高中数学知识点总结大全(文科)
高中数学知识点汇总(文科)
必修1第一章 集合与函数概念1. 集合三要素:确定性、互异性、无序性.2. 常见集合:整数集合:N ;正整数集合:*N 或+N ;整数集合:Z ;有理数集合:Q ;实数集合:R.3.集合的表示方法:列举法、描述法、韦恩图法.4. 子集:一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集.记作B A ⊆.5. 真子集:如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.6. 把不含任何元素的集合叫做空集.记作:Φ.并规定:空集是任何集合的子集;空集是任何集合的真子集.7. 如果集合A 中含有n 个元素,则集合A 有n 2个子集.8. 并集:一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A与B 的并集.记作:A B ,即A B ={|,x x A ∈或}x B ∈.9. 交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A与B 的交集.记作:A B ,即A B ={|,x x A ∈且}x B ∈.10.补集:对于集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作:UA ,即UA ={|,}x x U x A ∈∉且.11. 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. 12. 函数的三种表示方法:解析法、图象法、列表法.13. 用定义法判断函数单调性的步骤:①取值;②作差变形;③定号;④判断.14. 一般地,如果对于函数()x f 的定义域任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.15. 一般地,如果对于函数()x f 的定义域任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.16.求函数定义域:①分母不为0;②偶次方根被开方数0≥;③对数的真数0>. 17.用定义判断奇偶性的方法:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定)(x f -与)(x f 的关系;③得出结论:若)()(x f x f =-或者0)()(=--x f x f ,则)(x f 是偶函数;若)()(x f x f -=-或者0)()(=+-x f x f ,则)(x f 是奇函数;第二章 基本初等函数(Ⅰ)1. 一般地,如果a x n =,那么x 叫做a 的n 次方根。
高三文科数学知识要点总结
高三文科数学知识要点总结一、函数与方程1. 函数的概念与性质:函数的定义、函数的自变量和因变量、函数的定义域和值域、函数的奇偶性等。
2. 一次函数与二次函数:一次函数的特征、一次函数的图像与性质、一次函数的解析式、二次函数的标准型、顶点式与一般式、二次函数的图像与性质等。
3. 指数函数与对数函数:指数函数与指数方程的定义与性质、对数函数与对数方程的定义与性质、指数函数与对数函数的图像与性质等。
4. 三角函数与三角方程:三角函数的概念与性质、三角函数的图像、三角函数的基本关系式、三角方程的解法等。
5. 幂函数与反比例函数:幂函数的概念与性质、幂函数的图像与性质、反比例函数的概念与性质、反比例函数的图像与性质等。
6. 方程与不等式:方程的变形、方程及不等式的解集表示、一元一次方程及一元一次不等式的解法、二元一次方程组的解法、一元二次方程与一元二次不等式的解法等。
二、数列与数学归纳法1. 等差数列与等比数列:等差数列的概念与性质、等差数列的通项公式与前n项和公式、等比数列的概念与性质、等比数列的通项公式与前n项和公式等。
2. 数学归纳法:数学归纳法的基本思想与应用、数列与数学归纳法的关系、数学归纳法的证明与推理等。
3. 递推数列与递推关系式:递推数列的概念与性质、递推关系式的建立与应用、递推数列求极限与求和等。
三、三角函数与解三角形1. 三角函数的基本关系式与诱导公式:正弦定理、余弦定理、正切定理等。
2. 解三角形:已知两边及夹角求第三边、已知两角及一边求其它边、已知三角形的三边求角等。
四、空间几何与立体几何1. 空间向量:向量的定义与性质、向量的线性运算、共线、共面等。
2. 空间平面与直线:平面的一般方程与点法式、直线的三种表示方法、平面与直线的位置关系等。
3. 空间几何体的求体积与表面积:长方体、正方体、柱体、锥体、球体等的体积与表面积的计算等。
五、概率与统计1. 随机事件与概率:随机事件与样本空间、事件的运算、概率的定义与性质、条件概率与乘法定理、独立事件与加法定理等。
高中数学知识点总结大全(文科)
高中数学知识点总结目录第一章一一集合与简易逻辑 (1)第二章一一函数 (4)第四章三角函数 (19)第六章不等式 (33)第七章直线和圆的方程 (38)第八章圆锥曲线 (48)第九章(B)直线、平面、简单几何体 (53)第十章排列、组台、二项式定理 (69)第三章导数 (78)第一章一一集合与简易逻辑集合一识点归纳:定义:一组对象的全体形成一个集合.特征:确定性、互异性、无序性.表示法:列举法{1,2,3,…}、描述法{x|P}.韦恩图分类:有限集、无限集.数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N*、空集如关系:属于E、不属于£、包含于J(或U)、真包含于5、集合相等=・运算:交运算ACB={x|xEA且XEB};并运算AUB={x|xGA或xEB};补运算C u A={x\x^A且xCU},U为全集性质:ACA:<1)CA:若ACB.BJC,则AJC:AAA=AUA=A;AA4> =4>:AU4)=A:AAB=A<=>AUB=B<=>ACB;Anc t/A=4);AUC"A=I:C[7(C L rA)=A:C L-(AoB)=(C Lr A)n(C L.B).方法:韦恩示意图,数轴分析.注意:①区别6与W、乒与己、a与{a}、4>与{4)}.{(1,2)}与{1,2};②ACB时,A有两种情况:A=4>与AN4>・③若集合A中有n(WGAT)个元素,则集合A的所有不同的子集个数为2”,所有真子集的个数是2”-1,所有非空真子集的个数是2”-2.④区分集合中元素的形式:如A={x\y=x2+2x+l}^B={y\y=x2+2x+l}^ C={(x,y)|y=X:+2x+1}:D={x\x=x2+2x+]}i E=((x,y)|y=x2+2x+l,x e Z,y e Z}:F={(x,V)|y=尸+2x+1};G={z|y=[2+2x+l,z=与.X空集是指不含任何元素的集合.{0}、。
高中文科数学知识点全总结
高中文科数学知识点全总结1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。
(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。
(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。
(4)根与系数的关系:x1+x2=-b/ax1*x2=c/a,备注:韦达定理。
(5)判别式1)b2-4a=0,备注:方程存有成正比的两实根。
2)b2-4ac\ue0,注:方程有一个实根。
3)b2-4ac\uc0,备注:方程存有共轭复数根。
2、三角函数公式(1)两角和公式sin(a+b)=sinacosb+cosasinb;sin(a-b)=sinacosb-sinbcosa;cos(a+b)=cosacosb-sinasinb;cos(a-b)=cosacosb+sinasinb;tan(a+b)=(tana+tanb)/(1-tanatanb);tan(a-b)=(tana-tanb)/(1+tanatanb);ctg(a+b)=(ctgactgb-1)/(ctgb+ctga);ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。
(2)倍角公式tan2a=2tana/(1-tan2a);ctg2a=(ctg2a-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
(3)半角公式sin(a/2)=√((1-cosa)/2);sin(a/2)=-√((1-cosa)/2);cos(a/2)=√((1+cosa)/2);cos(a/2)=-√((1+cosa)/2);tan(a/2)=√((1-cosa)/((1+cosa));tan(a/2)=-√((1-cosa)/((1+cosa));ctg(a/2)=√((1+cosa)/((1-cosa));ctg(a/2)=-√((1+cosa)/((1-cosa))。
高考文科数学总知识点
高考文科数学总知识点高考文科数学是高中毕业生参加高考时必须考察的科目之一,它的考察对象包括数学的基本概念、运算规则、解题方法等等。
下面是高考文科数学的总知识点。
1.数与代数1.1 数的性质与运算1.2 代数运算与因式分解1.3 一元一次方程与一元一次不等式1.4 二次根式与二次方程1.5 高次方程与不等式1.6 数列的概念与性质2.函数2.1 函数的性质与图像2.2 一次函数与二次函数2.3 指数函数与对数函数2.4 三角函数3.几何3.1 点、直线和平面3.2 各种角的概念与性质3.3 三角形的概念与性质3.4 四边形的概念与性质3.5 圆的概念与性质3.6 空间几何4.概率与统计4.1 随机事件与概率4.2 统计的基本概念和方法4.3 相关系数与回归直线5.数学推理与证明5.1 几何证明5.2 数学归纳法5.3 数论证明以上是高考文科数学的总知识点,通过对这些知识点的掌握,考生能够在高考中取得较好的成绩。
高考数学的重点在于对基本概念的理解和解题能力的培养,所以考生在备考过程中要注重理论的学习和题目的练习。
同时,考生还要注重方法的灵活运用,多思考、多总结,提高解题的效率和准确性。
为了高效地备考数学,考生可以采取以下方法:首先,理论学习要扎实。
要充分理解并掌握每一个知识点,掌握其内在的联系和运用方法。
其次,进行大量的习题训练。
通过大量的练习,逐步提高解题的技巧和速度。
再次,注重错题的总结和订正。
对于做错的题目,要找出错因,加以总结和订正,避免同样的错误再次出现。
最后,要有计划地进行复习。
将所有的知识点进行系统的梳理,进行有针对性的复习,强化薄弱环节。
总之,高考文科数学是一门理论与实践相结合的学科,需要灵活运用所学知识进行解题。
通过系统的学习和大量的练习,考生一定能够取得令人满意的成绩。
希望大家都能在高考中取得优异的成绩,实现自己的理想!。
高中文科数学知识点总结
高中文科数学知识点总结高中文科数学涵盖了众多重要的知识点,掌握这些知识点对于取得好成绩和提升数学素养至关重要。
以下是对高中文科数学主要知识点的详细总结。
一、集合与函数集合是数学中最基本的概念之一。
集合由具有某种特定性质的对象组成。
常见的集合表示方法有列举法、描述法等。
集合的运算包括交集、并集和补集。
函数是高中数学的核心概念。
函数的定义为对于给定的集合 A 和 B,如果按照某种对应关系 f,对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f 是集合 A 到集合 B 的一个函数。
函数的三要素是定义域、值域和对应法则。
常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数等。
一次函数的表达式为 y = kx + b(k ≠ 0),其图象是一条直线。
二次函数的表达式为 y = ax²+ bx + c(a ≠ 0),图象是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
指数函数的表达式为 y = a^x(a > 0 且a ≠ 1),其性质包括单调性、过定点等。
对数函数的表达式为 y = lo gₐx(a > 0 且a ≠ 1),与指数函数互为反函数。
函数的单调性、奇偶性和周期性也是重要的性质。
二、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数 y = sin x,余弦函数 y = cos x,正切函数 y = tan x。
三角函数的诱导公式可以帮助我们将不同角度的三角函数值进行转化。
三角函数的图象和性质需要重点掌握,比如正弦函数和余弦函数的周期性、最值、对称轴等。
解三角形中,正弦定理和余弦定理用于求解三角形的边和角。
三、数列数列是按照一定顺序排列的一列数。
等差数列的通项公式为 aₙ = a₁+(n 1)d,前 n 项和公式为 Sₙ = n(a₁+ aₙ) / 2 。
等比数列的通项公式为 aₙ = a₁qⁿ⁻¹,前 n 项和公式为 Sₙ = a₁(1 qⁿ) /(1 q)(q ≠ 1)。
高中文科数学知识点归纳(完整版)
≠⊂最全版高中文科数学知识点必修1数学集合:1、集合的定义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。
集合中的每个对象叫做这个集合中的元素2、集合元素的特征:①确定性 ②互异性 ③无序性3、集合的分类:①有限集 ②无限集 ③空集,记作∅4、集合的表示法:①列举法 ②描述法 ③文氏图法 ④特殊集合 ⑤区间法常用数集及其记法:①自然数集(或非负整数集)记为N 正整数集记为*N 或+N②整数集记为Z ③实数集记为R ④有理数集记为Q5、元素与集合的关系:①属于关系,用“∈”表示;②不属于关系,用“∉”表示6、集合间的关系:①包含:用“⊆”表示 ②真包含:用“ ”表示 ③相等 ④不相等7、集合的交、并、补交集的定义:由所有属于集合A 且属于集合的元素组成的集合,叫做A 与B 的交集,记作B A I ,即{}B x A x x B A ∈∈=且I并集的定义:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作B A Y , 即{}B x A x x B A ∈∈=或Y8、全集与补集:对于一个集合A ,由全集UA 相对于集合U的补集,记作A C U ,即}A x A C U ∉且9、交集、并集、补集的运算:(1)交换律:B A AB B A Y I I == (2)结合律:)()()()(C B A C B A C B A C B A Y Y Y Y I I I I== (3)分配律:.)()()()()()(C A B A C B A C A B A C B A Y I Y I Y I Y I Y I== (4)0-1律:,,,A A A U A A U A U Φ=ΦΦ===IU I U (5)等幂律:A A A A A A ==Y I(6)求补律:A A C C U C U C U A C A A C A U U U U U U =====)(φφφY I(7)反演律:)()()(B C A C B A C U U U Y I = )()()(B C A C B A C U U U I Y =10、文氏图的应用:交集、并集、补集的文氏图表示11、重要的等价关系:B A B B A A B A ⊆⇔=⇔=Y I12、一个由n 个元素组成的集合有n 2个不同的子集,其中有12-n 个非空子集,也有12-n个真子集函数:1、映射:设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素a ,在集合B 中都有唯一的元素b 和它对应,则这样的对应(包括集合B A 、以及A 到B 的对应法则f )叫做从集合A 到集合的映射,记作B A f →:,其中b 叫做a 的象,a 叫做b的原象如果在这个映射下,对于集合A 中的不同元素,在集合中有不同的象,而且B 中的每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射2、 函数:设B A 、是两个非空数集,那么从A 到B 的映射B A f →:就叫做函数,记作)(x f y =,其中B y A x ∈∈,,x 叫做自变量,y 是x 的函数值.自变量的取值集合A 叫做函数的定义域,函数值的集合C 叫做函数的值域,值域B C ⊆,函数三要素:定义域、值域、对应法则;两个函数相同:定义域和对应关系都分别相同3、函数的表示方法:(1)列表法 (2)图象法 (3)解析法4、分段函数:在自变量的不同取值范围内,其解析式不同,分段函数不是几个函数,是一个函数5、(1)函数的定义域的常用求法:①分式的分母不等于零 ②偶次方根的被开方数大于等于零 ③对数的真数大于零④指数函数和对数函数的底数大于零且不等于1⑤三角函数正切函数tan y x =中()2x k k Z ππ≠+∈,余切函数cot y x =中,)(Z k k x ∈≠π⑥如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围(2)值域的求法:①直接法 ②分离常数法 ③图象法 ④换元法 ⑤判别式法 ⑥不等式与对勾函数6、求函数解析式的方法:①直代 ②凑配法 ③ 换元法 ④待定系数法 ⑤列方程组法 ⑥特殊值法7、增减函数的定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值21,x x①若当21x x <时,都有)()(21x f x f <,则说)(x f 在这个区间上是增函数②若21x x <当时,都有)()(21x f x f >,则说)(x f 在这个区间上是减函数8、(1)单调性的证明:讨论函数的增减性应先确定单调区间, 用定义证明函数的增减性, 有“一设, 二差, 三判断”三个步骤(2)函数单调性的常用结论:①若(),()f x g x 均为某区间上的增(减)函数,则()()f x g x +在这个区间上也为增(减)函数②若()f x 为增(减)函数,则()f x -为减(增)函数③若()f x 与()g x 的单调性相同,则[()]y f g x =是增函数;若()f x 与()g x 的单调性不同,则[()]y f g x =是减函数,即复合函数的单调性是“同增异减”④奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反9、(1)奇、偶函数的定义:对于函数)(x f①如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数②如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数注意:①函数为奇偶函数的前提是定义域在数轴上关于原点对称②)()()()(x f x f x f x f =--=-或是定义域上的恒等式③若奇函数)(x f 在0=x 处有意义,则0)0(=f④奇函数的图像关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形(2)函数奇偶性的常用结论:①如果一个奇函数在0x =处有定义,则(0)0f =,如果一个函数()y f x =既是奇函数又是偶函数,则()0f x =(反之不成立)②两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数③一个奇函数与一个偶函数的积(商)为奇函数④两个函数()y f u =和()u g x =复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数基本初等函数1、(1)一般地,如果a x n=,那么x 叫做a 的n 次方根。
文科高考数学知识点归纳总结
文科高考数学知识点归纳总结数学作为文科高考的一门重要科目,对于考生来说有着重要的意义。
在备考过程中,系统地总结和归纳数学知识点是非常必要的。
本文将对文科高考数学知识点进行归纳总结,以帮助考生更好地复习备考。
一、函数与方程1. 一元二次函数- 函数定义及性质- 二次函数的图像- 顶点坐标与对称轴方程- 函数的增减性与极值点- 二次函数与一元二次方程的关系2. 指数与对数函数- 指数函数和对数函数的定义与性质- 指数函数与对数函数的图像和性质- 对数运算的基本性质与常用公式- 指数与对数方程的解法3. 复数- 复数的定义与表示- 复数的运算法则- 复数的共轭与模- 复数在平面直角坐标系中的表示与性质- 复数方程的解法二、概率与统计1. 概率- 随机事件与概率的定义- 事件的运算与性质- 概率的计算方法(频率方法、几何方法、古典概型) - 条件概率与独立事件- 排列与组合2. 统计- 数据的收集与整理- 数据的频数分布与频率分布- 平均数、中位数与众数- 方差与标准差- 相关系数与回归直线三、数列与数列的和1. 等差数列- 等差数列的定义与通项公式- 等差数列的性质与运算- 等差数列的前n项和与等差中项2. 等比数列- 等比数列的定义与通项公式- 等比数列的性质与运算- 等比数列的前n项和3. 常数项数列- 常数项数列的定义与性质- 常数项数列的前n项和与通项公式四、立体几何1. 三角形与圆- 三角形内角和- 三角形的中线与高线- 圆的定义与性质- 弧长、扇形面积与弓形面积- 圆锥与圆台2. 空间几何体- 直线与平面的交线- 空间几何体的体积与表面积- 空间几何体间的距离和角五、解析几何1. 平面几何- 点、直线、向量与平面的关系- 直线与平面的距离- 直线与平面的夹角2. 圆锥曲线- 椭圆、双曲线与抛物线的定义与性质 - 圆锥曲线的标准方程- 圆锥曲线的参数方程六、数理逻辑1. 命题与谓词逻辑- 命题与命题的联结词- 命题公式与真值表- 谓词逻辑的概念与表示2. 推理与谬误- 推理的基本形式与规律- 谬误的分类与辨析综上所述,文科高考数学知识点的归纳总结涵盖了函数与方程、概率与统计、数列与数列的和、立体几何、解析几何以及数理逻辑等多个重要内容。
高考文科数学知识点
高考文科数学知识点高考文科数学知识点是指在高考中,文科生需要掌握的数学知识点。
这些知识点包括数与代数、平面几何、立体几何、概率与统计、数理逻辑等内容。
下面将对这些知识点进行详细介绍:一、数与代数:1. 整式的加减乘除运算:包括整式的加减法和乘除法的运算规则。
2. 分式的加减乘除运算:包括分式的加减法和乘除法的运算规则,以及分式方程的解法。
3. 一元二次方程:包括一元二次方程的解的判别式、求根公式以及应用问题的解法。
4. 不等式:包括一元一次不等式、一元二次不等式的求解方法,以及应用问题的解法。
5. 函数与方程:包括函数的定义、性质,以及一元函数的图像与性质;方程与不等式的解法,包括代入法、消元法、配方法、换元法等。
二、平面几何:1. 直线和曲线:包括直线的定义、性质,曲线的类型与特点,以及直线和曲线之间的位置关系。
2. 三角形:包括三角形的定义、性质,以及三角形的内部和外部角度关系、边长关系等。
3. 四边形:包括四边形的定义、性质,以及各种特殊四边形的性质。
4. 圆和圆锥曲线:包括圆的定义、性质,以及圆周角和弧长的关系;圆锥曲线的类型和性质,以及其方程和参数方程的解法。
5. 向量:包括向量的定义、性质,向量的加法、减法、数乘运算,以及向量的数量积和向量积的计算方法和应用。
三、立体几何:1. 空间几何体的表面积与体积:包括各种几何体(如长方体、正方体、棱柱、棱锥、球体等)表面积和体积的计算公式。
2. 空间点、直线、平面:包括空间点、直线和平面的定义、性质,以及它们之间的位置关系和夹角关系。
3. 空间向量:包括空间向量的定义、性质,向量的坐标表示和运算,空间向量的数量积和向量积的计算方法和应用。
四、概率与统计:1. 概率:包括概率的基本概念、性质和计算方法,以及事件的互斥性等概念和判断方法。
2. 统计:包括数据的收集、整理、描述和分析方法,以及统计指标的计算和应用。
五、数理逻辑:1. 命题与命题关系:包括命题的基本概念和性质,命题的逻辑运算(如与、或、非、异或等),以及命题的真值表和命题关系的判定方法。
高三文科数学全部知识点
高三文科数学全部知识点一、数与代数1. 自然数、整数、有理数、实数、复数的定义及性质2. 点、线、面的基本概念及性质3. 等差数列、等比数列及其求和公式4. 二次函数的定义、性质及图像特征5. 不等式的基本性质及解法6. 排列、组合与概率的基本概念及计算方法二、函数与方程1. 函数的定义、性质及表示方法2. 一次函数、二次函数、指数函数、对数函数的图像特征3. 一元一次方程、一元二次方程、一元高次方程的解法4. 二元一次方程组、二元二次方程组的解法5. 求函数零点、极值点以及函数的凹凸区间6. 不等式与方程的等价转化三、初等数论与代数1. 整数的基本性质:因数分解、最大公因数、最小公倍数等2. 同余方程与同余定理的应用3. 二次剩余与勾股数的相关性4. 二次同余方程及二次剩余定理的运用5. 多项式的基本性质、因式分解及根的性质6. 代数证明与数学归纳法的运用四、平面几何与立体几何1. 角、线段、圆的性质及计算2. 三角形的性质、分类及计算3. 正多边形的性质与计算4. 圆的切线、割线、切圆、切割线的性质及运用5. 空间几何体的概念、性质及计算6. 空间几何体的平行与垂直关系五、概率与统计1. 随机事件、概率的基本概念与性质2. 条件概率、独立事件、事件的组合与计算方法3. 事件的发生次数与期望值的计算4. 随机变量的概念、离散型与连续型随机变量的分布5. 统计数据的收集、整理、描述与分析6. 抽样与估计,假设检验与推断六、数理统计与决策数学1. 矩阵的性质、基本运算及特殊类型矩阵的应用2. 线性方程组与线性不等式组的解法3. 线性规划与解法4. 图论基本概念、最短路径、最小生成树及网络流的应用5. 动态规划与贪心算法的应用6. 概率论、统计学及预测模型的应用以上是高三文科数学的全部知识点,通过系统的学习和理解这些知识点,能够为学生们的高考备考提供良好的基础。
希望同学们在备考过程中充分掌握这些知识,灵活运用,取得优异的成绩。
文科数学高考知识点
文科数学高考知识点高考数学是每个文科生都需要面对的考试科目之一,它是评判一个文科生数学水平的重要指标。
在备战高考的过程中,掌握和理解数学知识点是至关重要的。
下面将介绍一些文科数学高考知识点,希望对你备考有所帮助。
一、代数与函数1. 数列与常数项:常见的数列有等差数列和等比数列。
了解数列的通项公式和求和公式,并能熟练应用。
2. 二次函数:了解二次函数的基本性质,如顶点坐标、对称轴、图象特征等。
掌握二次函数的图像变换规律,包括平移、翻折和伸缩等。
3. 幂函数与指数函数:理解幂函数和指数函数的定义和基本性质。
能够应用对数运算化简复杂的指数表达式。
4. 多项式函数:了解多项式函数的性质和一元高次多项式求根的方法。
掌握多项式函数的图象特征和变换规律。
二、几何与图形1. 平面几何:熟悉直线、角、多边形等基本概念,包括直线的斜率、角的度量和多边形的内角和外角性质。
2. 圆与圆周角:掌握圆的性质,包括圆心角、弧和弦的关系,以及切线与半径的垂直性质。
3. 三角形与相似三角形:了解三角形的分类和性质,能够判断三角形是否相似,并能应用相似三角形的性质解决问题。
4. 平面向量:熟悉向量的定义和基本运算,包括向量的加减、数量积和向量积等。
了解向量的共线和垂直性质。
三、概率与统计1. 概率:掌握基本概率的计算方法,包括事件的概率、条件概率和独立事件的概率。
能够应用概率解决实际问题。
2. 统计分析:了解统计分析的基本概念和方法,包括样本调查、数据整理和数据分析等。
能够运用统计方法进行数据处理和推断。
四、数与运算1. 数的运算:熟练掌握有理数、整数和分数的四则运算规则,能够运用乘方和开方进行计算。
2. 方程与恒等式:熟悉一元一次方程和一元二次方程的解法,能够解决实际问题。
了解恒等式的性质和证明方法。
3. 不等式:掌握一元一次不等式和一元二次不等式的解法,能够解决实际问题。
理解不等式的性质和图像特征。
五、数理逻辑与证明1. 命题逻辑:了解命题、合取、析取和否定等基本概念。
文科高考数学必背知识点
文科高考数学必背知识点
一、数学基础知识点
1.关系和映射:包括函数、多项式函数、指数函数、对数函数、三角函数等基本关系和映射的概念、性质和图像。
2.数列和数列的通项公式:包括等差数列、等比数列、等差数列的通项公式、等比数列的通项公式等。
3.平面几何:包括平面点的坐标、平面上的图形的性质、平面几何中的相似性质和等角性质等。
4.立体几何:包括空间点的坐标、直线和平面的方程、立体几何中的交线、投影和旋转等。
5.概率与统计:包括概率的基本原理、离散型概率分布、连续型概率分布、统计学中的抽样和参数估计等。
二、解题技巧
1.分析题目:理解题目的意思,明确要求解的问题。
2.掌握解题方法:根据题目中的条件和要求,选择合适的解题方法。
3.引入辅助条件:对于复杂的问题,可以引入适当的辅助条件来简化问题的求解过程。
4.整理思路:将题目中给出的条件和要求进行整理和归类,有助于更好地理解问题的本质和解题思路。
5.分步求解:对于较复杂的问题,可以采用分步求解的方法,逐步推进,确保每一步都是正确的。
6.变量替换:对于一些特殊的问题,可以采用变量替换的方法,将问题转化为更简单的形式。
7.画图辅助:对于几何题目,可以通过画图来辅助解题,有助于直观地理解问题的条件和解题的过程。
高考文科数学知识点总结
原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互集合与简易逻辑知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性.3⑴①一个命题的否命题为真,它的逆命题一定为真.否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真.原命题⇔逆否命题. 二含绝对值不等式、一元二次不等式的解法及延伸1.含绝对值不等式的解法1公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. 2定义法:用“零点分区间法”分类讨论.3几何法:根据绝对值的几何意义用数形结合思想方法解题. 特例①一元一次不等式ax>b 解的讨论;21、命题的定义:可以判断真假的语句叫做命题; 2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题; 构成复合命题的形式:p 或q 记作“p ∨q ”;p 且q 记作“p ∧q ”;非p 记作“┑q ”;3、“或”、“且”、“非”的真值判断 1“非p ”形式复合命题的真假与F 的真假相反; 2“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; 3“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P 则q ;逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p;6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件; 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为pq.函数知识回顾:(一)映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二函数的性质 ⒈函数的单调性定义:对于函数fx 的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有fx 1<fx 2,则说fx 在这个区间上是增函数; ⑵若当x 1<x 2时,都有fx 1>fx 2,则说fx 在这个区间上是减函数.若函数y=fx 在某个区间是增函数或减函数,则就说函数y=fx 在这一区间具有严格的单调性,这一区间叫做函数y=fx 的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性4.判断函数单调性定义作差法:对带根号的一定要分子有理化,例如:指数函数与对数函数指数函数及其性质y=a x a>0,a≠122122212122222121)()()(b x b x x x x x b x b x x f x f x ++++-=+-+=-)(1)(.............*∈⋅⋅=N n a a a a a nn2)0(10≠=a a 3).0(1*∈≠=-N p a aa p p 4)1,,,0(>*∈>=n N n m a a a n m nm且5nm nm aa1=-)1,,,0(>*∈>n N n m a 且60的正分数指数幂等于0,0的负分数指数幂无意义 9),0,0(,)(Q r b a a a ab s r r ∈>>⋅= 对数函数及其性质y=log a x a>0,a≠1的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等..函数值域的求法:①配方法二次或四次;②“判别式法”;③换元法;④不等式法;⑤函数的单调性法.数列①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a 2≥n⑶看数列是不是等比数列有以下方法: ①,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n n a a a 2≥n ,011≠-+n n n a a a ①在等差数列{n a }中,有关S n 的最值问题:1当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值.2当1a <0,d>0时,满足⎩⎨⎧≥≤+01m m a a 的项数m 使得m s 取最小值;三、数列求和的常用方法1.公式法:适用于等差、等比数列或可转化为等差、等比数列的数列;2.裂项相消法:适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{n a }是各项不为0的等差数列,c 为常数; 3.错位相减法:适用于{}n n b a 其中{n a }是等差数列,{}n b 是各项不为0的等比数列; 4.倒序相加法:类似于等差数列前n 项和公式的推导方法.5.常用结论111)1(1+-=+n n n n )211(21)2(1+-=+n n n n三角函数2、同角三角函数的基本关系式:αααtan cos sin =1cos sin 22=+αα3、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限” 三角函数的公式:一基本关系②)sin(ϕω+=x y 或)cos(ϕω+=x y 0≠ω的周期ω2=T .④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x Zk ∈,对称中心0,πk ;)cos(ϕω+=x y 的对称轴方程是πk x =Zk ∈,对称中心0,21ππ+k ;)tan(ϕω+=x y 的对称中心0,2πk . 奇偶性的两个条件:一是定义域关于原点对称奇偶都要,二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-奇偶性的单调性:奇同偶反.例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.定义域不关于原点对称奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .x ∉0的定义域,则无此性质⑨x y sin =不是周期函数;x y sin =为周期函数π=T x y cos =是周期函数如图;xy cos =为周期函数π=T 212cos +=x y 的周期为π如图,并非所有周期函数都有最小正周期,例如:y=|cos2x +1/2|图象R k k x f x f y ∈+===),(5)(.三角函数图象的作法:1、描点法及其特例——五点作图法正、余弦曲线,三点二线作图法正、余切曲线.2、利用图象变换作三角函数图象.平面向量向量的概念1向量的基本要素:大小和方向.2向量的表示:几何表示法AB ;字母表示:a ;坐标表示法a =xi+yj =x,y. 3向量的长度:即向量的大小,记作|a |. 4特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1.5相等的向量:大小相等,方向相同x1,y1=x2,y2⎩⎨⎧==⇔2121y y x x6相反向量:a =-b ⇔b =-a ⇔a +b =07平行向量共线向量:方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量.运算类型 几何方法 坐标方法 运算性质 向量的 加法 1.平行四边形法则 2.三角形法则向量的 减法三角形法则AB BA =-,AB OA OB =-数 乘 向 量1.a λ是一个向量,满足:||||||a a λλ= 2.λ>0时,a a λ与同向;λ<0时,a a λ与异向;λ=0时,0a λ=.向 量 的 数 量 积a b •是一个数1.00a b ==或时,0a b •=.2.00||||cos(,)a b a b a b a b ≠≠=且时,4.重要定理、公式1平面向量基本定理e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a =λ1e 1+λ2e 2.2两个向量平行的充要条件a ∥b ⇔a =λbb ≠0⇔x 1y 2-x 2y 1=O. 3两个向量垂直的充要条件a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O.中点公式OP =211OP +2OP 或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x 正、余弦定理:a /sinA=b /sinB=c /sinC=2R 其中R 为三角形外接圆的半径余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C . 三角形面积计算公式:1S =ah/22.已知三角形三边a,b,c,则S=√pp -ap-bp-c=1/4√a+b+ca+b -ca+c-bb+c-ap=a+b+c/23.已知三角形两边a,b,这两边夹角C,则S =1/2absinC4.设三角形三边分别为a 、b 、c,内切圆半径为rS=a+b+cr/25.设三角形三边分别为a 、b 、c,外接圆半径为RS=abc/4R6.根据三角函数求面积:S=absinC/2a/sinA=b/sinB=c/sinC=2R 注:其中R 为外切圆半径;不等式知识要点1. 不等式的基本概念不等等号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- 2.不等式的基本性质1a b b a <⇔>对称性2c a c b b a >⇒>>,传递性3c b c a b a +>+⇒>加法单调性4d b c a d c b a +>+⇒>>,同向不等式相加5d b c a d c b a ->-⇒<>,异向不等式相减6bc ac c b a >⇒>>0,.7bc ac c b a <⇒<>0,乘法单调性8bd ac d c b a >⇒>>>>0,0同向不等式相乘(9)0,0a b a b c d c d>><<⇒>异向不等式相除11(10),0a b ab ab>>⇒<倒数关系11)1,(0>∈>⇒>>n Z n b a b a n n 且平方法则12)1,(0>∈>⇒>>n Z n b a b a n n 且开方法则 3.几个重要不等式10,0||,2≥≥∈a a R a 则若2)2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若当仅当a=b 时取等号3如果a ,b 都是正数,.2a b +当仅当a=b 时取等号极值定理:若,,,,x y R x y S xy P +∈+==则:如果P 是定值,那么当x=y 时,S 的值最小; 如果S 是定值,那么当x =y 时,P 的值最大.利用极值定理求最值的必要条件:一正、二定、三相等.,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号0,2b aab a b>+≥(5)若则当仅当a=b 时取等号不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法.不等式的解法直线和圆的方程一、直线方程.1.直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2.直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3.⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线.②在1l 和2l 的斜率都存在的前提下得到的.因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠ 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在.②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在.即01221=+B A B A 是垂直的充要条件 .点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200BA C By Ax d +++=.注:1. 两点P 1x 1,y 1、P 2x 2,y 2的距离公式:21221221)()(||y y x x P P -+-=.特例:点Px,y 到原点O 的距离:||OP =2. 直线的倾斜角0°≤α<180°、斜率:αtan =k 3. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:.12()x x ≠当2121,y y x x ≠=即直线和x 轴垂直时,直线的倾斜角α=︒90,没有斜率⑵两条平行线间的距离公式:设两条平行直线)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++,它们之间的距离为d ,则有2221BA C C d +-=.7.关于点对称和关于某直线对称:⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线. ⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上方程①,过两对称点的直线方程与对称直线方程垂直方程②①②可解得所求对称点. 二、圆的方程.如果曲线C 的方程是fx,y=0,那么点P 0x 0,y 线C 上的充要条件是fx 0,y 0=02.圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 3.圆的一般方程:022=++++F Ey Dx y x .当0422F E D -+时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D . 当0422F E D -+时,方程无图形称虚圆.4.点和圆的位置关系:给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x -+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x -+-⇔ 5.直线和圆的位置关系:设圆圆C :)0()()(222 r r b y a x =-+-;直线l :)0(022≠+=++B A C By Ax ; 圆心),(b a C 到直线l 的距离22BA C Bb Aa d +++=.①r d =时,l 与C 相切;附:若两圆相切,则⇒⎪⎩⎪⎨⎧=++++=++++02222211122F y E x D y x F y E x D y x 相减为公切线方程.②r d 时,l 与C 相交;附:公共弦方程:设有两个交点,则其公共弦方程为0)()()(212121=-+-+-F F y E E x D D . ③r d 时,l 与C 相离.由代数特征判断:方程组⎪⎩⎪⎨⎧=++=-+-0)()(222C Bx Ax r b y a x 用代入法,得关于x 或y 的一元二次方程,其判别式为∆,则:l ⇔=∆0与C 相切; l ⇔∆0 与C 相交; l ⇔∆0 与C 相离.一般方程若点x 0,y 0在圆上,则x –a x 0–a+y –b y 0–b=R 2.特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+.圆锥曲线方程:0:222222111221=++++=++++F y E x D y x C F y E x D y x C一、椭圆方程.1.椭圆方程的第一定义: ⑴①椭圆的标准方程:i.中心在原点,焦点在x 轴上:)0(12222 b a by ax =+.ii.中心在原点,焦点在y 轴上:)0(12222 b a bx ay=+.②一般方程:)0,0(122 B A By Ax =+.⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:c a x 2±=或c a y 2±=.⑥离心率:)10( e ace =. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222a b c a b d -=和),(2ab c二、双曲线方程.1.双曲线的第一定义: ⑴①双曲线标准方程:)0,(1),0,(122222222 b a bx ay b a by ax =-=-.一般方程:)0(122 AC Cy Ax =+.⑵①i.焦点在x 轴上:顶点:)0,(),0,(a a -焦点:)0,(),0,(c c -准线方程c a x 2±=渐近线方程:0=±b ya x 或02222=-by a x②轴y x ,为对称轴,实轴长为2a ,虚轴长为2b ,焦距2c.③离心率ace =.④通径a b 22.⑤参数关系a ce b a c =+=,222.⑥焦点半径公式:对于双曲线方程12222=-by a x 21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 三、抛物线方程.3.设0 p ,抛物线的标准方程、类型及其几何性质:注:通径为2p,这是过焦点的所有弦中最短的.四、圆锥曲线的统一定义..:立体几何平面.1.经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2.两个平面可将平面分成3或4部分.①两个平面平行,②两个平面相交3.过三条互相平行的直线可以确定1或3个平面.①三条直线在一个平面内平行,②三条直线不在一个平面内平行一、空间直线.1.空间直线位置分三种:相交、平行、异面.相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内2.异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.不在任何一个平面内的两条直线3.平行公理:平行于同一条直线的两条直线互相平行.4.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等如下图.二面角的取值范围[) 180,0∈θ 直线与直线所成角(] 90,0∈θ斜线与平面成角() 90,0∈θ 直线与平面所成角[] 90,0∈θ向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角或直角相等.二、 直线与平面平行、直线与平面垂直.1.空间直线与平面位置分三种:相交、平行、在平面内.2.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.“线线平行,线面平行”注:①直线a 与平面α内一条直线平行,则a ∥α.×平面外一条直线 ②直线a 与平面α内一条直线相交,则a 与平面α相交.×平面外一条直线③若直线a 与平面α平行,则α内必存在无数条直线与a 平行.√不是任意一条直线,可利用平行的传递性证之④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面.×可能在此平面内 ⑤平行于同一直线的两个平面平行.×两个平面可能相交⑥平行于同一个平面的两直线平行.×两直线可能相交或者异面 ⑦直线l 与平面α、β所成角相等,则α∥β.×α、β可能相交3.直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.“线面平行,线线平行”直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.注:①垂直于同一平面....的两个平面平行.×可能相交,垂直于同一条直线.....的两个平面平行 ②垂直于同一直线的两个平面平行.√一条直线垂直于平行的一个平面,必垂直于另一个平面③垂直于同一平面的两条直线平行.√ 三、 平面平行与平面垂直.1.空间两个平面的位置关系:相交、平行.2.平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.“线面平行,面面平行”推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. 注:一平面间的任一直线平行于另一平面.3.两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.“面面平行,线线平行”12方向相同12方向不相同4.两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.“线面垂直,面面垂直” 四. 空间几何体.异面直线所成角的求法:1平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系; .直线与平面所成的角 .二面角的求法.空间距离的求法求点到直线的距离转化为求三棱锥的高,利用等体积法列方程求解; 正方体和长方体的外接球的直径等于其体对角线长;概率知识要点1.概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2.等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3.①互斥事件:不可能同时发生的两个事件叫互斥事件.如果事件A 、B 互斥,那么事件A+B 发生即A 、B 中有一个发生的概率,等于事件A 、B 分别发生的概率和,即PA+B=PA+PB,推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A 或B 是否发生对事件B 或A 发生的概率没有影响.这样的两个事件叫做相互独立事件.如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即PA·B=PA·PB.回归分析和独立性检验第一步:提出假设检验问题 H 0:吸烟与患肺癌没有关系↔H 1:吸烟与患肺癌有关系第二步:选择检验的指标 22()K ()()()()n ad bc a b c d a c b d -=++++它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大.回归直线方程的求法:1221()ni i i ni i x y nx y b x n x a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑导数互斥对立1.导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 2.求导数的四则运算法则:''''''')()(cv cv v c cv u v vu uv =+=⇒+=c 为常数注:v u ,必须是可导函数. 4.函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数. 零点定理⑴零点定理:设函数)(x f 在闭区间],[b a 上连续,且0)()( b f a f ⋅.那么在开区间),(b a 内至少有函数)(x f 的一个零点,即至少有一点ξa <ξ<b 使0)(=ξf .注:①0)( x f 是fx 递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时fx =0,同样0)( x f 是fx 递减的充分非必要条件.②一般地,如果fx 在某区间内有限个点处为零,在其余各点均为正或负,那么fx 在该区间上仍旧是单调增加或单调减少的. 6.极值的判别方法:注①:若点0x 是可导函数)(x f 的极值点,则)('x f =0.但反过来不一定成立.对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9.几种常见的函数导数: 复数1.⑴复数的单位为i,它的平方等于-1,即1i 2-=. ⑵常用的结论:。
高考文科数学必考知识点归纳
高考文科数学必考知识点归纳精选全国高考文科数学必考知识点一、基本概念1.函数与曲线:定义函数与曲线,二次函数方程;二次曲线函数表达式;参数方程的图形;定义域和值域;一次函数与l2函数的性质;反函数的求解;函数和曲线变换;极坐标函数图形;求值点;联系函数和曲线。
2.三角函数:三角函数基本性质;弧度和角度的关系;周期性特点;正弦定理、余弦定理及其应用;正弦曲线以及余弦曲线的性质;三角函数变换;三角函数的值的计算。
3.解析几何:定义几何图形,平面直角坐标系;圆的性质;椭圆及其性质;双曲线的特点;点、直线、圆及其几何关系;不等式的图形表示;空间几何图形;解析几何方法解决几何问题;锐角三角形内角和外角的关系;三角函数与角度;等腰三角形及其特殊性质;空间三角形和其内角和外角关系;四边形面积;六边形面积;新结构和性质;特殊定点定理和性质。
4.统计:统计的基本概念;概率的含义;概率的计算;分类资料的相互关系;抽样分析;概率的判断;统计数据的分类;统计数据的计算;统计图的制作及其应用;回归分析;误差估计。
二、代数与方程1.代数:定义多项式;解题步骤和算法;系数;根;因式分解;乘法定理;互异因数;无穷序列求和;除号自由把法;十二项式;因式定理;求取代数方程的根;多项式的因式分解;代数的性质;多项式的奇偶性;分数的运算;平方根运算。
2.方程:定义方程;一元二次方程的求解;整式化简;同余方程;不等式及其解法;定义不等式;不等式解法;二元一次方程组;合并算法;解法及应用;三元一次方程组;连立方程解法;恒等变换;解三元一次方程组。
三、推理与证明1.数学推理:数学推理的基本概念;式子、条件、命题、证明;直觉猜想;演绎推理;证明方式和思路;言语推理;判断推理;数列的构造;数列的求和及其性质;模式推理;推理与逻辑;数学归纳法;归纳证明;归纳定理;反证法的应用;数论。
2.证明方法:数论的基本概念;数论的证明方法;数学分析的基本任务;证明的步骤和思路;数学初步证明;假设证明法;特例法;反证法;常数项法;例证法;椭圆函数的性质;变量分离法。
高三数学文科知识点
高三数学文科知识点
数学作为一门重要的学科,对于文科类高中生来说同样具有重要性。
在高三阶段,文科生需要掌握并熟悉一些数学的文科知识点,以便在升学考试中取得优异成绩。
下面是一些高三文科数学的知识点。
1. 数与代数
- 整式、分式的加减乘除运算规则
- 方程与不等式的解法
- 函数与图像的关系
- 概率与统计的基础知识
2. 几何
- 直线、平面及其性质
- 三角形、四边形、圆的性质及相关定理
- 平行线、垂直线及其性质
- 空间几何的基础概念
3. 数列与数列的运算
- 等差数列与等比数列的概念及性质
- 数列的递推公式与通项公式
- 数列的求和公式及相关应用
4. 概率与统计
- 事件、样本空间、概率的基本概念
- 条件概率与全概率公式
- 离散型随机变量与连续型随机变量
- 统计图表的制作与解读
5. 排列组合与数学归纳法
- 排列与组合的概念与计算
- 数学归纳法的基本原理与应用
总结这些高三文科数学的知识点,对于学生来说是一个不小的挑战。
不过,只要掌握了这些知识点的基础概念,并进行大量的
练习和实践,便能够逐渐熟练掌握这些知识,进而在高考中取得好成绩。
希望文科的高三学生们,在备战高考过程中认真学习这些数学知识点,不仅可以提高文科综合素质,还能够为将来的升学打下坚实的数学基础。
祝愿大家取得优异的成绩!。
高中文科数学知识点大全及解题方法
高中文科数学知识点大全及解题方法一、函数与方程1.二次函数:定义、图像、性质、定点、求最值、解方程、应用2.一次函数与斜率:定义、图像、性质、直线方程、平行线、垂直线、解方程、应用3.线性规划:线性规划问题、解法、图像解法、应用4.幂函数与指数函数:定义、图像、性质、对数函数、解方程、应用5.极限与连续:定义、性质、计算方法、极限存在准则、连续性、中值定理、应用二、概率与统计1.随机事件与随机变量:概率、样本空间、事件、概率计算、离散随机变量、连续随机变量、期望、方差、标准差、应用2.抽样调查与统计描述:抽样方法、频率分布表、组织数据、图表、统计参数、抽样误差、应用3.统计推断:参数估计、假设检验、置信区间、显著性检验、两个总体参数的推断、回归分析、相关分析、应用三、数列与数学归纳法1.等差数列与等比数列:定义、通项公式、求和公式、性质、应用2.数学归纳法:原理、应用四、平面与立体几何1.平面几何:点、线、面、平行线、垂直线、角、三角形、四边形、相似、全等、平行四边形、圆、周长、面积、体积、应用2.立体几何:正方体、长方体、棱柱、棱锥、棱台、球、圆锥、圆柱、剖面、二面角、弓形、扇形、投影、旋转体、应用五、数与函数1.数与运算:有理数、实数、复数、分数、整式、混合运算、因式分解、分式方程、幂次方程、根式、二次方程、不等式、绝对值、应用2.函数:定义、图像、性质、逆函数、复合函数、函数方程、函数图像、应用六、解析几何1.坐标系与坐标变换:平面直角坐标系、空间直角坐标系、坐标变换、终点、中点、距离、斜率、条件、方程、离散点2.直线与圆:直线方程、圆方程、位置关系、切线、判别式、解题方法、应用3.抛物线、双曲线与椭圆:标准方程、参数方程、性质、坐标变换、焦点、准线、渐近线、应用七、数学推理与证明1.数学推理基础:条件、命题、谓词、命题连接词、充分条件、必要条件、推理方法、证明方法、逆否命题、矛盾法、应用2.数学归纳法:原理、应用3.基本证明方法:直接证明、间接证明、逆证法、归谬法、应用八、解题方法1.立体几何解题:画图法、标志线法、平面坐标法、计算法、平面投影法、力学法、综合法、分析法、应用2.函数与方程解题:整体法、逐步法、转化法、因果法、逆向法、归纳法、举反例法、综合法、应用3.统计与概率解题:列出可能性、通过问题分析建立模型、估计数据、推断、应用4.数学推理与证明解题:抽取条件、列出结论、寻找证明方法、推理过程、验证结果、应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点总结目录第一章——集合与简易逻辑 (1)第二章——函数 (4)第四章三角函数 (19)第六章不等式 (33)第七章直线和圆的方程 (38)第八章圆锥曲线 (48)第九章(B)直线、平面、简单几何体 (53)第十章排列、组台、二项式定理 (69)第三章导数 (78)第一章——集合与简易逻辑集合——知识点归纳定义:一组对象的全体形成一个集合特征:确定性、互异性、无序性表示法:列举法{1,2,3,…}、描述法{x|P}韦恩图分类:有限集、无限集数集:自然数集N 、整数集Z 、有理数集Q 、实数集R 、正整数集N 、空集φ*关系:属于∈、不属于、包含于(或)、真包含于、集合相等=∉⊆⊂运算:交运算A ∩B ={x|x ∈A 且x ∈B};并运算A ∪B ={x|x ∈A 或x ∈B};补运算={x|x A 且x ∈U},U 为全集A C U ∉性质:A A ; φA ; 若AB ,BC ,则A C ;⊆⊆⊆⊆⊆A ∩A =A ∪A =A ; A ∩φ=φ;A ∪φ=A ;A ∩B =A A ∪B =B A B ;⇔⇔⊆A ∩C A =φ; A ∪C A =I ;C ( C A)=A ;U U U U C (A B)=(C A)∩(C B)U ⋃U U 方法:韦恩示意图, 数轴分析注意:① 区别∈与、与、a 与{a}、φ与{φ}、{(1,2)}与{1,2};⊆ ② A B 时,A 有两种情况:A =φ与A ≠φ⊆③若集合A 中有n 个元素,则集合A 的所有不同的子集个数为,所有真)(N n ∈n 2子集的个数是-1, 所有非空真子集的个数是n 222-n ④区分集合中元素的形式:如;;}12|{2++==x x y x A }12|{2++==x x y y B ;;;}12|),{(2++==x x y y x C }12|{2++==x x x x D },,12|),{(2Z y Z x x x y y x E ∈∈++==; }12|)',{(2++==x x y y x F },12|{2xy z x x y z G =++==⑤空集是指不含任何元素的集合、和的区别;0与三者间的关系空集是任何集}0{φ}{φ合的子集,是任何非空集合的真子集条件为,在讨论的时候不要遗忘了的情B A ⊆φ=A况⑥符号“”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关∉∈,系 ;符号“”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 ,⊄Ø绝对值不等式——知识点归纳 1绝对值不等式 与型不等式与型不等式的解法与a x <)0(>>a a x c b ax <+)0(>>+c c b ax 解集:不等式的解集是;)0(><a a x {}a x a x <<-不等式的解集是)0(>>a a x {}a x a x x -<>或,不等式的解集为 ;)0(><+c c b ax {})0(|><+<-c c b ax c x 不等式的解集为)0(>>+c c b ax {})0(,|>>+-<+c c b ax c b ax x 或2解一元一次不等式 )0(≠>a b ax ① ② ⎭⎬⎫⎩⎨⎧>>a b x x a ,0⎭⎬⎫⎩⎨⎧<<a b x x a ,03韦达定理:方程()的二实根为、, 02=++c bx ax 0≠a 1x 2x 则且 240b ac ∆=-≥⎪⎩⎪⎨⎧=-=+a c x x a b x x 2121①两个正根,则需满足,⎪⎩⎪⎨⎧>>+≥∆0002121x x x x ②两个负根,则需满足,1212000x x x x ∆≥⎧⎪+<⎨⎪>⎩③一正根和一负根,则需满足⎩⎨⎧<>∆0021x x4.一元二次不等式的解法步骤对于一元二次不等式,设相应的一元二次方程()22000ax bx c ax bx c a ++>++<>或的两根为,,则不等式的解的各种()200ax bx c a ++=>2121x x x x ≤且、ac b 42-=∆情况如下表:方程的根→函数草图→观察得解,对于的情况可以化为的情况解决0a <0a >注意:含参数的不等式ax +bx +c>0恒成立问题含参不等式ax +bx +c>0的解2⇔2集是R ;其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况 简易逻辑——知识点归纳命题 可以判断真假的语句;逻辑联结词 或、且、非;简单命题 不含逻辑联结词的命题;复合命题 由简单命题与逻辑联结词构成的命题三种形式 p 或q 、p 且q 、非p真假判断 p 或q ,同假为假,否则为真;p 且q ,同真为真, 否则为假;非p ,真假相反原命题 若p 则q ;逆命题 若q 则p ;否命题 若p 则q ;逆否命题 若q 则p ;⌝⌝⌝⌝互为逆否的两个命题是等价的反证法步骤假设结论不成立→推出矛盾→假设不成立⇒充要条件条件p成立结论q成立,则称条件p是结论q的充分条件,⇒ 结论q成立条件p成立,则称条件p是结论q的必要条件,⇔条件p成立结论q成立,则称条件p是结论q的充要条件,第二章——函数函数定义——知识点归纳1函数的定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫做自变量x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域2两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数3映射的定义:一般地,设A、B是两个集合,如果按照某种对应关系f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么,这样的对应(包括集合A、B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射,记作f:A→B 由映射和函数的定义可知,函数是一类特殊的映射,它要求A、B非空且皆为数集4映射的概念中象、原象的理解:(1) A中每一个元素都有象;(2)B中每一个元素不一定都有原象,不一定只一个原象;(3)A中每一个元素的象唯一函数解析式——知识点归纳1函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式(2)列表法:就是列出表格来表示两个变量的函数关系(3)图象法:就是用函数图象表示两个变量之间的关系2求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;()f x [()]f g x [()]f g x ()f x (3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式解方程组()f x ()f x 法;(5)应用题求函数解析式常用方法有待定系数法等 题型讲解例1(1)已知,求; 3311(f x x x x+=+()f x (2)已知,求;2(1)lg f x x +=()f x (3)已知是一次函数,且满足,求;()f x 3(1)2(1)217f x f x x +--=+()f x (4)已知满足,求()f x 12()()3f x f x x +=()f x 解:(1)∵, 3331111()()3(f x x x x x x x x +=+=+-+∴(或)3()3f x x x =-2x ≥2x ≤-(2)令(), 21t x+=1t >则,∴,∴ 21x t =-2()lg 1f t t =-2()lg (1)1f x x x =>-(3)设,()(0)f x ax b a =+≠则3(1)2(1)333222f x f x ax a b ax a b +--=++-+-,5217ax b a x =++=+∴,,∴2a =7b =()27f x x =+(4) ①,12()()3f x f x x +=把①中的换成,得 ②, x 1x 132()()f f x x x+=①②得,∴ 2⨯-33()6f x x x =-1()2f x x x =-注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法定义域和值域——知识点归纳由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x 的取值范围它依赖于对各种式的认识与解不等式技能的熟练 1求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;()f x [()]f g x [()]f g x ()f x (3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程()f x ()f x 组法;(5)应用题求函数解析式常用方法有待定系数法等 2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知的定义域求的定义域或已知的定义域求的定义域: ()f x [()]f g x [()]f g x ()f x ①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知的定义域,其复合函数的定义域应由解出 ()f x [],a b []()f g x ()a g x b ≤≤3求函数值域的各种方法 函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域①直接法:利用常见函数的值域来求一次函数y=ax+b(a 0)的定义域为R ,值域为R ;≠反比例函数的定义域为{x|x 0},值域为{y|y 0}; )0(≠=k xk y ≠≠二次函数的定义域为R ,)0()(2≠++=a c bx ax x f 当a>0时,值域为{}; ab ac y y 4)4(|2-≥当a<0时,值域为{} ab ac y y 4)4(|2-≤②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;),(,)(2n m x c bx ax x f ∈++=③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域; )0(>+=k xk x y ⑦单调性法:函数为单调函数,可根据函数的单调性求值域⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域⑨逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,y x x 得出的取值范围;常用来解,型如: y ),(,n m x dcx b ax y ∈++=单调性——知识点归纳 1函数单调性的定义: 2 证明函数单调性的一般方法:①定义法:设;作差(一般结果要分解为若干个因式2121,x x A x x <∈且)()(21x f x f -的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号②用导数证明: 若在某个区间A 内有导数,则 )(x f ()0f x ≥’,)x A ∈(在A 内为增函数;在A 内为减函数⇔)(x f ⇔∈≤)0)(A x x f ,(’)(x f 3 求单调区间的方法:定义法、导数法、图象法4复合函数在公共定义域上的单调性:[])(x g f y =①若f 与g 的单调性相同,则为增函数;[])(x g f ②若f 与g 的单调性相反,则为减函数 [])(x g f 注意:先求定义域,单调区间是定义域的子集5一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数增函数是增函数;+)(x f )(x g 减函数减函数是减函数;+)(x f )(x g 增函数减函数是增函数;-)(x f )(x g 减函数增函数是减函数-)(x f )(x g上是单调递减 奇偶性——知识点归纳 1函数的奇偶性的定义;2奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称; y 3为偶函数 ()f x ()(||)f x f x ⇔=4若奇函数的定义域包含,则()f x 0(0)0f =5判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;6牢记奇偶函数的图象特征,有助于判断函数的奇偶性;7判断函数的奇偶性有时可以用定义的等价形式:, ()()0f x f x ±-=()1()f x f x =±-8设,的定义域分别是,那么在它们的公共定义域上:()f x ()g x 12,D D 奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇⨯⨯⨯1判断函数的奇偶性,必须按照函数的奇偶性定义进行,为了便于判断,常应用定义的等价形式:f(-x)= ±f(x) f(-x) f(x)=0;+2讨论函数的奇偶性的前提条件是函数的定义域关于原点对称,要重视这一点;3若奇函数的定义域包含0,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件; 4奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,因此根据图象的对称性可以判断函数的奇偶性 5若存在常数T ,使得f(x+T)=f(x)对f(x)定义域内任意x 恒成立,则称T 为函数f(x)的周期,(5)函数的周期性定义:若T 为非零常数,对于定义域内的任一x ,使恒成立 )()(x f T x f =+ 则f(x)叫做周期函数,T 叫做这个函数的一个周期反函数——知识点归纳 1反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; 2定义域、值域:反函数的定义域、值域上分别是原函数的值域、定义域,若()y f x =与互为反函数,函数的定义域为、值域为,则1()y f x -=()y f x =A B ,;1[()]()f f x x x B -=∈1[()]()f f x x x A -=∈3单调性、图象:互为反函数的两个函数具有相同的单调性,它们的图象关于对y x =称 4求反函数的一般方法:(1)由解出,(2)将中的互换位置,得()y f x =1()x f y -=1()x f y -=,x y ,(3)求的值域得的定义域 1()y f x -=()y f x =1()y f x -=二次函数——知识点归纳二次函数是高中最重要的函数,它与不等式、解析几何、数列、复数等有着广泛的联系1二次函数的图象及性质:二次函数的图象的对称轴方程是,c bx ax y ++=2ab x 2-=顶点坐标是 ⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,2二次函数的解析式的三种形式:用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即,和(一般式)c bx ax x f ++=2)((零点式))()()(21x x x x a x f -⋅-=(顶点式)n m x a x f +-=2)()(3 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0)(1)x 1<α,x 2<α ,则;(2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b (3)α<x 1<β,α<x 2<β,则 (4)x 1<α,x 2>β (α<β),则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f ⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f (5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f 4 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响1讨论二次函数的区间最值问题:①注意对称轴与区间的相对位置;②2讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置5二次函数、一元二次方程及一元二次不等式之间的关系:①f(x)=ax 2+bx+c 的图像与x 轴无交点ax 2+bx+c=0无实根ax 2+bx+c>0(<0)的0∆<⇔⇔⇔解集为或者是R;∅②f(x)=ax 2+bx+c 的图像与x 轴相切ax 2+bx+c=0有两个相等的实根0∆=⇔⇔⇔ax 2+bx+c>0(<0)的解集为或者是R;∅③f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点ax 2+bx+c=0有两个不等的实0∆>⇔⇔根ax 2+bx+c>0(<0)的解集为或者是 ⇔(,)αβ()αβ<(,)(,)αβ-∞+∞ 指数对数函数——知识点归纳1根式的运算性质:①当n 为任意正整数时,(n a )=an②当n 为奇数时,=a ;当n 为偶数时,=|a|=nna nna ⎩⎨⎧<-≥)0()0(a a a a ⑶根式的基本性质:,(a 0)n m np mp a a =≥2分数指数幂的运算性质:)()(),()(),(Q n b a ab Q n m a a Q n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+3 的图象和性质)10(≠>=a a a y x且4指数式与对数式的互化: log ba a N Nb =⇔=5重要公式: , 对数恒等式01log =a 1log =a a N a Na =log 6对数的运算法则如果有0,1,0,0a a N M >≠>>log ()log log a a a MN M N =+ log log log aa a MM N N=-log log n m a a mM M n=7对数换底公式:( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)aNN m m a log log log =8两个常用的推论:①, 1log log =⋅a b b a 1log log log =⋅⋅a c b c b a ② ( a, b > 0且均不为1) b mnb a na m log log =9对数函数的性质:∞)上是增函数10同底的指数函数与对数函数互为反函数 xy a =log a y x =11指数方程和对数方程主要有以下几种类型: (1) a f(x)=b ⇔f(x)=log a b, log a f(x)=b ⇔f(x)=a b ; (定义法)(2) a f(x)=a g(x)⇔f(x)=g(x), log a f(x)=log a g(x)⇔f(x)=g(x)>0(转化法) (3) a f(x)=b g(x)⇔f(x)log m a=g(x)log m b (取对数法) (4) l og a f(x)=log b g(x)⇔log a f(x)=log a g(x)/log a b(换底法)函数图象变换——知识点归纳1作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象2三种图象变换:平移变换、对称变换和伸缩变换等等; 3识图:分布范围、变化趋势、对称性、周期性等等方面4平移变换:(1)水平平移:函数的图像可以把函数的图像沿轴()y f x a =+()y f x =x 方向向左或向右平移个单位即可得到;(0)a >(0)a <||a(2)竖直平移:函数的图像可以把函数的图像沿轴方向向上()y f x a =+()y f x =x 或向下平移个单位即可得到(0)a >(0)a <||a ① y=f(x)y=f(x+h); ② y=f(x) y=f(x -h); h 左移→h右移→③y=f(x) y=f(x)+h; ④y=f(x) y=f(x)-hh 上移→h下移→5对称变换:(1)函数的图像可以将函数的图像关于轴对称即可得()y f x =-()y f x =y 到;(2)函数的图像可以将函数的图像关于轴对称即可得到; ()y f x =-()y f x =x (3)函数的图像可以将函数的图像关于原点对称即可得到; ()y f x =--()y f x =(4)函数的图像可以将函数的图像关于直线对称得到1()y fx -=()y f x =y x =①y=f(x)y= -f(x);②y=f(x)y=f(-x);轴x →轴y →③y=f(x)y=f(2a -x); ④y=f(x)y=f -1(x);ax =→直线xy =→直线⑤y=f(x)y= -f(-x)原点→6翻折变换:(1)函数的图像可以将函数的图像的轴下方部分沿|()|y f x =()y f x =x x 轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到; x x ()y f x =x (2)函数的图像可以将函数的图像右边沿轴翻折到轴左边替代(||)y f x =()y f x =y y 原轴左边部分并保留在轴右边部分即可得到y ()y f x =y7伸缩变换:(1)函数的图像可以将函数的图像中的每一点横()y af x =(0)a >()y f x =坐标不变纵坐标伸长或压缩()为原来的倍得到;(1)a >01a <<a (2)函数的图像可以将函数的图像中的每一点纵坐标不变横()y f ax =(0)a >()y f x =坐标伸长或压缩()为原来的倍得到 (1)a >01a <<1a①y=f(x)y=f();② y=f(x)y=ωf(x)ω⨯→x ωxω⨯→y 第三章数列数列数列定义——知识点归纳 (1)一般形式: n a a a ,,,21⋯(2)通项公式:)(n f a n =(3)前n 项和:及数列的通项a n 与前n 项和S n 的关系:12n n S a a a =++⋯ 1121(1)(2)n n n nn S n S a a a a S S n -=⎧=++⋯⇔=⎨-≥⎩等差数列——知识点归纳 1等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列 {}n a d a a n n =-+1{}n a ③等差中项:对于数列,若,则数列是等差数列 {}n a 212+++=n n n a a a {}n a 3等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为{}n a 1a d d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和:⑤ ⑥ 2)(1n n a a n S +=d n n na S n 2)1(1-+=对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或a A b A a b 2ba A +=b a A +=2在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,n a n m a m 且,公差为,则有n m ≤d d m n a a m n )(-+=⑧ 对于等差数列,若,则 {}n a q p m n +=+q p m n a a a a +=+也就是:=+=+=+--23121n n n a a a a a a ⑨若数列是等差数列,是其前n 项的和,,那么,,{}n a n S *N k ∈k S k k S S -2成等差数列如下图所示:k k S S 23-k kk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++6奇数项和与偶数项和的关系:⑩设数列是等差数列,是奇数项的和,是偶数项项的和,是前{}n a 奇S 偶S n S n 项的和,则有如下性质: 前n 项的和偶奇S S S n +=当n 为偶数时,,其中d 为公差; d 2nS =-奇偶S 当n 为奇数时,则,,,中偶奇a S =-S 中奇a 21n S +=中偶a 21n S -=,(其中是等差数列的中间一项)11S S -+=n n 偶奇n =-+=-偶奇偶奇偶奇S S S S S S S n中a 7前n 项和与通项的关系:⑾若等差数列的前项的和为,等差数列的前项的和为,{}n a 12-n 12-n S {}n b 12-n '12-n S 则'1212--=n n n n S S b a 等比数列——知识点归纳1等比数列的概念:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示()0≠q 2等比中项:如果在与之间插入一个数,使,,成等比数列,那么叫做a b G a G b G a 与的等比中项b 也就是,如果是的等比中项,那么,即 Gb a G =ab G =23等比数列的判定方法: ①定义法:对于数列,若,则数列是等比数列 {}n a )0(1≠=+q q a a nn {}n a ②等比中项:对于数列,若,则数列是等比数列{}n a 212++=n n n a a a {}n a 4等比数列的通项公式:如果等比数列的首项是,公比是,则等比数列的通项为{}n a 1a q 或着11-=n n q a a n m n m a a q -=5等比数列的前n 项和:○1)1(1)1(1≠--=q qq a S n n ○2)1(11≠--=q qqa a S n n 当时, ○31=q 1na S n =当时,前n 项和必须具备形式1q ≠(1),(0)n n S A q A =-≠6等比数列的性质:①等比数列任意两项间的关系:如果是等比数列的第项,是等差数列的第项,且n a n m a m ,公比为,则有n m ≤q m n m n q a a -=② 对于等比数列,若,则{}n a v u m n +=+v u m n a a a a ⋅=⋅也就是:=⋅=⋅=⋅--23121n n n a a a a a a 如图所示:nn a a na a n n a a a a a a ⋅⋅---112,,,,,,12321③若数列是等比数列,是其前n 项的和,,那么,,成{}n a n S *N k ∈k S k k S S -2k k S S 23-等比数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++数列的求和——知识点归纳1等差数列的前n 项和公式: S n = S n =S n = d n n na 2)1(1-+2)(1n a a n +d n n na n 2)1(--当d ≠0时,S n 是关于n 的二次式且常数项为0; 当d=0时(a 1≠0),S n =na 1是关于n 的正比例式 2等比数列的前n 项和公式:当q=1时,S n =n a 1 (是关于n 的正比例式);当q≠1时,S n =S n =qq a n --1)1(1qqa a n --113拆项法求数列的和,如a n =2n+3n 4错位相减法求和,如a n =(2n-1)2n(非常数列的等差数列与等比数列的积的形式) 5分裂项法求和,如a n =1/n(n+1) 111n n =-+(分子为非零常数,分母为非常数列的等差数列的两项积的形式) 6反序相加法求和,如a n = nnC 1007求数列{a n }的最大、最小项的方法:①a n+1-a n =…… 如a n = -2n 2+29n-3⎪⎩⎪⎨⎧<=>000②(a n >0) 如a n = ⎪⎩⎪⎨⎧<=>=+1111 nn a a nn n 10)1(9+③ a n =f(n) 研究函数f(n)的增减性 如a n =1562+n n数列的综合应用——知识点归纳 1通项与前n 项和的关系:⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 2迭加累加法:,1(),(2)n n a a f n n --=≥若 , ,………,)2(12f a a =-则)3(23f a a =-)(1n f a a n n =--1(2)(3)()n a a f f f n ⇒-=++⋯3迭乘累乘法:,,,………, )(1n g a a n n =-若)2(12g a a=则)3(23g a a =)(1n g a a n n =- 1(2)()na g g n a ⇒=⋯4裂项相消法:11(1))((1CAn B An B C C An B An a n +-+-=++=5错位相减法:, 是公差d ≠0等差数列,是公比q ≠1等比数列n n n c b a ⋅={}n b {}n c n n n n n c b c b c b c b S ++⋯++=--1122111121+-++⋯⋯+=n n n n n c b c b c b qS 则所以有 13211)()1(+-⋯⋯+++=-n n n n c b d c c c c b S q 6通项分解法: n n n c b a ±=7等差与等比的互变关系:{}{}na n ab ⇔≠成等差数列(b>0,b 1)成等比数列 {}{}n n a ca d ⇔+≠成等差数列(c 0)成等差数列 {}{}0log n a n b n a a >⇔成等比数列成等差数列{}{}k n n a a ⇒成等比数列成等比数列 8等比、等差数列和的形式:{}Bn An S B An a a n nn +=⇔+=⇔2成等差数列{}(1)(0)n n n a S A q A ≠⇔=-≠(q 1)成等比数列9无穷递缩等比数列的所有项和:{}1lim 1n n n a a S S q→∞⇔==-(|q|<1)成等比数列第四章三角函数角的概念的推广和弧度制——知识点归纳 1角和终边相同:αβZ k k ∈︒⨯+=360αβ2几种终边在特殊位置时对应角的集合为:角的终边所在位置 角的集合X 轴正半轴{}Z k k ∈︒⨯=,360|ααY 轴正半轴 {}Z k k ∈︒+︒⨯=,90360|ααX 轴负半轴 {}Z k k ∈︒+︒⨯=,180360|ααY 轴负半轴{}Z k k ∈︒+︒⨯=,270360|ααX 轴{}Z k k ∈︒⨯=,180|ααY 轴{}Z k k ∈︒+︒⨯=,90180|αα坐标轴{}Z k k ∈︒⨯=,90|αα3弧度制定义:我们把长度等于半径长的弧所对的圆心角叫1弧度角 角度制与弧度制的互化:π=︒180 1弧度1801π=︒︒≈︒=3.57180π4弧长公式: (是圆心角的弧度数) r l ||α=α5 扇形面积公式: 2||2121r r l S α==任意角的三角函数、诱导公式——知识点归纳1 三角函数的定义:以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角αα的终边上任取一个异于原点的点,点P 到原点的距离记为),(y x P,那么(0)r r ==>; ; ; sin y r α=cos x r α=tan yx α=(; ; )cot x y α=sec r x α=csc ryα=2 三角函数的符号:由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值对于第yr一、二象限为正(),对于第三、四0,0y r >>象限为负();②余弦值对于0,0y r <>xr第一、四象限为正(),对于第0,0x r >>二、三象限为负();③正切值对于第一、三象限为正(同号),对于第0,0x r <>yx,x y 二、四象限为负(异号),x y 说明:若终边落在轴线上,则可用定义求出三角函数值。