抽样推断中基本概念和抽样分布
统计学第六章抽样推断
尖山一委…
尖山二委
居民一组
居民二
组
…
第六章 抽样推断
某外国公司在##进行 微波炉市场调查:
STAT
在商场的大门口
在微波炉柜台前
在市区街道旁边
在某个住宅小区
时间表抽样框
第六章 抽样推断
连续出产的产品总体 可以编制抽样框:均STAT 匀的出产时间、可以 预见到的产品总量.
连续到加油站加油的 汽车总体无法编制抽 样框:时间不定、总 量也无法确定.
抽样估计的特点
第六章 抽样推断
按随机原则抽取样本单位
目的是推断总体的数量特征
抽样推断的结果具有一定的可靠程度, 抽样误差可以事先计算并控制
抽样估计的应用
第六章 抽样推断
不可能进行全面调查时 不必要进行全面调查时 来不及进行全面调查时 对全面调查资料进行补充修正时
抽样调查研究
Sampling Study
P N nN N NN n
共n个
⒉ 不重复抽样的可能样本数目:
C N n N N 1 N n 1
第六章 抽样推断
第六章 抽样推断
STAT
★§1.1 抽样方案的设计 ★§1.2 简单随机抽样的抽样误差的测定
§1.3 简单随机抽样的抽样估计
第六章 抽样推断
§1.2 简单随机抽样的抽样误差的测定 STAT
n1 1{i n1E(xiX)2nn(E xX)2} 由E(于 xX)2D (x)D (i1 nxi)n 1 2i n1D (xi)n2
E(sn21)n11{n2nn2}
2
⒋ 样本成数:
pn1,qn0 1p nn
⒌ 样本单位是非标志的标准差:
第六章 抽样推断
抽样检验和抽样分布
占总体单位数N的比例,即:
n n n n 1 2 3 K n
N1 N2 N3
NN K
各类型组应抽取的样本单位数为:
N n
in
n N i N i N
样本比率抽样样本容量:按前面指定的比
例(n/N)从每组的Ni单位中抽取ni个单位 即构成一个抽样总体,其样本容量为:
K
n= n1+ n2+ n3+…+ nk= ni i 1
数μ;
3、样本平均数 x 分布的均方差 x 等于:
当为有限总体无放回抽样时,其样本均值 标准差为:
N
N x
N
N
p
1
p
如果总体为无限总体的或抽取是有放回的
,其样本均值标准差为:
x
N
(二)非正态总体样本平均数 x 的分布及
性质?
1、中心极限定理可以解决上述问题:
一个具有任意函数形式的总体,其样
2、抽样误差:是指由于随机抽样的偶然因 素使样本各单位的结构不足以代表总体 各单位的结构,而引起抽样指标和全及 指标之间的绝对离差。不包含登记性误 差和不遵守随机原则造成的偏差。
影响抽样误差的因素有:总体各单位标 志值的差异程度;样本的单位数;抽样 的方法;抽样调查的组织形式。
第二节 随机抽样设计
样本容量足够大(n=50),据中心极限
定理,x 近似服从正态分布。
(1)
3160
x
800 113.14
x
N
50
x
P x3000 P
x
3000
3160
/ n
113.14
Pz 1.41 0.9207
同理处理(2)和(3)
抽样分布及总体平均数的推断
于是需用t分布来估计该校三年级学生阅读
能力总体平均数95%和99%的置信区间。
由原始数据计算出样本统计量为
X 29.917
S 3.926
当P=0.95时, t11 2.201 0.05
因此,该校三年级学生阅读能力2 得分95%的置信区间为:
X t11 0.05
S n 1
检验的思路是:假定研究样本是从平均数为μ 的总体随机抽取的,而目标总体的平均数 为μ0,检验μ与μ0之间是否存在差异。如果 差异显著,可以认为研究样本的总体不是 平均数为μ0的总体,也就是说,研究样本 不是来自平均数为μ0的总体。
二、总体平均数显著性检验的步骤
一个完整的假设检验过程,一般经过四个 主要步骤:
2.平均数区间估计的计算
①总体正态,σ已知(不管样本容量大小),
或总体非正态,σ已知,大样本
平均数离差的的抽样分布呈正态,平均数的 置信区间为:
X
Z
2
n
X
Z
2
n
(9.1)
例题1:某小学10岁全体女童身 高历年来标准差为6.25厘米, 现从该校随机抽27名10岁女童, 测得平均身高为134.2厘米,试 估计该校10岁全体女童平均身 高的95%和99%置信区间。
⑴.提出假设 ⑵.选择检验统计量并计算统计量的值 ⑶.确定显著性水平 ⑷.做出统计结论
⑴.提出假设
即根据研究假设提出相应的统计检验的假设。
双侧检验的假设形式为: H0:μ=μ0, H1:μ≠μ0 单侧检验的假设形式为: H0:μ≥μ0,H1:μ<μ0 (左侧检验) 或者 H0:μ≤μ0,H1:μ>μ0 (右侧检验)
在确定检验形式时,凡是检验是否与假设 的总体一致的假设检验,α被分散在概率 分布曲线的两端,因此称为双侧检验。
抽样分布知识点总结
抽样分布知识点总结抽样分布是统计学中一个重要的概念,它描述了在进行抽样时得到的样本统计量的分布情况。
抽样分布是统计推断的基础,它可以帮助我们理解抽样误差以及估计参数的可信度。
在本文中,我们将对抽样分布的基本概念、性质和相关理论进行总结和讨论。
一、基本概念1.1 抽样与总体在统计学中,总体是指我们想要研究的所有个体的集合,而抽样则是从总体中选取一部分个体作为样本,以获得对总体特征的估计。
抽样可以是随机抽样、分层抽样、系统抽样等方法,目的是代表性地反映总体的特征。
1.2 样本统计量在抽样中,对样本数据进行统计分析得到的统计量称为样本统计量,常见的样本统计量有均值、方差、标准差、比例等。
样本统计量能够提供有关总体参数的估计和推断。
1.3 抽样分布抽样分布是描述样本统计量的分布情况的统计学概念。
当我们从总体中抽取多个样本,并计算每个样本的统计量时,得到的这些统计量的分布就是抽样分布。
抽样分布可以反映出样本统计量的可变性、偏移和分布形态等特征。
二、性质2.1 中心极限定理中心极限定理是抽样分布理论中的重要定理,它描述了在一定条件下,样本均值的抽样分布近似服从正态分布。
中心极限定理对于理解抽样分布的性质和应用具有重要意义,也为许多统计推断方法提供了理论基础。
2.2 大数定律大数定律是另一个重要的抽样分布性质,它描述了当样本容量足够大时,样本均值会收敛于总体均值,即样本均值的抽样分布会集中在总体均值附近。
大数定律为我们理解样本统计量的稳定性和准确性提供了重要参考。
2.3 置信区间置信区间是根据抽样分布推断总体参数的一种方法,通过对抽样分布的分布情况进行分析,我们可以建立对总体参数的置信区间,从而对总体特征进行推断。
置信区间对于统计推断的可信度和精度有着重要的作用。
三、理论基础3.1 样本容量样本容量是影响抽样分布的一个重要因素,在实际抽样中,样本容量的大小对于样本统计量的分布情况有着重要的影响。
通常情况下,样本容量越大,抽样分布的稳定性和准确性越高。
统计学—抽样推断
解:已知样本的合格率= 3006 0.98 300
重复抽样: P (1 P )0 .9 8 (1 0 .9)8 0 .00 8 0 .80 % 0
p
n
300
不重复抽样:
P(1P)(1n) 0.980.02(1 300)0.80% 6
p
n
N
300 60,000
21
第六章 抽样推断
STAT
(二)分层(类型)抽样形式下
样本成数近似服从于以总体成数为P,方差为P(1-P)/n的正态12 分布。
第六章 抽样推断
STAT
第二节、抽样误差的计算
一、抽样误差的概念
登记性误差
调查误差 代表性误差
系统性误差
实际抽样误差
抽样误差 抽样平均误差
代表性误差是指 由于样本的结构不能完全代表总体的结构 所引起的误差。
系统性误差是指由于抽样调查违反随机原则引起的误差;
p
n N 1
nN
注:(1)可用样本成数方差代替总体成数方差;
(2)可用样本成数 p^ 代替总体成数P;
(3)有若干个P值时,取最接近0.5的P值;
(4)无P值时,取P=0.5 (此时方差最大)
20
第六章 抽样推断
STAT
例:一批食品罐头60,000桶,随机抽查300桶,发现有6桶不合 格,求合格率的抽样平均误差。
统计上讲的抽样一般都是指概率抽样。 二、抽样推断的特点
1、是非全面调查 与普查的区别;
2、按随机原则抽取样本 与典型调查和重点调查的区别; 3、根据样本指标推断总体指标 与重点调查的区别; 4、抽样误差可以事先计算与控制 与典型调查的区别。
3
第六章 抽样推断
抽样分布样本统计量的分布及其应用
抽样分布样本统计量的分布及其应用在统计学中,抽样是一种数据分析的方法,它通过对总体中的一部分个体进行观察和测量来推断总体的特征。
而抽样分布是指抽取相同样本量的多个样本后得到的统计量的分布。
样本统计量是对样本数据进行计算得到的统计指标,它可以用来估计总体参数,并进行假设检验。
1. 抽样分布的基本概念抽样分布具有一些基本性质,首先是无偏性。
当样本容量趋向于总体容量时,样本统计量的期望值会无限接近总体参数的真实值。
其次是有效性,即样本统计量的方差趋近于零,它可以用来估计总体参数的精确度。
最后是一致性,样本统计量在样本容量逐渐增大时趋近于总体参数。
2. 抽样分布的常见形式常见的抽样分布有正态分布、t分布和卡方分布。
其中正态分布应用最为广泛,它在中心极限定理的作用下,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。
而t分布则适用于当总体标准差未知、样本容量较小的情况下,它的形状比正态分布要略扁平一些。
卡方分布则主要用于样本方差的估计与检验。
3. 抽样分布的应用抽样分布的应用非常广泛,常用于以下几个方面:3.1 参数估计通过抽样分布,我们可以利用样本统计量对总体参数进行估计。
例如,可以利用样本均值估计总体均值,利用样本标准差估计总体标准差。
通过计算置信区间,我们可以得到对总体参数的范围估计。
3.2 假设检验假设检验是统计学中非常重要的一项工具,用于判断样本数据是否支持某个假设。
基于抽样分布,我们可以计算统计量的P值,进而判断样本数据与假设的一致性。
常用的假设检验有均值检验、方差检验、比例检验等。
3.3 质量控制在生产过程中,质量控制是非常关键的。
通过对样本数据进行分析,可以判断生产过程是否正常。
例如,可以通过控制图分析样本均值的变化情况,以判断过程是否处于控制状态。
3.4 统计决策在实际决策中,我们往往需要依据样本数据来进行判断。
抽样分布提供了一种基于统计的决策依据。
例如,在市场调研中,我们可以通过对样本数据进行分析,对市场潜力进行预测,从而指导营销策略的制定。
《国民经济统计学概论》_第六章_抽样推断
总体分组: 2 (X X )2 F F
总体成数的方差为 P(1 - P)
2.统计量,又称样本指标,反映样本特 征的统计指标
(1)样本平均数( x ),样本各 单位数量标志值的平均数
未分组: x x
n
分组: x xf f
(2)样本成数(p) 是指样本中具有某一相同标志表现的单
要有四个:
(1)总体平均数( X )
总体各单位数量标志值的平均数
X
总体未分组情况下:X N
总体分组情况下:
XF
X
F
(2)总体成数(P)
是指总体中具有某一相同标志表现的单 位数占全部总体单位数的比重
多为交替指标
总体中具有相同标志表现的单位数用N1 表示
P N1 N
(3)总体方差和标准差 总体方差(σ2)
特点: 1.抽样方式组织简便,便于实施 2.在已知总体某些有关信息的情况下,
采用等距抽样能保证样本单位在总体中 均匀的分布,从而提高了样本对总体的 代表性,有利于降低抽样误差。
无关标志排队 有关标志排队
(三)类型抽样 首先把总体按某一标志分成若干个类型
组,使各组组内标志值比较接近,然后 分别在各组内按随机原则抽取样本单位。 特点:在于把分组法和随机抽样原则结 合起来。
i2ni
n
抽样成数的平均误差:
重置抽样:
p
P(1 P) n
不重置抽样:
第四节 抽样的组织形式及抽样方 案设计
一、抽样的组织形式 (一)简单随机抽样 从总体全部单位中直接按随机原则抽取
样本单位,使每个总体单位都有同等机 会被抽中
最基本形式
(1)直接抽选法 直接从调查对象中随机抽选。
统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断
统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。
本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。
首先,我们来理解抽样的概念。
在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。
总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。
通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。
接下来,让我们了解抽样的方法。
常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
每种抽样方法都有其特点和适用范围。
简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。
系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。
分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。
整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。
选择合适的抽样方法可以更好地保证样本的代表性和可靠性。
抽样之后,我们需要了解抽样分布的概念。
在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。
常见的抽样分布包括正态分布、t分布和F分布等。
其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。
t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。
F分布常用于分析方差比较和回归模型中的显著性分析。
抽样分布的重要性在于它可以帮助我们进行推断。
根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。
参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。
假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。
通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。
在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。
关于对统计推断中抽样分布的总结及判别
关于对统计推断中抽样分布的总结及判别统计推断是统计学的重要分支,用于从一个样本中推断总体的性质。
在进行统计推断时,我们需要对样本进行抽样,并利用抽样数据来进行分析。
抽样分布是统计推断的基础,它是由样本数据的一个统计量构成的分布。
本文将对抽样分布的概念、属性以及判别进行总结,并阐述其在统计推断中的作用。
抽样分布的概念:抽样分布是由样本统计量的取值构成的概率分布。
在统计推断中,我们往往无法获得总体的全部数据,而只能通过抽样来获取一部分数据。
我们需要对样本数据进行抽样,得到一个样本统计量,如均值、方差等。
样本统计量的分布即为抽样分布。
抽样分布的属性:1. 中心性质:抽样分布的中心通常与总体相同或近似相同。
当样本容量足够大时,抽样分布的均值接近总体均值。
2. 精确性质:抽样分布的方差通常比总体方差小。
样本容量越大,抽样分布越接近总体分布。
3. 形态性质:抽样分布的形态通常与总体分布有关。
当总体分布近似于正态分布时,抽样分布也近似于正态分布。
抽样分布的判别:在进行统计推断时,我们通常需要判断一个样本统计量是否来自某个已知分布。
为此,我们可以利用分布的特征进行判别。
1. 直方图:可以通过绘制样本统计量的直方图来观察其分布情况。
如果直方图呈现对称分布且近似于正态分布,那么我们可以判定样本统计量来自正态分布。
2. 正态概率图:正态概率图是一种用于判断数据是否来自正态分布的图形方法。
如果数据点近似位于一条直线上,那么可以判定数据来自正态分布。
3. 假设检验:通过设立假设并进行统计检验,可以判断样本统计量是否来自某个特定的分布。
常用的假设检验方法包括Z检验、t检验等。
抽样分布在统计推断中的作用:抽样分布在统计推断中起着重要的作用,它为我们提供了从样本推断总体性质的基础。
1. 参数估计:通过样本的抽样分布,可以进行总体参数的点估计和区间估计。
通过样本均值的抽样分布,可以推断总体的平均值。
2. 假设检验:抽样分布是进行假设检验的基础。
经济应用统计学-第六章抽样推断
非参数检验优缺点总结
• 易于理解和实现:非参数检验方法通常基于直观和易于理解的思想,计算和实现相对简单。
非参数检验优缺点总结
检验效能较低
与参数检验方法相比,非参数检 验方法的检验效能通常较低,即 当原假设为真时,非参数检验方 法更容易犯第二类错误(接受原 假设)。
对数据信息的利用不 充分
非参数检验方法通常只利用数据 的部分信息(如排序信息),而 忽略了数据的其他有用信息(如 数值大小),因此可能无法充分 利用数据信息。
两配对样本非参数检验
包括Wilcoxon 符号秩次检验、McNemar 检验 等方法,用于比较同一总体内两个配对样本的差 异是否显著。
两独立样本非参数检验
包括Mann-Whitney U 检验、Kruskal-Wallis H 检验等方法,用于比较两个独立样本所来自的 总体的分布位置或分布形状是否存在差异。
考虑样本量大小
在选择置信水平时,应充分考虑样本量的大小。当样本量较小时,应选择较低的置信水平以避免过大的估计误差;当 样本量较大时,可以选择较高的置信水平以获得更精确的估计结果。
参考相关文献或行业标准
在选择置信水平时,可以参考相关领域的文献或行业标准,了解通常采用的置信水平及其依据。这有助 于确保研究结果的可比性和可靠性。
04
假设检验原理与步骤
假设检验基本概念阐述
原假设与备择假设
原假设通常是研究者想要推翻的 假设,而备择假设则是研究者希 望证实的假设。
检验统计量与拒绝域
检验统计量是根据样本数据计算出 的用于检验原假设的统计量,而拒 绝域则是根据显著性水平和检验统 计量的分布确定的,当检验统计量 落入拒绝域时,我们拒绝原假设。
单侧检验
当研究者对备择假设的方向有明确预期时,即备择假设只可能大于或小于原假设时,应选择单侧检验 。例如,在比较两种药物疗效的研究中,如果研究者预期新药疗效优于旧药,则应选择单侧检验。
抽样调查中的基本概念
这个定理告诉我们:在大样本情况下样本成数p近似服从
正态分布,记作
p
~N
P
,P(1- n P)
。
统计学
2、总体的分类
按单位标志的性质不同:分为变量总体和属性总体两种。
如果构成总体的每个单位标志的具体表现是用标志值表示 ,这种总体就是变量总体。
如果构成总体的每个单位的具全表现是用文字表示,这种 总体就是属性总体。
通常用符号N表示总体中的单位数量。
抽样调查中的基本概念
(二)样本(也称样本总体)
它是从全及总体中随机抽取出来的,用来代表全及总 体的那一部分单位的集合体。
(一)总体参数
1、什么是总体参数?
在抽样调查中,用来反映总体数量特征的总体指标,也称为总 体参数。
研究目的一经确定,总体也就唯一地确定了。所以总体指标 的数值是客观存在的、确定的、未知的,需要用样本资料去估计 推断的。分析一个总体常常可运用多个总体指标,通常所需要估 计的总体参数有总体平均数、结构相对指标、总体方差或总体标 准差等。
方差: P P(1 P)
标准差: P P(1 P)
X
1 0 合计
表7-1 属性总体平均数和方差计算表
F
F
X
F
F
(X X )2
(X X )2 F
F
P
P
(1−P)2
Q2P
Q
0
(0−P)2
P2Q
1
P
—
PQ
抽样调查中的基本概念
(二)样本统计量
1、什么是样本指标
根据样本资料计算的指标称为样本指标,又称为样本统计量
B
n N
N2
抽样调查中的基本概念
概率论与数理统计基本概念及抽样分布PPT课件
~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,
则
2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α
即
( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2
则
E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)
关于对统计推断中抽样分布的总结及判别
关于对统计推断中抽样分布的总结及判别统计推断是概括地利用样本数据进行总体特性分析和进行总体特性判断的一种方法。
而抽样分布是统计推断的基础,它是指从总体中抽取多个样本,并根据样本数据计算出一种统计量的分布。
通过对抽样分布的分析和判断,可以对总体的一些特性进行估计和推断。
抽样分布有很多种类型,下面将对其中常见的几种进行总结和判别。
首先是均值的抽样分布,它是指从总体中抽取多个样本并计算出样本均值的分布。
根据中心极限定理,当样本容量足够大时(通常大于30),样本均值的抽样分布近似服从正态分布。
这个结论非常重要,因为正态分布具有许多重要的数学性质,可以方便地进行推断。
当总体分布未知时,可以使用样本均值的抽样分布进行总体均值的置信区间估计和假设检验。
其次是比例的抽样分布,它是指从总体中抽取多个样本并计算出样本比例的分布。
对于大样本而言,样本比例的抽样分布近似服从正态分布。
和样本均值一样,样本比例也适用于总体比例的置信区间估计和假设检验。
在判别抽样分布时,通常需要进行假设检验。
假设检验是基于样本数据进行的,其中包括原假设和备择假设。
原假设是指对总体特性进行的某种假设,备择假设是对原假设的补充或对立的假设。
根据样本数据计算出的统计量会与假设进行比较,并计算出一个p值来判断原假设是否可接受。
具体而言,如果p值小于事先设定的显著性水平,则拒绝原假设,接受备择假设;如果p值大于显著性水平,则无法拒绝原假设。
除了假设检验,还可以利用抽样分布进行置信区间的估计。
置信区间是关于总体特性的一个区间估计,表示总体参数的一个范围,其中包括了抽样分布的变化范围。
置信区间的计算通常基于抽样分布的性质和中心极限定理,可以用来估计总体的平均值、比例、差异等。
抽样分布是统计推断的基础,它可以用来进行总体特性的估计和判断。
在应用抽样分布时,需要了解不同类型抽样分布的特性,并掌握假设检验和置信区间估计的方法。
抽样分布的理论和应用在很多领域都有重要的应用,对于定量分析和决策有着重要的意义。
抽样与抽样分布
什么是抽样分布?
如果要估计总体的均值 ;是用样本平均值 还是用中位数m?
x,
3.5 第一次,2,2,6,m=2 x 3.33 第二次,3,4,6,m=4, x 4.33
还是掷骰子,总体均值 可见,不能仅仅根据一个样本去比较是 本n个观察值计算的统计量的概率分布。
x 和m
平均身高=169.8CM
总平均身高=168.6CM 平均身高=174.6CM
抽样的三个特点
遵守随机原则; 以样本的数量特征推断总体的数量特征 抽样推断产生抽样误差,但抽样误差可以 事先计算并控制。
抽样推断的应用
不可能进行全面调查时; 不必要进行全面调查时; 来不及进行全面调查时; 对全面调查资料进行补充修正时。
随机原则的实现
抽签法,是将总体中每个单位的编号写在外形 完全一致的签上,将其搅拌均匀,从中任意抽 选,签上的号码所对应的单位就是样本单位。
随机数表法:将总体中每个单位编上号码,然
后使用随机数表,查出所要抽取的调查单位。 计算机模拟法:是将随机数字编制为程序存储 在计算机中,需要时将总体中各单位编上号码, 启用随机数字发生器输出随机数字。
4 统计抽样与抽样分布
抽样的基本概念
抽样方法
抽样分布的概念
样本均值的抽样分布
本章的学习目的
本章的学习目的是为了认识到通过样本推 断总体的科学性。 当总体元素非常多,或者检查具有破坏性 时,需要进行抽样。抽样的目的是为了推 断总体的数量特征,但这种推断必定伴有
某种程度的不确定性,需要用概率来表示
正态分布的计算 - 例题
《统计学原理》第5章:抽样推断
n
抽样推断的基本原理
统计推断的理论基础—样本的概率分布
按一定方法随机抽取样本时,所有可能样本的 特征值及其所对应的概率分布情况
学生 A B C D E F G 成绩 30 40 50 60 70 80 90
按随机原则考虑顺序重复抽样抽选出4名学生。
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示.
考虑顺序的不重复抽样 考虑顺序的重复抽样
M N! (N n)!
M Nn
不考虑顺序的不重复抽样 不考虑顺序的重复抽样
M N! n!(N n)!
全及指标与样本指标
•根据全及总体中各单位的标志值或标志属性计算得 来,反映总体某种特征的指标 •根据样本总体中各单位的标志值或标志属性计算得 来的综合指标.
抽样推断的一般问题
抽样方法
•重复抽样和不重复抽样
•考虑顺序的抽样和不考虑顺序的抽样
抽样推断的一般问题
抽样方法—重复抽样
从总体N个单位中随机抽取一个容量为n的样本,每 次抽取一个单位,把结果登记后再放回到总体中,重新 参加下一次的抽取.
抽出个体
登记特征
放回总体
继续抽取
抽样推断的一般问题
抽样方法—不重复抽样
从总体N个单位中随机抽取一个容量为n的样本, 每次抽取一个单位,把结果登记后不再放回到 总体参加下一次的抽取.
抽出 个体
登记 特征
继续 抽取
抽样推断的一般问题
抽样方法—考虑顺序的抽样
从总体N个单位中抽取n个单位构成样本,不但考虑样本 各单位成分的不同,而且还要考虑样本各单位的中选顺 序.
第6章 抽样推断
控制。
三、抽样推断的作用
1、对某些不可能进行全面调查的而又要求反映全面 情况的无限总体,必须采用抽样推断的方法。 2、对某些属于破坏性或消耗性产品质量的检查只能 进行抽样推断。 3、对某些不必要进行全面调查的总体现象可以利用 抽样推断取得资料。 4、对全面调查进行验证,并作为修正数字的参考。 5、生产过程中的质量控制。 6、对某些总体的假设进行检验,判断真伪,为制定 决策提供依据。
第二节 抽样估计的一般原理
一、抽样估计的特点
1、运用的是归纳推理的方法。 2、抽样估计运用的是概率原理。 3、抽样估计的结论存在一定的抽样误差。
二、抽样估计的优良标准
由于抽样指标作为统计量,它是一个随 机变量,随着抽取的样本不同,便有不同估 计值。因此要判断一种估计量的好坏,仅从 某一次试验的结果来衡量是不可能的,而应 该从多次重复试验中,看这种估计量是否在 某种意义上说最接近于被估计参数的真值。 一般地说,用抽样指标估计总体指标应 该有三个要求。满足了这个要求的,就可以 认为是合理的估计或优良的估计。
x
x x X x x
1500 160 X 1500 160 1340 X 1660
两种抽样误差的关系
抽样平均误差具有较强的客观性,抽取的样
本一旦确定,抽样平均误差也就随之确定。 它由样本单位数、总体标准差、总体单位数 确定。
抽样极限误差具有较强的主观性,人们可以
离差,不可避免,可以控制。 登记误差:由于观察、测量、登记、计算造 成的误差,可以避免。 系统性误差:由于有意识选取调查单位造成 的系统偏差。理论上可以避免。
3.影响抽样误差的因素
(1) 抽样单位数目的多少
在其他条件不变的情况下,抽样单位数愈 多,抽样误差就愈小;反之抽样单位数少了, 则抽样误差就要增大。
数理统计中的抽样分布与统计推断
数理统计中的抽样分布与统计推断在数理统计中,抽样分布和统计推断是重要的基本概念。
通过抽样分布,我们可以推断总体的参数,并对样本数据进行可靠的统计推断。
本文将介绍抽样分布和统计推断的基本原理及应用。
一、抽样分布1. 抽样的定义和目的抽样是从总体中选取部分个体作为样本的过程。
通过抽样分布,我们可以知道样本统计量的概率分布。
常见的抽样方法有简单随机抽样、系统抽样、分层抽样等。
抽样的目的是为了在不损失精确度的情况下,通过样本对总体进行推断。
2. 样本统计量在抽样分布中,我们通常使用样本统计量来近似估计总体参数。
常见的样本统计量包括样本均值、样本方差等。
样本统计量的概率分布称为抽样分布。
通过样本统计量的抽样分布,我们可以推断总体参数的区间估计和假设检验。
3. 中心极限定理中心极限定理是抽样分布中的重要定理之一。
它表明,当样本容量足够大时,样本均值的抽样分布将近似符合正态分布。
而对于样本比例和样本差异等情况,也可通过中心极限定理进行近似处理。
二、统计推断1. 参数估计参数估计是统计推断中的核心内容之一。
通过样本数据,我们可以对总体的未知参数进行估计。
常用的参数估计方法有点估计和区间估计。
点估计是使用样本数据计算出一个无偏估计量,作为总体参数的点估计;区间估计则是对总体参数提供一个置信区间,即通过样本数据给出参数的一个范围估计。
2. 假设检验假设检验是另一个重要的统计推断方法。
通过构建假设,我们可以根据样本数据判断总体参数是否满足某种假设。
常见的假设检验方法包括单样本假设检验、双样本假设检验、方差分析等。
在假设检验中,我们会计算出一个检验统计量,并进行显著性水平的假设检验。
三、实际应用抽样分布和统计推断在实际应用中具有广泛的应用。
在医学研究中,通过抽样分布和统计推断可以判断某种药物是否有效;在市场调研中,可以通过样本数据推断人群对某种产品的需求。
统计推断还可以应用于工程管理、经济分析、环境监测等领域。
结语数理统计中的抽样分布和统计推断是统计学的基本概念,对于实际问题的分析和解决具有重要意义。
【统计学概论】抽样推断
每包重量(克) 149以下 149—150
150—151 151以上
包数 10 20 50 20
(1)以99.73%的概率保证估计这批茶叶平均每包重量的 可能范围
(2)以同样的概率保证估计这批茶叶包装的合格率的可 能范围
• 三必要抽样数目的确定
• (一)影响抽样数目的因素
•
影响抽样数目的因素有:
(一)总体和样本
总体:调查研究的事物或现象的全体,所包含 的单位数用“N”表示。
样本:从总体中所抽取的部分个体所构成的小 的总体,当中所包含的单位数用“n”
表 示,称为“样本容量”。 样本可分为: 大样本 小样本
(二)全及指标与样本指标 (参数与统计量)
1、全及指标:说明全及总体的综合数量 特征,是唯一的,又称为“参数”。
尺度,用“ ”。
2、公式:
(1)重复抽样条件下:
(2)不重复抽样条件下:
五、抽样极限(允许)误差
1、概念:是在一定的概率保证下,用样本 指标估计全及指标时允许出现的
最 大误差,用“△”表示.
2、计算公式: 根据置信度(即可靠性,F(t)=1-α),
查正态概率分布表,查得对应的概率度t。 (在总体方差未知的情况下)
例3:P94
例4 P95
例5 P96
三、抽样误差
1、概念:是在遵循随机原则的条件下,用 样本指标来代表全及指标所不可避免 的误差。就是统计误差中的随机误差
抽样误差=样本指标 -全及指标 2、影响因素:
①抽取单位数n的多少 ②被研究标志的变异程度 ③抽样方法 ④抽样组织方式
四、抽样平均误差
1、概念:是所有可能组成的样本的抽样误 差的平均数,反映样本指标与全及指标的 平均误差程度,是衡量样本代表性大小的
第六章抽样推断知识分享
n
抽样推断的基本原理
统计推断的理论基础—样本的概率分布
按一定方法随机抽取样本时,所有可能样本的特征值 及其所对应的概率分布情况
学生 A B C D E F G 成绩 30 40 50 60 70 80 90
按随机原则考虑顺序重复抽样抽选出4名学生。
2
1
0 30 40 50 60 70 80 90
容量大
抽样误差小
•总体的变异程度
变异大
抽样误差大
•抽样方法和抽样组织方式 不同的方式方法产生的抽样误差
大小也不一样
第二节 抽样推断的基本原理
抽样推断的基本原理
统计推断的理论基础—大数法则
如果变量总体存在着有限的平均数和方差,则对于充 分大的抽样单位数,可以几乎为1的概率来期望,样本 平均数和总体平均数的绝对离差任意小(二者几乎相 等)。
t22 1.92620200
n2x 102 0 15.63 461537
抽样推断的基本原理
抽样推断样本容量的计算 不重复抽样
t t 2(Nn)
x
x
n N1
t2 2N n N2 t2 2
x
抽样推断的基本原理
抽样推断样本容量的计算 重复抽样
p tp t
p(1p) n
t p(1 p) n
p
t 2 p(1 p)
抽样推断的基本原理
抽样推断可靠程度的计算
抽样极限误差可以以抽 样平均误差为标准单位 来衡量.
t
x
x
p t p
3x2x总1体x 中心1值x2x 3x
样本统计量的抽样分布
N(总体中心值, n )
抽样推断的基本原理
抽样推断可靠程度的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际抽样误差 (x X)2 M 理论公式 M 样本个数 抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
(二)抽样平均误差
它反映了抽样指标与总体指标的平均离差程度,即无 论抽到哪个样本,都认为抽样误差就是这么大。它的 实质含义是抽样指标的标准差。
(x)
n N1
nN
不重复抽样的抽样平均误差公式比重复抽样的相应
公式多了系数
N n N 1
,这个系数称为不重复抽样
修正系数。当N很大时 。 Nn 1 n
N 1
N
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
重复抽样的方法下: 比例(成数)的抽样平均误差:
( p)
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
三、抽样误差的概念和种类
第一节 五
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
统计调查的误差,是指调查所得结果与总体真 实数值之间的差异。
统计调查误差的来源有: 登记性误差 (可避免)
代表性误差:系统误差(可避免)
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
平均数的抽样极限误差与抽样平均误差的关系
x tx
置信度与概率度 置信度:概率值 其中t为概率度,有一个概率就有一个t值与它相对应
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
抽样推断中基本概念和抽样分布
NP
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 一
样本比例(也称样本成数)
p
n1 n
样本比例的标准差
p(1 p)
样本比例的方差 p(1p)
抽样推断中基本概念和抽样分布
二、抽样方法 1)重复抽样,也叫回置抽样。 2)不重复抽样,也叫不回置抽样。
抽样推断中基本概念和抽样分布
成数的抽样极限误差与抽样平均误差的关系
p tp
置信度与概率度 置信度:概率值 其中t为概率度,有一个概率就有一个t值与它相对应
抽样推断中基本概念和抽样分布
假设A、B、C、D、E5位同学的统计学成绩分别为:80、 86、90、92、 96。可计算得总体均值为88.8,总体方差为29.76。现在随机从中抽容量为2 的样本。
重复抽样的所有可能的样本:
样本(AA)(AB)(AC)(AD)(AE)
均值 80 83 85
86 88
样本 (BA)(BB) (BC) (BD)(BE)
制)
随机误差(不可避免,可计算控
抽样误差
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
抽样误差的概念
它是指用样本指标推断总体指标时,由于样本结 构与总体结构不一致、样本不能完全代表总体而产生 的误差。
是一种代表性误差
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
1)重复抽样,也叫回置抽样。 采用重复抽样,同一总体单位有可能被重复
抽中,而且每次都是从N个总体单位中抽取, 每个总体单位在每次抽样中被抽中的概率都 相同,n次抽取就是n次相互独立的随机试 验。 2)不重复抽样,也叫不回置抽样。 由于每次抽取是在不同数目的总体单位中进 行的,每个总体单位在各次抽样中被抽中的 概率不相等,即n次抽取可看作是n次互不 独立的随机试验。
修正系数。当N很大时 。 Nn 1 n
N 1
N
抽样推断中基本概念和抽样分布
(三)抽样极限误差
(一)抽样极限误差的概念
抽样极限误差是指一定概率下抽样误 差的可能范围,也称为允许误差。用△ 表示抽样极限误差,则这一概念可以表 述为如下不等式:
下平均值的抽样极限误差 x X x
成数的抽样极限误差 p P p
p(1 p) n
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
采用不重复抽样时,比例(成数)的抽样平均误差应为:
(p)p(1 n p)(N N 1 n)p(1 n p)(1N n)
不重复抽样的抽样平均误差公式比重复抽样的相应
公式多了系数
N n N 1
,这个系数称为不重复抽样
第四章
抽样与抽样估计
第一节 五
实际应用中,抽样误差有 三个密切联系而又相互区 别的概念
(一)实际抽样误差
(二)抽样平均误差
(三)抽样极限误差
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
(一)实际抽样误差 实际抽样误差是指某一具体样本的样本估计值与
总体参数的真实值之间的离差。 实际抽样调查中,由于总体参数是未知数,因此,
平均值体系:
总体指标
总体平均数 X
样本指标
样本平均数 x
总体标准差,
或方差
2
s 样本标准差
s 或样本方差 2
总体标志总量
NX
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
比例(成数
第一节 一
P 总体成数(总体比例)
总体成数的标准差, p(1 p)
或方差 p(1p)
总体中具有某一属性的单位总数
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
重复抽样的方法下: 平均值的抽样平均误差:
(x)
n
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 五
采值的用抽 不样重平复均抽误样2 差时(应,N 为平: 均 n) 2(1n)
均值 83 86 88
89 91
样本 (CA)(CB)(CC)(CD)(CE)
均值 85
88 90
91 93
样本(DA)(DB)(DC) (DD) (DE)
均值 86
89 91
92
94
样本 (EA) (EB)(EC)(ED) (EE)
均值 88
91 93 94
96
抽样推断中基本概念和抽样分布
重复抽样样本均值的平均数为88.8,方差为 14.88。。
第四章 抽样估计
第一节 抽样估计中的基本概念 第二节 抽样估计的基本方法 第三节 其他抽样组织方式
抽样推断中基本概念和抽样分布
面向21世纪 课程教材
第四章
抽样与抽样估计
第一节 一
第一节 抽样估计中的基本概念
一、总体指标和样本指标
所要估计的总体指标有两类:
总体平均数 总体成数
抽样推断中基本概念和抽样分布