∠COE=∠EOD=∠DOF时,求∠AOE 的度数;②若将三角板OEF 绕点O 以每秒4°的速度顺时针旋转180°,与此同时,将三角板OCD 绕点O 以每秒1°的速度顺时针旋转,当三角板OEF 旋转到终点位置时,三角板OCD 也停止旋转.设旋转时间为t 秒,当OD⊥EF 时,求t 的值.参考答案一、选择题1.解:比﹣4 小的数是﹣5,故选:B.2.解:是无理数;、3.14、0. 都是有理数.故选:A.3.解:A、﹣1+2=1,故A 错误;B、﹣2×(﹣3)=6,故B 错误;C、(﹣1)2=1,故C 错误;D、3÷(﹣)=﹣9,故D 正确;故选:D.4.解:个位数字是x,十位数字是y,这个两位数可表示为10y+x.故选:C.5.解:∵上面的长方形旋转一周后是一个圆柱,下面的直角三角形旋转一周后是一个圆锥,∴根据以上分析应是圆锥和圆柱的组合体.故选:C.6.解:∵七年级1 班有女生m 人,女生占全班人数的40%,∴全班人数是.故选:A.7.解:∵第1 个数是:﹣=(﹣1)×,第2 个数是:=(﹣1)2×,第3 个数是:﹣=(﹣1)3×,…,∴第n 个数是:(﹣1)n×,第2018 个数是.故选:C.8.解:如图所示,AB⊥CB;如图所示,AB∥CB;如图所示,AB 和CB 在同一直线上.综上所述,AB 和CB 可能出现:①AB⊥CB,②AB∥CB,③AB 和CB 在同一直线上.故选:D.二、填空题(本大题共8 小题,每小题 2 分,共16 分)9.解:﹣(﹣3)=3,故﹣3 的相反数是3.故答案为:3.10.解:∠A 的余角=90°﹣50°=40°.故答案为40.11.解:全线19700m,这个长度用科学记数法可表示为1.97×104m.故答案为:1.97×104.12.解:∵关于x的一元一次方程x+2m=﹣1 解为x=1,∴1+2m=﹣1,解得m=﹣1.故答案是:﹣1.13.解:根据单项式系数和次数的定义,一个含有字母a、b 且系数为﹣2,次数为3 的单项式可以写为:2a2b.故答案为:2a2b.14.解:∵2a﹣b=2,∴6﹣4a+2b=6﹣2(2a﹣b)=6﹣2×2=2,故答案为:2.15.解:1 张长方形餐桌的四周可坐4+2=6 人,2张长方形餐桌的四周可坐4×2+2=10 人,3张长方形餐桌的四周可坐4×3+2=14 人,…x 张长方形餐桌的四周可坐4x+2 人;则依题意得:4x+2=90.故答案是:4x+2=90.16.解:∵﹣2 表示的点与5 表示的点重合,∴3 表示的点与数0 表示的点重合.故答案为:0;三、解答题(本大题共9 小题,共68 分,第17,19,22,32,4 题每题8 分,第18、20、21 题每题6 分,第25 题10 分)17.解:(1)﹣1+8﹣4﹣(﹣6)=﹣1+8﹣4+6=﹣5+14=9;(2)﹣7×(﹣8)﹣13×2÷(﹣)=56﹣1×2÷(﹣)=56+4=60.18.解:当m=﹣3,n=时,原式=8mn﹣3m2﹣5mn﹣6mn+4m2=﹣3mn+m2=﹣3+9=619.解:(1)x﹣2(3x﹣1)=6x,x﹣6x+2=6x,x﹣6x﹣6x=﹣2,﹣11x=﹣2,x= ;(2)(x﹣3)﹣2=(2x+3),3(x﹣3)﹣24=2(2x+3),3x﹣9﹣24=4x+6,3x﹣4x=6+9+24,﹣x=39,x=﹣39.20.解:设乙团有x 人,则甲团有(80﹣x)人,根据题意得80﹣x=2x+5,解得x=25,所以80﹣x=80﹣25=55.答:甲乙两团分别有55 人、25 人.21.解:(1)这个几何体可以是图②甲、乙、丙中的乙、丙,故答案为:乙、丙;(2)这个几何体最多由9 个小正方体构成,最少由7 个小正方体构成.最少情况的一个俯视图如下:故答案为:9、7.22.解:(1)线段AD、AE、BF 如图所示;图中有7 条线段,它们的长度表示点到直线的距离,(线段BA,DA,CA,BF,CF,EF,DF)(2)①度量线段BC、线段CD.(开放题目,答案不唯一)②发现:BC=CD.(开放题,根据①回答即可)故答案为:7,线段BC、线段CD,BC=CD.2 3.解:(1)∵∠COE=∠AOE,∴∠AOE=3∠COE,∵OE 是∠AOB 的平分线,∴∠ AOB=2∠AOE=6∠COE,∵∠AOB=180°,∴∠COE=18°,∴∠AOC=2∠COE=2×18°=36°;(2)OB⊥OC,设∠BOC=x°,则∠AOC=108°﹣x°,∵∠BOC﹣∠AOC=72°,∴x﹣(108﹣x)=72,解得x=90,∴∠BOC=90°,∴OB⊥OC.24.解:(1)设“挑战型路线”的总长为xkm,根据题意,得:,解得:x=24,答:“挑战型路线”的总长为24km,(2),当甲组到达终点时,乙组离终点还有4km.25.解:(1)∵∠EFO=45°,∠D=30°,∴∠DGF=∠EF O﹣∠D=45°﹣30°=15°,故答案为:15;(2)①如图2,∵∠COE=∠EOD=∠DOF,∠COE+∠EOD=∠COD,∠COD=90°,∴∠COE=∠EOD=45°,∴∠AOE=∠AOC+∠COE=30°+45°=75°,当∠COE=∠EOD=∠DOF 时,∠AOE=75°;②∵∠AOE=4t°,∠AOC=30°+t°,如图3,∵OD⊥EF,∴∠OHE=90,∵∠E=45°,∠COD=90°,∴∠COE=45°,∴∠AOE﹣∠AOC=∠COE=45°,即4t﹣(30+t)=45,∴t=25,∴当OD⊥EF 时,t 的值为25.。
【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)
2017-2018学年七年级数学上册期末模拟题一、选择题:1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A.0.34×108B.3.4×106 C.34×106D.3.4×1072.如图是一个正方体,则它的表面展开图可以是()3.一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( )A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.下列方程中,以-2为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-15.计算1-(-2)的正确结果是( )A.-2 B.-1 C.1 D.36.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xy C.3y2﹣2y2=1 D.3x2+2x=5x37.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A.1个B.2个C.3个D.4个8.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2B.-1 C,0 D,211.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元12.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是()A.2015 B.1036 C.518 D.259二、填空题:13.x,y,z在数轴上的位置如图所示,则化简|x-y|+|z-y|的结果是______.14.18.36°= °′″.15.如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。
人教版七年级上册数学期末测试卷 (12)
长春外国语学校2017-2018学年第一学期期末考试初一年级数学试卷本试卷包括三道大题,24道小题,共6页.全卷满分120分.考试时间为90分钟.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(每小题3分,共24分)1.5-的绝对值为( )A . 1 5B .5C .- 15 D .-52.如图所示的几何体的主视图是( )3.长春第四届“交通之声年末百姓购车节”于12月11日——13日在长春国际会展中心举行,据统计,这三天共销售各种车辆约3500台,数据3500用科学记数法表示为( ) A .3.5×104 B .3.5×103 C .35×102 D .0.35×104 4.已知1-=x ,则代数式423+-x x 的值为( )A .2B .2-C .4D .4- 5.若∠1=25°,则∠1的余角的大小是( ) A .55° B .65° C .75° D .155° 6.方程3x =15﹣2x 的解是( )A .x =3B .x =4C .x =5D .x =67.如图,若点A 在点O 北偏西60°的方向上,点B 在点O 的南偏东25°的方向上,则 ∠AOB (小于平角)的度数等于( )A .55°B .95°C .125°D .145°8.如图,AE 平分∠CAB ,CD ∥AB 交AE 于点D ,若∠C =120°,则∠EAB 的大小为( ) A .30º B .35º C .40º D .45º第7题 第8题 二、填空题(每小题3分,共18分)9.当k = _______时,kyx 323 与624y x 是同类项.10.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B 内的数为 ____________.11.已知,点A 、点B 在数轴上对应的实数为a ,b 如图所示,则线段AB 的长度可以用代数 式表示为 .12.为了帮助地震灾区重建家园,某班全体师生积极捐款,捐款金额共3150元,其中5名教师人均捐款a 元,则该班学生共捐款____________元(用含有a 的代数式表示).13.如图,C 、D 是线段AB 上两点,D 是AC 的中点,若CB =3,DB =7,则AC 的长___.第10题 第11题 第13题BA O 西DCBA ba0B A14.如图,a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为 __________度.第14题三、解答题(本大题共10小题,共78分)15.(8分)计算:(1)3235+-; (2))3(2--; (3)623⨯-; (4)()42-÷-. 16.(6分)计算:(1)()()20162112322--÷⨯+- ; (2)()()42a b a b ---.17.(6分)解方程:(1)()()11223=++-x x ; (2)1613=--x x .18.(7分)先化简,再求值:(5a 2+2a +1)﹣4(3﹣8a +2a 2)+(3a 2﹣a ),其中a =. 19.(7分)有20筐苹果,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) ﹣3﹣2 ﹣1.5 0 1 2.5 筐 数142328(1)在这20筐苹果中,最重的一筐比最轻的一筐重多少千克? (2)求这20筐苹果的总质量.20.(8分)如图,点C 、D 是线段AB 上两点,AC :CD =1:3,点D 是线段CB 的中点,AD = 12. (1)求线段AC 的长; (2)求线段AB 的长.21. (8分)探究:如图①,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若 ∠ABC =40°,求∠DEF 的度数.请将下面的解答过程补充完整,并填空(理由或数学式) 解:∵DE ∥BC ,BDCAb12∴∠DEF = .( ) ∵EF ∥AB ,∴ =∠ABC .( ) ∴∠DEF =∠ABC .(等量代换) ∵∠ABC =40°,∴∠DEF = °.应用:如图②,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 的延长线上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若∠ABC =60°,则∠DEF = °.22. (8分)如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.若∠AOB =100°,求∠DOE 的度数.23.(8分)某班准备买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副68元,乒乓球每盒12元.经商谈后,甲商店每买一副乒乓球拍赠一盒乒乓球,乙商店全部按定价的9折优惠.这个班级需要球拍5副,乒乓球x 盒(5≥x ).(1)分别求甲、乙两家商店购买这些商品所需的费用(用含x 的代数式表示). (2)当40=x 时,购买所需商品去哪家商店合算?请通过计算说明理由.BA F CE图 1BDA FE图 2CDBA24.(12分)在直角三角形ABC中,若AB=16cm,AC=12 cm,BC=20 cm.点P从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A →B的方向移动,如果点P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,请用含t的代数式表示,①当点Q在AC上时,CQ= ;②当点Q在AB上时,AQ= ;③当点P在AB上时,BP= ;④当点P在BC上时,BP= .(2)如图2,若点P在线段AB上运动,点Q在线段CA上运动,当QA=AP时,试求出t的值.(3)如图3,当P点到达C点时,P、Q两点都停止运动,当AQ=BP时,试求出t的值.图1 图2 图3长春外国语学校2017-2018学年第一学期期末考试初一年级数学试卷答案本试卷包括三道大题,24道小题,共6页.全卷满分120分.考试时间为90分钟.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(每小题3分,共24分)1.5-的绝对值为( B )A . 1 5B .5C .- 15 D .-52.如图所示的几何体的主视图是( D )3.长春第四届“交通之声年末百姓购车节”于12月11日——13日在长春国际会展中心举行,据统计,这三天共销售各种车辆约3500台,数据3500用科学记数法表示为( B ) A .3.5×104 B .3.5×103 C .35×102 D .0.35×104 4.已知1-=x ,则代数式423+-x x 的值为(A )A .2B .2-C .4D .4- 5.若∠1=25°,则∠1的余角的大小是( B ) A .55° B .65° C .75° D .155° 6.方程3x =15﹣2x 的解是(A )A .x =3B .x =4C .x =5D .x =67.如图,若点A 在点O 北偏西60°的方向上,点B 在点O 的南偏东25°的方向上,则 ∠AOB (小于平角)的度数等于(D ) A .55° B .95° C .125° D .145°8.如图,AE 平分∠CAB ,CD ∥AB 交AE 于点D ,若∠C =120°,则∠EAB 的大小为(A ) A .30º B .35º C .40º D .45º第7题 第8题二、填空题(每小题3分,共18分)9.当k = 2_______时,kyx 323 与624y x 是同类项.10.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B 内的数为 _2___________.11.已知,点A 、点B 在数轴上对应的实数为a ,b 如图所示,则线段AB 的长度可以用代数 式表示为 b-a .12.为了帮助地震灾区重建家园,某班全体师生积极捐款,捐款金额共3150元,其中5名教师人均捐款a 元,则该班学生共捐款_(3150-5a)____元(用含有a 的代数式表示).13.如图,C 、D 是线段AB 上两点,D 是AC 的中点,若CB =3,DB =7,则AC 的长8___.第10题 第11题 第13题14.如图,a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为 __55__度.第14题BA O 西DCBA ba0B A ba12三、解答题(本大题共10小题,共78分)15.(8分)计算:(1)3235+-=-1; (2))3(2--=5; (3)623⨯-=-9; (4)()42-÷-=2. 16.(6分)计算:(1)()()20162112322--÷⨯+-=-7 ; (2)()()42a b a b ---=2a-3b .17.(6分)解方程:(1)()()11223=++-x x ;x=1 (2)1613=--x x .x=518.(7分)先化简,再求值:(5a 2+2a +1)﹣4(3﹣8a +2a 2)+(3a 2﹣a ),其中a =.33a-11=019.(7分)有20筐苹果,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) ﹣3﹣2 ﹣1.5 0 1 2.5 筐 数142328(1)在这20筐苹果中,最重的一筐比最轻的一筐重多少千克? (2)求这20筐苹果的总质量. 2.5-(-3)=5.5(千克)20*25+(-3)+(-8)+(-3)+0+2+20=508(千克)20.(8分)如图,点C 、D 是线段AB 上两点,AC :CD =1:3,点D 是线段CB 的中点,AD = 12. (1)求线段AC 的长;3 (2)求线段AB 的长.2121. (8分)探究:如图①,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若 ∠ABC =40°,求∠DEF 的度数.请将下面的解答过程补充完整,并填空(理由或数学式) 解:∵DE ∥BC ,∴∠DEF = ∠EFC .( 两直线平行内错角相等 ) ∵EF ∥AB ,∴ ∠EFC =∠ABC .( 两直线平行,同位角相等 )BDCA∴∠DEF =∠ABC .(等量代换) ∵∠ABC =40°, ∴∠DEF = 40 °.应用:如图②,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 的延长线上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若∠ABC =60°,则∠DEF = 120 °.22. (8分)如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.若∠AOB =100°,求∠DOE 的度数.∠DOE=50°23.(8分)某班准备买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副68元,乒乓球每盒12元.经商谈后,甲商店每买一副乒乓球拍赠一盒乒乓球,乙商店全部按定价的9折优惠.这个班级需要球拍5副,乒乓球x 盒(5≥x ).(1)分别求甲、乙两家商店购买这些商品所需的费用(用含x 的代数式表示). (2)当40=x 时,购买所需商品去哪家商店合算?请通过计算说明理由. (1)甲:68*5+12(x-5)=12x+280 乙:68*5*0.9+0.9*12x=306+10.8x (2)当x=40时,12*40+280=760(元) 当x=40时,306+10.8*40=738(元)24.(12分)在直角三角形ABC 中,若AB =16cm ,AC =12 cm ,BC =20 cm . 点P 从点A 开始BA F CE图 1BDA FE图 2CDBA以2厘米/秒的速度沿A →B →C 的方向移动,点Q 从点C 开始以1厘米/秒的速度沿C →A →B 的方向移动,如果点P 、Q 同时出发,用t (秒)表示移动时间,那么:(1)如图1,请用含t 的代数式表示,①当点Q 在AC 上时,CQ = t ;②当点Q 在AB 上时,AQ = 12-t ; ③当点P 在AB 上时,BP = 16-2t ; ④当点P 在BC 上时,BP = 2t-16 . (2)如图2,若点P 在线段AB 上运动,点Q 在线段CA 上运动,当QA =AP 时,试求出t 的值.t=4 (3)如图3,当P 点到达C 点时,P 、Q 两点都停止运动,当AQ =BP 时,试求出t 的值.图1 图2 图3t= 4, 28/3高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………………密………………………………….封……………………….线…………………………………………………………………………..细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
常州市人教版七年级上册数学期末试卷及答案-百度文库
常州市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-2.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 3.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+64.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上5.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .06.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 7.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×28.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-49.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2 10.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )211.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚 B .赚了9元 C .赚了18元 D .赔了18元 12.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .7二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 15.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.16.单项式22ab -的系数是________.17.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 18.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.19.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 21.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.22.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、解答题25.某学校七年级举行“每天锻炼一小时,健康生活一辈子”为主题的一分钟跳绳大赛,校团委组织了全级1000名学生参加为了解本次大赛的成绩,校团委随机抽取了其中100名学生的成绩作为样本进行统计,制成如下不完整的统计图表根据所给信息,解答下列问题;(1)m=______,n=______. (2)补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优”,请你估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有多少人. 成绩x (分) 频数(人) 频率 50≤x <60 5 5% 60≤x <70 15 15% 70≤x <80 20 20% 80≤x <90m35%90≤x≤100 25 n26.温州市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题.(1)这次共抽取了 名学生进行调查.(2)用时在2.45~3.45小时这组的频数是_ , 频率是_ .(3)如果该校有1000名学生,请估计一周电子产品用时在0.45~3.45小时的学生人数. 27.先化简,再求值:22222(4)(322)(121)y xy x xy y x ---+---其中 x =-13,y =-2. 28.知图①,在数轴上有一条线段AB ,点,A B 表示的数分别是2-和11-.(1)线段AB =____________;(2)若M 是线段AB 的中点,则点M 在数轴上对应的数为________;(3)若C 为线段AB 上一点.如图②,以点C 为折点,将此数轴向右对折;如图③,点B 落在点A 的右边点B '处,若15AB B C ''=,求点C 在数轴上对应的数是多少? 29.解方程:4x+2(x ﹣2)=12﹣(x+4)30.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.四、压轴题31.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.32.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.33.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年江苏省常州市七年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.下列各数中,是无理数的是()A. B. C. D.2.下列式子中,正确的是()A. B. C. D.3.一个两位数的个位数字是x,十位数字是y,这个两位数可表示为()A. xyB.C.D.4.七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A. B. C. D.5.观察下面的一列数:-,,-,,…,按此规律,第2018个数是()A. B. C. D.二、填空题(本大题共8小题,共16.0分)6.-3的相反数是______.7.已知∠A=50°,则∠A的余角是______度.8.常州地铁2号线一期工程西起青枫公园,东至五一站,途经市中心文化宫,全线19700m,这个长度用科学记数法可表示为______m.9.已知关于x的一元一次方程x+2m=-1的解是x=1,则m的值是______.10.请列举一个单项式,使它满足系数为2,次数为3,含有字母a、b,单项式可以为______.11.若2a-b=2,则6-4a+2b=______.12.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.那么需要多少张餐桌拼在一起可坐90人用餐?若设需要这样的餐桌x张,可列方程为______.13.如图,已知纸面上有一数轴,折叠纸面,使表示-2的点与表示5的点重合,则3表示的点与______表示的点重合.三、计算题(本大题共5小题,共36.0分)14.计算:(1)-1+8-4-(-6)(2)-7×(-8)-13×2÷(-)15.先化简,再求值:(8mn-3m2)-5mn-2(3mn-2m2),其中m=-3,n=-.16.甲乙两个旅游团共80人,甲团比乙团人数的2倍多5人,甲乙两团各有多少人?17.如图,已知∠AOB=108°,OE是∠AOB的平分线,OC在∠AOE内.(1)若∠COE=∠AOE,求∠AOC的度数;(2)若∠BOC-∠AOC=72°,则OB与OC有怎样的位置关系?为什么?18.常州每年举行一次“一袋牛奶的暴走”公益活动,用步行的方式募集善款,其中挑战型路线”的起点是淹城站,并沿着规定的线路到达终点吾悦国际站.甲、乙两组市民从起点同时出发,已知甲组的速度为6km/h,乙组的速度为5km/h,当甲组到达终点后,立即以3km/h的速度按原线路返回,并在途中的P站与乙组相遇,P站与吾悦国际站之间的路程为1.5km(1)求“挑战型路线”的总长;(2)当甲组到达终点时,乙组离终点还有多少路程?四、解答题(本大题共4小题,共32.0分)19.解方程:(1)x-2(3x-1)=6x(2)(x-3)-2=(2x+3)20.一个由若干小正方体堆成的几何体,它的主视图和左视图如图①所示(1)这个几何体可以是图②甲、乙、丙中的______;(2)这个几何体最多由______个小正方体构成,最少由______个小正方体构成.请在图③中画出符合最少情况的一个俯视图.21.如图,已知CA⊥BA(1)画图:①延长BA到D,使AD=BA,连接CD;②过点A画AE∥BC,AE与CD相交于点E;③过点B画BF⊥CD,交DC的延长线于点F.思考:图中有______条线段,它们的长度表示点到直线的距离;(2)度量:①你度量的哪些量?______;②通过度量你发现:______.(写一条发现即可)22.如图,已知点O在直线AB上,将一副直角三角板的直角顶点放在点O处,其中∠OCD=60°,∠OEF=45°.边OC、OE在直线AB上.(1)如图(1),若CD和EF相交于点G,则∠DGF的度数是______°;(2)将图(1)中的三角板OCD绕点O顺时针旋转30°至图(2)位置①若将三角板OEF绕点O顺时针旋转180°,在此过程中,当∠COE=∠EOD=∠DOF时,求∠AOE的度数;②若将三角板OEF绕点O以每秒4°的速度顺时针旋转180°,与此同时,将三角板OCD绕点O以每秒1°的速度顺时针旋转,当三角板OEF旋转到终点位置时,三角板OCD也停止旋转.设旋转时间为t秒,当OD⊥EF时,求t的值.答案和解析1.【答案】A【解析】解:是无理数;、3.14、0.都是有理数.故选:A.根据无限不循环小数为无理数即可求解.本题考查了无理数的概念,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.【答案】D【解析】解:A、-1+2=1,故A错误;B、-2×(-3)=6,故B错误;C、(-1)2=1,故C错误;D、3÷(-)=-9,故D正确;故选:D.根据有理数的混合运算进行选择即可.本题考查了有理数的混合运算,掌握运算法则是解题的关键.3.【答案】C【解析】解:个位数字是x,十位数字是y,这个两位数可表示为10y+x.故选:C.根据两位数的表示方法直接写出代数式即可.此题考查列代数式,掌握计数方法是解决问题的关键.4.【答案】A【解析】解:∵七年级1班有女生m人,女生占全班人数的40%,∴全班人数是.故选:A.根据全班人数=女生人数÷女生所占百分比即可列式求解.本题考查了列代数式,列代数式时,要注意语句中的关键字,根据题意找出数据之间的联系,并准确的用代数式表示出来.5.【答案】C【解析】解:∵第1个数是:-=(-1)×,第2个数是:=(-1)2×,第3个数是:-=(-1)3×,…,∴第n个数是:(-1)n×,第2018个数是.故选:C.由已知数列得出第n个数是(-1)n×,据此求解可得.本题主要考查数字的变化类,解题的关键是根据已知数列得出第n个数是(-1)n×.6.【答案】3【解析】解:-(-3)=3,故-3的相反数是3.故答案为:3.一个数的相反数就是在这个数前面添上“-”号.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.7.【答案】40【解析】解:∠A的余角=90°-50°=40°.故答案为40.利用余角的概念求解即可.此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°.8.【答案】1.97×104【解析】解:全线19700m,这个长度用科学记数法可表示为1.97×104m.故答案为:1.97×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【答案】-1【解析】解:∵关于x的一元一次方程x+2m=-1解为x=1,∴1+2m=-1,解得m=-1.故答案是:-1.将x=1代入方程x+2m=-1,得到关于m的一元一次方程,解方程即可求出m 的值.本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.10.【答案】2a2b【解析】解:根据单项式系数和次数的定义,一个含有字母a、b且系数为-2,次数为3的单项式可以写为:2a2b.故答案为:2a2b.要根据单项式系数和次数的定义来写,单项式中数字因数叫做单项式的系数,所有字母指数的和是单项式的次数.此题主要考查了单项式,要注意所写的单项式一定要符合单项式系数和次数的定义.11.【答案】2【解析】解:∵2a-b=2,∴6-4a+2b=6-2(2a-b)=6-2×2=2,故答案为:2.将6-4a+2b转化为6-2(2a-b),最后整体代入即可得出结论.本题考查的是求代数式的值,正确利用“整体代入法”求代数式的值是解题的关键.12.【答案】4x+2=90【解析】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…x张长方形餐桌的四周可坐4x+2人;则依题意得:4x+2=90.故答案是:4x+2=90.根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程即可.此题考查图形的变化规律和由实际问题抽象出一元一次方程,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.13.【答案】0【解析】解:∵-2表示的点与5表示的点重合,∴3表示的点与数0表示的点重合.故答案为:0;根据已知条件可确定对称点于是得到结论.此题考查数轴上的点和数之间的对应关系,结合数轴,找到对称中心是解决问题的关键.14.【答案】解:(1)-1+8-4-(-6)=-1+8-4+6=-5+14=9;(2)-7×(-8)-13×2÷(-)=56-1×2÷(-)=56+4=60.【解析】(1)先化简,再计算加减法;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.15.【答案】解:当m=-3,n=时,原式=8mn-3m2-5mn-6mn+4m2=-3mn+m2=-3+9=6【解析】根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用熟练运用整式的运算法则,本题属于基础题型.16.【答案】解:设乙团有x人,则甲团有(80-x)人,根据题意得80-x=2x+5,解得x=25,所以80-x=80-25=55.答:甲乙两团分别有55人、25人.【解析】设乙团有x人,则甲团有(80-x)人,然后根据甲乙两团的人数之间的关系列方程得到80-x=2x+5,再解方程求出x,然后计算80-x.本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.17.【答案】解:(1)∵∠COE=∠AOE,∴∠AOE=3∠COE,∵OE是∠AOB的平分线,∴∠AOB=2∠AOE=6∠COE,∵∠AOB=180°,∴∠COE=18°,∴∠AOC=2∠COE=2×18°=36°;(2)OB⊥OC,设∠BOC=x°,则∠AOC=108°-x°,∵∠BOC-∠AOC=72°,∴x-(108-x)=72,解得x=90,∴∠BOC=90°,∴OB⊥OC.【解析】(1)根据角平分线的定义和角的和差即可得到结论;(2)根据角的和差和垂直的定义即可得到结论.本题主要考查角的比较与运算,还考查了角平分线的定义等知识点,熟练掌握角平分线的定义是解题的关键.18.【答案】解:(1)设“挑战型路线”的总长为xkm,根据题意,得:,解得:x=24,答:“挑战型路线”的总长为24km,(2),当甲组到达终点时,乙组离终点还有4km.【解析】(1)设“挑战型路线”的总长为xkm,根据时间的关系列出方程解答即可;(2)根据题意列出算式解答即可.考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.【答案】解:(1)x-2(3x-1)=6x,x-6x+2=6x,x-6x-6x=-2,-11x=-2,x=;(2)(x-3)-2=(2x+3),3(x-3)-24=2(2x+3),3x-9-24=4x+6,3x-4x=6+9+24,-x=39,x=-39.【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.20.【答案】乙、丙9 7【解析】解:(1)这个几何体可以是图②甲、乙、丙中的乙、丙,故答案为:乙、丙;(2)这个几何体最多由9个小正方体构成,最少由7个小正方体构成.最少情况的一个俯视图如下:故答案为:9、7.(1)结合主视图和左视图对甲、乙、丙逐一判断可得;(2)根据“俯视图打地基,主视图疯狂盖,左视图拆违章”判断可得.本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.21.【答案】7 线段BC,线段CD,BC=CD【解析】解:(1)线段AD、AE、BF如图所示;图中有7条线段,它们的长度表示点到直线的距离,(线段BA,DA,CA,BF,CF,EF,DF)(2)①度量线段BC、线段CD.(开放题目,答案不唯一)②发现:BC=CD.(开放题,根据①回答即可)故答案为:7,线段BC、线段CD,BC=CD.(1)根据题意画出图形即可,根据点到直线的距离的定义即可解决问题;(2)开放题目,答案不唯一.可以测量线段,也可以测量角;本题考查作图-复杂作图、点到直线的距离、平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】15【解析】解:(1)∵∠EFO=45°,∠D=30°,∴∠DGF=∠EFO-∠D=45°-30°=15°,故答案为:15;(2)①如图2,∵∠COE=∠EOD=∠DOF,∠COE+∠EOD=∠COD,∠COD=90°,∴∠COE=∠EOD=45°,∴∠AOE=∠AOC+∠COE=30°+45°=75°,当∠COE=∠EOD=∠DOF时,∠AOE=75°;②∵∠AOE=4t°,∠AOC=30°+t°,如图3,∵OD⊥EF,∴∠OHE=90,∵∠E=45°,∠COD=90°,∴∠COE=45°,∴∠AOE-∠AOC=∠COE=45°,即4t-(30+t)=45,∴t=25,∴当OD⊥EF时,t的值为25.(1)根据三角形外角的性质即可得到结论;(2)①如图2,根据已知条件求出∠COE=∠EOD=45°,得到∠AOE=∠AOC+∠COE=30°+45°=75°,当∠COE=∠EOD=∠DOF时,求得结论;②根据垂直的定义得到OD⊥EF,得到∠OHE=90,列方程求得结论.本题考查了角的计算,直角三角形的性质,正确的画出图形是解题的关键.。