最新初中数学多边形的内角和与外角和教案

合集下载

6.4.1多边形的内角和与外角和(教案)

6.4.1多边形的内角和与外角和(教案)
6.4.1多边形的内角和与外角和(教案)
一、教学内容
6.4.1多边形的内角和与外角和:本节课我们将探讨《数学》七年级下册第六章第四节的内容,主要包括以下两点:
1.多边形的内角和:通过观察和推理,引导学生发现并证明多边形内角和定理,即任意n边形的内角和为(n-2)×180°。
2.多边形的外角和:指导学生通过实际操作,探索并证明多边形外角和定理,即任意n边形的外角和为360°。
-能够运用内角和与外角和定理解决实际问题,如计算多边形中未知角度等。
举例解释:例如,在讲解多边形内角和时,教师可以通过具体的多边形(如三角形、四边形等)引导学生观察和计算内角和,强调(n-2)×180°这一核心公式的适用性和普遍性。
2.教学难点
-难点内容:
-理解多边形内角和定理的推导过程,尤其是从具体到抽象的思维转换。
4.培养学生的数学抽象素养:让学生从具体的几何图形中抽象出多边形内角和与外角和的性质,形成数学概念,提高数学抽象素养。
三、教学难点与重点
1.教学重点
-核心知识:多边形的内角和与外角和定理。
-重点内容:
-多边形内角和定理的推导与应用,即(n-2)×180°的计算方法。
-多边形外角和定理的理解与应用,即外角和为360°的特性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解多边形内角和与外角和的基本概念。多边形内角和是指多边形内部所有角的和,外角和是指多边形外部所有角的和。这些概念在几何学中非常重要,因为它们可以帮助我们解决多边形相关的各种问题。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,我们将了解多边形内角和与外角和在实际中的应用,以及它们如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调多边形内角和(n-2)×180°和外角和360°这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。

七年级数学下册《多边形的内角和与外角和》教案、教学设计

七年级数学下册《多边形的内角和与外角和》教案、教学设计
3.运用小组合作学习,培养学生的团队协作能力和交流表达能力,提高学生解决问题的效率。
4.利用多媒体教学资源,如几何画板等教学软件,辅助学生直观理解多边形的内角和与外角和的计算过程,提高教学效果。
(三)情感态度与价值观
1.培养学生热爱数学,善于发现数学美的情感态度,激发学生对几何学的兴趣和探究欲望。
2.通过对多边形内角和与外角和的学习,引导学生认识到数学知识在实际生活中的应用价值,增强学生的数学应用意识。
2.练习题型:
-填空题:计算给定多边形的内角和与外角和。
-选择题:判断多边形内角和与外角和的关系,选择正确的计算公式。
-应用题:运用多边形内角和与外角和的知识解决实际问题。
(五)总结归纳
1.教学内容:对本节课所学知识进行总结,强调重难点,构建知识体系。
2.教学方法:教师引导学生共同回顾本节课所学内容,总结多边形内角和与外角和的计算方法及其应用。
-多边形内角和与外角和的计算公式是怎样的?
-如何运用这些公式解决实际问题?
-多边形内角和与外角和在实际生活中的应用。
2.教师指导:在各小组讨论过程中,教师巡回指导,解答学生疑问,引导学生深入探讨多边形内角和与外角和的性质。
(四)课堂练习
1.教学内容:设计具有代表性的练习题,巩固学生对多边形内角和与外角和的理解。
(二)教学设想
1.教学方法:
-采用情境教学法,通过生活实例引入多边形内角和与外角和的概念,让学生感受数学与生活的紧密联系。
-运用问题驱动法,引导学生自主探究多边形内角和与外角和的性质,培养学生的独立思考能力。
-采用直观演示法,通过实物、模型、多媒体等教学手段,帮助学生形象地理解多边形的内角和与外角和的计算过程。
2.实践应用题:

多边形的内角和与外角和 优秀课教案

多边形的内角和与外角和   优秀课教案

6.4 多边形的内角和与外角和1.理解多边形内角和公式的推导过程,并掌握多边形的内角和与外角和公式;(重点)2.灵活运用多边形的内角和与外角和定理解决有关问题.(难点)一、情境导入多媒体演示:清晨,小明沿一个多边形广场周围的小路按逆时针方向跑步.提出问题:(1)小明是沿着几边形的广场在跑步? (2)你知道这个多边形的各部分的名称吗?(3)你会求这个多边形的内角和吗? 导入:小明每从一条小路转到下一条小路时,身体总要转过一个角,你知道是哪些角吗?你知道它们的和吗?就让我们带着这些问题同小明一起走进今天的课堂.二、合作探究探究点一:多边形的内角和定理 【类型一】 利用内角和求边数一个多边形的内角和为540°,则它是( )A .四边形B .五边形C .六边形D .七边形解析:熟记多边形的内角和公式(n -2)·180°.设它是n 边形,根据题意得(n -2)·180=540,解得n =5.故选B.方法总结:熟记多边形的内角和公式是解题的关键.【类型二】 求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A .1620°B .1800°C .1980°D .以上答案都有可能 解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】 复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A .450°B .540°C .630°D .720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】 利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形B.九边形C.十边形D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形B.四边形C.三角形D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.三、板书设计多边形的内角和与外角和1.性质:多边形的内角和等于(n-2)·180°,多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.3.正n边形:正n边形的内角的度数为(n-2)·180°n,外角的度数为错误!.本节课先引导学生用分割的方法得到四边形内角和,再探究多边形的内角和,然后采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究 探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC 的中点,请判断线段BE ,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形; (2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =12BC=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =12AG ,DF =12DC ,即GE =DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)∵点G 是BC 的中点,BC =12,∴BG =CG =12BC =6.∵四边形AGCD 是平行四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。

多边形内角和与外角和教案

多边形内角和与外角和教案

多边形内角和与外角和教案教案标题:多边形内角和与外角和教案教案目标:1. 理解多边形的内角和与外角和的概念。

2. 掌握计算多边形内角和与外角和的方法。

3. 能够应用多边形内角和与外角和的概念解决相关问题。

教案步骤:步骤一:引入概念(10分钟)1. 引导学生回顾多边形的定义和常见的多边形名称。

2. 提问:你认为多边形的内角和与外角和有什么特点?请简要回答。

3. 解释多边形的内角和与外角和的概念,并与学生一起讨论其特点。

步骤二:内角和计算(15分钟)1. 介绍多边形内角和计算公式:内角和 = (n - 2) × 180°,其中 n 为多边形的边数。

2. 给出一些多边形的例子,引导学生计算其内角和,并解释计算过程。

3. 给学生一些练习题,巩固他们对多边形内角和计算的理解。

步骤三:外角和计算(15分钟)1. 介绍多边形外角和计算公式:外角和= 360°,其中360° 为一个圆的角度。

2. 解释为什么多边形的外角和等于一个圆的角度,并与学生一起讨论。

3. 给出一些多边形的例子,引导学生计算其外角和,并解释计算过程。

4. 给学生一些练习题,巩固他们对多边形外角和计算的理解。

步骤四:应用问题解决(15分钟)1. 给学生一些实际问题,要求他们利用多边形内角和与外角和的概念解决问题。

2. 引导学生分析问题,找出解决思路,并给予必要的指导。

3. 鼓励学生在解决问题过程中提出自己的想法和解决方法。

步骤五:总结与拓展(5分钟)1. 总结多边形内角和与外角和的计算方法和特点。

2. 提醒学生在实际问题中灵活应用多边形内角和与外角和的概念。

3. 鼓励学生进一步探索与多边形内角和与外角和相关的知识。

教案评估:1. 观察学生在课堂上的参与度和对概念的理解程度。

2. 收集学生在练习题和应用问题中的解答情况,检查他们对多边形内角和与外角和的计算方法的掌握情况。

3. 针对学生的表现给予及时的反馈和指导。

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案一、教学目标1. 知识与技能:(1)理解多边形的内角和定理,掌握计算多边形内角和的方法;(2)理解多边形的外角和定理,掌握计算多边形外角和的方法;(3)能够运用内角和与外角和的知识解决实际问题。

2. 过程与方法:(1)通过观察、操作、推理等过程,探索多边形的内角和与外角和的性质;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探究、合作学习的品质;(3)培养学生运用数学知识解决实际问题的意识。

二、教学内容1. 多边形的内角和定理:(1)四边形的内角和为360°;(2)五边形的内角和为540°;(3)一般n边形的内角和为(n-2)×180°。

2. 多边形的外角和定理:(1)任意多边形的外角和为360°;(2)外角等于它不相邻的两个内角之和。

三、教学重点与难点1. 教学重点:(1)掌握多边形的内角和定理及其应用;(2)掌握多边形的外角和定理及其应用。

2. 教学难点:(1)多边形内角和公式的推导;(2)多边形外角和定理的理解与应用。

四、教学过程1. 导入:通过展示一些多边形的图片,引导学生观察多边形的内角和外角,激发学生的兴趣。

2. 探究内角和定理:(1)让学生通过剪拼方法,尝试计算四边形、五边形的内角和;(2)引导学生发现规律,总结出一般n边形的内角和公式。

3. 验证内角和定理:让学生分组讨论,通过几何画图软件或实物模型,验证内角和定理的正确性。

4. 探究外角和定理:(1)让学生观察多边形的外角,尝试计算外角和;(2)引导学生发现规律,总结出多边形外角和的定理。

5. 应用与拓展:(1)让学生运用内角和与外角和的知识解决实际问题;(2)引导学生思考内角和与外角和在其他学科中的应用。

五、课后作业1. 复习多边形的内角和与外角和定理;2. 完成课后练习,巩固所学知识;3. 选择一个实际问题,运用内角和与外角和的知识解决。

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案一、教学目标:知识与技能:1. 让学生掌握多边形的内角和定理,能够运用该定理计算任意多边形的内角和。

2. 让学生理解多边形的外角和定理,能够运用该定理计算任意多边形的外角和。

过程与方法:1. 通过观察、操作、推理等过程,让学生发现多边形的内角和与外角和的规律。

2. 培养学生运用数学知识解决实际问题的能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。

2. 让学生感受数学在生活中的应用,培养学生的应用意识。

二、教学重点与难点:重点:1. 多边形的内角和定理。

2. 多边形的外角和定理。

难点:1. 理解并运用多边形的内角和定理计算任意多边形的内角和。

2. 理解并运用多边形的外角和定理计算任意多边形的外角和。

三、教学过程:1. 导入:通过展示一些多边形的图片,让学生观察并思考:多边形有什么特点?你能总结出多边形的内角和与外角和的规律吗?2. 新课讲解:(1)讲解多边形的内角和定理:n边形的内角和为(n-2)×180°。

(2)讲解多边形的外角和定理:n边形的外角和为360°。

3. 实例演示:教师展示几个简单多边形的内角和与外角和的计算过程,让学生跟随教师一起动手操作,加深对定理的理解。

4. 练习巩固:学生独立完成一些多边形的内角和与外角和的计算题目,教师巡回指导,解答学生的疑问。

5. 课堂小结:教师引导学生总结本节课所学内容,巩固多边形的内角和与外角和的定理。

四、课后作业:3. 请学生结合生活实际,找出一些多边形,并计算其内角和与外角和。

五、教学反思:本节课通过观察、操作、推理等过程,让学生掌握了多边形的内角和与外角和的定理,并能运用定理计算任意多边形的内角和与外角和。

在教学过程中,要注意引导学生积极参与,培养学生的动手操作能力和思维能力。

结合生活实际,让学生感受数学的应用,激发学生的学习兴趣。

六、教学评价:1. 学生能够熟练掌握多边形的内角和定理和外角和定理,并能够运用定理计算任意多边形的内角和与外角和。

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案一、教学目标1. 让学生理解多边形的内角和与外角和的概念。

2. 引导学生掌握多边形内角和与外角和的计算方法。

3. 培养学生运用多边形的内角和与外角和解决实际问题的能力。

二、教学内容1. 多边形的内角和a. 定义:多边形内角和是指多边形所有内角的度数之和。

b. 计算公式:n边形的内角和= (n-2) ×180°,其中n表示多边形的边数。

2. 多边形的外角和a. 定义:多边形外角和是指多边形所有外角的度数之和。

b. 计算公式:n边形的外角和= 360°,与多边形的边数无关。

三、教学重点与难点1. 教学重点:a. 多边形的内角和与外角和的概念。

b. 多边形内角和与外角和的计算方法。

2. 教学难点:a. 理解并应用多边形的内角和计算公式。

b. 理解并应用多边形的外角和特点。

四、教学方法1. 采用直观演示法,通过实物模型展示多边形的内角和与外角和。

2. 利用几何画板软件,动态演示多边形内角和与外角和的变化。

3. 运用小组合作学习法,让学生在探讨中掌握内角和与外角和的计算方法。

五、教学过程1. 导入:通过展示生活中常见的多边形物体,如正方体、长方体等,引导学生关注多边形的内角和与外角和。

2. 新课讲解:a. 讲解多边形的内角和概念,引导学生理解内角和的意义。

b. 推导多边形内角和的计算公式,让学生掌握计算方法。

c. 讲解多边形的外角和概念,引导学生理解外角和的意义。

d. 阐述多边形外角和的特点,让学生掌握外角和的计算方法。

3. 课堂练习:a. 布置练习题,让学生运用内角和与外角和的知识解决问题。

b. 引导学生相互讨论,分享解题心得。

5. 课后作业:布置相关作业,巩固所学知识。

六、教学活动1. 小组讨论:让学生分组讨论如何应用多边形的内角和与外角和解决实际问题,如计算房屋面积、设计图形等。

2. 案例分析:给出一个实际问题,如计算一个四边形的内角和与外角和,让学生分组解决,并分享解题过程和答案。

《多边形的内角和外角和》教案

《多边形的内角和外角和》教案

《多边形的内角和外角和》教案1教学目标:知识与技能:1.叙述多边形的定义.2.熟记多边形的内角和公式.过程与方法:1.经历探索多边形内角和公式的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力.情感、态度与价值观:1.通过师生共同活动,训练学生的发散性思维,培养学生的创新精神.2.使学生懂得数学内容普遍存在相互联系,相互转化的特点.教学重、难点:教学重点:多边形的内角和.教学难点:多边形的内角和的公式推导.教学过程:Ⅰ.巧设情景问题,引入课题.[师]前面我们学习了三角形、平行四边形,今天我们要学习什么内容呢?请看大屏幕(出示投影片:石英钟、六角螺母、地板砖等).[师]刚才大家看到许多实物图片,它与数学图形联系起来,你知道它们各是什么图形?[生]四边形、五边形、六边形、八边形.[师]对,这些在日常生活中经常看到的图形,就是我们这节课要研究的内容——多边形.Ⅱ.讲授新课.[师]什么叫多边形呢?多边形是由一些不在同一直线上的线段依次首尾相连组成的封闭图形.我们在初中阶段主要探讨的平面几何.所以现在定义的多边形应在同一平面内,即:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形叫做多边形.在定义中应注意:①若干条;②首尾顺次相连,二者缺一不可.多边形有凸多边形和凹多边形之分,如图.把多边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形(如图(2)).图(1)的多边形是凹多边形.我们探讨的一般都是凸多边形.多边形的边、内角、顶点、对角线、内角和的含义与三角形相同,即:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.对角线:在多边形中,连结不相邻两个顶点的线段叫做多边形的对角线.内角:多边形相邻两边组成的角叫多边形的内角.如图:多边形通常以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.多边形的表示方法与三角形、四边形类似.可以用表示它的顶点的字母来表示,如可顺时针方向表示,也可逆时针方向表示,如图(3),可表示为五边形ABCDE,也可表示为五边形EDCBA,还可以用下标表示为五边形A1A2A3A4A5,n边形可表示为n边形A1A2A3…A n(n≥3的自然数).三角形可用三条边来表示,四边形可用四条边来表示.n边形呢?要画多少条边来表示呢?我们可用虚线表示省略的边,其余的边用实线表示.如上图,就是n边形A1A2A3…A n.n边形有n条边,n个顶点,n个内角.好,我们了解了多边形的有关概念后,看一幅图及问题.(1)上图中广场中心的边缘是一个五边形,你能设法求出它的五个内角的和吗?与同伴交流.(2)小明、小亮分别利用下面的图形求出了该五边形的五个内角的和.你知道他们是怎么做的吗?(3)还有其他的方法吗?(学生讨论、画图、归纳).[生甲](1)求五边形的内角和可以利用量角器测每个内角的度数,然后求出这五个内角的和,即是五边形的内角和为540°.也可以把五边形分割成三角形,因为三角形的内角和是180°.[生乙]小明是直接把五边形的五个内角分割在3个三角形中(如图(1)),每个三角形的内角和是180°,所以五边形的内角和为3×180°=540°.小亮是在五边形内任意取一个点,然后把五边形分割成五个三角形(如图(2)),但从图中可以知道,这时多了一个周角,即360°.因此,五边形的内角和为:180°×5-360°=540°.[生丙]也可以在五边形的任一条边上取一个点,然后这个点与各顶点连结,这时五边形被分割成四个三角形(如图(3)),但多了一个平角,即180°,因此,五边形的内角和为:18 0°×4-180°=540°.[生丁]在五边形外任取一点,将这点与五边形的各顶点连结起来,这时五边形被分割成四个三角形,此时,从图中可以看出多出一个三角形.因此五边形的内角和为180°×4-1 80°=540°.[师]很不错,同学们回答得很好,在求五边形的内角和时,先把五边形转化成三角形.进而求出内角和,这种由未知转化为已知的方法是我们数学中一种非常重要的方法.下面大家来“想一想”1.按如下图(5)所示的方法,六边形能分成多少个三角形?n边形(n是大于或等于3的自然数)呢?2.你能确定n边形的内角和吗?[师]同学们可以多画几个边数不一样的多边形,来总结归纳分割多边形的方法.[生甲]如图(5),从五边形的一个顶点向和它不相邻的顶点引了两条对角线,这时五边形分成三个三角形;从六边形的一个顶点向和它不相邻的顶点引了三条对角线,这时六边形分成了四个三角形;从七边形的一个顶点向和它不相邻的顶点引四条对角线,这时七边形分成了五个三角形.……从n边形的一个顶点向和它不相邻的顶点引(n-3)条对角线,把n边形分成了(n-2)个三角形.[生乙]从n边形的一个顶点出发,向自身和相邻的两个顶点无法引对角线,向其他顶点共引(n-3)条对角线,这时n边形被分割成(n-2)个三角形,因为每个三角形的内角和是180°,所以n 边形的内角和为(n -2)·180°.[师]要求n 边形的内角和,关键是将n 边形分割转化为有公共顶点的三角形;由三角形的内角和得到n 边形的内角和.即:n 边形的内角和为(n -2)·180°.大家想一想,n 边形的内角和公式中,字母n 取值有没有范围?[生]有,必须是大于3的自然数.[师]对,同学们口答一下:12边形的内角和是多少呢?[生齐声]1800°.[师]很好,要求n 边形的内角和,只需把n 代入内角和公式:(n -2)·180°,即可算出.下面大家“想一想”.观察下图中的多边形,它们的边、角有什么特点?[生]这五个多边形,每个多边形的边都相等,内角也都相等.[师]很好,在平面内,内角都相等,边也都相等的多边形叫做正多边形,如上图中的多边形分别为:正三角形、正四边形即正方形、正五边形、正六边形、正八边形.正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形.下面大家想一想,议一议:1.一个多边形的边都相等,它的内角一定都相等吗?2.一个多边形的内角都相等,它的边一定都相等吗?3.正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?[生甲]一个多边形的边都相等,它的内角也一定都相等,如正三角形、正方形. [生乙]错的.如菱形的四条边相等,但它的内角不一定都相等,所以应该说:一个多边形的边都相等,它的内角不一定都相等.[生丙]一个多边形的内角都相等,它的边不一定都相等,如:矩形的内角都是直角,但它的边未必都相等.[师]同学们从不同角度进行分析,得到了准确的答案,非常好,接下来看第(3)小题.[生丁]因为正多边形的每个内角都相等,且它的内角和为(n -2)·180°,所以,正n 边形的每个内角为:nn )2( ·180°.因此,正三角形的内角是:︒=︒⋅-603180)23(. 正方形的内角是:4)24(-·180°=90°. 正五边形的内角是:5)25(-·180°=108°. 正六边形的内角是:6)26(-·180°=120°. 正八边形的内角是:8)28(-·180°=135°. [师]很好,接下来我们做练习来巩固多边形的内角和公式.例1、如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD 的∠A +∠C =180º.求:∠B 与∠D 的关系.分析:本题要求∠B 与∠D 的关系,由于已知∠A +∠C =180º,所以可以从四边形的内角和入手,就可得到完满的答案.解:如图,四边形ABCD 中,∠A +∠C =180º.∵∠A +∠B +∠C +∠D =(4-2)×360º=180º,∴∠B +∠D =360º-(∠A +∠C )=180º.这就是说:如果四边形一组对角互补,那么另一组对角也互补.Ⅲ.课堂练习.1.如下图.(1)作多边形所有过顶点A 的对角线,并分别用字母表示出来.(2)求这个多边形的内角和.解:(1)如下图:过顶点A 的对角线是AC 、AD 、AE .(2)从(1)图中可知:这个六边形被过顶点A的对角线分割成四个三角形,所以,这个多边形的内角和为180°×4=720°.也可以利用多边形的内角和公式进行计算即:(6-2)×180°=720°.Ⅳ.课时小结.本节课我们研究了多边形的定义及其内角和公式,重点探讨了多边形的内角和公式.即:n边形的内角和等于(n-2)·180°,它揭示了多边形内角和与边数之间的关系.Ⅴ.课后作业.课本P145习题5.9的1、2、3.《多边形的内角和外角和》教案2教学目标:知识与技能:1.认识多边形的外角.2.熟记多边形的外角和公式.过程与方法:1.经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力.情感、态度与价值观:培养学生勇于实践、大胆创新的精神和积极探求客观真理的科学态度,渗透数学中普遍存在的相互联系、相互转化及数学来源实践,又反过来作用于实践的观点.教学重、难点:教学重点:多边形的外角和公式及其应用.教学难点:多边形的外角和公式的应用.教学过程:Ⅰ.巧设情景问题,引入课题.[师]大家清早跑步吗?小明每天坚持跑步,他怎样跑步呢?清晨,小明沿一个五边形广场周围的小跑,按逆时针方向跑步.(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们.(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5吗?你是怎样得到的?[师]同学们来分组讨论,演示一下.(学生6人一组,可实地做一做,让学生体会数学与现实生活的联系.)[生甲](1)小明每从一条街道转到下一街道时,身体转过的角(如图中)是∠1、∠2、∠3、∠4、∠5.(2)我们五个人做为五边形的顶点,围成一个五边形,由××伴为小明进行跑步,跑完一圈后,他的身体转过的角度之和是360°.(3)由上述知道:∠1,∠2,∠3,∠4,∠5分别是小明从一条街道转到下一条街道时,身体转过的角,而他跑一圈,身体转过的角度是360°,因此得:∠1+∠2+∠3+∠4+∠5=360°.[生乙]我们讨论的结果和甲同学的一样,只不过求∠1、∠2、∠3、∠4、∠5的和时,我们组是先画了一个如投影所示的五边形.然后把∠1、∠2、∠3、∠4、∠5这五个角剪下,将它们的顶点拼在一起,即各角的顶点重合,这时发现这五个角正好组成了一个周角.由此得到:∠1+∠2+∠3+∠4+∠5=360°.[师]很好,下面大家来看小亮的思考:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′、OB′、OC′、O D′、OE′,得到∠α、∠β、∠γ、∠δ、∠θ,其中:∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.∠α、∠β、∠γ、∠δ、∠θ恰好组成一个周角.这样,∠1、∠2、∠3、∠4、∠5的和等于360°.[师]小亮也验证了大家得到的结论,好,大家看图,∠1、∠2、∠3、∠4、∠5不是五边形的角,那是什么角呢?它们的和叫什么呢?[生]这五个角是五边形的外角,它们的和叫外角和.[师]很好,我们这节课就来探讨多边形的外角、外角和.Ⅱ.讲授新课.[师]那什么是多边形的外角、外角和呢?我们可类似三角形的外角定义来定义多边形的外角.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.一般地,在多边形的任一顶点处按顺(逆)时针方向可作外角,n边形有n个外角.那多边形的外角和是多少呢?我们来回忆一下:三角形的外角和为多少?[生齐]360°.[师]好,刚才我们又研究了五边形的外角和,它为360°,那大家想一想如果广场的形状是六边形、八边形.它们的外角和也等于360°吗?(学生讨论,得出结论).[生甲]我们通过讨论,演示得到:六边形的外角和是360°,八边形的外角和是360°.[生乙]老师,能不能由此得出:多边形的外角和都等于360°呢?[师]谁来解决这个问题呢?[生丙]由五边形、六边形和八边形的外角和都等于360°,不能得出所有多边形的外角和都等于360°,只能是猜想:多边形的外角和都等于360°.[师]能得证吗?[生丁]因为多边形的外角与它相邻的内角是邻补角,所以,n边形的外角和加内角和等于n·180°,内角和为(n-2)·180°,因此,外角和为:n·180°-(n-2)·180°=360°.[师]很好,由此我们得到了多边形的外角和公式:多边形的外角和都等于360°.[师]由此可知,多边形的外角和与多边形的边数无关,它恒等于360°.下面大家来[师]好,学完了外角和公式,现在我们来应用一下,以熟悉巩固外角和公式.[例2]一个多边形的内角和等于它的外角和的3倍,它是几边形?分析:这是多边形的内角和公式与外角和公式的简单应用.根据题意,可列方程解答.(让学生动手解答).解:设这个多边形是n边形,则它的内角和是(n-2)·180°,外角和等于360°,所以:(n-2)·180°=3×360°.解得:n=8.这个多边形是八边形.[师]好,通过同学们的解答,知道大家基本掌握了多边形的外角和公式,接下来我们通过练习进一步巩固外角和公式.Ⅲ.课堂练习.1.一个多边形的外角都等于60°,这个多边形是n边形?解:因为多边形的外角和等于360°,所以根据题意,可知道这个多边形的边数是:360°÷60°=6.1?为什么?2.是否存在一个多边形,它的每个内角都等于相邻外角的5解:不存在,理由是:如果存在这样的多边形,设它的一个外角为α,则对应的内角为180°-α,于是:1×α=180°-α,解得α=150°.5这个多边形的边数为:360°÷150°=2.4,而边数应是整数,因此不存在这样的多边形.Ⅳ.课时小结.本节课我们探讨了多边形的外角及其外角和公式.知道多边形的外角和与多边形的边数无关,它恒等于360°,因而,求解有关多边形的角的计算题;有时直接应用外角和公式会比较简便.Ⅴ.课后作业.课本P147习题5.10的1、2.。

多边形的外角和与内角和(1)

多边形的外角和与内角和(1)

《多边形的内角和与外角和》第1课时教案一、教学目标1、 知识与技能 (1)、了解多边形的内角和,正多边形的概念,掌握多边形的内角和公式。

(2)、通过探索多边形的内角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题 (4)、会用多边形的内角和公式进行简单的计算。

2、过程与方法通过把多边形转化为三角形,让学生经历猜想、探索、推理、归纳等过程,感受转化思想在数学中的运用,体验解决问题策略的多样性。

3、 情感目标 通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。

二、教学重难点重点: 多边形的内角和公式及应用。

难点: 如何把多边形转化成三角形,用分割多边形法推导多边形的内角和公式。

三、教具准备 三角尺四、教学过程活动1 复习引入教师提问:(1)(2)你知道三角形的内角和是多少度吗?学生回答:三角形是由三条不在同一条直线上的线段首尾顺次相结组成的平面图形; 三角形的内角和是180°。

教师总结:三角形是由三条不在同一条直线上的线段首尾顺次相结组成的平面图形;三角形的内角和是180°。

您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和 板书课题 :多边形的内角和 活动2 探索新知教师提问:如果把三角形中的三条线段变成四条、五条、六条又是哪种图形呢?请画出来。

根据三角形概念的叙述,说说什么是四边形、五边形、、、n 边形?1、多边形的概念(板书)要求学生在教材中勾画出来,强调按顺时针或逆时针方向书写,指出多边形边教师提问;如果多边形的各边相等,各内角也相等的多边形又怎么称呼呢? 学生回答,教师板书 2、正多边形的概念要求学生在教材中勾画出来,如等边三角形,正方形,正五边形等。

所学过的图形最简单的是三角形,往往都是把复杂的图形转化成三角形,转化时需要添加辅助线,教师在四边形中演示,这就是对角线,教师板书 3、多边形的对角线要求学生在教材中勾画出来,三角形有对角线吗?从四边形的一个顶点出发,可以引多少条对角线,在图形上画一画;五边形、六边形呢?从n 边形一个顶点出发可以画多少条对角线呢? 学生回答后教师补充:n 边形一个顶点可画对角线(n —3)条。

华师大版数学七年级下册9.2《多边形的内角和与外角和》教学设计

华师大版数学七年级下册9.2《多边形的内角和与外角和》教学设计

华师大版数学七年级下册9.2《多边形的内角和与外角和》教学设计一. 教材分析《多边形的内角和与外角和》是华师大版数学七年级下册第9.2节的内容。

本节主要让学生理解多边形的内角和定理,掌握多边形的外角和性质。

教材通过生活中的实例,引导学生探究多边形的内角和与外角和,培养学生的观察能力、操作能力和推理能力。

二. 学情分析七年级的学生已经学习了图形的性质,对图形的认知有一定的基础。

但学生在理解多边形的内角和与外角和方面可能存在困难,因此,在教学过程中,需要教师耐心引导,让学生通过观察、操作、推理等方法,理解并掌握多边形的内角和与外角和的性质。

三. 教学目标1.让学生理解多边形的内角和定理,掌握多边形的外角和性质。

2.培养学生观察、操作、推理的能力。

3.培养学生合作学习的意识。

四. 教学重难点1.教学重点:多边形的内角和定理,多边形的外角和性质。

2.教学难点:理解并证明多边形的内角和定理,理解多边形的外角和性质。

五. 教学方法1.情境教学法:通过生活中的实例,引发学生的兴趣,引导学生探究多边形的内角和与外角和。

2.操作教学法:让学生通过实际操作,观察多边形的内角和与外角和的变化,从而理解其性质。

3.推理教学法:引导学生运用已学的知识,推理出多边形的内角和定理,培养学生的推理能力。

六. 教学准备1.教学课件:制作多媒体课件,展示多边形的内角和与外角和的实例。

2.教学素材:准备一些多边形的图形,用于学生观察和操作。

3.教学工具:准备直尺、量角器等工具,方便学生测量和观察。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的多边形实例,如足球、篮球场地的线条,让学生观察多边形的内角和与外角和的特点。

引导学生思考:多边形的内角和与外角和有什么规律?2.呈现(10分钟)教师通过讲解和展示,呈现多边形的内角和定理和外角和性质。

利用课件和实物,讲解多边形的内角和定理,让学生理解并掌握多边形的内角和与外角和的性质。

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案一、教学目标:1. 让学生理解多边形的内角和与外角和的概念。

2. 引导学生掌握多边形内角和的计算方法。

3. 培养学生运用多边形内角和与外角和的知识解决实际问题的能力。

二、教学内容:1. 多边形的内角和:n边形的内角和为(n-2)×180°。

2. 多边形的外角和:n边形的外角和为360°。

三、教学重点与难点:1. 教学重点:掌握多边形的内角和与外角和的计算方法。

2. 教学难点:理解多边形内角和与外角和的概念,以及运用这些知识解决实际问题。

四、教学方法:1. 采用讲授法,讲解多边形的内角和与外角和的概念及计算方法。

2. 利用几何画板或实物模型,展示多边形的内角和与外角和的特点。

3. 引导学生通过小组讨论、探究活动,发现多边形内角和与外角和的规律。

4. 利用例题讲解,培养学生运用多边形内角和与外角和的知识解决实际问题的能力。

五、教学步骤:1. 导入新课:通过展示一些多边形图片,引导学生思考多边形的内角和与外角和的概念。

2. 讲解多边形的内角和:介绍多边形内角和的计算方法,即(n-2)×180°。

3. 讲解多边形的外角和:介绍多边形外角和的计算方法,即360°。

4. 实践操作:让学生利用几何画板或实物模型,验证多边形的内角和与外角和的计算方法。

5. 例题讲解:运用多边形的内角和与外角和的知识解决实际问题,如计算多边形的内角和与外角和,求多边形的面积等。

6. 巩固练习:布置一些有关多边形内角和与外角和的练习题,让学生独立完成。

7. 课堂小结:总结本节课所学内容,强调多边形内角和与外角和的概念及计算方法。

8. 课后作业:布置一些有关多边形内角和与外角和的作业,巩固所学知识。

六、教学评价:1. 课堂提问:通过提问了解学生对多边形内角和与外角和概念的理解程度。

2. 练习题:检查学生运用多边形内角和与外角和知识解决问题的能力。

2023年最新-多边形的内角和与外角和教案 初中数学多边形内角和教案(3篇)

2023年最新-多边形的内角和与外角和教案 初中数学多边形内角和教案(3篇)

多边形的内角和与外角和教案初中数学多边形内角和教案(3篇)多边形的内角和与外角和教案初中数学多边形内角和教案篇一使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算。

重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角。

难点:比较复杂图形,灵活应用三角形外角的性质。

一、复习提问1.三角形的内角和与外角和各是多少?2.三角形的外角有哪些性质?二、新授例1.在△abc中,△a=12△b=13△c,求△abc各内角的度数。

分析:由已知条件可得△b=2△a,△c=3△a所以可以根据三角形的内角和等于180°来解决。

做一做:如图,在△abc中,ad△bc,ae平分△bac,△b=80°,△c=46°abdea(1)你会求△dae的度数吗?与你的同伴交流。

(2)你能发现△dae与△b、△c之间的关系吗?(2)若只知道△b-△c=20°,你能求出△dae的度数吗?分析:(1)△dae是哪个三角形的内角或外角?(2)在△ade中,已知什么?要求△dae,必需先求什么?(3)△aed是哪个三角形的外角?(4)在△aec中已知什么?要求△aeb,只需求什么?(5)怎样求△eac的度数?三、巩固练习1.如图,△abc中,△bac=50°,△b=60°,ad是△abc的角平分线,求△adc,△adb的度数。

2.已知在△abc中,△a=2△b-10°,△b=△c+20°。

求三角形的各内角的度数。

四、小结三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便。

多边形的内角和与外角和教案初中数学多边形内角和教案篇二知识与技能目标:能够说出多边形的内角和公式并会运用过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

数学教案多边形内角和与外角和最新3篇

数学教案多边形内角和与外角和最新3篇

数学教案多边形内角和与外角和最新3篇多边形的内角和与外角和教案初中数学多边形内角和教案篇一知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力。

情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

教学重点:多边形外角和定理的探索和应用。

教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透。

教学准备:多媒体课件第一环节创设情境,引入新课(5分钟,学生理解情境,思考问题)问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?第二环节问题解决(10分钟,小组讨论,合作探究)对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。

然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。

如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。

小亮是这样思考的:如图所示,过平面内一点o分别作与五边形abcde各边平行的射线oa′,ob′,oc′,od′,oe′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.这样,∠1+∠2+∠3+∠4+∠5=360°问题引申:1.如果广场的形状是六边形那么还有类似的结论吗?2.如果广场的形状是八边形呢?第三环节探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。

多边形的内角和与外角和

多边形的内角和与外角和

课题:6.4.1多边形的内角和与外角和课型:新授课年级:八年级教学目标:1.经历探索多边形内角和公式的过程,发展合情推理能力.2.掌握多边形内角和公式,运用多边形的内角和公式解决简单的几何问题,发展应用意识..3. 通过多边形内角和定理的探索过程,体会类比、转化和从特殊到一般的思想方法. 教学重点与难点:重点:探索多边形内角和公式.难点:多边形内角和公式的应用.课前准备:多媒体课件.教学过程:一、复习回顾,导入新课活动内容:回顾三角形相关知识,梳理知识顺序,确立研究对象和研究思路。

处理方式:以问题串的形式让学生回忆三角形的研究思路,引导学生对多边形的性质内容提出问题,进而解决问题.设计意图:激发学生提出问题,为接下来的自主学习、探究做作铺垫.二、探究学习,感悟新知活动内容1:探索四边形内角和(多媒体出示)处理方式:让学生回顾三角形内角和的探究方法,几何画板演示“拼凑法”,总结“实验---猜想---证明”的一般研究思路,类比猜想四边形的内角和,并用几何语言证明。

设计意图:让学生进一步认识转化的方法,为下一步的多边形内角和的探讨作何准备.活动内容2:探索五边形内角和(多媒体出示)处理方式:学生们通过小组合作,互相交流,分享方法,并展示小组成果,利用Geogebra 软件动态演示,便于学生直观理解。

设计意图:学生可以类比四边形的内角和的证明方法,合作探究五边形的内角和,并说明自己采用的方法和依据,提高学生应用的熟练程度.主要还是为下一步的探索做好伏笔.活动内容3:探索n边形内角和(多媒体出示)提出问题: n边形的内角和又是多少呢?你会计算吗?下面请同学们完成学习任务单。

处理方式:1.学生自主完成,教师巡视学生的探索情况,必要时给予引导点拨.学生完探索三:成后小组派代表展示自己的探索成果,同时渗透从“特殊到一般”的数学思想.得到定理:n 边形内角和等于(n-2)·180 °.(n是大于等于3的正整数)2.教师带领学生总结探究多边形内角和的方法。

(部编)人教数学八年级上册《11.3 多边形及其内角和 多边形的外角和》教案_104

(部编)人教数学八年级上册《11.3 多边形及其内角和 多边形的外角和》教案_104

多边形的外角和教学目标1、知识与技能目标:理解与掌握多边形的外角和为360°的定理。

并能用它来解决一些简单的问题。

2、过程与方法目标:通过对多边形的外角和的分析,并用四种角度来理解与体会多边形的外角和恒为360°的道理,层层推动,梯次展开,把学生带进思维的王国,并通过对一些问题的分析,体会利用多边形的外角和解决问题所带来的方便。

3、情感与态度目标:学生通过积极参与、分析讨论,感受学习数学的快乐,体会数学之美,本节课引导学生多体会数学的内在和谐美。

激发学生的学习数学的兴趣。

教学重点:多边形的外角和为360°的探索、深入理解与应用。

教学难点:对多边形的外角和为360°的深入理解与应用。

教学过程:1、复习提问①n边形的内角和是多少?生:(n-2)·180°。

②什么叫三角形的外角?生:三角形的一边和这个顶点的另一边的延长线所组成的图形叫做三角形的外角。

③一个三角形有多少个外角?理由。

生:有6个,每个顶点处有两个外角,共6个。

(师:每个顶点处的两个外角是相等的)。

④什么叫三角形的外角和?生:每个顶点处取一个外角,再相加,叫三角形的外角和。

2、新课过程如图,∠BAE,∠FBC,∠ACD是三角形的外角,你能利用三角形的内角和求出三角形的外角和吗?师:谁来说一说如何证明?生:利用∠CAE,∠ABF,∠BCD是平角,∠CAE+∠ABF+∠BCD =540°,又因为∠ABC+∠ACB+∠BAC=180°(三角形的内角和为180°),∴∠EAB+∠FBC+∠ACD=360°。

师:这个证法很好,我们还能够利用三角形的一个外角等于和不它不相邻的两个内角之和,同学们下来还能够去想想,现在请大家用语言来总结这个结论。

生:三角形的外角和为360°。

师:刚才我们定义了三角形的外角和,你能定义多边形的外角和吗?生:在多边形的每一个顶点处取一个外角,它们之和就叫做多边形的外角和。

《多边形的内角和与外角和》教案

《多边形的内角和与外角和》教案

《多边形的内角和与外角和》教案一、教学目标1.理解多边形内角和与外角和的概念。

2.掌握多边形内角和与外角和的计算公式。

3.能够运用内角和与外角和的知识解决实际问题。

二、教学重点与难点1.教学重点:多边形内角和与外角和的概念,计算公式及应用。

2.教学难点:多边形内角和与外角和的推导过程,以及实际问题的解决。

三、教学过程1.导入(1)引导学生回顾三角形内角和的知识,提问:三角形内角和是多少?(2)让学生尝试用三角形内角和的知识解释四边形、五边形等图形的内角和。

2.探索(1)让学生分组讨论,尝试找出多边形内角和的计算规律。

(2)引导学生通过作图、观察、归纳,发现多边形内角和与边数的关系。

3.内角和公式的应用(1)讲解多边形内角和公式的应用,如求解多边形内角的度数。

(2)举例说明如何利用内角和公式求解实际问题,如求解四边形、五边形的内角度数。

(3)让学生独立完成一些内角和相关的练习题。

4.外角和的概念与计算(1)引导学生通过观察图形,发现多边形外角和的性质。

(2)讲解多边形外角和的概念及计算公式。

(3)举例说明如何利用外角和公式求解实际问题。

5.外角和公式的应用(1)讲解外角和公式的应用,如求解多边形外角的度数。

(2)举例说明如何利用外角和公式求解实际问题,如求解四边形、五边形的外角度数。

(3)让学生独立完成一些外角和相关的练习题。

(2)讲解多边形内角和与外角和在实际问题中的应用。

(3)布置一些拓展题目,让学生课后思考。

四、教学评价1.课堂练习:检查学生对多边形内角和与外角和的计算公式及应用的掌握情况。

2.课后作业:布置一些实际问题和拓展题目,评估学生对知识点的运用能力。

五、教学反思1.教学过程中,注意观察学生的学习反馈,及时调整教学方法和进度。

2.关注学生的个体差异,给予不同层次的学生适当的指导。

3.结合学生的实际情况,设计有趣的实际问题,提高学生的学习兴趣。

六、教学资源1.教材:初中数学教材《多边形的内角和与外角和》相关章节。

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案一、教学目标1. 让学生理解多边形的内角和定理,掌握计算多边形内角和的方法。

2. 让学生了解多边形的外角和定理,掌握计算多边形外角和的方法。

3. 培养学生的观察能力、操作能力和解决问题的能力。

二、教学内容1. 多边形的内角和定理:n边形的内角和为(n-2)×180°。

2. 多边形的外角和定理:n边形的外角和为360°。

三、教学重点与难点1. 教学重点:掌握多边形的内角和定理和外角和定理。

2. 教学难点:理解多边形内角和定理和外角和定理的推导过程。

四、教学方法1. 采用问题驱动法,引导学生通过观察、操作、思考、交流的方式探索多边形的内角和与外角和的计算方法。

2. 利用多媒体课件辅助教学,直观展示多边形的内角和与外角和的计算过程。

五、教学过程1. 导入新课:通过展示一些多边形图片,引导学生观察多边形的特征,引出多边形的内角和与外角和的概念。

2. 自主探究:让学生分组合作,利用剪刀、硬纸板等材料制作多边形模型,观察并测量多边形的内角和与外角和,总结计算方法。

3. 讲解与演示:教师讲解多边形的内角和定理和外角和定理的推导过程,利用多媒体课件展示计算过程。

4. 练习与巩固:布置一些多边形的内角和与外角和的计算题目,让学生独立完成,教师进行解答和讲解。

5. 总结与拓展:让学生总结多边形的内角和与外角和的特点,尝试解决一些实际问题。

教案仅供参考,具体教学过程可根据实际情况进行调整。

六、教学评价1. 通过课堂讲解、练习和巩固环节,评价学生对多边形的内角和与外角和的理解程度。

2. 观察学生在解决问题时的思维过程和方法,评价学生的观察能力、操作能力和解决问题的能力。

3. 收集学生的练习作品,评价学生的动手操作能力和创新能力。

七、教学反思本节课结束后,教师应认真反思教学效果,包括学生的参与度、理解程度和掌握程度。

针对学生的反馈,调整教学方法和解题策略,以提高教学效果。

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案第一章:多边形的概念1.1 引入多边形的定义,让学生了解多边形是由直线段组成的封闭平面图形,其中每条线段称为边,相邻两边之间的角称为内角。

1.2 讲解多边形的种类,如三角形、四边形、五边形等,并让学生通过实物或图形进行观察和识别。

1.3 引导学生通过绘制不同种类的多边形,培养其观察和动手能力。

第二章:多边形的内角和2.1 引入多边形内角和的定义,让学生了解多边形内角和是指多边形所有内角的和。

2.2 讲解多边形内角和的计算公式:(n-2)×180°,其中n表示多边形的边数。

2.3 通过例题和练习,让学生掌握多边形内角和的计算方法,并能够应用到实际问题中。

第三章:多边形的外角和3.1 引入多边形外角和的定义,让学生了解多边形外角和是指多边形每个外角的和。

3.2 讲解多边形外角和的性质,即任何多边形的外角和都等于360°。

3.3 通过例题和练习,让学生掌握多边形外角和的计算方法,并能够应用到实际问题中。

第四章:多边形的内角与外角的关系4.1 讲解多边形内角与外角的关系,即一个内角与其相邻的外角互补,即内角+外角=180°。

4.2 通过例题和练习,让学生掌握多边形内角与外角的关系,并能够应用到实际问题中。

4.3 引导学生通过观察和绘制多边形,探索多边形内角与外角的其他性质。

第五章:多边形的内角和与外角和在实际问题中的应用5.1 引入实际问题,如建筑设计中多边形的内角和与外角和的应用,让学生了解多边形内角和与外角和在实际生活中的重要性。

5.2 通过例题和练习,让学生掌握多边形内角和与外角和在实际问题中的应用方法,并能够解决实际问题。

5.3 引导学生进行实际问题探究,培养其解决问题的能力和创新思维。

第六章:多边形的内角和与外角和的证明6.1 引入证明多边形内角和与外角和的概念,让学生了解证明的方法和过程。

6.2 讲解多边形内角和的证明方法,如通过将多边形划分成三角形,利用三角形的内角和定理进行证明。

初二数学:下册多边形的内角和与外角和教案苏科版

初二数学:下册多边形的内角和与外角和教案苏科版

7.5 多边形的内角和与外角和课题7.5 多边形的内角和与外角和(1)总计第课时教学目标1.探索并了解“三角形三个内角之和等于180°”;2.经历举例、操作(画图、度量、拼图)、观察、归纳、说理、交流等数学活动,提升学生有条理的表达能力.重难点教学重点:探索并掌握“三角形三个内角之和等于180°”.教学难点:理解用推理的方法说明为什么三角形的三个内角之和一定等于180°.教学方法手段教学过程设计新课引入——问题导入:(1)同学们,小学里我们就已经知道了三角形的三个内角的和等于多少度?(2)你能举例说明三角形的三个内角的和等于180°吗?探究一——画图、度量、计算请每位同学在课堂笔记本上任意画一个三角形,用量角器量出各内角的度数,并求它们的和.探究二——观察利用几何画板中的课件动画演示(通过拖动三角形的顶点改变三角形的内角),再次验证“三角形三个内角之和等于180°”.探究三——拼图(1)问:还记得小学里怎么说明“三角形三个内角之和等于180°”的吗?(2)请每位同学将课前发下的三角形纸片的3个内角(如图1)剪开,然后拼在一起,观察它们的和是否为180°.(3)教师找出如图2、图3、图4等拼法,贴在黑板上,并标上相应字母.二次备课(方法和手段、改进建议)AB C(图探究四——说理优化选择适当的拼法,进行说理,从而得出结论“三角形三个内角之和等于180°”.知识应用——例题例1 已知,在△ABC 中,∠A =40°,∠B =∠C ,求∠C 的度数. 例2 如图5,AD 、BC 相交于点O ,∠A =50°,∠B =32°,∠C =45°,知识应用——练习1.在△ABC 中,若∠A +∠B =90°,则 △ABC 一定是__________三角形.2.在△ABC 中,若∠A ∶∠B ∶∠C =2∶3∶4,求∠A 、∠B 、∠C 的度数.作业 设计教学反思ABC(图(图ABCA BC (图2)ABC DO(图5)七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.某种商品的进价为80元,出售时的标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多打( ) A .九折 B .八折C .七折D .六折【答案】C【解析】设打x 折,利用销售价减进价等于利润得到120•10x-80≥80×5%,然后解不等式求出x 的范围,从而得到x 的最小值即可. 【详解】解:设打x 折, 根据题意得120•10x-80≥80×5%, 解得x≥1. 所以最低可打七折. 故选C . 【点睛】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.注意打x 折时,标价要乘0.1x 为销售价.2.若a b >,则下列一定成立的是( ) A .22a b -<- B .2a b >C .22a b > D .33a b ->-【答案】C【解析】依据不等式的基本性质解答即可. 【详解】A. 由不等式的性质1可知A 错误; B. 不符合不等式的基本性质,故B 错误; C. 由不等式的性质2可知C 正确;D. 先由不等式的性质3得到−a<−b ,然后由不等式的性质1可知3−a<2−b ,故D 错误. 故选:C. 【点睛】本题考查不等式的性质,解题的关键是熟练掌握不等式的基本性质. 3.下列长度的三条线段,能组成三角形的是A.1cm,2cm,3cm B.2cm,3cm,6cmC.4cm,6cm,8cm D.5cm,6cm,12cm【答案】C【解析】试题分析:三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边.解:A、1+2=3,B、2+3<6,D、5+6<11,均不能组成一个三角形,故错误;C、4+6>8,能组成一个三角形,本选项正确.考点:三角形的三边关系点评:本题属于基础应用题,只需学生熟练掌握三角形的三边关系,即可完成.4.假期的某一天,学生小华的作息时间统计如图,统计图提供了4条信息,其中不正确的信息是()A.表示小华学习时间的扇形的圆心角是15°B.小华在一天中三分之一时间安排活动C.小华的学习时间再增加1小时就与做家务的时间相等D.小华的睡觉时间已超过9小时【答案】D【解析】仔细读图,从中获取信息,然后逐项计算分析即可.某部分的圆心角=该部分占总体的百分比×360°,某部分的百分比=该部分所占的圆心角与360°的百分比.【详解】A. 表示小华学习时间的扇形的圆心角是360°-135°-120°-30°-60°=15°,故正确;B. 小华在一天中安排活动的时间占12013603=,故正确;C. 小华的学习时间再增加1小时为:152412360⨯+=小时,做家务的时间为30242360⨯=小时,故正确;D. 小华的睡觉时间是135249360⨯=小时,故不正确;故选D.【点睛】本题考查了扇形统计图的有关知识,扇形统计图直接反映部分占总体的百分比大小.5.生物学家发现了一种病毒,其长度约为0.00000032mm,将数据0. 00000032用科学记数法表示正确的是( )A.7⨯D.8⨯3.2103.210-3.210⨯C.8⨯B.73.210-【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥3【答案】C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.7.如图,△ABC沿BC方向平移得到△DEF,已知BC=7,EC=4,那么平移的距离为( )A.2 B.3 C.5 D.7【答案】B【解析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=BC-EC=3,进而可得答案.【详解】解:由题意平移的距离为:BE=BC-EC=7-4=3,故选:B.【点睛】本题考查平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.8.下列语句不是命题的是( ) A .两条直线相交,只有一个交点 B .若a =b ,则22a b = C .不是对顶角不相等 D .作∠AOB 的平分线【答案】D【解析】根据命题的概念逐一判断即可.【详解】A.语句完整,判断出只有一个交点,故该选项是命题,不符合题意, B.语句完整,判断出a 2=b 2,故该选项是命题,不符合题意, C.语句完整,判断出两个角不相等,故该选项是命题,不符合题意, D. 没有做出任何判断,不是命题,符合题意, 故选D. 【点睛】本题考查了命题的概念,判断一件事情的语句,叫做命题;命题的概念包括两层含义:①命题必须是个完整的句子;②这个句子必须对某件事情做出判断.正确理解概念是解题关键. 9.计算23-的值是( ) A .-6 B .6C .19-D .19【答案】D【解析】分析:根据负整数指数幂:a ﹣p =1pa (a ≠0,p 为正整数)进行计算. 详解:3﹣2=(13)2=19. 故选D .点睛:本题主要考查了负指数幂的运算.负整数指数为正整数指数的倒数. 10.已知a b >,则在下列选项中,正确的是( ) A .a b > B .22a b >C .a b ->-D .33a b +>+【答案】D【解析】根据绝对值的意义以及平方的意义举出例子可判断A 、B 错误,根据不等式的性质可判断C 错误,D 正确.【详解】已知a b >,A. 若a=2,b =-2,此时a>b ,但a b =,故A 选项错误;B. 若a=2,b =-2,此时a>b ,但22a b =,故B 选项错误;C. 根据不等式的性质,两边同时乘以-1,不等号的方向要改变,则a b -<-,故C 选项错误;D. 根据不等式的性质,两边同时加上3,不等号的方向不变,即33a b +>+,故D 选项正确, 故选D. 【点睛】本题考查了不等式的性质,涉及了绝对值的意义,乘方的意义,正确把握不等式的性质是解题的关键. 二、填空题题11.如图,在△ABC 中,点D 、E 分别在AB 、BC 上,且DE//AC ,80A ︒∠=,55BED ︒∠=,则ABC ∠=________.【答案】45°【解析】根据两直线平行,同位角相等可得∠BDE=∠A=80°,然后根据三角形内角和即可求出∠ABC 的度数.【详解】详解:∵DE ∥AC, ∴∠BDE=∠A=80°,∠BED=∠C=55°, ∴∠ABC=180°-80°-55°=45°. 故答案为45°. 【点睛】本题考查了平行线的性质,三角形内角和等于180°.平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.12.如图,△ABC 中,DE 是AC 的垂直平分线,AE =6cm ,△ABD 的周长为26cm ,则△ABC 的周长为_____cm .【答案】1【解析】由已知条件,利用线段的垂直平分线的性质,得到线段相等,结合周长,进行线段的等量代换即可得到答案.【详解】解:因为DE 垂直平分AC ,根据线段垂直平分线的性质可得△ACD 为等腰三角形.所以AD =CD .又因为周长△ABD =AB+BD+AD =AB+BD+CD =26 ∴周长△ABC =AB+BD+CD+AC =26+2×6=1. 故答案为:1. 【点睛】本题主要考查了垂直平分线的性质,熟练运用知识点是解题关键. 13.如果216x kx ++是完全平方式,则k 的值是_________. 【答案】8±【解析】根据完全平方式的定义,列出关于k 的方程,即可求解. 【详解】∵216x kx ++是完全平方式,∴2()162k =,解得:k=8±.故答案是:8±. 【点睛】本题主要考查完全平方式的定义,掌握完全平方式的二次项系数为1时,一次项系数一半的平方等于常数项,是解题的关键.14.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC ,分别交AB 、AC 于点E 、F .若5AB =,4AC =,那么AEF ∆的周长为_______.【答案】9【解析】根据角平分线的性质,可得∠EBO 与∠OBC 的关系,∠FCO 与∠OCB 的关系,根据平行线的性质,可得∠DOB 与∠BOC 的关系,∠FOC 与∠OCB 的关系,根据等腰三角形的判定,可得OE 与BE 的关系,OE 与CE 的关系,根据三角形的周长公式,可得答案. 【详解】∵∠ABC 与∠ACB 的平分线相交于点O , ∴∠EBO=∠OBC ,∠FCO=∠OCB . ∵EF ∥BC ,∴∠EOB=∠OBC ,∠FOC=∠OCB ,∴∠EOB=∠EBO ,∠FOC=∠FCO , ∴EO=BE ,OF=FC .C △AEF =AE+EF+AF=AE+BE+AF+CF=AB+AC=1. 故答案为:1. 【点睛】本题考查了等腰三角形的判定与性质,利用等腰三角形的判定与性质是解题关键,又利用了角平分线的性质,平行线的性质.15.若关于x 的不等式x a ≥的负整数解是1,2,3---,则实数a 满足的条件是________. 【答案】43a -<≤-【解析】首先解不等式求得不等式的解集,然后根据不等式的负整数解得到关于a 的不等式组,从而求得a 的范围.【详解】根据题意得:43a -<≤-, 故答案为:43a -<≤-. 【点睛】本题考查了不等式的整数解.在解不等式时要根据不等式的基本性质. 16.计算:(3mn 2)2=_____. 【答案】9m 2n 1.【解析】直接利用积的乘方运算法则计算得出答案. 【详解】解:(3mn 2)2=9m 2n 1. 故答案为:9m 2n 1. 【点睛】此题主要考查了积的乘方运算,正确掌握相关运算法则是解题关键.17.如图,从ABC ∆纸片中剪去CDE ∆,得到四边形ABDE .如果12230∠+∠=︒,那么C ∠=_______.【答案】50°【解析】根据∠1+∠2的度数,再利用四边形内角和定理得出∠A+∠B 的度数,即可得出∠C 的度数. 【详解】解:如图因为四边形ABCD 的内角和为360°,且∠1+∠2=230°. 所以∠A+∠B=360°-230°=130°. 因为△ABD 的内角和为180°, 所以∠C=180°-(∠A+∠B ) =180°-130°=50°. 故答案为:50° 【点睛】此题主要考查了多边形的内角与外角,利用四边形的内角和是360度的实际运用与三角形内角和180度之间的关系是解题关键. 三、解答题18.请阅读下列材料:一般的,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 就叫做a a 2 a x x ==),如239=,3就叫做9的算术平方根. (14=________25________100=________;(2)观察(1425100这三个数之间存在什么关系?________________________ (3)由(2a b =________(0a ≥,0b ≥); (4)根据(328=________4327=________368(写最终结果)【答案】(1)2,5,10;(2425100=(3ab (4)4,23,1 【解析】(1)根据算术平方根的定义直接计算即可; (2)由(1425=100 (3)由(2a b ab(a 0,b 0)=; (4)由得出的计算公式进行计算即可得到各式的结果.【详解】(1)42,255,10010=== (2)观察(1)中的结果,4,25,100这三个数之间:425100⨯=,(3)由(2)的猜想:a b ab(a 0,b 0)⋅=(4)根据(3)计算:2828164⨯=⨯==,444233272793⨯=⨯==; 368=368=144=12⨯⨯⨯⨯.故答案为:2,5,10;425100⨯=;a b ab ⋅=;4,23,1. 【点睛】本题考查了算术平方根,开方运算是解题关键,注意一个正数有两个平方根,只有一个算术平方根. 19.解不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩,并把其解集表示在数轴上.【答案】 2.54x -<≤【解析】分别求出不等式组中两不等式的解集,确定出不等式组的解集,表示在数轴上即可.【详解】131722523(1)x x x x ⎧--⎪⎨⎪+>-⎩①②解不等式①,得4x ≤解不等式②,得 2.5x >-,把不等式的解集在数轴上表示为:所以原不等式组的解集为{| 2.54}x x -<≤.【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则20.已知射线AB 与直线CD 交于点O ,OF 平分BOC ∠,OG OF ⊥于点O ,//AE OF .(1)如图1,若30A ∠=︒;①求DOF ∠的度数;②试说明OD 平分AOG ∠.(2)如图2,设A ∠的度数为α,当为多少度时,射线OD 是AOG ∠的三等分线?并说明理由.【答案】(1)①150°;②说明见解析;(2)18°或45°,说明见解析.【解析】(1)①根据题意可求∠BOF=30°,由平角定义可求∠DOF 的度数②通过题意可求∠AOD=∠BOG=60°,即可得OD 平分∠AOG(2)设∠AOD=β,分∠AOD=2∠DOG ,或∠DOG=2∠AOD ,两种情况讨论,根据题意可列方程,可求β的值,即可得α的值.【详解】(1)①∵AE ∥OF∴∠A=∠BOF∵OF 平分∠COF∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°∴∠AOD=60°∵OF ⊥OG∴∠BOF+∠FOG=90°∴∠BOG=60°∵∠BOG+∠DOG+∠AOD=180°∴∠DOG=60°=∠AOD∴OD 平分∠AOG(2)设∠AOD=β∵射线OD 是∠AOG 的三等分线∴∠AOD=2∠DOG,或∠DOG=2∠AOD 若∠AOD=2∠DOG∴∠DOG=1 2β∵∠BOC=∠AOD,OF平分∠BOC∴∠BOF=1 2β∵OF⊥OG∴∠BOG=90-1 2α∵∠BOG+∠DOG+∠AOD=180°∴12β+90-12β+β=180°∴∠β=90°∴∠BOF=45°∵OF∥AE∴∠A=∠BOF=45°即α=45°若∠DOG=2∠AOD=2β∵∠BOC=∠AOD,OF平分∠BOC∴∠BOF=1 2β∵OF⊥OG∴∠BOG=90-1 2α∵∠BOG+∠DOG+∠AOD=180°∴2β+90-12β+β=180°∴∠β=36°∴∠BOF=18°∴OF∥AE∴∠A=∠BOF=18°∴α=18°综上所述α为18°或45°【点睛】本题考查了平行线的性质,角平分线的性质,根据题意列方程是本题的关键.21.关于x,y的方程组1-3-1x y mx y m+=+⎧⎨=⎩的解满足x>y,求m的最小整数值.【答案】m=1【解析】先求出方程组的解,用含m的代数式表示x,y,由x>y得到关于m的不等式,解得关于m的不等式的解集,然后求m的最小整数值.【详解】解:解方程组得2,1-x m y m=⎧⎨=⎩∵x>y,∴2m>1-m,解得m>13,∴m的最小整数值为m=1.【点睛】本题考查二元一次方程组的解法和不等式的解法及不等式的整数解.能得出关于m的不等式是解题的关键.22.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【答案】证明见解析.【解析】试题分析:首先由BE=CF可以得到BC=EF,然后利用边角边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.试题解析:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中AB DE ABC DEF BC EF ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△DEF (SAS ),∴∠ACB=∠DFE ,∴AC ∥DF .23. “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【答案】 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°; 故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.24.某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280某中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动.设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5-x(2)若要保证租车费用不超过1900元,求x的最大值.【答案】(1)30(5-x);280(5-x);(2)x的最大值为1【解析】(1)设租A型客车x辆,则租B型客车(5-x)辆,根据每辆B型客车的载客量及租车费用,即可完成表格数据;(2)根据总租车费用=租A型客车的费用+租B型客车的费用结合租车费用不超过1900元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可得出结论.【详解】解:(1)设租A型客车x辆,则租B型客车(5-x)辆,A型客车乘坐学生15x人,B型客车乘坐学生30(5-x)人,租A型客车的总租金为100x元,租B型客车的总租金为280(5-x)元.故答案为:30(5-x);280(5-x).(2)根据题意得:100x+280(5-x)≤1900,解得:x≤256.∵x为整数,∴x≤1.答:x的最大值为1.【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.25.已知2a﹣1的平方根是±3b【答案】1【解析】试题分析:先依据平方根、算术平方根的定义得到a、b的值,然后再代入求解即可.试题解析:解:∵2a-1的平方根是±1,∴2a-1=9,∴a=5,b16,即16的算术平方根是b,∴b=4,1.点睛:本题主要考查的是算术平方根和平方根的定义,由平方根和算术平方根的定义得到2a-1=9,b=4是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.为了考察某县初中8500名毕业生的数学成绩,从中抽取50本试卷,每本30份,在这个问题中,样本容量是()A.30B.40C.1500D.8500【答案】C【解析】根据样本容量则是指样本中个体的数目,可得答案.【详解】为了考察某市初中8500名毕业生的数学成绩,从中抽取50本试卷,每本30份,在这个问题中,样本容量是30×50=1500,故选C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.下列调查适合全面调查(普查)的是()A.了解某品牌手机的使用寿命B.了解“月兔二号”月球车零部件的状况C.了解中央电视台“朗读者”的收视率D.了解公民保护环境的意识【答案】B【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.了解某品牌手机的使用寿命适合抽样调查;B.了解“月兔二号”月球车零部件的状况需要全面调查;C.了解中央电视合“朗读者”的收视率适合抽样调查;D.了解公民保护环境的意识适合抽样调查.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图,a//b,∠1=65︒,∠2=140︒,则∠3=()A.100︒B.105︒C.110︒D.115︒【答案】B【解析】首先过点A作AB∥a,由a∥b,可得AB∥a∥b,然后利用两直线平行,同旁内角互补与两直线平行,同位角相等,即可求得答案.【详解】解:过点A作AB∥a,∵a∥b,∴AB∥a∥b,∴∠2+∠4=180°,∵∠2=140°,∴∠4=40°,∵∠1=65°,∴∠3=∠1+∠4=65°+40°=105°.故选:B.【点睛】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意两直线平行,同旁内角互补与两直线平行,同位角相等定理的应用.4.下列运算中正确的是()A.(﹣ab)2=2a2b2B.(a+1)2=a2+1C.a6÷a2=a3D.(﹣x2)3=﹣x6【答案】D【解析】根据积的乘方、完全平方公式、同底数幂的除法和幂的乘方即可得出答案.【详解】根据积的乘方,(﹣ab)2=a2b2,故A项错误;根据完全平方公式,(a+1)2=a2+2a+1,故B项错误;根据同底数幂的除法,a6÷a2=a4,故C项错误;根据幂的乘方,(﹣x2)3=﹣x6,故D项正确.【点睛】本题考查积的乘方、完全平方公式、同底数幂的除法和幂的乘方,解题的关键是熟练掌握积的乘方、完全平方公式、同底数幂的除法和幂的乘方.5.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条【答案】D【解析】试题分析:如图所示,根据点到直线的距离就是这个点到这条直线垂线段的长度,可知线段AB 是点B到AC的距离,线段CA是点C到AB的距离,线段AD是点A到BC的距离,线段BD是点B到AD 的距离,线段CD是点C到AD的距离,所以图中能表示点到直线距离的线段共有5条.故答案选D.考点:点到直线的距离.6.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.【答案】B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.7.在3-1,13这四个数中,最大的数是()A .-1B .0C .13D 【答案】D 【解析】分析:根据正数大于0、0大于负数解答可得.详解:∵正数大于0、0大于负数,∴这41313,4个数中最大的.故选D .点睛:本题主要考查实数的大小比较,解题的关键是熟练掌握正数大于0、0大于负数.8.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n 【答案】B【解析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A 、将m >n 两边都减2得:m ﹣2>n ﹣2,此选项错误;B 、将m >n 两边都除以4得:m n 44> ,此选项正确; C 、将m >n 两边都乘以6得:6m >6n ,此选项错误;D 、将m >n 两边都乘以﹣8,得:﹣8m <﹣8n ,此选项错误,故选B .【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9.下列解不等式22135x x +-的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1).②去括号,得5x +10>6x -3.③移项,得5x -6x >-10-3.④系数化为1,得x >13.A .①B .②C .③D .④【答案】D【解析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】去分母:5(x+2)>3(2x-1);去括号:5x+10>6x-3;移项:5x-6x >-10-3;合并同类项,得:-x >-1,系数化为1得:x <1.故选D .【点睛】.本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变10.要使式子22x y + 成为一个完全平方式,则需加上( )A .xyB .xy ±C .2xyD .2xy ± 【答案】D【解析】根据完全平方式的定义结合已知条件进行分析解答即可.【详解】将式子22xy +加上2xy 或2xy -所得的式子222x xy y ++和222x xy y -+都是完全平方式.故选D.【点睛】熟知“完全平方式的定义:形如222a ab b ±+的式子叫做完全平方式”是解答本题的关键.二、填空题题 11.计算: 231332--⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭____. 【答案】83 【解析】先计算乘方,再相乘. 【详解】231332--⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭=8927⨯=83故答案是:83.【点睛】考查了负整数指数幂,解题关键是抓住a -m =1ma . 12.如图,已知ABC △中,点D 在AC 边上(点D 与点,A C 不重合),且BC CD =,连接BD ,沿BD 折叠ABC △使点A 落到点E 处,得到EBD △.若A α︒∠=,则EBC ∠的度数为 ______︒(用含α的式子表示).【答案】α【解析】根据三角形外角和的性质和折叠的性质进行计算,即可得到答案.【详解】BDC ABD α∠=+∠CBD EBC EBD ∠=∠+∠BC CD =CBD BDC ∴∠=∠ABD EBC EBD α∴+∠=∠+∠由折叠可得ABD EBD ∠=∠EBC α∴∠=【点睛】本题考查三角形外角和的性质和折叠的性质,解题的关键是掌握三角形外角和的性质和折叠的性质. 13.图中的两个三角形是全等三角形,其中一些角和边的大小如图所示,那么x 的值是______.【答案】50︒【解析】根据三角形内角和定理以及全等三角形的性质解答即可.【详解】解:180°-85°-45°=50°,∵两个三角形是全等三角形,∴x=50°,故答案为50°.【点睛】本题考查的是全等三角形的性质,三角形内角和定理,熟练掌握全等三角形的对应角相等是解题的关键. 14.如图,已知直线a b ∕∕,点A B 、在直线a 上,点C D 、在直线b 上,且:1:2AB CD =,如果ABC ∆的面积为3,那么BCD ∆的面积等于_______.【答案】1【解析】根据两平行线间的距离处处相等,结合三角形的面积公式,知△BCD 和△ABC 的面积比等于CD :AB ,从而进行计算.【详解】解:∵a ∥b ,∴△BCD 的面积:△ABC 的面积=CD :AB=2:1,∴△BCD 的面积=3×2=1.故答案为1.【点睛】此题考查了平行线间的距离以及三角形的面积比的一种方法,即等高的两个三角形的面积比等于它们的底的比.15y 2,那么y 的值是_____.【答案】1【解析】根据算术平方根的定义解答即可. y =2,∴y 的值是:1.故答案为1.【点睛】本题考查了算术平方根的知识,正确把握算术平方根的定义是解题关键.16.因式分解:2m m +=_______.。

《多边形的内角和》教案【优秀5篇】

《多边形的内角和》教案【优秀5篇】

《多边形的内角和》教案【优秀5篇】《多边形的内角和》教案篇一一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理。

2.了解四边形的不稳定性及它在实际生产,生活中的应用。

(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

2.通过推导四边形内角和定理,对学生渗透化归思想。

3.会根据比较简单的条件画出指定的四边形。

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好。

(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美。

二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

第2课时七、教学步骤复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9, 求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.8多边形的内角和与外角和
滦县第五中学王丽娟
22.8多边形的内角和与外角和
课题:多边形的内角和与外角和
一.教学目标
1.理解多边形的定义.
2.掌握多边形的内角和与外角和
3.经历探索多边形内角和与外角和公式的过程,进一步发展学生说理能力和简单的推理能力
4.通过师生共同活动,训练学生的发散性思维,培养学生的创新精神.
二.教学重点
多边形的内角和与外角和.
三.教学难点
多边形的内角和的公式推导.
四.教学方法
启发、讨论式.
六.教学过程
(一)巧设情景问题,引入课题
[师]前面我们学习了三角形、平行四边形,今天我们要学习什么内容呢?请看大屏幕(出示投影片)
[师]刚才大家看到许多实物图片,它与数学图形联系起来,你知道它们各是什么图形?
[生]三角形、四边形、五边形、六边形、八边形.
(二)新课讲解
1、介绍概念
[师]对,这些在日常生活中经常看到的图形,就是我们这节课要研究的内容——多边形
[师]请看大屏幕,什么叫多边形呢?多边形是由一些不在同一直线上的线段依次首尾相连组成的封闭图形.
我们在初中阶段主要探讨的平面几何.所以现在定义的多边形应在同一平面内,即:
在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形叫做多边形.
在定义中应注意:①若干条;②首尾顺次相连,二者缺一不可.
多边形的边、内角、顶点、对角线、内角和的含义与三角形相同,即:
边:组成多边形的各条线段叫做多边形的边.
顶点:每相邻两条边的公共端点叫做多边形的顶点.
对角线:在多边形中,连结不相邻两个顶点的线段叫做多边形的对角线.
内角:多边形相邻两边组成的角叫多边形的内角.
如图
2、命名
多边形通常以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.
多边形的表示方法与三角形、四边形类似.可以用表示它的顶点的字母来表示,如可顺时针方向表示,也可逆时针方向表示,如图(3),可表示为五边形ABCDE,也可表示为五边形EDCBA,还可以用下标表示为五边形A1A2A3A4A5,n边形可表示为n边形A1A2A3…A n(n≥3的自然数)
三角形可用三条边来表示,四边形可用四条边来表示.n边形呢?要画多少条边来表示呢?我们可用虚线表示省略的边,其余的边用实线表示.如上图,就是n边形A1A2A3…A n.
n边形有n条边,n个顶点,n个内角.
3、多边形的分类
有凸多边形和凹多边形之分,如图.
把多边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形(如图(2))
图(1)的多边形是凹多边形
我们探讨的一般都是凸多边形.
4、正多边形
[生]这五个多边形,每个多边形的边都相等,内角也都相等.
[师]很好,在平面内,内角都相等,边也都相等的多边形叫做正多边形,如上图中的多边形分别为:正三角形、正四边形即正方形、正五边形、正六边形、正八边形.
正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形. 5、公式的推导
好,我们了解了多边形的有关概念后, (1)上图中广场中心的边缘是一个五边形,你能设法求出它的五个内角的和吗?与同伴交流.
(2)小明、小亮分别利用下面的图形求出了该五边形的五个内角的和.你知道他们是怎么做的吗?
(3)还有其他的方法吗? (学生讨论、画图、归纳
)
[生甲](1)求五边形的内角和可以利用量角器测每个内角的度数,然后求出这五个内角的和,即是五边形的内角和为540°.
也可以把五边形分割成三角形,因为三角形的内角和是180°.
[生乙]小明是直接把五边形的五个内角分割在3个三角形中(如图(1)),每个三角形的内角和是180°,所以五边形的内角和为3×180°=540°.
观察下图中的多边形,它们的边、角有什么特点?
小亮是在五边形内任意取一个点,然后把五边形分割成五个三角形(如图(2)),但从图中可以知道,这时多了一个周角,即360°.因此,五边形的内角和为:180°×5-360°= 540°.
[生丙]也可以在五边形的任一条边上取一个点,然后这个点与各顶点连结,这时五边形被分割成四个三角形(如图(3)),但多了一个平角,即180°,因此,五边形的内角和为:180°×4-180°=540°.
[生丁]在五边形外任取一点,将这点与五边形的各顶点连结起来,这时五边形被分割成四个三角形,此时,从图中可以看出多出一个三角形.因此五边形的内角和为180°×4-180°=540°.
[师]很不错,同学们回答得很好,在求五边形的内角和时,先把五边形转化成三角形.进而求出内角和,这种由未知转化为已知的方法是我们数学中一种非常重要的方法.
下面请大家来完成表格(出示投影片)
6、多边形的内角和
多边形三角形四边形五边形六边形n边形
能分割
成几个⊿
内角和
结论:n边形的内角和等于(n-2)·180°
[师]知道了n边形的内角和为(n-2)·180°,请同学们口答一下:12边形的内角和是多少呢?
[生齐声]1800°
[师]很好,要求n边形的内角和,只需把n代入内角和公式:(n-2)·180°,即可算出.
[师]一个多边形的内角和度数为900度,则它是几边形呢?
[生齐声]七边形
下面大家看大屏幕“做一做”(出示投影片)
7、做一做
请根据多边形的一个内角与同它相邻的一个外角的和等于180度,计算下列图形的外角和
总结:多边形的外角和等于360度
(三)巩固练习(出示投影片)
屏幕显示一组练习题
(四)课堂小节(出示投影片)
1、n边形的内角和是(n-2)·180º
2、任意多边形的外角和都是360º,与边数无关。

3、多边形转化为三角形
(五)课下思考:(出示投影片)
观察下列图形,从多边形的一个顶点出发可以引多少条对角线?你能猜想 n 边形一共有多少条对角线吗?
实数的运算练习一
(1)
(2)48512739+-
(3)
10
1252403--
(4)2)32)(347(-+ (
5)
20)21(82
1
)73(4--⨯+
+
(6)102006)2
1()23()1(-+--- (
7)
10)2
1
()2006(312-+---+
(8)02)36(2218)3(----+-- (9)3
2
6⨯
(10)4327-⨯ (11)2)13(- (13)
3
6
(12)22)5
2
()2511
(- (14)
75.0125.204
1
12
484--+-
(15)1215.09002.0+ (16)250580⨯-⨯。

相关文档
最新文档