(完整版)导数与函数的极值、最值(共30张PPT)

合集下载

《函数的极值和导数》课件

《函数的极值和导数》课件

Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率

函数的极值与导数PPT优秀课件

函数的极值与导数PPT优秀课件
在点 x 0 处取得极大值5,其导函数 y f '(x) 的图像
(如图)过点(1,0),(2,0), 求:
(1) x 0 的值;(2)a,b,c的值;
略解:
(1)由图像可知: x0 1
(2) f(1)abc5 f/(x)3a= 2x 2b xc (a 0)




2
3 c
利用导数讨论函数单调的步骤:
已知:y =f(x) 的定义域 D
(1)求导数 f (x)
(2)解不等式 f('x)0且 xD
得f(x)的单调递增区间;
解不等式 f('x)0且 xD
得f(x)的单调递减区间.
(3)下结论
注、单调区间不能以“并集”出现。
3.3.2 函数的极值与导数
探究、 如图,①函数y=f(x)在A,B 等点的函数值与这些点附近的函数值 有什么关系?
案例分析
函数 f(x)x3a2xb xa2
在 x 1 时有极值10,则a,b的值为(C )
A、a3,b3或 a4,b11
B、a4,b1或 a4,b11
C、a4,b11
案例分析
函数 f(x)x3a2xb xa2
在 x 1 时有极值10,则a,b的值为( )
②y=f(x)在这些点的导数值是多少?
y=f(x)
a b
A
Hale Waihona Puke 函数极值的定义极大值点,极小值点统称为极值点.
注:①函数的极大值、极小值未必是 函数的最大值、最小值.
② 极大值不一定小于极小值
B f(b)
aa
bb f(a)
A
• 探索: x =0是否为函数 f(x)=x3的极值点?

2024年高考数学一轮复习课件(新高考版) 第3章 §3.3 导数与函数的极值、最值

2024年高考数学一轮复习课件(新高考版)  第3章 §3.3 导数与函数的极值、最值

2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.3 导数与函数的极值、最值考试要求1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值f′(x)<0f′(x)>0都小,f′(a)=0;而且在点x=a附近的左侧,右侧,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y =f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点处的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧,右侧 ,则b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.(3)极小值点、极大值点统称为,极小值和极大值统称为 .f ′(x )>0f ′(x )<0极值点极值2.函数的最大(小)值(1)函数f (x )在区间[a ,b ]上有最值的条件:如果在区间[a ,b ]上函数y =f (x )的图象是一条 的曲线,那么它必有最大值和最小值.(2)求函数y =f (x )在区间[a ,b ]上的最大(小)值的步骤:①求函数y =f (x )在区间(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大的一个是最大值,最小的一个是最小值.连续不断极值端点处的函数值f (a ),f (b )常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的极值可能不止一个,也可能没有.( )(2)函数的极小值一定小于函数的极大值.( )(3)函数的极小值一定是函数的最小值.( )(4)函数的极大值一定不是函数的最小值.( )√××√1.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为√A.1B.2C.3D.4由题意知,只有在x=-1处,f′(-1)=0,且其两侧导数符号为左负右正,故f(x)的极小值点只有1个.2.函数f(x)=x3-ax2+2x-1有极值,则实数a的取值范围是_____________ _____________.f′(x)=3x2-2ax+2,由题意知f′(x)有变号零点,∴Δ=(-2a)2-4×3×2>0,43.若函数f(x)=x3-4x+m在[0,3]上的最大值为4,则m=____.f′(x)=x2-4,x∈[0,3],当x∈[0,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0,所以f(x)在[0,2)上单调递减,在(2,3]上单调递增.又f(0)=m,f(3)=-3+m,所以在[0,3]上,f(x)max=f(0)=4,所以m=4.第二部分命题点1 根据函数图象判断极值例1 (多选)(2023·华南师大附中模拟)如图是y =f (x )的导函数f ′(x )的图象,对于下列四个判断,其中正确的判断是A.当x =-1时,f (x )取得极小值B. f (x )在[-2,1]上单调递增C.当x =2时,f (x )取得极大值D. f (x )在[-1,2]上不具备单调性√√由导函数f′(x)的图象可知,当-2<x<-1时,f′(x)<0,则f(x)单调递减;当x=-1时,f′(x) =0;当-1<x<2时,f′(x)>0,则f(x)单调递增;当x=2时,f′(x)=0;当2<x<4时,f′(x)<0,则f(x)单调递减;当x=4时,f′(x)=0,所以当x=-1时,f(x)取得极小值,故选项A正确;f(x)在[-2,1]上有减有增,故选项B错误;当x=2时,f(x)取得极大值,故选项C正确;f(x)在[-1,2]上单调递增,故选项D错误.命题点2 求已知函数的极值例2 (2022·西南大学附中模拟)已知函数f(x)=ln x+2ax2+2(a+1)x(a≠0),讨论函数f(x)的极值.因为f(x)=ln x+2ax2+2(a+1)x,若a>0,则当x∈(0,+∞)时,f′(x)>0恒成立,故函数f(x)在(0,+∞)上单调递增,无极值.当a>0时,f(x)无极值.命题点3 已知极值(点)求参数例3 (1)(2023·福州质检)已知函数f(x)=x(x-c)2在x=2处有极小值,则c的值为√A.2B.4C.6D.2或6由题意,f′(x)=(x-c)2+2x(x-c)=(x-c)·(3x-c),则f′(2)=(2-c)(6-c)=0,所以c=2或c=6.若c=2,则f′(x)=(x-2)(3x-2),当x∈(2,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极小值,满足题意;若c=6,则f′(x)=(x-6)(3x-6),当x∈(-∞,2)时,f′(x)>0,f(x)单调递增;当x∈(2,6)时,f′(x)<0,f(x)单调递减;当x∈(6,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极大值,不符合题意.综上,c=2.(2)(2023·威海模拟)若函数f(x)=e x-ax2-2ax有两个极值点,则实数a的取值范围为√由f(x)=e x-ax2-2ax,得f′(x)=e x-2ax-2a.因为函数f(x)=e x-ax2-2ax有两个极值点,所以f′(x)=e x-2ax-2a有两个变号零点,当x>0时,g′(x)<0;当x<0时,g′(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.思维升华根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则a+b的值为A.-1或3B.1或-3√C.3D.-1因为f(x)=x3+ax2+bx-a2-7a,所以f′(x)=3x2+2ax+b,因为函数f(x)在x=1处取得极大值10,所以f′(1)=3+2a+b=0,①f(1)=1+a+b-a2-7a=10,②联立①②,解得a=-2,b=1或a=-6,b=9.当a=-6,b=9时,f′(x)=3x2-12x+9=(x-1)(3x-9),f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减,故f(x)在x=1处取得极大值10,符合题意.综上可得,a=-6,b=9.则a+b=3.√∴φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,又当x→+∞时,φ(x)→+∞,命题点1 不含参函数的最值例4 (2022·全国乙卷)函数f(x)=cos x+(x+1)sin x+1在区间[0,2π]的最小值、最大值分别为√f(x)=cos x+(x+1)sin x+1,x∈[0,2π],则f′(x)=-sin x+sin x+(x +1)·cos x=(x+1)cos x,x∈[0,2π].又f(0)=cos 0+(0+1)sin 0+1=2,f(2π)=cos 2π+(2π+1)sin 2π+1=2,命题点2 含参函数的最值例5 已知函数f(x)=-ln x(a∈R).(1)讨论f(x)的单调性;①若a≤0,则f′(x)<0在(0,+∞)上恒成立,所以f(x)在(0,+∞)上单调递减;②若a>0,则当x>a时,f′(x)<0;当0<x<a时,f′(x)>0,所以f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.所以f(x)max=f(a)=-ln a;思维升华求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f(x)的最值.跟踪训练2 (1)(2021·新高考全国Ⅰ)函数f(x)=|2x-1|-2ln x的最小值1为_____.函数f(x)=|2x-1|-2ln x的定义域为(0,+∞).当x>1时,f′(x)>0,所以f(x)min=f(1)=2-1-2ln 1=1;综上,f(x)min=1.(2)已知函数h(x)=x-a ln x+ (a∈R)在区间[1,e]上的最小值小于零,求a的取值范围.①当a+1≤0,即a≤-1时,h′(x)>0恒成立,即h(x)在(0,+∞)上单调递增,则h(x)在[1,e]上单调递增,故h(x)min=h(1)=2+a<0,解得a<-2;②当a+1>0,即a>-1时,在(0,a+1)上,h′(x)<0,在(a+1,+∞)上,h′(x)>0,所以h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增,若a+1≤1,求得h(x)min>1,不合题意;若1<a+1<e,即0<a<e-1,则h(x)在(1,a+1)上单调递减,在(a+1,e)上单调递增,故h(x)min=h(a+1)=2+a[1-ln(a+1)]>2,不合题意;若a+1≥e,即a≥e-1,则h(x)在[1,e]上单调递减,第三部分1.(多选)已知函数f(x)的导函数f′(x)的图象如图所示,则下列结论中正确的是A.f(x)在区间(-2,3)上有2个极值点B.f′(x)在x=-1处取得极小值C.f(x)在区间(-2,3)上单调递减D.f(x)在x=0处的切线斜率小于0√√√根据f′(x)的图象可得,在(-2,3)上,f′(x)≤0,∴f(x)在(-2,3)上单调递减,∴f(x)在区间(-2,3)上没有极值点,故A错误,C正确;由f′(x)的图象易知B正确;根据f′(x)的图象可得f′(0)<0,即f(x)在x=0处的切线斜率小于0,故D正确.√。

第3讲导数与函数的极值最值课件共83张PPT

第3讲导数与函数的极值最值课件共83张PPT

2.导数与函数的最值 (1)函数 f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数 y=f(x)的图象是一条 07 ___连__续__不__断___的曲线, 那么它必有最大值和最小值. (2)求 y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数 y=f(x)在(a,b)上的 08 _极__值___. ②将函数 y=f(x)的各极值与 09 __端__点__处__的__函__数__值__f(_a_)_,__f(_b_)_比较,其中 10 __最__大__的一个是最大值, 11 _最__小___的一个是最小值.
即 2x+y-13=0.

(2)显然 t≠0,因为 y=f(x)在点(t,12-t2)处的切线方程为 y-(12-t2)=
-2t(x-t),

x=0,得
y=t2+12,令
y=0,得
t2+12 x= 2t ,
所以 S(t)=12×(t2+12)·t2+2|t1| 2.
不妨设 t>0(t<0 时,结果一样),
例 1 (2021·南昌摸底考试)设函数 f(x)在 R 上可导,其导函数为 f′(x), 且函数 y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) B.函数 f(x)有极大值 f(-2)和极小值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) D.函数 f(x)有极大值 f(-2)和极小值 f(2)
单调递减,所以 x=1 是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1
或 x=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-1<a<0.综合①②

函数的极值与导数同步课件

函数的极值与导数同步课件

探究点三 函数极值的综合应用 例3 设函数f(x)=x3-6x+5,x∈R.
(1)求函数f(x)的单调区间和极值; (2)若关于x的方程f(x)=a有三个不同的实根,求实数a的 取值范围. 解 (1)f′(x)=3x2-6,令f′(x)=0, 解得x1=- 2,x2= 2. 因为当x> 2或x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0. 所以f(x)的单调递增区间为(-∞,- 2)和( 2,+∞); 单调递减区间为(- 2, 2).
当 x=- 2时,f(x)有极大值 5+4 2; 当 x= 2时,f(x)有极小值 5-4 2. (2)由(1)的分析知 y=f(x)的图象的大致 形状及走向如图所示. 所以,当 5-4 2<a<5+4 2时, 直线 y=a 与 y=f(x)的图象有三个不 同的交点, 即方程 f(x)=a 有三个不同的实根.
x f′(x) f(x)
(-∞,-1) -1 (-1,3) 3 (3,+∞)

Байду номын сангаас
0-
0

10
-22
由表可知:当x=-1时,f(x)有极大值f(-1)=10. 当x=3时,f(x)有极小值f(3)=-22.
小结 求可导函数f(x)的极值的步骤 (1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干 个小开区间,并列成表格.检测f′(x)在方程根左右两侧的 值的符号,如果左正右负,那么f(x)在这个根处取得极大 值;如果左负右正,那么f(x)在这个根处取得极小值;如果 左右不改变符号,那么f(x)在这个根处无极值.
探究点一 函数的极值与导数的关系 问题1 如图观察,函数y=f(x)在d、e、f、g、h、i等点处

第3节导数与函数的极值、最值课件

第3节导数与函数的极值、最值课件

极大值,也是最大值 f(1)=3e,函数无极小值.
4.(2021·新乡三模)某冷饮店的日销售额 y(单位:元)与当天的最高气温 x(单位:℃,
20≤x≤40)的关系式为 y=1190x2-310x3,则该冷饮店的日销售额的最大值约为
(C )
A.907 元
B.910 元
C.915 元
D.920 元
解析 ∵y=1190x2-310x3,20≤x≤40, ∴y′=159x-110x2=-110x(x-38). ∴当20≤x≤38时,y′≥0,即函数在[20,38]上单调递增,当38≤x≤40时, y′≤0,即函数在[38,40]上单调递减, ∴当x=38时,函数取值最大值,∴ymax=1190×382-310×383≈915.
①若a<-1时,
x (-∞,-2)
-2
-2,a2
2 a
2a,+∞
f′(x)

0

0

f(x)
极大值
极小值
此时,f(x)在x=-2处取得极大值,符合题意.
②若 a>0 时,当 x<-2 或 x>2a时,f′(x)<0, 当-2<x<2a时,f′(x)>0,
∴f(x)在x=2处取得极小值,不符合题意; ③若2a<-2,即-1<a<0 时, 当 x<2a或 x>-2 时,f′(x)>0, 当2a<x<-2 时,f′(x)<0, ∴f(x)在x=-2处取得极小值,不符合题意;
常用结论
1.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论, 不可想当然认为极值就是最值. 2.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之 间没有必然的大小关系.
诊断自测
1.思考辨析(在括号内打“√”或“×”)

导数的应用函数极值与最值课件

导数的应用函数极值与最值课件

极值计算示例
01
02
03
步骤
1. 定义域:全体实数
2. 一阶导数:f'(x)=3x^212x+9
极值计算示例
3. 二阶导数:f''(x)=6x-12
4. 令一阶导数为0,解出对应的x值:x=1或x=3
5. 判断导数在x值附近的符号变化:在x=1附近, f'(x)<0;在x=3附近,f'(x)>0
04
计算得f(-2)=0为最
小值,f(2)=16为
03
最大值
判断f(-2)和f(2)为 极值点,且为单调
性改变的点
04
导数在优化问题中的应用
优化问题的概念与分类
01
优化问题定义:在满足一定条件下,寻求某个 函数的最优值。
03
静态优化:目标函数和束缚条件都不随时间变化。
02
分类
04
动态优化:目标函数或束缚条件随时间变化。
经济模型
导数可以用于建立经济模型,例 如在需求函数中,对价格求导可 以得到需求弹性。
导数在其它领域的应用
工程领域
导数可以用于优化设计、控制过程、 预测趋势等。例如,在机械设计中, 对结构强度进行导数分析可以找到最 优设计方案。
科学计算
导数可以用于数值计算、插值、拟合 等技术中。例如,在数值积分中,对 函数进行离散化求导可以得到数值积 分的结果。
中,物体的平衡状态通常可以通过求导来找到极值点。
曲线斜率
03
导数可以用来计算曲线的斜率,例如在光学中,反射和折射定
律可以用导数来描述。
导数在经济学中的应用
边际分析
导数可以用于边际分析,例如在 成本函数中,对产量求导可以得 到单位产量的成本变化。

利用导数研究函数的极值与最值Ppt优选文档

利用导数研究函数的极值与最值Ppt优选文档

解:
3 因为 f(x)1x34x4, 所以 f(x)x24.
3
令 f(x)0, 解得 x 2, 或 x2.
当 f(x)0, 即 x2 , 或 x2 ;
当 f(x)0, 即 2x2 .
当 x 变化时, f (x) 的变化情况如下表:
Y=f(x)在这些点的导数值是多少?在这些点附 近,y=f(x)y的导数的符号有什么规律?
f (x4 ) f (x1)
o a X1
X2
X3 X4 b
x
从而我们得出结论: 若x0满足 f/(x)=0,
且在x0的两侧的导数异号,则x0是f(x)的极值 点,f(x0)是极值,并且如果 f/(x) 在x0两侧满足 “左正右负”,则x0是f(x)的极大值点,f(x0) 是极大值;如果 f/(x) 在x0两侧满足“左负右
进一步探究:极值点两侧函数图像单调性有何特点?
极大值
极小值
即: 极值点两侧单调性互异
练习1
下图是导函数 y f(x)的图象, 试找出函数 y f (x)
的极值点, 并指出哪些是极大值点, 哪些是极小值点.
y
y f (x)
x2 x3
a x1 O
x4 x5
x
x6
b
例1 求函数 f(x)1x3 4x4的极值.
3、练习
1.求 出 函 数 f( x ) x 3 3 x 2 2 4 x 2 0 的 单 调 区 间
解 f(x)3x26x2 4 3 (x 4 )x ( 2 )
令f(x)0, 得 临 界 点 x1 4 , x22
区间 (-∞,-4) -4 (-4,2) 2 (2,+∞)
f ’(x) +
反之, 若 f (x) f (x0) , 则称 f (x0) 是 f (x) 的一个极

导数与函数的单调性、极值与最值(共39张PPT)

导数与函数的单调性、极值与最值(共39张PPT)

热点 1 导数的几何意义 1.导数的几何意义 函数 f(x)在 x0 处的导数是曲线 f(x)在点 P(x0,f(x0)) 处的线的斜率,曲线 f(x)在点 P 处的切线的斜率 k= f′(x0),相应的切线方程为 y-f(x0)=f′(x0)(x-x0).
2.四个易误导数公式 (1)(sin x)′=cos x. (2)(cos x)′=-sin x. (3)(ax)′=axln a(a>0,且 a≠1). 1 (4)(logax)′= (a>0,且 a≠1,x>0). xln a
解析:(1)易求 y′=(ax+1+a)ex, 又曲线在点(0,1)处的切线的斜率为 k=-2. 所以 y′|x=0=(ax+1+a)ex|x=0=1+a=-2,则 a=- 3.
(2)令 x>0,则-x<0,f(-x)=ln x-3x, 又 f(x)为偶函数,即 f(-x)=f(x), 1 所以 f(x)=ln x-3x(x>0),则 f′(x)= -3(x>0). x 所以 f′(1)=-2, 所以曲线在点(1,-3)处的切线方程为 y+3=-2(x -1),即 2x+y+1=0. 答案:(1)-3 (2)2x+y+1=0
a ②若 a<0,则由 f′(x)=0 得 x=ln-2. a 当 x∈-∞,ln-2时,f′(x)<0; a 当 x∈ln-2,+∞时,f′(x)>0. a 故 f(x)在-∞,ln-2上单调递减, a 在ln-2,+∞上单调递增.
-x
3 则 f′(x0)=ex0-e-x0= ,得 ex0=2,所以 x0=ln 2. 2 答案:(1)x-y+1=0 (2)ln 2
热点 2 利用导数研究函数的单调性(多维探究) 1.f′(x)>0 是 f(x)为增函数的充分不必要条件,如 函数 f(x)=x3 在(-∞,+∞)上单调递增,但 f′(x)≥0. 2.f′(x)≥0 是 f(x)为增函数的必要不充分条件,当函 数在某个区间内恒有 f′(x)=0 时,则 f(x)为常函数,函数 不具有单调性.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——[通·一类]—— 2.函数 y=2x3-2x2 在区间[-1,2]上的最大值是________.
解析:y′=6x2-4x,令 y′=0,得 x=0 或 x=23. ∵f(-1)=-4,f(0)=0, f(23)=-287,f(2)=8. ∴最大值为 8. 答案:8
考向三 函数极值与最值的综合问题
f(x)在(0,e
1 n
)上是增函数;

x>e
1 n
时,有
f′(x)<0,得
f(x)在(e
1 n
,+∞)上是减函数.

f(x)在
x=e
1 n
处取得最大值
f(e
1 n
)=n1e.
——[悟·技法]——
求函数 f(x)在[a,b]上的最大值和最小值的步骤 (1)求函数在(a,b)内的极值; (2)求函数在区间端点的函数值 f(a),f(b); (3)将函数 f(x)的各极值与 f(a),f(b)比较,其中最大的一个为 最大值,最小的一个为最小值.
[互动讲练型] [例 3] (2016·全国甲,理 21)(1)讨论函数 f(x)=xx-+22ex 的单 调性,并证明:当 x>0 时,(x-2)ex+x+2>0; (2)证明:当 a∈[0,1)时,函数 g(x)=ex-xa2x-a(x>0)有最小 值.设 g(x)的最小值为 h(a),求函数 h(a)的值域.
x .
∴f′(1)=a,又切线斜率为 1,故 a=1.
由曲线 y=f(x)过点(1,0),有 f(1)=b=0.故 a=1,,f′(x)=1-xnn+l1n
x .

f′(x)=0,即
1-nln
x=0,解得
x=e
1 n
.

0<x<e
1 n
时,有
f′(x)>0,得
考向一 利用导数研究函数的极值[自主练透型] [例 1] 已知函数 f(x)=x-aln x(a∈R). (1)当 a=2 时,求曲线 y=f(x)在点 A(1,f(1))处的切线方程; (2)求函数 f(x)的极值.
[解析] 函数 f(x)的定义域为(0,+∞),f′(x)=1-ax. (1)当 a=2 时,f(x)=x-2ln x,f′(x)=1-2x(x>0), 因而 f(1)=1,f′(1)=-1, 所以曲线 y=f(x)在点 A(1,f(1))处的切线方程为 y-1=-(x -1),即 x+y-2=0.
(2)由 f′(x)=1-ax=x-x a,x>0 知: ①当 a≤0 时,f′(x)>0,函数 f(x)为(0,+∞)上的增函数, 函数 f(x)无极值; ②当 a>0 时,由 f′(x)=0,解得 x=a. 又当 x∈(0,a)时,f′(x)<0;当 x∈(a,+∞)时,f′(x)>0, 从而函数 f(x)在 x=a 处取得极小值,且极小值为 f(a)=a- aln a,无极大值. 综上,当 a≤0 时,函数 f(x)无极值; 当 a>0 时,函数 f(x)在 x=a 处取得极小值 a-aln a,无极大 值.
——[悟·技法]——
求函数 f(x)极值的步骤 (1)确定函数的定义域; (2)求导数 f′(x); (3)解方程 f′(x)=0,求出函数定义域内的所有根; (4)列表检验 f′(x)在 f′(x)=0 的根 x0 左右两侧值的符号, 如果左正右负,那么 f(x)在 x0 处取极大值,如果左负右正,那么 f(x)在 x0 处取极小值.
即 y=f′(x)关于直线 x=-a6对称.
从而由题设条件知-a6=-12,即 a=3. 又由于 f′(1)=0,即 6+2a+b=0, 得 b=-12.
(2)由(1)知 f(x)=2x3+3x2-12x+1, 所以 f′(x)=6x2+6x-12=6(x-1)(x+2), 令 f′(x)=0,即 6(x-1)(x+2)=0,解得 x=-2 或 x=1. 当 x∈(-∞,-2)时,f′(x)>0, 即 f(x)在(-∞,-2)上单调递增; 当 x∈(-2,1)时,f′(x)<0, 即 f(x)在(-2,1)上单调递减; 当 x∈(1,+∞)时,f′(x)>0, 即 f(x)在(1,+∞)上单调递增. 从而函数 f(x)在 x=-2 处取得极大值 f(-2)=21, 在 x=1 处取得极小值 f(1)=-6.
(2)g′(x)=x-2exx+3 ax+2=x+x32(f(x)+a). 由(1)知,f(x)+a 单调递增.
对任意 a∈[0,1),f(0)+a=a-1<0,f(2)+a=a≥0.
因此,存在唯一 xa∈(0,2], 使得 f(xa)+a=0,即 g′(xa)=0. 当 0<x<xa 时,f(x)+a<0,g′(x)<0,g(x)单调递减; 当 x>xa 时,f(x)+a>0,g′(x)>0,g(x)单调递增. 因此 g(x)在 x=xa 处取得最小值,最小值为 g(xa)=exa-ax2axa+1=exa+fxxaa2xa+1=xae+xa2.
考向二 利用导数研究函数的最值 [例 2] (2017·湖北省七市(州)联考)设 n∈N*,a,b∈R,函
数 f(x)=alxnn x+b,已知曲线 y=f(x)在点(1,0)处的切线方程为 y= x-1.
(1)求 a,b; (2)求 f(x)的最大值.
[解析]
(1)f(x)的定义域为(0,+∞),f′(x)=a1-xn+n1ln
[解析] (1)f(x)的定义域为(-∞,-2)∪(-2,+∞). f′(x)=x-1x+x2+e2x-2 x-2ex=xx+2e2x2≥0, 当且仅当 x=0 时,f′(x)=0, 所以 f(x)在(-∞,-2),(-2,+∞)上单调递增. 因此当 x∈(0,+∞)时,f(x)>f(0)=-1. 所以(x-2)ex>-(x+2),(x-2)ex+x+2>0.
——[通·一类]—— 1.设 f(x)=2x3+ax2+bx+1 的导数为 f′(x),若函数 y=f′(x)
的图象关于直线 x=-12对称,且 f′(1)=0. (1)求实数 a,b 的值; (2)求函数 f(x)的极值.
解析:(1)因为 f(x)=2x3+ax2+bx+1, 故 f′(x)=6x2+2ax+b, 从而 f′(x)=6(x+a6)2+b-a62,
相关文档
最新文档