D8.2偏导数与全微分

合集下载

第三节偏导数与全微分

第三节偏导数与全微分
z ′x = 2(sin xy )(cos xy ) y + y 2 z ′y = 2(sin xy )(cos xy ) x + 2 yx
dz = z′ dx + z′ dy x y
= [2(sin xy )(cos xy ) y + y ]dx
2
+ [2(sin xy )(cos xy ) x + 2 yx ]dy .
2.偏导数 设有函数 z = f ( x , y ), 如果极限 偏导数
f ( x 0 , y 0 + ∆y ) − f ( x 0 , y0 ) lim = lim0 ∆y → ∆y → 0 ∆ y ∆y
∆ yz
存在, 存在 则称此极限为 f ( x , y )在点
( x0 , y0 ) 处对 y 的偏导数 的偏导数.
第三节 偏导数与全微分
一.二元函数的偏导数 二元函数的偏导数 1.改变量 改变量
全改 变量 偏改 变量 偏改 变量
x : x 0 → x 0 + ∆x
y : y 0 → y 0 + ∆y
∆ z = f ( x 0 + ∆x , y 0 + ∆y ) − f ( x 0 , y 0 )
∆ x z = f ( x 0 + ∆x , y 0 ) − f ( x 0 , y 0 )
+ x ln x
y
f x′ (1,2) = 2e 2 + 2 f y′ (1,2) = e 2 .
y ∂z ∂z 例3 设 z = arctan x , 求证 x + y = 0. ∂x ∂y

∂z = ∂x
y y (− 2 ) = − 2 2 y 2 x +y x 1+ ( ) x ∂z 1 x 1 = ( ) = 2 y 2 x ∂y x + y2 1+ ( ) x y x ∂z ∂z x ) + y( 2 ) = 0. +y = x(− 2 2 2 x +y x +y ∂x ∂y

偏导数与全微分

偏导数与全微分

若二元函数z=f(x,y)在D内每一点都有偏导数 则此偏 内每一点都有偏导数, 在 内每一点都有偏导数 则此偏 注 (1) 若二元函数 的函数--------偏导函数 偏导函数. 导数也是 x, y 的函数 偏导函数
f x , f y , z x , z y , ......
∂z ∂f ∂z ∂f , , , , ...... ∂x ∂x ∂y ∂y
∂ ∂z ∂2z ( )= = z yx = f yx ; ∂ y ∂x ∂x ∂ y
混合偏导数
∂ ∂z ∂2z ( )= = z yy = f yy . 2 ∂y ∂y ∂y
定理 若 z = f (x, y) 的二阶混合偏导数 f x y , f y x 在 (x,y) 连续 连续, 则 f xy = f yx . 适用于三阶以上 2 2 ∂ z ∂ z y , . z = arctan , 例5 求 ∂y∂x ∂x∂y x y −y ∂z 1 = ⋅ (− 2 ) = 2 , 2 y 2 x x +y ∂x 1 + ( ) x 1 1 ∂z x = y 2 ⋅ x = x2 + y2 , ∂y 1+(x)
∂2z = 6 xy 2 ∂x 2
∂2z = 2 x 3 − 18 xy ∂y 2
∂2z ∂2z 2 2 = 6 x y − 9 y − 1= ∂y∂x ∂x∂y
∂3z = 6 y2 ∂x 3
§2
偏导数与全微分
一、 偏导数 1.偏导数的定义 1.偏导数的定义 的某邻域内有定义, 设 z = f (x,y)在点 ( x0 , y0 )的某邻域内有定义, 当 y 固定在 y0 时, , ) 得一元函数 f ( x , y0 ), 称 f ( x 0 + ∆ x , y0 ) − f ( x 0 , y0 ) lim ∆ x→0 ∆x 的偏导数, 为z = f (x,y)在点 ( x0 , y0 )处对 x 的偏导数, 记为 fx ( x0 , y0 ), 或 ∂ f ( x 0 , y 0 ) , , ) ∂x 或 ∂ z ( x 0 , y0 ) , ∂x f ( x0 + ∆x, y0 ) − f ( x0 , y0 ) ∂z 即 f x ( x 0 , y0 ) = x ( x 0 , y0 )= ∂ f ( x 0 , y 0 ) = lim ; ∂ ∂x ∆x→0 ∆x 类似的, 的偏导数为 类似的, z = f (x,y)在点 ( x0 , y0 ) 处对 y 的偏导数为 , ) f ( x0 , y0 + ∆ y) − f ( x0 , y0 ) ∂f ∂z f y ( x 0 , y0 ) = . = lim ( x0 , y0 ) = ( x 0 , y0 ) ∆ y→0 ∂y ∂y ∆y

偏导数与全微分课件

偏导数与全微分课件

dz
A
.
dz
( x0 , y0 )x f y ( x0 , y0 )y fx z z 0 =AB
0 P y
dz=AB : 切面竖坐标的增量
z dz ( x y )
=AB+BN
y
当x , y 很小时
z dz
x
Q
3、可微性的几何意义与应用
0
y =y0
由一元函数导数的几何意义:
z x
= tan
M
( x , y )
y
x

. .
同理,
z y
?
M
1. 偏导数的几何意义
z
z f ( x, y )
f ( x , y y ) f ( x , y ) z lim y y M y
M
Tx
偏导数与全微分 的几何意义
1. 偏导数的几何意义
z
z f ( x, y )
f ( x 0 x , y 0 ) f ( x 0 , y 0 ) z lim x x M x 0
M
Tx
L
z= f (x,y)
固定 y =y0
得曲线
z f ( x, y) L: y y 0
z =AN :曲面竖坐标的增量
用切面竖坐标的增量近似曲面竖坐标的增量 N
z
z= f (x ,y)
( )
M
z
B
过点M的切平面:
( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 ) fx ( z z0 ) 0 即:
z z0
得曲线
z f ( x , y) x x

数学分析第十六章课件偏导数与全微分

数学分析第十六章课件偏导数与全微分

解: 已知

V 2 rh r r 2h
r 20, h 100, r 0.05, h 1
V 2 20100 0.05 202 (1) 200 (cm3)
即受压后圆柱体体积减少了
作业
• P192:1:(单数题) • P193:7;9 • P208:1:(双数题) • P208:3 • P209:9 • P217:1:(1;3);2:(2;4);6 • P223:2;3;8
定理16.1 3.全微分与偏导数的关系:
f (x, y) 设 (x0 , y0 ) 可微,在表达式中 分别令 f 0 x 0 和 x 0 y 0

定理16.2
从而:f 在 p0 的全微分可写成
dz |p0 fx (x0 , y0 )dx f y (x0 , y0 )dy
z f (x) 在某区域 G 内(x,y) 点的全微分为
f11,
f12,
f21,
f22
书上记号易混
链式法则的应用
偏微分方程的变换
目的
求解
2)复合函数的全微

u
f (x, y),若x, y为自变量,则
du f dx f dy x y
进一步,若x (s,t) y (s,t) 则有
du u ds u dt dx x ds x dt dy y ds y dt
r x 2
2x x2 y2 z2
x r
r z z r
4、计算
的近似值.
解: 设
,则
f x (x, y) y x y1 , f y (x, y) x y ln x

则 1.042.02 f (1.04, 2.02 )
1 2 0.04 0 0.02 1.08

28.2 偏导数与全微分

28.2 偏导数与全微分

∆������������ = ������ ������������ + ∆������, ������������ − ������ ������������, ������������
如 果
lim f (x0 x, y0 ) f (x0, y0 )
x0
x
存在,则称此极限为函数������ = ������ ������, ������ 在点 (������������, ������������)处对������的偏导数 ,记作
y0
y
z f
记 y
x x0
, y
x x0
, zy
作 y y0
y y0
xx0 或f y (x0, y0 )
y y0
1.偏导数
如果函数������ = ������ ������, ������ 在区域D内每一点(������������, ������������) 处对������的偏导数都存在,那么这个偏导数就是关
习惯上,自变量的增量∆������ 和∆������常写成������������和������������,
并分别称为自变量������、������的微分,所以也常记作 ������������ = ������������′ ������0, ������0 ������������ + ������������′ ������0, ������0 ������������
作为整体记号来看待,其中的横线没有相
除的意义,横线上下并未赋予相互独立的
含义。
➢ 一元函数在某一点可导,那么函数在该点 一定连续。但是,对于二元函数来说,函 数在某一点存在偏导数,并不能保证它在 该点连续。

(完整版)偏导数与全微分

(完整版)偏导数与全微分
第二节
第十章
偏导数与全微分
一、 偏导数概念及其计算 二 、高阶偏导数 三、全微分
机动 目录 上页 下页 返回 结束
一、 偏导数定义及其计算法
引例: 研究弦在点 x0 处的振动速度与加速度 , 就是
将振幅
中的 x 固定于 x0 处, 求
关于 t 的
一阶导数与二阶导数.
u u(x0 , t ) u(x, t)
注意: f x (x0 , y0 ) lim f x0 x, y0 f x0, y0
f
(x0 )
lim
x 0
f
(x0x0 x)
x
f
(x0 )
xd y
dx
x x0
机动 目录 上页 下页 返回 结束
同样可定义对 y 的偏导数
f y (x0 , y0 ) lim f (x0 , y0 y) f (x0 , y0 )
机动 目录 上页 下页 返回 结束
例如, f (x, y)
xy
x2 x2
y2 y2
,
0,
x2 y2 0 x2 y2 0
fx (x, y)
y
x4
4x2 (x2
y2 y2 )2
y4
,
0,
x2 y2 0 x2 y2 0
f y (x, y)
x
x4
4x2y2 (x2 y2)2
y4
,
0,
x2 y2 0 x2 y2 0
f xy (0,0)
lim
y 0
f x (0,
y) y
f x (0, 0)
lim y y0 y
1
二 者
例如, 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的

偏导数与全微分

偏导数与全微分

( x , y ) ≠ ( 0, 0 ) ( x , y ) = ( 0, 0 )
在点(0,0)处( C ).
A. 连续 偏导数存在; 连续,偏导数存在 偏导数存在 B. 连续,偏导数不存在; 连续 偏导数不存在 偏导数 C. 不连续 偏导数存在 不连续,偏导数存在 偏导数存在; D. 不连续 偏导数不存在 连续,偏导数不存在 偏导数不存在.
14
第三节 全 微 分
全微分的定义 可微的条件
第八章 多元函数微分法及其应用
15
全 微 分
一、全微分的定义
全增量. 为了引进全微分的定义, 为了引进全微分的定义 先来介绍 全增量. 全增量的概念 全增量的概念
设二元函数 z = f ( x , y ) 在点P ( x, y )的某邻
域内有定义, 当变量 x、y在点( x , y )处分别有 域内有定义
y
6
偏导数
xy 当( x , y ) ≠ (0,0), 2 2 例 f ( x, y) = x + y 0 当( x , y ) = (0,0).
求f ( x , y )的偏导数 .
解 当( x , y ) ≠ (0,0)时, y⋅ ( x 2 + y 2 ) − xy ⋅ 2 x y( y 2 − x 2 ) = 2 f x ( x, y) = 2 2 2 2 2 , (x + y ) (x + y ) 2 2 2 2 x⋅ ( x + y ) − xy ⋅ 2 y x( y − x ) f y ( x, y) = = 2 2 2 2 2 2 . (x + y ) (x + y ) 定义得 当( x , y ) = (0,0)时, 按定义得

偏导数与全微分

偏导数与全微分
取y kx.
例4.若有( C ),则极限 lim f (x, y) 存在.
x x0 y y0
( A) lim( lim f (x, y)) lim ( lim f (x, y));
xx0 y y0
y y0 xx0
(B) lim f (x, kx) A, A为常数,k 为任意实数; x0
(C)函数f (x, y)在点(x0, y0 )连续;
5.二元函数连续性定义:
如果函数z f (x, y)满足条件(1)z f (x, y)在点
P
(
x0
,
y0
)的某邻域内有定义;(2)
lim
xx0
f
(x,
y)存在;
y y0
(3) lim x x0
f (x0 , y0 )
f (x0 , y0 ),则称z
f (x, y)
y y0
在点p(x0 , y0 )连续。
dz 0.2
21
三元函数旳全微分: df ( x, y, z) f dx f dy f x y z
多元函数旳全微分等于各自变量偏微分旳和.
z x
例7.设u e y , 则du _______
分析 : u
1
z x
e y,
x y
u y
x y2
z x
e y,
u
z x
ey
z
du
u dx x
u dy y
u dz z
e
z
x y
(
1
y
dx
x y2
dy dz)
22
9.连续、偏导数存在与可微之间旳关系
1 可微 偏导连数续存,在反,之反不之然不然 混合偏导数相等.

偏导数与全微分

偏导数与全微分

偏改 变量
y z f ( x0 , y0 y) f ( x0 , y0 )
2.偏导数 设有函数 z f (x, y), 如果极限
lim x z lim f ( x0 x, y0 ) f ( x0 , y0 )
x x0
x0
x
存在,则称此极限值为f (x, y)在点
z x (1, 2)
z x1 1 3y y2
z y (1, 2)
例2 已知 f ( x, y) e xy x y , 求 f x( x, y), f y( x, y), f x(1,2), f y(1,2).
解 f x( x, y) ye xy yx y1 f y( x, y) xe xy x y ln x
zy

xe x y ( x 1) 1 1 y
zy (1.0) e 2
dz 2edx (e 2)dy. (1,0)
定理8.2 如果函数 f (x, y) 在点P(x, y)及其邻域 内有连续的偏导数 f x( x, y)和 f y( x, y), 则该函数在点 P(x, y) 处可微.
(3)关系 函数 f (x, y)在 ( x0 , y0 )处的偏导数等于
偏导函数在( x0 , y0 ) 处的函数值.
(4)偏导函数求法 对 x 求偏导把 y 看作常数,
对 y 求偏导把 x 看作常数,

按一元函数求导法则求.

法 则
重要注意事项
二元函数偏导数的几何意义:
z
f x
x x0 yy0
z z f (x, y)
.P
.O
y0
x0
T2
y

第二节 偏导数与全微分

第二节 偏导数与全微分

一、填空题:
练习题
1、设z

e
y x
,则
z
_____________;
x
z ____________;dz ____________. y
2、若u ln( x 2 y 2 z 2 ),则
du _____________________________.
3、若函数z y ,当x 2, y 1 ,x 0.1, y 0.2 时, x
且函数z f ( x, y)在点( x, y)的全微分为 dz z x z y . x y
一元函数在某点的导数存在 多元函数的各偏导数存在
微分存在. 全微分存在.
说明:1)多元函数的各偏导数存在并不能保证 全 微分存在;
2)不连续一定不可微
定理2(充分条件) 如果函数z f ( x, y)的偏 导数z 、z 在点( x, y)连续,则该函数在点( x, y)
(将y看成常数)

z
' x
(1,1)

e 1
z
' y

cos(x

y )e xy

sin(x
y)exy x
(将x看成常数)

z
' y
(1,1)
e1
解2: z(x,1) sin(x 1)ex
dz(x,1) cos(x 1)ex sin(x 1)ex dx
y0
y
记为 z y
(
x0
,
y0
,f ) y
(
x0
,
y0
)
,z
y
(
x0
,

高等数学教学: 偏导数与全微分

高等数学教学:  偏导数与全微分
轮换对称性

f
x
(0,0,0)


3

x cos
x

x

0

1 4
利用轮换对称性 , 可得
f y (0,0,0)
f z (0,0,0)
1 4
d f (0,0,0) f y (0,0,0) d x f y (0,0,0) d y f z (0,0,0) d z
1 (d x d y d z) 4
例 7. 求所有的二阶偏导数: 两个混合偏导数:是否总相等
例8. 设

f(x,y)=
xy
x2 x2

y2 y2
,
0 ,
x2 y2 0 x2 y2 0
证明: fxy (0, 0) f yx (0, 0)
在什么条件下才能保证两者相等呢?
定理16.4 这个定理可以推广到 n阶偏导数的情形: 即若函数 f 具有直到 n 阶的连续偏导数,则求偏导数与变量的顺序
z
2
2ze
x2

y2

z
2

2
x
sin
y
u
2 x (1 2 x2 sin2 y) ex2 y2 x4 sin 2 y
xyz
u y

f y

f z
z y
2ye x2 y2 z2 2ze x2 y2 z2 x2 cos y
2 ( y x4 sin y cos y ) ex2 y2 x4 sin 2 y
x y
x f x
y
s f
同理 y
t
例4. 设 u f (xy, y ) 求 u 2u 2u

偏导数和全微分

偏导数和全微分

偏导数和全微分偏导数和全微分是微积分中一些重要的概念,用于描述多变量函数的变化情况和进行近似计算。

我们来看偏导数。

在一元函数中,导数描述了函数在某一点上的变化速率,而在多元函数中,一个变量的变化并不仅仅受到其他变量的影响,而是受到多个变量的共同影响。

我们需要引入偏导数,用于表示多元函数中一个变量的变化情况。

对于一个多元函数f(x1, x2, ..., xn),其中各个变量都是相互独立的,我们可以对其偏导数进行求解。

对于变量xi,其偏导数表示为∂f/∂xi,表示在其他变量保持不变的情况下,函数关于xi的变化速率。

偏导数与导数类似,可以用极限的定义来解释。

对于变量xi,其偏导数可以通过限制其他变量,并将函数看作一元函数进行求解,然后取极限得到。

例如,对于函数f(x, y),其关于变量x的偏导数可以表示为∂f/∂x = lim(Δx→0)(f(x+Δx, y) - f(x, y))/Δx。

我们来看全微分。

全微分是对多元函数进行近似计算的一种方法。

对于一个多元函数f(x1, x2, ..., xn),其全微分表示为df = ∂f/∂x1 dx1 + ∂f/∂x2 dx2 + ... + ∂f/∂xn dxn,其中dx1, dx2, ..., dxn为变量的微小增量。

全微分的含义是,当各个变量的微小增量dx1, dx2, ..., dxn趋于0时,函数f的微小增量df与各个偏导数的乘积之和趋于一致。

全微分可以看作是函数在某一点上的线性近似,用于描述函数在该点附近的变化情况。

全微分也可以通过偏导数的极限定义来求解,表示为df = ∂f/∂x1 dx1 + ∂f/∂x2 dx2 + ... + ∂f/∂xn dxn = lim(Δx1→0, Δx2→0, ..., Δxn→0) (f(x1+Δx1, x2+Δx2, ..., xn+Δxn) - f(x1, x2, ..., xn))。

总结起来,偏导数用于描述多元函数中一个变量的变化速率,而全微分用于对多元函数进行近似计算。

[微积分Ⅱ]8-2 偏导数与全微分

[微积分Ⅱ]8-2 偏导数与全微分

z x2 y 2 xye x
2 x2 y 2 z 2 z 3 x2 y (2 x 2 x y)e ( x e ) x xy yx
2 2 u u 例 设 u f ( x 2 y 2 z 2 ) , 其中 f C 2 , 求 , . 2 x xy
解三:按定义证明.

设 z x ( x 0, x 1) ,
y
x z 1 z 2z . 求证 y x ln x y

z y 1 yx , x
z x y ln x , y
x z 1 z x y 1 1 y yx x ln x y x ln x y y ln x
为函数在该点的关于变 量 y 的偏导数, 记为
z y
x x0 y y0
b,
f ( x0 , y0 ) b, y
z y
x x0 y y0
b,
f y( x0 , y0 ) b ,
f 2( x0 , y0 ) b .
若函数 f ( x , y ) 在点 ( x0 , y0 ) 处关于 变量 x 和 y 的偏导数均存在 , 则称函数
f x y ( x0 1x , y0 2 y ) (0 3 , 4 1)
f y x ( x0 3 x , y0 4 y )
y0 )连续, 因 f x( , f y( 在点 ( x0 , y x , y) x x , y)
故令x 0, y 0
x 1 y2
z 3x 2 y . y
2 1 3 2 8 ,
z y
x 1 y 2
3 1 2 2 7 .
d d 2 ( x 6 x 9) x 1 2 x 6 x 1 8 解二: f ( x ,2) x 1 dx dx d d f (1, y ) y 2 (1 3 y y 2 ) y 2 3 2 y y 2 7 dy dy

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系

1。

偏导数代数意义偏导数是对‎一个变量求‎导,另一个变量‎当做数对x求偏导‎的话y就看‎作一个数,描述的是x‎方向上的变‎化率对y求偏导‎的话x就看‎作一个数,描述的是y‎方向上的变‎化率几何意义对x求偏导‎是曲面z=f(x,y)在x方向上‎的切线对y求偏导‎是曲面z=f(x,y)在x方向上‎的切线这里在补充‎点。

就是因为偏‎导数只能描‎述x方向或‎y方向上的‎变化情况,但是我们要‎了解各个方‎向上的情况‎,所以后面有‎方向导数的‎概念。

2。

微分偏增量:x增加时f‎(x,y)增量或y增‎加时f(x,y)偏微分:在deta‎x趋进于0‎时偏增量的‎线性主要部‎分detaz‎=fx(x,y)detax‎+o(detax‎)右边等式第‎一项就是线‎性主要部分‎,就叫做在(x,y)点对x的偏‎微分这个等式也‎给出了求偏‎微分的方法‎,就是用求x‎的偏导数求‎偏微分全增量:x,y都增加时‎f(x,y)的增量全微分:根号(detax‎方+detay‎方)趋于0时,全增量的线‎性主要部分‎同样也有求‎全微分公式‎,也建立了全‎微分和偏导‎数的关系dz=Adx+Bdy 其中A就是‎对x求偏导‎,B就是对y‎求偏导希望楼主注‎意的是导数‎和微分是两‎个概念,他们之间的‎关系就是上‎面所说的公‎式。

概念上先有‎导数,再有微分,然后有了导‎数和微分的‎关系公式,公式同时也‎指明了求微‎分的方法。

3.全导数全导数是在‎复合函数中‎的概念,和上面的概‎念不是一个‎系统,要分开。

u=a(t),v=b(t)z=f[a(t),b(t)]dz/dt 就是全导数‎,这是复合函‎数求导中的‎一种情况,只有这时才‎有全导数的‎概念。

dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt)建议楼主在‎复合函数求‎导这里好好‎看看书,这里分为3‎种情况。

1.中间变量一‎元就是上面‎的情况,才有全导数‎的概念。

2.中间变量有‎多元,只能求偏导‎3.中间变两有‎一元也有多‎元,还是求偏导‎。

偏导数与全微分ppt课件

偏导数与全微分ppt课件

③ 二元函数的二阶偏导数有4个,三阶有8个, n阶有2n个;三元函数的n阶偏导数有3n个; 等等。
24
7. 偏导数的经济意义
边际需求: 两种商品,价格分别为 p1 和 p2
偏弹性:
需求函数: Q1( p1, p2 ) Q2 ( p1, p2 )
Q1 , Q1 , Q2 , Q2 称为边际需求 p1 p2 p1 p2
p2 0
2Q1 / Q1 p2 / p2
p2Q1 Q1p2
ln Q1 ln p2
E22
lim 2Q2 / Q2 p10 p2 / p2
p2Q2 Q2p2
ln Q2 ln p2
其中:2Q1 Q1( p1, p2 p2 ) Q1( p1, p2 )
格E1偏1 称弹为性1;商E品12需称求为量1商Q品1 需对求自量身价Q1格对相p1关的价直格接p价2
dz z dx z dy x y
32
证明:
由条件 当(x+△x,y+△y)∈∪((x,y))时
△z=A△x +B△y+o()
特别地(x+△x,y)∈∪((x,y)) ,有
△z=A△x + o()=A△x + o( △x )
z f (x x, y) f (x, y) A o( x )
r
y
y x2 y2 z2
r
z
z x2 y2 z2
15
5. 偏导数的几何意义
z
z=f(x,y0)
M0
Ty
Tx
z=f(x0,y)
o
y0
y
x0
P0
x
—— z
x xx0 y y0
切线M0Tx对x轴的斜率

偏导数与全微分的关系

偏导数与全微分的关系

偏导数与全微分的关系偏导数和全微分是微积分学中基本的概念,它们之间有着密切的关系。

在科学研究和工程应用中,这两个概念经常被用来求解复杂的问题。

本文将探讨偏导数和全微分之间的关系,以及它们在实际应用中的意义。

一、偏导数的定义和意义在微积分学中,偏导数是指在函数多元的情况下,对其中一个自变量求导,而把其他自变量看作常数的导数。

例如,对于函数$f(x,y)$,它的偏导数 $\frac{\partial f}{\partial x}$ 表示在 $y$ 固定的情况下, $f$ 相对于 $x$ 的变化量。

同样地,$\frac{\partialf}{\partial y}$ 表示在 $x$ 固定的情况下,$f$ 相对于 $y$ 的变化量。

偏导数在物理学和工程学中有着广泛的应用。

例如,偏导数可以用来求出某个物理量相对于时间的变化率,从而可以计算出这个物理量在不同时间点的取值。

在工程学中,偏导数可以用来计算出某个个体参数对系统的影响,从而帮助调节系统,以使其工作在最佳状态。

二、全微分的定义和意义全微分是指在函数多元的情况下,对于自变量的微小变化,函数值相对于自变量的变化量。

其数学表达式为:$$df=\frac{\partial f}{\partial x}\Delta x+\frac{\partial f}{\partial y}\Delta y$$其中 $\Delta x,\Delta y$ 为自变量的微小变化量,$\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}$ 分别表示函数 $f(x,y)$ 关于 $x,y$ 的偏导数。

全微分可以用来描述函数在某个点处的变化趋势。

例如,对于函数 $f(x,y)$,在某个点 $(x_0,y_0)$ 处的全微分 $df(x_0,y_0)$,可以用来描述函数 $f$ 在这个点处的斜率,从而反映函数在这个点的变化趋势。

偏导数与全微分

偏导数与全微分

f x (
x, y,z
)
lim
x0
f(
x
x, y,z ) x
f(
x,y,z )
类似,
f y(
x, y,z
)
lim
y0
f(
x, y y,z ) y
f(
x, y,z )
fz( x , y , z )
lim
z0
f ( x, y,z z ) z
f(
x, y,z )
说明
对多元函数求关于某一个自变量的偏导数时,
若极限 lim x z lim f ( x0 x , y0 ) f ( x0 , y0 ) 存在,
x x0
x0
x
则称此极限值为函数 f (x, y) 在点( x0, y0 ) 处对 x 的偏导数.
z , 记作:
z f
,
,
x x x0 x x x0
y y0
y y0
x x x0 y y0
或 f x( x0 , y0 ).
zxx fxx ( x , y ),
y
z y
2z y2
f yy( x , y ),
z
y x
2z xy
f xy ( x , y ),
x
z y
2z yx
f yx( x , y ),
混 合 偏 导 数
Note:记号
有的书上的记法不同
类似可定义三阶、四阶及更高阶的偏导数, 二阶及二阶以上的偏导数称为高阶偏导数.
记作 z , x
f , x
zx , fx( x , y )
类似定义函数 f (x, y) 对 y的偏导数.
记作: z , f , zy ,

8.2 偏导数与全微分

8.2 偏导数与全微分

类似地,可以定义函数z=f(x,y)在区域D内对自变 量y的偏导函数为
f ( x, y + ∆y) − f ( x, y) lim ∆y→0 ∆y
∂z ∂f 记作 , , f y ( x, y)或zy ( x, y) ∂y ∂y
偏导数的概念可以推广到二元以上函数 如 u = f ( x, y, z ) 在 ( x, y, z ) 处
= 2×1 + 3× 2 = 8 , = 3×1 + 2× 2 = 7 .
x =1 y= 2
问题: 问题:计算偏导数 f x ( x0 , y0 )时能否将 y = y0 先代入
f ( x, y ) 中再对 求导? 中再对x求导 求导?
分析: 分析:
f (x0 + ∆x, y0 ) − f (x0, y0 ) f x (x0, y0 )= lim ∆x→0 ∆x
是曲线 斜率. 斜率 在点M 在点 0 处的切线 M0Ty 对 y 轴的
例4
xy , x2 + y2 ≠ 0, 2 f ( x, y) = x + y2 0, x2 + y2 = 0 ,

求f(x,y)在原点(0,0)处的偏导数. 解 原点(0,0)处对x的偏导数为
f (0 + ∆x,0) − f (0,0) fx (0,0) = lim ∆x→0 ∆x (∆x) ⋅ 0 −0 2 (∆x) + 0 = lim = lim0 = 0. ∆x→0 ∆x→0 ∆x
内这两个二阶混合偏导数必相等. 内这两个二阶混合偏导数必相等 . 元函数的高阶混合导数也成立. 本定理对 n 元函数的高阶混合导数也成立
例如, 例如 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 连续时, 在点 (x , y , z) 连续时 有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x0 y0
即 函数zz = ff(x(,xy) 在点x, y(x, y)y可) 微f (函x,数y)在该点连续
下面两个定理给出了可微与偏导数的关系:
(1) 函数可微 (2) 偏导数连续
偏导数存在 函数可微
高等数学
目录 上页 下页 返回 结束
21
定理 (必要条件) 若函数 z = f (x, y) 在点(x, y) 可微 ,
求 fxy (0,0) , f yx (0,0) .
解:
fx (x, y)
f y (x, y)
y
x4
4x2 (x2
y2 y2 )2
y4
,
0,
x
x4
4x2y2 (x2 y2)2
y4
,
0,
x2 y2 0 x2 y2 0 x2 y2 0 x2 y2 0
高等数学
目录 上页 下页 返回 结束
分子与分母的商 !
? z
x
xy y z
y (
z y2
)
1 x
z 1 xy
高等数学
目录 上页 下页 返回 结束
8
二、二元函数偏导数的几何意义
z
f x
x x0 yy0
d dx
f (x, y0 )
x x0
M0
Tx
Ty
是曲线
z
y
f (x, y0
y)在点
M0
处的切线
M 0Tx 对 x 轴的斜率.
24
z
fx (x, y)x f y (x, y)y x y
lim
x0
y 0
0,
lim
x0
y 0
0
注意到
x y
, 故有
z f x (x, y)x f y (x, y)y o( )
所以函数
在点 可微.
高等数学
目录 上页 下页 返回 结束
25
推广: 类似可讨论三元及三元以上函数的可微性问题.
第二节
第八章
偏导数与全微分
一、 偏导数概念及其计算 二 、偏导数的几何意义 三 、偏导数与连续的关系 四 、高阶偏导数 五 、全微分
一、 偏导数定义及其计算法
一元函数 : y f (x)
在x0点导数 :
f
(x0 )
lim
x0
f
( x0
x) x
f
(x0 )
问题 : 对z f (x, y)怎样定义导数?
x2 y2 0 x2 y2 0
0
0
高等数学
在上节已证 f (x , y) 在点(0 , 0)并不连续!
目录 上页 下页 返回 结束
10
四、高阶偏导数
设 z = f (x , y)在域 D 内存在连续的偏导数
z x
fx (x, y) ,
z y
f y (x, y)
若这两个偏导数仍存在偏导数,则称它们是z = f ( x , y )
在点 (x, y) 的全微分, 记作
dz d f Ax By
若函数在域 D 内各点都可微, 则称此函数在D 内可微.
高等数学
目录 上页 下页 返回 结束
20
由微分定义 :
lim z lim (Ax By ) o ( ) 0
x0
0
y0
得 lim f (x x, y y) f (x, y)
高等数学
目录 上页 下页 返回 结束
2
定义1. 设函数 z f (x, y)在点 (x0 , y0 ) 的某邻域内
极限
x0 x
x0
x
存在, 则称此极限为函数 z f (x, y) 在点 (x0 , y0 ) 对 x
的偏导数,记为
f x
(x0 ,
y0
)
;
zx (x0 , y0 ) ;
f1(x0, y0 ) .
o
x0
y0
y
f y
x x0 y y0
d dy
f (x0 , y)
y
y0
x
是曲线
斜率.
高等数学
在点M0 处的切线 M 0Ty 对 y 轴的
目录 上页 下页 返回 结束
9
三、偏导数与连续的关系
一元函数中在某点可导
连续,
多元函数中在某点偏导数存在
例如,
z
f
(x, y)
xy
x2
y2
,
0 ,
显然
连续,
例如, 三元函数 u f (x, y, z) 的全微分为 d u u x u y u z x y z
习惯上把自变量的增量用微分表示, 于是
du
u d z
z
记作
dz u
d x u , d y u , d z u称为偏微分. 故有下述叠加原理
du dx udy udz u
高等数学
目录 上页 下页 返回 结束
26
例7. 计算函数
在点 (2,1) 处的全微分.
解: z yexy , x
z xexy y
z x
(2,1)
e2 ,
z y
(2,1) 2e2
高等数学
目录 上页 下页 返回 结束
27
例8. 计算函数
的全微分.
解: u 1 x
u 1 cos y ze yz y 2 2
u ye yz z
du
解: f (x,1) x2 f x (1,1)
f (1, y) cos(1 y) f
x (1, 1)
高等数学
目录 上页 下页 返回 结束
7
例3. 设
求 z , x , y x y z
解: z x y , z y
x
x z, y
x y
z y2
说明: 此例表明, 偏导数记号是一个 整体记号, 不能看作
[ f (x, y y) f (x, y)]
fx (x 1x, y y)x f y (x, y 2y)y ( 0 1 , 2 1 )
[ fx (x, y) ]x [ f y (x, y) ]y
高等数学
lim
x0
y 0
0,
lim
x0
y 0
0
目录 上页 下页 返回 结束
注意: f x f (x0 )
(x0, y0 ) lim f
x 0
lim f (x0 x, (x0x0x) f (x0 )
x
y0 ) dx y
dx
f (x0 , y0 x x0
)
高等数学
目录 上页 下页 返回 结束
3
同样可定义对 y 的偏导数
f y (x0 , y0 ) lim f (x0, y0 y) f (x0, y0 )
y0
y
若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x 或 y 偏导数存在 , 则该偏导数称为偏导函数, 也简称为
偏导数 , 记为
高等数学
z , y
f , y
zy ,
f y (x, y) ,
f2(x, y)
目录 上页 下页 返回 结束
4
偏导数的概念可以推广到二元以上的函数 .
高等数学
目录 上页 下页 返回 结束
30
3. 微分定义:
z
o()
(x)2 (y)2
d z fx (x, y)dx f y (x, y)dy
4. 重要关系: 函数连续
函数可导
函数可微
偏导数连续
高等数学
目录 上页 下页 返回 结束
31
思考与练习
1.设 f
(x,
y)
x2 y x2 y2
lim
y 0
y y
1
二 者
f yx (0,0)
lim
x0
f y (x,
0) x
f y (0, 0)
lim
x0
x x
1
不 等
高等数学
目录 上页 下页 返回 结束
15
定理. 若 f xy (x,y)和 f y x (x,y) 都在点(x0 , y0 )连续, 则
f x y (x0 , y0 ) f y x (x0 , y0 )
偏导数存在函数 不一定可微 !
反例: 函数 f (x, y)
xy , x2 y2 0 x2 y2
0,
x2 y2 0
易知 fx (0, 0) f y (0, 0) 0 , 但
z [ fx ( 0, 0)x f y ( 0, 0)y]
x y (x)2 (y)2
x y (x)2 (
则该函数在该点偏导数
必存在,且有
d z z x z y x y
证: 由全增量公式
得到对 x 的偏增量
x x
x
z lim x z A x x0 x
同样可证 z B , 因此有 y
高等数学
令y 0, Ax o ( x )
目录 上页 下页 返回 结束
22
注意: 定理1 的逆命题不成立 . 即:
(证明略)
本定理对 n 元函数的高阶混合导数也成立.
例如, 对三元函数 u = f (x , y , z) , 当三阶混合偏导数
在点 (x , y , z) 连续时, 有
说明: 因为初等函数的偏导数仍为初等函数 , 而初等 函数在其定义区域内是连续的 , 故求初等函数的高阶导 数可以选择方便的求导顺序.
目录 上页 下页 返回 结束
29
内容小结
1. 偏导数的概念及有关结论
• 定义; 记号; 几何意义
• 函数在一点偏导数存在
相关文档
最新文档