高三复习三角函数经典错题集
高中三角函数精选易错题-含答案
高中三角函数精选易错题-含答案一、选择题:一、选择题:1.为了得到函数÷øöçèæ-=62sin p x y 的图象,可以将函数x y 2cos =的图象(的图象( )A 向右平移6pB 向右平移3pC 向左平移6pD 向左平移3p2.函数÷øöçèæ×+=2tan tan 1sin x x x y 的最小正周期为的最小正周期为 ( ) A p B p 2 C 2pD23p3.曲线y=2sin(x+)4p cos(x-4p )和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P1P1、、P2P2、、P3P3……,则……,则|P2P4|等于等于 ( ))A .pB .2pC .3pD .4p4.下列四个函数y=tan2x y=tan2x,,y=cos2x y=cos2x,,y=sin4x y=sin4x,,y=cot(x+4p ),),其中以点其中以点其中以点((4p ,0),0)为中心对称的三角函数有为中心对称的三角函数有( )个)个)个A .1B .2C .3D .45.函数y=Asin(w x+j )(w >0,A ¹0)0)的图象与函数的图象与函数y=Acos(w x+j )(w >0, A ¹0)0)的图象在区间的图象在区间的图象在区间(x0,x0+(x0,x0+w p )上(上()A .至少有两个交点.至少有两个交点B .至多有两个交点.至多有两个交点C .至多有一个交点.至多有一个交点D .至少有一个交点.至少有一个交点6. 在D ABC 中,中,2sinA+cosB=22sinA+cosB=22sinA+cosB=2,,sinB+2cosA=3,则ÐC 的大小应为的大小应为( ) ( )A .6p B .3p C .6p 或p 65D .3p 或32p7.已知tan a tan b 是方程x2+33x+4=0的两根,若a ,bÎ(-2,2pp),则a +b =( ))A .3p B .3p 或-p 32C .-3p 或p 32D .-p 321010.. ABC D 中,A 、B 、C 对应边分别为a 、b 、c .若x a =,2=b ,°=45B ,且此三角形有两解且此三角形有两解,,则x 的取值范围为值范围为 ( ) ( )A.)22,2(B.22C.),2(+¥D. ]22,2( 1111..已知函数已知函数 y=sin( y=sin(w x+F )与直线y =21的交点中距离最近的两点距离为3p,那么此函数的周期是( ))p]]]2214.函数.函数]324pp pp pppk21-k21-k 21-21k -p p p22,22p个单位长度,再将所得图象作关于π-π) 2x+ 2π2π) ])3 )3xx cossin]p](](p ]]],2)3,2)3的最小正周期为sin sin ppp,43pp 23724p p b a +aa3])p的值域是的值域是 .的值域为.a](3(tan 3)的最小正周期是的最小正周期是 q q sin 1sin 1+-)cos(p上述四个命题中,正确的命题是上述四个命题中,正确的命题是 ④ 1-t 22的取值范围是)(p )的整数倍。
高中数学三角函数易错题
高中数学易做易错题 专题一:三角比1.假设角α终边上一点P 的坐标为〔θcos ,θsin 〕〔Z k k ∈+≠,2ππθ〕,那么θα-=。
错解:由θαtan tan =得πθαk =-〔Z k ∈〕。
正解:同时θαsin sin =,θαcos cos =,∴πθαk 2=-〔Z k ∈〕。
2.βαβαtan 3tan ,sin 2sin ==,求α2cos 。
错解:由1cot csc 22=-ββ消去β得1cot 9csc 422=-αα,解得83cos 2=α。
分析:遗漏0sin =α的情形。
还有1cos 2=α的情形。
3.α、β∈〔0,π〕,135)sin(,212tan=+=βαα,求βcos 。
错解:544112122tan 12tan 2sin 2=+⨯=+=ααα,534114112tan 12tan 1cos 22=+-=+-=ααα ∵α、β∈〔0,π〕,∴1312169251)(sin 1)cos(2±=-±=+-±=+βαβα, ∴αβααβααβαβsin )sin(cos )cos(])cos[(cos +++=-+=∴6516cos -=β,或6556cos =β。
分析:∵)sin(13554sin βαα+=>=,∴2πβα>+,∴1312)cos(-=+βα,∴6516cos -=β。
4.设πα<<0,21cos sin =+αα,那么α2cos 的值为。
错解:432sin -=α,∵πα220<<,∴472cos ±=α。
正解:∵0cos ,0sin <>αα且021cos sin >=+αα, ∴432παπ<<,∴232παπ<<,∴472cos -=α。
4-1.π<≤=+x x x 0,137cos sin ,那么=x tan 。
第五章 三角函数典型易错题集(解析版)
第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。
【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。
【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。
【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。
②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。
【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。
错题宝典高考复习易错题分类《三角函数》易错题1770
错题宝典高考复习易错题分类《三角函数》易错题 测试题 2019.91,求函数3)4cos(222sin )(+++=x x x f π的值域2,已知函数f(x)=-sin 2x+sinx+a ,(1)当f(x)=0有实数解时,求a 的取值范围;(2)若x ∈R ,有1≤f(x)≤417,求a 的取值范围。
3,已知函数0,0)(sin()(>Φ+=ωωx x f ≤Φ≤)π是R 上的偶函数,其图像关于点M )0,43(π对称,且在区间[0,2π]上是单调函数,求Φ和ω的值。
4,已知方程01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan ,且α、∈β ⎝⎛-2π,⎪⎭⎫2π,则2tanβα+的值是_________________.5,已知αβαcos 4cos 4cos 522=+,则βα22cos cos +的取值范围是_______________. 6,若()π,0∈A ,且137cos sin =+A A ,则=-+A A AA cos 7sin 15cos 4sin 5_______________.7,函数f x a x b ()sin =+的最大值为3,最小值为2,则a =______,b =_______。
8,若Sin 532=αcos 542-=α,则α角的终边在第_____象限。
9,在△ABC 中,已知A 、B 、C 成等差数列,则2tan 2tan 32tan 2tanC A C A ++的值为_________.10,函数的值域是 .测试题答案1, 答案:原函数可化为,3)s i n (c o s 22s i n )(+-+=x x x x f 设]2,2[,sin cos -∈=-t t x x 则212sin t x -=则5)1(42)(22+--=++-=t t t x f 5)(,1max ==∴x f t 时当,当222min )(,2-=-=x f t 时 错解:]5,(-∞错因:不考虑换元后新元t 的范围。
三角函数典型超级易错题
三角函数典型超级易错题三角函数是高中数学中的一个重要章节,涉及到许多概念和性质。
虽然三角函数的基本理论并不难以理解,但由于其具有一些易错点,所以在做题过程中可能会遇到一些挑战。
本文将就三角函数中的一些典型易错题进行详细分析和解答,以帮助读者更好地理解和掌握这一知识点。
1. 题目:已知$\tan x=\frac{3}{4}$,求$\sin x$和$\cos x$的值。
解答:首先,根据定义,$\tan x=\frac{\sin x}{\cos x}$,所以我们可以得到一个等式:$$\frac{\sin x}{\cos x}=\frac{3}{4}$$接下来,我们可以利用三角函数的定义和性质,将$\sin x$和$\cosx$之间的关系进行转化。
通过三角函数的定义,我们知道$\sin x$和$\cos x$是有关的:$$\sin^2x+\cos^2x=1$$将其变形得到:$$\sin^2x=1-\cos^2x$$将上式代入第一个等式中,得到:$$\frac{1-\cos^2x}{\cos x}=\frac{3}{4}$$进一步整理,得到二次方程:$$4-4\cos^2x=3\cos x$$将其变形,得到:$$4\cos^2x+3\cos x-4=0$$这是一个关于$\cos x$的一元二次方程,我们可以使用求根公式求解。
令$a=4$,$b=3$,$c=-4$,带入求根公式:$$\cos x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$代入数值,我们可以解得:$$\cos x=\frac{-3\pm\sqrt{9+64}}{8}$$将其化简得到:$$\cos x=\frac{-3\pm\sqrt{73}}{8}$$但是我们需要注意的是,对于给定的条件$\tan x=\frac{3}{4}$,角$x$的值是有限制的。
在单位圆上,正切函数$\tan x$的定义域是$(-\infty, \infty)$,而我们已知$\tan x=\frac{3}{4}$,所以根据正切函数在单位圆上的性质,我们可以得到一个范围限制:$$0<x<\frac{\pi}{2}$$在这个范围内,$\cos x>0$,所以我们可以舍弃$\cos x<0$的解,只考虑$\cos x>0$的解。
高三复习三角函数经典错题集
高中数学三角函数部分错题精选一、选择题:1.(如中)为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: B2.(如中)函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y 的最小正周期为 ( )Aπ B π2 C2π D 23π错误分析:将函数解析式化为x y tan =后得到周期π=T ,而忽视了定义域的限制,导致出错.答案: B3.(石庄中学) 曲线y=2sin(x+)4πcos(x-4π)和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P 1、P 2、P 3……,则|P 2P 4|等于 ( )A .πB .2πC .3πD .4π 正确答案:A 错因:学生对该解析式不能变形,化简为Asin(ωx+ϑ)的形式,从而借助函数图象和函数的周期性求出|P 2P 4|。
4.(石庄中学)下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+4π),其中以点(4π,0)为中心对称的三角函数有( )个A .1B .2C .3D .4正确答案:D 错因:学生对三角函数图象的对称性和平移变换未能熟练掌握。
5.(石庄中学)函数y=Asin(ωx+ϕ)(ω>0,A ≠0)的图象与函数y=Acos(ωx+ϕ)(ω>0, A ≠0)的图象在区间(x 0,x 0+ωπ)上( )A .至少有两个交点B .至多有两个交点C .至多有一个交点D .至少有一个交点正确答案:C 错因:学生不能采用取特殊值和数形结合的思想方法来解题。
6.(石庄中学) 在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A .6πB .3πC .6π或π65D .3π或32π正确答案:A 错因:学生求∠C 有两解后不代入检验。
高考数学易错题集锦 三角函数
三角函数学校:___________姓名:___________班级:___________考号:___________ 一、选择题1.若A 、B 、C 是ABC ∆的三个内角,且)2(π≠<<C C B A ,则下列结论中正确的个数是( )①.C A sin sin < ②.C A cot cot < ③.C A tan tan < ④.C A cos cos < A.1 B.2 C.3 D.42A B C D 34.要得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只需将函数1sin2y x =的图象() A.先将每个x 值扩大到原来的4倍,y 值不变,再向右平移3π个单位。
B.先将每个x 值缩小到原来的14倍,y 值不变,再向左平移3π个单位。
C.先把每个x 值扩大到原来的4倍,y 值不变,再向左平移个6π单位。
D.先把每个x 值缩小到原来的14倍,y 值不变,再向右平移6π个单位。
5.如果函数sin 2cos 2y x a x =+的图象关于直线8x π=-对称,那么a 等于( )A.2 B.-2 C.1 D.-16.若1(,),sin 2,4216ππθθ∈=则cos sin θθ-的值是( )A.1615B. 415C.415-D.415± 二、填空题7.在ABC ∆中,已知a ,b ,c 是角A 、B 、C 的对应边,则②若222)cos cos (A b B a b a +=-,则∆ABC 是∆Rt ; ③C C sin cos +的最小值为2-;④若B A 2cos cos =,则A=B ;⑤若2)tan 1)(tan 1(=++B A ,则π43=+B A , 其中错误命题的序号是_____8.︒-︒︒+︒︒40cos 270tan 10sin 310cos 20cot =9.已知方程01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan ,且α、∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+的值是_________________ 10.已知=∈=+θπθθθcot 051cos sin ),则,(,__________三、解答题11.已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.12.在ABC ∆中,30,2B AB ︒===。
高三数学一轮复习易错题5三角函数与解三角形
【详解】解法一:
由 可得: ,
不妨设 ,
则: ,即 .
选择条件①的解析:
据此可得: , ,此时 .
选择条件②的解析:
据此可得: ,
则: ,此时: ,则: .
选择条件③的解析:
可得 , ,
与条件 矛盾,则问题中的三角形不存在.
例2(2020年普通高等学校招生全国统一考试数学)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC= , ,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2.
A. B.
C. D.
【答案】C
【解析】由图可得:函数图象过点 ,
将它代入函数 可得: ,
又 是函数 图象与 轴负半轴的第一个交点,
所以 ,解得 .
所以函数 最小正周期为
故选C.
【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.
2.【2020年高考全国Ⅰ卷理数】已知 ,且 ,则
∵ 或 .
故△ABC为等腰三角形或直角三角形.
易错点10 解三角形时漏解
例10已知在△ABC中,a= ,b= ,求 、 和边 .
【错解】由正弦定理 ,得sinA= 所以, , ,所以, = .
【错因】上述解法中,用正弦定理求C时,丢了一个解,实际上,由sinA= 可得 或 ,故 或 .
(精选试题附答案)高中数学第五章三角函数易错知识点总结
(名师选题)(精选试题附答案)高中数学第五章三角函数易错知识点总结单选题1、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56] 答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ),由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解,则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23]. 2、若sin (π7+α)=12,则sin (3π14−2α)=( ) A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7)) =sin (π2−2θ)=cos2θ=1−2sin 2θ=12故选:C3、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值.sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A.4、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4),因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D5、已知扇形的圆心角为3π4,半径为4,则扇形的面积S 为( )A .3πB .4πC .6πD .2π 答案:C解析:利用S =12αr 2即可求得结论. 由扇形面积公式得:S =12×3π4×42=6π.故选:C.6、已知函数f (x )=Asin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如下图所示.则能够使得y =2sinx 变成函数f (x )的变换为( )A .先横坐标变为原来的12倍,再向左平移π24 B .先横坐标变为原来的2倍,再向左平移π12 C .先向左平移π6,再横坐标变为原来的12倍D .先向左平移π24,再横坐标变为原来的2倍答案:C分析:先根据给定图象求出函数f (x )的解析式,再求出由y =2sinx 到f (x )的变换即得. 观察图象知A =2,f (x )周期为T ,则T4=5π12−π6=π4,即T =π,ω=2πT=2,又f (π6)=2,即2⋅π6+φ=2kπ+π2(k ∈Z),而|φ|<π2,则k =0,φ=π6, 所以f (x )=2sin(2x +π6),把y =2sinx 图象向左平移π6得y =2sin(x +π6)图象,再把所得图象上每一点的横坐标变为原来的12倍即得f (x ).故选:C7、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( ) A .1B .−1C .√32D .−√32答案:A分析:由正弦函数的性质,先求出当y 取得最小值时x 的取值,从而求出tanx . 函数y =√2sin(x +π4),当y 取得最小值时,有x +π4=2kπ+3π2,故x =2kπ+5π4,k ∈Z .∴tanx =tan (2kπ+5π4)=tan (π4)=1,k ∈Z . 故选:A .8、若f (x )=cos (x −π3)在区间[−a,a ]上单调递增,则实数a 的最大值为( ) A .π3B .π2C .2π3D .π答案:A分析:先求出函数的增区间,进而建立不等式组解得答案即可.易知将函数y =cosx 的图象向右平移π3得到函数f (x )=cos (x −π3)的图象,则函数f (x )=cos (x −π3)的增区间为[−23π+2kπ,π3+2kπ](k ∈Z ),而函数又在[−a,a ]上单调递增,所以{−a ≥−23πa ≤π3⇒a ≤π3,于是0<a ≤π3,即a的最大值为π3. 故选:A.9、当θ∈(0,π2),若cos (5π6−θ)=−12,则sin (θ+π6)的值为( ) A .12B .√32C .−√32D .−12 答案:B分析:利用诱导公式和平方关系求解.因为cos (5π6−θ)=−cos (π−(5π6−θ))=−cos (π6+θ)=−12,所以cos (π6+θ)=12,因为θ∈(0,π2), 所以π6+θ∈(π6,2π3),所以sin (θ+π6)=√1−cos 2(π6+θ)=√32, 故选:B10、已知sinθ+sin (θ+π3)=1,则sin (θ+π6)=( )A .12B .√33C .23D .√22答案:B分析:将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 由题意可得:sinθ+12sinθ+√32cosθ=1,则:32sinθ+√32cosθ=1,√32sinθ+12cosθ=√33, 从而有:sinθcos π6+cosθsin π6=√33, 即sin (θ+π6)=√33. 故选:B.小提示:本题主要考查两角和与差的正余弦公式及其应用,属于中等题. 填空题11、已知sinθ−cosθ=12,则sin 3θ−cos 3θ=______. 答案:1116分析:根据sinθ−cosθ=12平方可得sinθ⋅cosθ=38,结合立方差公式即可代入求值.因为sinθ−cosθ=12,平方得(sinθ−cosθ)2=14,所以sinθ⋅cosθ=38,所以sin 3θ−cos 3θ=(sinθ−cosθ)⋅(sin 2θ+sinθcosθ+cos 2θ)=12×(1+38)=1116. 所以答案是:111612、函数f (x )=sinx 的图象向左平移π6个单位得到函数g (x )的图象,则下列函数g (x )的结论:①一条对称轴方程为x =7π6;②点(5π6,0)是对称中心;③在区间(0,π3)上为单调增函数;④函数g (x )在区间[π2,π]上的最小值为−12.其中所有正确的结论为______.(写出正确结论的序号) 答案:②③④解析:先求得g (x ),然后利用代入法判断①②,根据单调区间和最值的求法判断③④. 函数f (x )=sinx 的图象向左平移π6个单位得到函数g (x )=sin (x +π6), g (7π6)=sin (7π6+π6)=sin4π3=sin (π+π3)=−sin π3=−√32≠±1,所以①错误.g (5π6)=sin (5π6+π6)=sinπ=0,所以②正确. 由2kπ−π2≤x +π6≤2kπ+π2,解得2kπ−2π3≤x ≤2kπ+π3,k ∈Z .令k =0得−2π3≤x ≤π3,所以g (x )在区间(0,π3)上为单调增函数,即③正确.由π2≤x ≤π得2π3≤x +π6≤7π6,所以当x =π,x +π6=7π6时,g (x )有最小值为sin7π6=sin (π+π6)=−sin π6=−12,所以④正确.所以答案是:②③④小提示:解决有关三角函数对称轴、对称中心的问题,可以考虑代入验证法.考查三角函数单调区间的问题,可以考虑整体代入法.13、若α∈(0,π2),且cos 2α+cos(π2−2α)=710,则tan2α=____ 答案:−34分析:利用诱导公式、二倍角正弦公式,将题设条件转化为1+2tanαtan 2α+1=710,结合角的范围求tanα值,再应用二倍角正切公式求tan2α即可.∵cos 2α+cos(π2−2α)=cos 2α+sin2α=cos 2α+2sinαcosαsin 2α+cos 2α=1+2tanαtan 2α+1=710,∴tanα=3或tanα=−17,又α∈(0,π2),∴tanα=3,则tan2α=2tanα1−tan 2α=−34.所以答案是:−3414、设函数f (x )=sin (ωx +φ),A >0,ω>0,若f (x )在区间[π6,π2]上单调,且f (π2)=f (2π3)=−f (π6),则f (x )的最小正周期为____. 答案:π分析:根据单调性可确定0<ω≤3,结合f (π2)=f (2π3)=−f (π6),可得x =7π12,(π3,0)分别为对称轴和对称中心,即可结合周期求解.函数f (x )=sin (ωx +φ),A >0,ω>0,若f (x )在区间[π6,π2]上单调, 则T2=πω≥π2-π6,∴0<ω≤3.∵f (π2)=f (2π3)=−f (π6),∴x =π2+2π32=7π12为f (x )=sin (ωx +φ)的一条对称轴,且(π6+π22,0)即(π3,0)为f (x )=sin (ωx +φ)的一个对称中心, 只有当T4=14⋅2πω=7π12−π3=π4时,解得ω=2∈(0,3],∴T=2π2=π,故答案为:π15、已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则满足条件(f (x )+f (−5π4)) (f (x )+f (7π3))<0的最小正偶数x 为___________.答案:4分析:先根据图象求出函数f(x)的解析式,再求出f(−5π4),f(7π3)的值,然后求解三角不等式可得最小正偶数.由图可知34T=5π6−π12=3π4,即T=2πω=π,所以ω=2;由五点法可得2×π12+φ=π2,即φ=π3;所以f(x)=2sin(2x+π3).因为f(−5π4)=2sin(−13π6)=−1,f(7π3)=2sin(5π)=0;所以由(f(x)+f(−5π4))(f(x)+f(7π3))<0可得0<f(x)<1;由0<2sin(2x+π3)<1,即0<sin(2x+π3)<12,∴2kπ<2x+π3<2kπ+π6,k∈Z或2kπ+5π6<2x+π3<2kπ+π,k∈Z,解得kπ−π6<x<kπ−π12,k∈Z或kπ+π4<x<kπ+π3,k∈Z,令k=1,可得5π6<x<11π12或5π4<x<4π3,所以最小正偶数x为4.所以答案是:4.解答题16、弹簧振子的振动是简谐振动.某个弹簧振子在完成一次全振动的过程中,时间t(单位:s)与位移y(单位:mm)之间的对应数据记录如下表:(1)试根据这些数据确定这个振子的位移关于时间的函数解析式;(2)画出该函数在t∈[0,0.6]的图象;(3)在这次全振动过程中,求位移为10mm时t的取值集合.答案:(1)y=20sin(10π3t−π2)=−20cos10π3t,t≥0(2)图象见解析(3){0.2,0.4}分析:(1)设函数解析式为y=Asin(ωt+φ),t≥0,根据表格数据得出A,ω,φ的值,即可得出这个振子的位移关于时间的函数解析式;(2)由五点作图法作图即可;(3)解方程20sin(10π3t−π2)=10,即可得出t的取值集合.(1)设函数解析式为y=Asin(ωt+φ),t≥0,由表格可知:A=20,T=0.6,则ω=2πT =2π0.6=10π3,即y=20sin(10π3t+φ).由函数图象过点(0,−20),得−20=20sinφ,即sinφ=−1,可取φ=−π2.则这个振子的位移关于时间的函数解析式为y=20sin(10π3t−π2)=−20cos10π3t,t≥0;(2)列表:由表格数据知,y=−20cos10π3t,t∈[0,0.6]的图象如图所示.;(3)由题意得−20cos10π3t=10,即cos10π3t=−12,则10π3t=2π3+2k1π,k1∈Z或10π3t=−2π3+2k2π,k2∈Z,所以t =15+35k 1,k 1∈Z 或t =−15+35k 2,k 2∈Z .又t ∈[0,0.6],所以t =0.2或0.4.所以在这次全振动过程中,位移为10mm 时t 的取值集合为{0.2,0.4}.17、已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求f(x)的解析式及对称中心坐标:(2)先把f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数g(x)的图象,若当x ∈[−π4,π6]时,求g(x)的值域.答案:(1)f(x)=2sin(2x +π3)−1,(kπ2−π6,−1)(k ∈Z )(2)[0,2]分析:(1)先根据图象得到函数的最大值和最小值,由此列方程组求得A,B 的值,根据周期求得ω的值,根据f(π12)=1求得φ的值,由此求得f (x )的解析式,进而求出f (x )的对称中心; (2)根据三角变换法则求得函数g (x )的解析式,再换元即可求出g (x )的值域. (1)由图象可知:{A +B =1−A +B =−3,解得:A =2 , B =−1,又由于T2=7π12−π12,可得:T =π,所以ω=2πT=2由图像知f(π12)=1,sin(2×π12+φ)=1,又因为−π3<π6+φ<2π3所以2×π12+φ=π2,φ=π3.所以f(x)=2sin(2x +π3)−1令2x+π3=kπ(k∈Z),得:x=kπ2−π6(k∈Z)所以f(x)的对称中心的坐标为(kπ2−π6,−1)(k∈Z)(2)依题可得g(x)=f(x+π6)+1=2sin(2x+2π3),因为x∈[−π4,π6],令2x+2π3=t∈[π6,π],所以sint∈[0,1],即g(x)的值域为[0,2].18、已知向量a⃗=(2sinx,√3cosx),b⃗⃗=(cosx,2cosx),函数f(x)=a⃗⋅b⃗⃗.(1)求函数f(x)的单调递增区间;(2)求函数f(x)在[0,π2]上的最大值和最小值以及对应的x的值.答案:(1)[−5π12+kπ,π12+kπ](k∈Z)(2)f(x)的最大值为2+√3,此时x=π12;f(x)的最小值为0,此时x=π2分析:(1)先根据向量数量积得到f(x),再由二倍角及辅助角公式化简,然后求单调区间即可;(2)根据区间的范围求出内层的范围,再求最值及对应的x的值.(1)因为向量a⃗=(2sinx,√3cosx),b⃗⃗=(cosx,2cosx),得函数f(x)=a⃗⋅b⃗⃗=2sinxcosx+2√3cos2x=sin2x+√3cos2x+√3=2sin(2x+π3)+√3,令−π2+2kπ≤2x+π3≤π2+2kπ(k∈Z),则−5π12+kπ≤x≤π12+kπ(k∈Z),∴f(x)的单调递增区间为[−5π12+kπ,π12+kπ](k∈Z);(2)当x∈[0,π2]时,2x+π3∈[π3,4π3],所以2sin(2x+π3)∈[−√3,2],当2x+π3=π2,x=π12时,f(x)取得最大值,f(x)max=f(π12)=2+√3,当2x+π3=4π3,x=π2时,f(x)取得最小值,f(x)min=f(π2)=0.19、已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)最小正周期为π,图象过点(π4,√2). (1)求函数f(x)解析式(2)求函数f(x)的单调递增区间.答案:(1)f(x)=2sin(2x+π4);(2)[−3π8+kπ,π8+kπ](k∈Z).分析:(1)利用周期公式可得ω,将点(π4,√2)代入即得解析式;(2)由−π2+2kπ≤2x+π4≤π2+2kπ(k∈Z)计算即可求得单调递增区间.(1)由已知得π=2πω,解得ω=2.将点(π4,√2)代入解析式,√2=2sin(2×π4+φ),可知cosφ=√22,由0<φ<π可知φ=π4,于是f(x)=2sin(2x+π4).(2)令−π2+2kπ≤2x+π4≤π2+2kπ(k∈Z)解得−3π8+kπ≤x≤π8+kπ(k∈Z),于是函数f(x)的单调递增区间为[−3π8+kπ,π8+kπ](k∈Z).小提示:本题考查正弦函数的图像和性质,基础题.。
【高考数学 易错专练】知识点 三角函数的图象及性质 易错点1 平移、伸缩变换错误 (原卷及答案)
【针对训练】
1.现将函数 的图象向右平移 个单位长度,再将所得的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数 的图象,则函数 的解析式为()
A. B.
C. D.
1.现将函数 的图象向右平移 个单位长度,再将所得的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数 的图象,则函数 的解析式为()
A. B.
C. D.
2.要得到函数 的图象,需()
A.将函数 图象上所有点的横坐标变为原来的2倍(纵坐标不变)
B.将函数 图象上所有点的横坐标变为原来的 倍(纵坐标不变)
【答案】A
【分析】根据三角函数相位平移和周期变换特点得到函数解析式.
【详解】 向右平移 个单位长度得 ,再将所得图像上所有点横坐标变为原来 倍,纵坐标不变,得: ,所以
故答案为:A
2.要得到函数 的图象,需()
A.将函数 图象上所有点的横坐标变为原来的2倍(纵坐标不变)
B.将函数 图象上所有点的横坐标变为原来的 倍(纵坐标不变)
⑤向左平移 个单位长度;
⑥向右平移 个单位长度;
则由函数 的图象得到 的图象,可以实施的方案是()
A.①→③B.②→③
C.②→④D.②→⑤
知识点函数 的图象及性质
易错点1平移、伸缩变换错误
【易错诠释】函数图象左右平移遵循“左加右减”,且针对的是x,由 变为 ,是纵坐标不变,横坐标伸缩为原来的 得到的.
4.给出几种变换:
①横坐标伸长到原来的2倍,纵坐标不变;
②横坐标缩小到原来的 ,纵坐标不变;
高考数学压轴专题人教版备战高考《三角函数与解三角形》易错题汇编附答案解析
【高中数学】数学高考《三角函数与解三角形》试题含答案一、选择题1.函数y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图象是( )A .B .C .D .【答案】B 【解析】 【分析】首先根据二倍角余弦公式化简得到函数的解析式,再由函数表达式得到函数的单调性和周期,进而得到选项. 【详解】根据两角和差公式展开得到: y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22πππcos sin cos 2424x x x ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝=⎝⎭⎭=-sin2x ,函数在0的右侧是单调递减的,且周期为π,故选B. 故答案选B . 【点睛】这个题目考查了三角函数的恒等变换,题型为已知函数表达式选择函数的图像,这种题目,一般是先根据函数的表达式得到函数的定义域,或者值域,进行排除;也可以根据函数的表达式判断函数的单调性,周期性等,之后结合选项选择.2.要得到函数y =sin (2x +9π)的图象,只需将函数y =cos (2x ﹣9π)的图象上所有点( ) A .向左平移518π个单位长度 B .向右平移518π个单位长度 C .向左平移536π个单位长度 D .向右平移536π个单位长度 【答案】D 【解析】【分析】先将函数cos 29y x π⎛⎫=- ⎪⎝⎭转化为7sin 218y x π⎛⎫=+⎪⎝⎭,再结合两函数解析式进行对比,得出结论. 【详解】 函数75cos 2sin 2sin 2sin 299218369y x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ∴要得到函数sin 29y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数cos 29y x π⎛⎫=- ⎪⎝⎭的图象上所有点向右平移536π个单位长度,故选D . 【点睛】本题考查函数()sin y A x b ωϕ=++的图象变化规律,关键在于能利用诱导公式将异名函数化为同名函数,再根据左右平移规律得出结论.3.能使sin(2))y x x θθ=+++为奇函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .5π3B .43π C .23π D .3π【答案】C 【解析】 【分析】首先利用辅助角公式化简函数,然后根据函数的奇偶性和单调性求得θ的值. 【详解】依题意π2sin 23y x θ⎛⎫=++⎪⎝⎭,由于函数为奇函数,故πππ,π33k k θθ+==-,当1,2k =时,2π3θ=或5π3θ=,由此排除B,D 两个选项.当2π3θ=时,()2sin 2π2sin 2y x x =+=-在0,4⎡⎤⎢⎥⎣⎦π上是减函数,符合题意.当5π3θ=时,()2sin 22π2sin 2y x x =+=,在0,4⎡⎤⎢⎥⎣⎦π上是增函数,不符合题意.故选C. 【点睛】本小题主要考查诱导公式的运用,考查三角函数的奇偶性和单调性,属于基础题.4.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2π B .3π C .4π D .6π 【答案】C 【解析】 【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】设AE BF a ==,则()()23119333288B EBFa a V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=352AF =2292A F AA AF ''=+=,1322EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯,∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭u u u u r ,()3,3,0AC =-u u u r ,所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r ,所以异面直线A F '与AC 所成的角为4π. 故选:C 【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.5.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则ab=( ) A .3B .2C 2D .1【答案】B 【解析】 【分析】由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解【详解】由正弦定理:2sin sin b cR B C==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=在ABC ∆中,A B C π++=故sin()2sin A B π-=,即sin 2sin A B =故sin 2sin a A b B == 故选:B【点睛】本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题6.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是()A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞ ⎪⎝⎭C .[]1,1,22⎛⎫-∞ ⎪⎝⎭UD .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U【答案】C 【解析】 【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2],因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],当a ≥23时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C . 【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象可由函数2cos 2y x x =-的图象( ) A .向右平移3π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 B .向右平移6π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 C .向左平移3π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到 D .向左平移6π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到 【答案】D 【解析】 【分析】合并3sin2cos2y x x =-得:2sin 26y x π⎛⎫=- ⎪⎝⎭,利用平移、伸缩知识即可判断选项。
高三一轮复习 三角函数全章 练习(7套)+易错题+答案
第五章三角函数第1节任意角、弧度制、任意角的三角函数一、选择题1.给出下列四个命题:①-是第二象限角;②是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( C )(A)1个(B)2个(C)3个(D)4个解析:-是第三象限角,故①错误.=π+,从而是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.选C.2.已知点P(tan α,cos α)在第三象限,则角α的终边所在象限是( B )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限解析:由题意知tan α<0,cos α<0,所以α是第二象限角.选B.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为( C )(A)(B)(C) (D)2解析:设圆半径为r,则其内接正三角形的边长为r,所以α==,选C.4.设集合M={x|x=²180°+45°,k∈Z},N={x|x=²180°+45°,k∈Z},那么( B )(A)M=N (B)M⊆N(C)N⊆M (D)M∩N=∅解析:由于M={x|x=²180°+45°,k∈Z}={…,-45°,45°,135°, 225°,…},N={x|x=²180°+45°,k∈Z}={…,-45°,0°,45°,90°,135°, 180°,225°,…},显然有M⊆N,故选B.5.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( A )(A)1 (B)2 (C)3 (D)4解析:举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin =sin ,但与的终边不相同,故④错;当θ=π,cos θ=-1时既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.选A.6.设θ是第三象限角,且|cos |=-cos ,则是( B )(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角解析:由θ是第三象限角,知为第二或第四象限角,因为|cos |=-cos ,所以cos ≤0,综上知为第二象限角.选B.二、填空题7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为.解析:设扇形的半径为R,则αR2=2,所以R2=1,所以R=1,所以扇形的周长为2R+α²R=2+4=6.答案:68.若α角与角终边相同,则在[0,2π]内终边与角终边相同的角是.解析:由题意,得α=+2kπ(k∈Z),=+(k∈Z).又∈[0,2π],所以k=0,1,2,3,=,,,.答案:,,,9.已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E∩F= .解析:由单位圆的正、余弦线,容易得E={θ|<θ<π},又由F可知θ应在第二、四象限,所以E∩F={θ|<θ<π}.答案:{θ|<θ<π}10.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为.解析:由已知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.答案:-111.满足cos α≤-的角α的集合为.解析:作直线x=-交单位圆于C,D两点,连接OC,OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2kπ+π≤α≤2kπ+π,k∈Z}.答案:{α|2kπ+π≤α≤2kπ+π,k∈Z}三、解答题12.已知角α的终边经过点P(-,y),且sin α=y(y≠0),判断角α所在的象限,并求cos α,tan α的值.解:因为r=|OP|==,所以sin α==y.因为y≠0,所以9+3y2=16,解得y=±,所以角α在第二或第三象限.当角α在第二象限时,y=,cos α==-,tan α=-;当角α在第三象限时,y=-,cos α=-,tan α=.13.一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB.解:设扇形的半径为r cm,弧长为l cm,则解得所以圆心角α==2(rad).如图,过O作OH⊥弦AB于H,则∠AOH=1 rad.所以AH=1²sin 1=sin 1(cm),所以AB=2sin 1(cm).所以圆心角的弧度数为2 rad,弦长AB为2sin 1 cm.14.求函数y=lg(2sin x-1)+的定义域.解:要使原函数有意义,必须有即如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2kπ+,2kπ+)(k∈Z).第2节同角三角函数的基本关系及诱导公式一、选择题1.已知A=+(k∈Z),则A的值构成的集合是( C )(A){1,-1,2,-2} (B){-1,1}(C){2,-2} (D){1,-1,0,2,-2}解析:当k为偶数时,A=+=2;k为奇数时,A=-=-2.故选C.2.已知sin α=,则sin4α-cos4α的值为( B )(A)- (B)- (C)(D)解析:sin4α-cos4α=sin2α-cos2α=2sin2α-1=-.3.等于( A )(A)sin 2-cos 2(B)sin 2+cos 2(C)±(sin 2-cos 2)(D)cos 2-sin 2解析:===|sin 2-cos2|=sin 2-cos 2.4.若函数f(x)=则f(-)的值为( A )(A)(B)- (C)(D)-解析:由已知得f(-)=f(-)+1=f()+2=-cos +2=.5.已知=1,则sin2θ+3sin θcos θ+2cos2θ的值是( C )(A)1 (B)2 (C)3 (D)6解析:由已知得=1,即tan θ=1,于是sin2θ+3sin θcos θ+2cos2θ===3.6.若sin θ,cos θ是方程4x2+2mx+m=0的两根,则m的值为( B )(A)1+ (B)1-(C)1± (D)-1-解析:由题意知sin θ+cos θ=-,sin θ²cos θ=.又(sin θ+cos θ)2=1+2sin θcos θ,所以=1+,解得m=1±.又Δ=4m2-16m≥0,所以m≤0或m≥4,所以m=1-.二、填空题7.若=2,则sin(θ-5π)sin(-θ)= .解析:由=2,得sin θ+cos θ=2(sin θ-cos θ),两边平方得1+2sin θcos θ=4(1-2sin θcos θ),故sin θcos θ=, 所以sin(θ-5π)sin(-θ)=sin θcos θ=.答案:8.已知cos(-α)=,则sin(α-)= .解析:sin(α-)=-sin[+(-α)]=-cos(-α)=-.答案:-9.已知cos 31°=a,则sin 239°²tan 149°= .解析:sin 239°²tan149°=sin(180°+59°)²tan(180°-31°)=-sin 59°²(-tan 31°)=cos 31°²=sin 31°==.答案:10.若x∈(0,),则2tan x+tan(-x)的最小值为 .解析:因为x∈(0,),所以tan x>0.所以2tan x+tan(-x)=2tan x+≥2,所以2tan x+tan(-x)的最小值为2.答案:211.已知θ是第四象限角,且sin(θ+)=,则tan(θ-)= .解析:由题意,得cos(θ+)=,所以tan(θ+)=.所以tan(θ-)=tan(θ+-)=-=-.答案:-12.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则 f (2 017)的值为.解析:因为f(4)=asin(4π+α)+bcos(4π+β)=asin α+bcos β=3,所以f(2 017)=asin(2 017π+α)+bcos(2 017π+β)=asin(π+α)+bcos(π+β)=-asin α-bcos β=-3.答案:-3三、解答题13.已知sin(3π+θ)=,求+的值.解:因为sin(3π+θ)=-sin θ=,所以sin θ=-.所以原式=+=+=+====18.14.已知0<α<,若cos α-sin α=-,试求的值. 解:因为cos α-sin α=-,所以1-2sin α²cos α=.所以2sin α²cos α=,所以(sin α+cos α)2=1+2sin αcos α=1+=.因为0<α<,所以sin α+cos α=.由cos α-sin α=-,sin α+cos α=得sin α=,cos α=,所以tan α=2,所以==-.15.是否存在α∈(-,),β∈(0,π),使等式sin(3π-α)=cos(-β),cos(-α)=-cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在α,β使得等式成立,即有由诱导公式可得③2+④2得sin2α+3cos2α=2,所以cos2α=.又因为α∈(-,),所以α=或α=-.将α=代入④得cos β=.又β∈(0,π),所以β=,代入③可知符合.将α=-代入④得cos β=.又β∈(0,π),所以β=,代入③可知不符合.综上可知,存在α=,β=满足条件.第3节两角和与差的正弦、余弦和正切公式一、选择题1.化简的结果是( C )(A)tan (B)tan 2x (C)-tan x (D)解析:原式===-tan x,故选C.2.在△ABC中,2cos Bsin A=sin C,则△ABC的形状一定是( D )(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形解析:由条件得2cos Bsin A=sin(A+B),即2cos Bsin A=sin Acos B+cos Asin B,得sin Acos B-cos Asin B=0,即sin(A-B)=0.因为角A,B是三角形的内角,所以A-B=0,△ABC是等腰三角形,故选D.3.函数f(x)=sin x-cos(x+)的值域为( B )(A)[-2,2] (B)[-,](C)[-1,1] (D)[-,]解析:因为f(x)=sin x-cos(x+)=sin x-(cos xcos -sin xsin)=sin x-cos x=sin(x-),所以值域为[-,],故选B.4.已知tan α,tan β是方程x2+3x+4=0的两根,若α,β∈(-,),则α+β等于( D )(A) (B)或-(C)-或 (D)-解析:由韦达定理得tan α+tan β=-3<0,tan α²tan β=4>0,故tan α<0,tan β<0,所以α,β∈(-,0),故α+β∈(-π,0).又tan(α+β)==,所以α+β=-.故选D.5.已知sin(α+)+cos α=-,则cos(-α)等于( C )(A)-(B)(C)- (D)解析:由sin(α+)+cos α=-,展开化简可得sin(α+)=-,所以cos(-α)=cos[-(+α)]=sin(+α)=-.6.在三角函数中,如果角α与角β可能相等,我们称这两个角是“亲情角”.已知tan(β-)=2,下列选项中,哪个角α与已知的角β互为亲情角( C )(A)tan α=3 (B)tan α=(C)tan2(α+)=(D)cos α=解析:由条件得=2,解得tan β=-3,由于A,B,D三个选项的tan α≠-3,所以均不符合.对于选项C,由tan2(α+)=()2=,解得tan α=-3或tan α=-,故选C.二、填空题7.计算cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α) = .解析:原式=cos [(α-35°)-(25°+α)]=cos 60°=.答案:8.已知tan(+θ)=3,则sin 2θ-2cos2θ= .解析:由tan(+θ)=3,求得tan θ=,而sin 2θ-2cos2θ===-.答案:-9.已知sin(x+)=,则sin(x-)+sin2(-x)的值是.解析:因为sin(x-)=-sin(x+)=-,sin2(-x)=cos2(+x)=1-sin2(+x)=,所以原式=-+=.答案:10.在△ABC中,若cos A=,sin B=,则cos C= .解析:因为cos A=,则sin A=,且45°<A<60°.又因为sin B=,sin B<,则0°<B<30°或150°<B<180°(舍去),所以cos B=,从而有cos C=-cos(A+B)=-cos Acos B+sin Asin B=-.答案:-11.已知cos(α-β)=,则(sin α+sin β)2+(cos α+cos β)2的值为.解析:(sin α+sin β)2+(cos α+cos β)2=2+2(cos αcos β+sin αsin β)=2+2cos(α-β)=.答案:12.设a,b,∈R,c∈[0,2π),若对任意实数x都有2sin(3x-)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.解析:因为2sin(3x-)=asin(bx+c),所以a=±2,b=±3.当a,b确定时,c唯一.若a=2,b=3,则c=;若a=2,b=-3,则c=;若a=-2,b=-3,则c=;若a=-2,b=3,则c=,故共有四组.答案:4三、解答题13.已知cos(α-β)=-,cos β=,α∈(,π),β∈(0,),求cos(α-2β)的值.解:由条件得α-β∈(0,π),sin(α-β)=,sin β=,所以cos(α-2β)=cos [(α-β)-β]=.14.设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f()=0,(1)求ω的值;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[-,]上的最小值.解:(1)因为f(x)=sin(ωx-)+sin(ωx-)=sin ωxcos -cos ωxsin -cos ωx=sin ωx-cos ωx=sin(ωx-),由题设f()=0,得-=kπ,k∈Z,故ω=6k+2,考虑到0<ω<3,故有ω=2.(2)由上可知f(x)=sin(2x-),所以g(x)=sin(x+-)=sin(x-).因为x∈[-,],所以x-∈[-,],当x-=-,即x=-时,g(x)取最小值是-.15.已知函数f(x)=2sin(x-).(1)求f(x)的单调区间;(2)设α,β∈[0,],f((3α-)=-,f(3β+π)=,求cos(α+β)的值.解:(1)由-+2kπ≤x-≤+2kπ,k∈Z,解得-+6kπ≤x≤+6kπ,k∈Z,即得单调递增区间是[-+6kπ,+6kπ],k∈Z.同理可求单调递减区间是[+6kπ,+6kπ],k∈Z.(2)因为得即因为α,β∈[0,],解得从而有cos(α+β)=-.第4节二倍角公式一、选择题1.化简²的结果为( B )(A)tan α (B)tan 2α(C)1 (D)解析:原式=²==tan 2α,故选B.2.若设a=cos 6°-sin 6°,b=,c=,则有( C )(A)c<b<a (B)a<b<c(C)a<c<b (D)b<c<a解析:经计算得a=sin 24°,b=tan 26°,c=sin 25°,所以a<c<b,故选C.3.已知sin α+cos α=,则sin2(-α)等于( B )(A) (B) (C)(D)解析:由sin α+cos α=,两边平方得1+sin 2α=,解得sin 2α=-,所以sin2(-α)===,故选B.4.函数f(x)=cos 2x+6cos(-x)的最大值为( B )(A)4 (B)5 (C)6 (D)7解析:因为f(x)=1-2sin2x+6sin x=-2(sin x-)2+,当sin x=1时,f(x)取最大值为5,故选B.5.设α为锐角,且cos(α+)=,则sin(2α+)的值为( A )(A)(B)(C)(D)解析:因为α为锐角,且cos(α+)=,得sin(α+)=,所以sin[2(α+)]=,cos[2(α+)]=,从而有sin(2α+)=sin [2(α+)-]=³-³=,故选A.6.已知不等式f(x)=3sin cos +cos2-+m≤0对于任意的-≤x≤恒成立,则实数m的取值范围是( C )(A)[,+∞) (B)(-∞,)(C)(-∞,-] (D)[-,]解析:因为f(x)=sin +cos +m=(sin +cos )+m=sin(+)+m.因为-≤x≤,则-≤+≤,所以-≤sin(+)≤,即f(x)的最大值是²+m=+m≤0,解得m≤-,故选C.二、填空题7.已知角α终边过点P(3,4),则cos 2α= .解析:因为角α终边过点P(3,4),所以cos α=,sin α=,cos 2α=-.答案:-8.某会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是四个全等的直角三角形与一个小正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于.解析:设直角三角形的两直角边长分别为a,b,则4³(ab)+1=25,得ab=12.又因为a2+b2=25,联立方程组可解得或所以cos θ=,从而有cos 2θ=2cos2θ-1=.答案:9.若=2 018,则+tan 2α= .解析:+tan 2α=+=+====2 018.答案:2 01810.已知4cos Acos B=,4sin Asin B=,则(1-cos 4A)(1-cos 4B) = .解析:由条件得4cos Acos B²4sin Asin B=²,即sin 2Asin 2B=,所以原式=2sin22A²2sin22B=4(sin 2Asin 2B)2=4()2=3.答案:311.设△ABC的三个内角分别为A,B,C,则cos A+2cos 的最大值是.解析:因为cos A+2cos =cos A+2sin=-2sin2+2sin +1=-2+,所以当sin =,即A=时,cos A+2cos 的最大值是.答案:三、解答题12.已知f(x)=sin x+2sin(+)cos(+).(1)若f(α)=,α∈(-,0),求α的值;(2)若sin =,x0∈(,π),求f(x0)的值.解:(1)由条件可得f(x)=sin x+cos x=sin(x+).因为f(α)=,α∈(-,0),所以sin(α+)=.则α+=,解得α=-.(2)因为sin =,x0∈(,π),得sin x0=,cos x0=-,所以f(x0)=.13.已知函数f(x)=2cos x(sin x+cos x)-1.(1)求f()的值;(2)若f(x0)=,x0∈[0,],求sin 2x0的值.解:(1)因为f(x)=sin 2x+cos 2x=2sin(2x+),所以f()=2.(2)由上可知,f(x0)=2sin(2x0+)=,所以sin(2x0+)=.由x0∈[0,],得2x0+∈[,].由0<sin(2x0+)=<,知2x0+∈(,π),从而有cos(2x0+)=-, 所以sin 2x0=sin[(2x0+)-]=²-(-)²=.14.已知函数f(x)=sin 2xsin ϕ+cos2xcos ϕ-sin(+ϕ)(0<ϕ<π),其图象过点(,).(1)求ϕ的值;(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间[0,]上的最大值和最小值.解:(1)由条件得f(x)=sin 2xsin ϕ+cos ϕ-cos ϕ=sin 2xsin ϕ+cos 2xcos ϕ=cos(2x-ϕ).又函数图象过点(,),得=cos(2²-ϕ),-ϕ=2kπ,ϕ=-2kπ,k∈Z.又因为0<ϕ<π,解得ϕ=.(2)由上可知f(x)=cos(2x-),将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,即g(x)=f(2x)=cos(4x-).因为x∈[0,],所以4x-∈[-,],有cos(4x-)∈[-,1],所以函数g(x)在区间[0,]上的最大值和最小值分别为和-.第5节三角函数的化简与求值一、选择题1.计算等于( D )(A)-(B)- (C) (D)解析:原式====,故选D.2.式子tan 11°+tan 19°+tan 11°tan 19°的值是( D )(A) (B) (C)0 (D)1解析:因为tan(11°+19°)==,所以tan 11°+tan 19°=(1-tan 11°tan 19°),即tan 11°+tan 19°=1-tan 11°tan 19°,从而有tan 11°+tan 19°+tan 11°tan 19°=1,故选D.3.若sin(-α)=,则cos(+2α)等于( A )(A)- (B)- (C)(D)解析:观察发现+2α=2(+α),而(+α)+(-α)=,则有cos(+α)=sin(-α)=,所以cos(+2α)=2cos2(+α)-1=2³-1=-,故选A.4.设M=sin 100°-cos 100°,N=(cos 46°cos 78°+cos 44°²cos 12°),P=,Q=,则M,N,P,Q的大小关系是( C )(A)M>N>P>Q (B)P>M>N>Q(C)N>M>Q>P (D)Q>P>M>N解析:因为M=sin(100°-45°)=sin 55°,N=(cos 46°sin 12°+sin 46°cos 12°)=sin 58°,P==tan(45°-10°)=tan 35°,Q==tan 45°=1,所以N=sin 58°>sin 55°=M>sin 45°=1=Q.=tan 45°>tan 35°=P,即有N>M>Q>P,故选C.5.设△ABC的三内角为A,B,C,向量m=(sin A,sin B),n=(cos B, cos A),若m²n=1+cos(A+B),则角C等于( C )(A) (B) (C) (D)解析:因为m²n=1+cos(A+B),所以sin Acos B+cos Asin B=1+cos(A+B),即sin(A+B)=1+cos(A+B).又因为A+B+C=π,得sin(A+B)=sin C,cos(A+B)=-cos C,因此有sin C=1-cos C,即sin C+cos C=1,从而有sin(C+)=.考虑到0<C<π,得C+=,所以C=,故选C.6.若0≤A,B≤,且A+B=,则cos2A+cos2B的最小值和最大值分别为( C )(A), (B),(C), (D),解析:因为A+B=,所以cos2A+cos2B=+=1+(cos 2A+cos 2B)=1+[cos 2A+cos(-2A)]=1+(cos 2A+coscos 2A+sin sin 2A)=1+(cos 2A-sin 2A)=1+cos(2A+).又因为0≤A,B≤,且A+B=,得≤A≤,≤2A+≤,则-1≤cos(2A+)≤-,从而有≤cos2A+cos2B≤,故有最大值为,最小值为,故选C.二、填空题7.定义运算a⊕b=ab2+a2b,则sin 15°⊕cos 15°= .解析:依题意得sin 15°⊕cos 15°=sin15°cos215°+sin215°²cos 15°=sin 15°cos 15°(sin 15°+cos 15°)=sin30°²sin(15°+45°)=.答案:8.已知<β<α<,cos(α-β)=,sin(α+β)=-,则sin 2α的值是.解析:由已知<β<α<,可知π<α+β<,0<α-β<.又因为cos(α-β)=,sin(α+β)=-,得sin(α-β)=,cos(α+β)=-,所以sin 2α=sin [(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=-³+(-)³=-.答案:-9.已知sin(x+20°)=cos(x+10°)+cos(x-10°),则tan x的值是.解析:由条件可化为sin xcos 20°+cos xsin 20°=2cos xcos 10°,两边同除以cos x,得tan x=====.答案:10.已知α=,则+++的值是.解析:法一因为===tan 4α-tan 3α,同理可得=tan 3α-tan 2α,=tan 2α-tan α,所以原式=tan 4α=tan =.法二原式=sin α²+sinα²=+=sin 2α²=sin 2α²=tan 4α=tan =.答案:11.如果cos5θ-sin5θ<7(sin3θ-cos3θ),θ∈[0,2π),那么θ的取值范围是.解析:原不等式等价于sin3θ+sin5θ>cos3θ+cos5θ.又因为f(x)=x3+x5是(-∞,+∞)上的增函数,所以sin θ>cos θ.又因为θ∈[0,2π),所以θ的取值范围是(,).答案:(,)12.函数f(x)=4cos2cos(-x)-2sin x-|ln(x+1)|的零点个数为.解析:因为f(x)=2(1+cos x)sin x-2sin x-|ln(x+1)|=sin2x-|ln(x+1)|,所以函数f(x)的零点个数转化为函数y=sin 2x与y=|ln(x+1)|图象的交点的个数.由图象可得交点有2个,故f(x)的零点也有2个.答案:2三、解答题13.已知函数f(x)=sin xsin(x+).(1)求f(x)的最小正周期;(2)当x∈[0,]时,求f(x)的取值范围.解:(1)由题意得f(x)=sin2x+sin xcos x=²+sin 2x=sin 2x-cos 2x+=sin(2x-)+,所以最小正周期为T=π.(2)由0≤x≤,得-≤sin(2x-)≤1,所以f(x)的取值范围是[0,].14.已知tan(π+α)=-,tan(α+β)=.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)因为tan(π+α)=-,所以tan α=-,从而有tan(α+β)====.(2)tan β=tan [(α+β)-α]===.15.如图,A,B,C,D为平面四边形ABCD的四个内角.(1)证明:tan =;(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan的值.(1)证明:tan ===.(2)解:由A+C=180°,得C=180°-A,D=180°-B.由(1),有tan +tan +tan +tan=+++=+.连接BD(图略),在△ABD中,有BD2=AB2+AD2-2AB²ADcos A,在△BCD中,有BD2=BC2+CD2-2BC²CDcos C,所以AB2+AD2-2AB²ADcos A=BC2+CD2+2BC²CDcos A. 则cos A===.于是sin A===.连接AC,同理可得cos B===,于是sin B===.所以tan +tan +tan +tan=+=+=.第6节三角函数的图象与性质一、选择题1.函数y=tan(-x)的定义域为( A )(A){x|x≠kπ-,k∈Z} (B){x|x≠2kπ-,k∈Z}(C){x|x≠kπ+,k∈Z} (D){x|x≠2kπ+,k∈Z}解析:令-x≠kπ+,k∈Z,所以x≠--kπ,即x≠kπ-,k∈Z.2.(2016²山东卷)函数f(x)=(sin x+cos x)(cos x-sin x)的最小正周期是( B )(A)(B)π (C) (D)2π解析:f(x)=3sin xcos x-sin2x+cos2x-sin xcos x=sin 2x+cos 2x=2sin(2x+).最小正周期T==π,故选B.3.(2017²全国Ⅲ卷)设函数f(x)=cos(x+),则下列结论错误的是( D )(A)f(x)的一个周期为-2π(B)y=f(x)的图象关于直线x=对称(C)f(x+π)的一个零点为x=(D)f(x)在(,π)单调递减解析:f(x)=cos(x+)中,x∈(,π),x+∈(,),则f(x)=cos(x+)不是单调函数.故选D.4.如果函数y=3cos(2x+ϕ)的图象关于点(,0)对称,那么|ϕ|的最小值为( A )(A) (B) (C) (D)解析:由题意得3cos(2³+ϕ)=3cos(+ϕ+2π)=3cos(+ϕ)=0,所以+ϕ=kπ+,k∈Z,所以ϕ=kπ-,k∈Z,取k=0,得|ϕ|的最小值为.5.(2016²浙江卷)设函数f(x)=sin 2x+bsin x+c,则f(x)的最小正周期( B )(A)与b有关,且与c有关(B)与b有关,但与c无关(C)与b无关,且与c无关(D)与b无关,但与c有关解析:f(x)=sin2x+bsin x+c=+bsin x+c=-+bsin x+c+,其中当b=0时,f(x)=-+c+,此时周期是π;当b≠0时,周期为2π,而c不影响周期.故选B.6.(2016²全国Ⅰ卷)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( C )(A)[-1,1] (B)[-1,](C)[-,] (D)[-1,-]解析:f′(x)=1-cos 2x+acos x=1-²(2cos2x-1)+acos x=-cos2x+acos x+,f(x)在R上单调递增,则f′(x)≥0在R上恒成立.令cos x=t,t∈[-1,1],则-t2+at+≥0在[-1,1]上恒成立,即4t2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t2-3at-5,则解得-≤a≤,故选C.二、填空题7.已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,]时,-5≤f(x)≤1,则常数a= ;设g(x)=f(x+),则g(x)的单调增区间为 .解析:因为x∈[0,],所以2x+∈[,],所以sin(2x+)∈[-,1],所以-2asin(2x+)∈[-2a,a].所以f(x)∈[b,3a+b].又因为—5≤f(x)≤1,所以b=-5,3a+b=1,解得a=2,b=-5.所以f(x)=-4sin(2x+)-1,g(x)=f(x+)=-4sin(2x+)-1=4sin(2x+)-1,当-+2kπ≤2x+≤+2kπ,k∈Z时,g(x)单调递增,即-+kπ≤x≤+kπ,k∈Z.所以g(x)的单调增区间为[-+kπ,+kπ],k∈Z.答案:2 [-+kπ,+kπ](k∈Z)8.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.解析:f(x)=sin ωx+cos ωx=sin(ωx+),因为f(x)在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f(ω)必为一个周期上的最大值,所以有ω²ω+=2kπ+,k ∈Z,所以ω2=2kπ+,k∈Z.又2[ω-(-ω)]≤,即ω2≤,所以ω2=,所以ω=.答案:9.已知函数f(x)=3sin(ωx-)(ω>0)和g(x)=2cos(2x+ )+1的图象的对称轴完全相同,若x∈[0,],则f(x)的取值范围是. 解析:因为f(x)与g(x)的图象的对称轴完全相同,所以f(x)与g(x)的最小正周期相等,因为ω>0,所以ω=2,所以f(x)=3sin(2x-),因为0≤x≤,所以-≤2x-≤,所以-≤sin(2x-)≤1,所以-≤3sin(2x-)≤3,即f(x)的取值范围是[-,3].答案:[-,3]10.(2017²嘉兴模拟)已知函数f(x)=3sin(3x+ϕ),x∈[0,π],则y=f(x)的图象与直线y=2的交点个数最多有个.解析:令f(x)=3sin(3x+ϕ)=2,得sin(3x+ϕ)=∈[-1,1],又x∈[0,π],所以3x+ϕ∈[ϕ,3π+ϕ];根据正弦函数的图象与性质,可得该方程在正弦函数一个半周期上最多有4个解,即函数y=f(x)的图象与直线y=2的交点最多有4个.答案:411.下列四个函数:①y=sin |x|,②y=cos |x|,③y=|tan x|,④y=-ln|sin x|,以π为周期,在(0,)上单调递减且为偶函数的是___ .(只填序号)解析:①y=sin |x|在(0,)上单调递增,故①错误;②y=cos |x|=cos x 周期为T=2π,故②错误;③y=|tan x|在(0,)上单调递增,故③错误;④ln|sin(x+π)|=ln|sin x|,周期为π,当x∈(0,)时,y=-ln|sin x|=-ln(sin x)在(0,)上单调递减,y=-ln|sin x|为偶函数,故④正确.答案:④12.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则ω的取值范围是.解析:T=≥2(π-)=π,所以0<ω≤2,由<x<π得ω+<ωx+<πω+,由题意知(ω+,πω+)⊆[+2kπ,+2kπ],k∈Z,所以即所以≤ω≤.答案:[,]三、解答题13.(2017²北京卷)已知函数f(x)=cos(2x-)-2sin xcos x.(1)求f(x)的最小正周期;(2)求证:当x∈[-,]时,f(x)≥-.(1)解:f(x)=cos 2x+sin 2x-sin 2x=sin 2x+cos 2x=sin(2x+),所以f(x)的最小正周期T==π.(2)证明:因为-≤x≤,所以-≤2x+≤,所以sin(2x+)≥sin(-)=-,所以当x∈[-,]时,f(x)≥-.14.求函数y=cos2x+sin x(|x|≤)的最大值与最小值.解:令t=sin x,因为|x|≤,所以t∈[-,].所以y=-t2+t+1=-(t-)2+,所以当t=时,y max=,当t=-时,y min=.所以函数y=cos2x+sin x(|x|≤)的最大值为,最小值为. 15.(2017²浙江协作体)已知0≤ϕ<π,函数f(x)=cos(2x+ϕ)+sin2x.(1)若ϕ=,求f(x)的单调递增区间;(2)若f(x)的最大值是,求ϕ的值.解:(1)由题意f(x)=cos 2x-sin 2x+=cos(2x+)+,由2kπ-π≤2x+≤2kπ,得kπ-≤x≤kπ-.所以f(x)的单调递增区间为[kπ-,kπ-],k∈Z.(2)由题意f(x)=(cos ϕ-)cos 2x-sin ϕsin 2x+,由于函数f(x)的最大值为,即+=1,从而cos ϕ=0,又0≤ϕ<π,故ϕ=.第7节函数y=Asin(ωx+φ)+b的图象与性质一、选择题1.为了得到函数y=sin(x+1)的图象,只需把函数y=sin x的图象上所有的点( A )(A)向左平行移动1个单位长度(B)向右平行移动1个单位长度(C)向左平行移动π个单位长度(D)向右平行移动π个单位长度2.(2016²全国Ⅰ卷)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( D )(A)y=2sin(2x+) (B)y=2sin(2x+)(C)y=2sin(2x-) (D)y=2sin(2x-)解析:因为T==π,=,所以y=2sin(2x+)y=2sin[2(x-)+],所以y=2sin(2x-).故选D.3.函数y=sin 2x的图象向右平移φ(φ>0)个单位,得到的图象恰好关于x=对称,则φ的最小值为( A )(A)π(B)π(C)π(D)以上都不对解析:y=sin 2x的图象向右平移φ个单位得到y=sin 2(x-φ)的图象,又关于x=对称,则2(-φ)=kπ+(k∈Z),2φ=-kπ-(k∈Z),即φ=--,取k=-1,得φ=π.4.设a∈R,b∈[0,2π],若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( B )(A)1 (B)2 (C)3 (D)4解析:由已知,3x-=ax+b+2kπ或3x-+ax+b=π+2kπ,k∈Z,所以或k∈Z,所以或满足条件的有序实数对(a,b)的对数为2.5.将函数f(x)=sin 2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)-g(x2)|=2的x1,x2,有=.则φ等于( D )(A) (B)(C)(D)解析:由已知得g(x)=sin(2x-2φ),满足|f(x1)-g(x2)|=2,不妨设此时y=f(x)和y=g(x)分别取得最大值与最小值,又|x1-x2|min=,令2x1=,2x2-2φ=-,此时|x1-x2|=-φ=,又0<φ<,故φ=.故选D.6.已知函数f(x)=Asin(x-),g(x)=k(x-3).已知当A=1时,函数h(x)=f(x)-g(x)所有零点和为9.则当A=2时,函数h(x)=f(x)-g(x)所有零点和为( A )(A)15 (B)12(C)9 (D)与k的取值有关解析:如图,函数y=f(x)与y=g(x)图象均过的点(3,0),且均关于点(3,0)对称.所以h(x)零点关于x=3“对称”,因为当A=1时,h(x)所有零点和为9,所以此时,函数y=f(x)与y=g(x)图象有三个公共点,此时,f(6)<g(6),得k>.当A=2时,f(6)>g(6)且g(9)=6k>2=f max(x),所以h(x)有5个零点x1,x2,x3,x4,x5,且x1+x5=x2+x4=6,x3=3.所以x1+x2+x3+x4+x5=15.故选A.7.(2016²全国Ⅰ卷)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为( B )(A)11 (B)9 (C)7 (D)5解析:因为f(x)=sin(ωx+φ)的一个零点为x=-,x=为y=f(x)图象的对称轴,所以²k=(k为奇数).又T=,所以ω=k(k为奇数).又函数f(x)在(,)上单调,所以≤³,即ω≤12.若ω=11,又|φ|≤,则φ=-,此时,f(x)=sin(11-x-),f(x)在(,)上单调递增,在(,)上单调递减,不满足条件.若ω=9,又|φ|≤,则φ=,此时f(x)=sin(9x+),满足f(x)在(,)上单调的条件.故选B.二、填空题8.(2017²温州模拟)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,将f(x)的图象向左平移个单位,得到g(x)的图象,则函数g(x)的解析式为 .解析:由题意得=-=,所以T=π,所以ω=2,又因为2³+φ=π,所以φ=,所以f(x)=sin(2x+).因为g(x)的图象是由f(x)的图象向左平移个单位得到,所以g(x)=sin [2(x+)+]=sin(2x+).答案:g(x)=sin(2x+)9.(2016²全国Ⅲ卷)函数y=sin x-cos x的图象可由函数y=sin x+cos x的图象至少向右平移个单位长度得到.解析:y=sin x-cos x=2sin(x-),y=sin x+cos x=2sin(x+),y=2sin(x+)的图象至少向右平移个单位长度得到y=2sin(x+-)=2sin(x-)的图象.答案:10.若将函数y=2sin 2x的图象向左平移个单位长度,则平移后图象的对称轴为.解析:将函数y=2sin 2x的图象向左平移个单位长度,得到函数y=2sin [2(x+)]=2sin(2x+)的图象.由2x+=kπ+(k∈Z),得x=+(k∈Z),即平移后图象的对称轴为x=+(k∈Z).答案:x=+(k∈Z)11.(2016²浙江卷)已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),则A= ,b= .解析:2cos2x+sin 2x=sin(2x+)+1,所以A=,b=1.答案: 112.(2016²江苏卷)定义在区间[0,3π]上的函数y=sin 2x的图象与y=cos x的图象的交点个数是.解析:联立两曲线方程,得两曲线交点个数即为方程组解的个数,也就是方程sin 2x=cos x解的个数.方程可化为2sin xcos x=cos x,即cos x(2sin x-1)=0,所以cos x=0或sin x=.①当cos x=0时,x=kπ+,k∈Z,因为x∈[0,3π],所以x=,π,π,共3个;②当sin x=时,因为x∈[0,3π],所以x=,π,π,π,共4个.综上,方程组在[0,3π]上有7个解,故两曲线在[0,3π]上有7个交点.答案:7三、解答题13.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC 的面积为π.(1)求函数f(x)的解析式;(2)若f(α-)=,求cos 2α的值.解:(1)因为S△MBC=³2³BC=BC=π,所以周期T=2π=,ω=1,由f(0)=2sin φ=,得sin φ=,因为0<φ<,所以φ=,所以f(x)=2sin(x+).(2)由f(α-)=2sin α=,得sin α=,所以cos 2α=1-2sin2α=.14.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,且x=为f(x)图象的一条对称轴.(1)求ω和φ的值;(2)设函数g(x)=f(x)+f(x-),求g(x)的单调递减区间.解:(1)函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π, 所以T==π,ω=2,又x=为f(x)图象的一条对称轴,所以2³+φ=kπ+,k∈Z,解得φ=kπ+,k∈Z,又|φ|≤,所以φ=.(2)由(1)知,f(x)=sin(2x+),所以g(x)=f(x)+f(x-)=sin(2x+)+sin 2x=sin 2x+cos 2x+sin 2x =sin(2x+),令+2kπ≤2x+≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,所以g(x)的单调递减区间是[+kπ,+kπ],k∈Z.15.函数f(x)=cos(πx+φ)(0<φ<)的部分图象如图所示.(1)求φ及图中x0的值;(2)设g(x)=f(x)+f(x+),求函数g(x)在区间[-,]上的最大值和最小值.解:(1)由题图得f(0)=,所以cos φ=,因为0<φ<,故φ=.法一由于f(x)的最小正周期T==2,由题图可知1<x0<2,故<πx0+<,由f(x0)=得cos(πx0+)=,所以πx0+=,x0=.法二求离原点最近的正的最小值点,令πx+=π+2kπ,得x=+2k,k∈Z,令k=0得x=,所以=,x0=.(2)因为f(x+)=cos [π(x+)+]=cos(πx+)=-sin πx,所以g(x)=f(x)+f(x+)=cos(πx+)-sin πx=cos πxcos -sin πxsin -sin πx=cos πx-sin πx=sin(-πx)=-sin(πx-).当x∈[-,]时,πx∈[-,],(πx-)∈[-,], 所以sin(πx-)∈[-1,],-sin (πx-)∈[-,],当πx-=-,即x=-时,g(x)取得最大值;当πx-=,即x=时,g(x)取得最小值-.易错点训练:忽视函数值造成范围扩大一、选择题1.的值是( A )(A)sin 40° (B)cos 40° (C)cos 130°(D)±cos 50°解析:因为==-cos 130°=sin 40°,故选A.2.已知sin α=2sin β,tan α=3tan β,则cos α的值是( D )(A) (B)-(C)± (D)±或±1解析:由条件tan α=3tan β,得=.又因为sin α=2sin β,所以=.当sin β=0时,sin α=0,显然成立,故有cos α=±1;当sin β≠0时,3cos α=2cos β,从而有(sin α)2+(3cos α)2=4,解得cos2α=,所以cos α=±,故选D.3.在△ABC中,若sin A=,cos B=,则cos C的值是( B )(A) (B)(C)或 (D)以上都不对解析:因为cos B=,所以sin B=.又因为sin A=<=sin B,若A 为钝角,则sin(π-A)<sin B,得π-A<B,π<A+B矛盾.因此A肯定是锐角,所以cos A=,从而有cos C=-cos(A+B)=sin Asin B-cos Acos B=,故选B.4.已知3sin2x+2sin2y=2sin x,则sin2x+sin2y的最值情况是( D )(A)最大值为,最小值为-(B)最大值为,最小值为0(C)最大值为,最小值为-(D)最大值为,最小值为0解析:由0≤sin2y=(2sin x-3sin2x)≤1,可解得0≤sin x≤,则sin2x+sin2y=sin2x+(2sin x-3sin2x)=-sin2x+sin x=-(sin x-1)2+,所以sin2x+sin2y的最大值为,最小值为0.5.已知方程x2+4ax+3a+1=0(a>1)的两根为tan α,tan β,且α,β∈(-,),则tan 的值是( A )(A)-2 (B)(C)-2或(D)2或-解析:由韦达定理可知tan α,tan β同为负值,可得α,β∈(-,0),所以∈(-,0).又因为所以tan(α+β)===.又因为tan(α+β)==,解得tan =-2或,取tan =-2.二、填空题6.已知sin θ+cos θ=,其中θ∈(0,π),则tan θ的值是.。
专题05 三角函数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版)
D.
1 8
D. 3 4 3 10
D. 5 6
D. 4 7 3
9.已知 sin
cos
π 6
3cos
sin
π 6
,则
tan
.
10.已知 是第四象限角,且满足 sin cos 7 ,则 tan
.
13
11.若 0
π 2
,且
tan
2
,则
sin cos cos 2
.
易错点三:忽视三角函数图象变换研究对象选取(三角函数的图象和性质)
5
A. 84 85
B. 36 85
C. 13 85
D.
77 85
3.在平面直角坐标系中,角 的顶点为坐标原点,始边在 x 轴的正半轴上,终边过点 m,6 ,且
tan 3,则 cos ( )
A. 10 5
B. 10 10
C. 10 5
4.已知 sin
cos
1 ,则
2 sin
2
π 4
变式 1.如图,在平面直角坐标系 xOy 中,锐角 的顶点与原点重合,始边与 x 轴的非负半轴重合,终边与
单位圆交于点 P x1, y1 , cos
5. 5
(1)求 y1 的值;
(2)射线 OP 绕坐标原点 O 按逆时针方向旋转 2
后与单位圆交于点
M (x2 ,
y2 )
,点
N
与M
关于
x
轴对称,求
5
10
(1)求 tan( ) 的值; (2)求 cos(2 ) 的值.
cos πsin 2π tan 2π
变式 2..已知 cos 1 ,且 π 0 ,化简并求
(精选试题附答案)高中数学第五章三角函数重点易错题
(名师选题)(精选试题附答案)高中数学第五章三角函数重点易错题单选题1、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值.sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A.2、已知扇形的圆心角为3π4,半径为4,则扇形的面积S 为( ) A .3πB .4πC .6πD .2π 答案:C解析:利用S =12αr 2即可求得结论. 由扇形面积公式得:S =12×3π4×42=6π.故选:C.3、要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( ). A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π8个单位长度D .向右平移π8个单位长度分析:根据函数图象平移的性质:左加右减,并结合图象变化前后的解析式判断平移过程即可. 将y =3sin2x 向左移动π8个单位长度有y =3sin2(x +π8)=3sin(2x +π4),∴只需将函数y =3sin2x 的图象向左平移π8个单位长度,即可得y =3sin(2x +π4)的图象.故选:C4、已知函数f (x )=Asin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如下图所示.则能够使得y =2sinx 变成函数f (x )的变换为( )A .先横坐标变为原来的12倍,再向左平移π24B .先横坐标变为原来的2倍,再向左平移π12 C .先向左平移π6,再横坐标变为原来的12倍D .先向左平移π24,再横坐标变为原来的2倍答案:C分析:先根据给定图象求出函数f (x )的解析式,再求出由y =2sinx 到f (x )的变换即得. 观察图象知A =2,f (x )周期为T ,则T4=5π12−π6=π4,即T =π,ω=2πT=2,又f (π6)=2,即2⋅π6+φ=2kπ+π2(k ∈Z),而|φ|<π2,则k =0,φ=π6, 所以f (x )=2sin(2x +π6),把y =2sinx 图象向左平移π6得y =2sin(x +π6)图象,再把所得图象上每一点的横坐标变为原来的12倍即得f (x ).5、记函数f(x)=sin(ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f(π2)=( )A .1B .32C .52D .3答案:A分析:由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2, 所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin (52x +π4)+2, 所以f (π2)=sin (54π+π4)+2=1. 故选:A6、阻尼器是一种以提供运动的阻力,从而达到减振效果的专业工程装置.深圳第一高楼平安金融中心的阻尼器减震装置,是亚洲最大的阻尼器,被称为“镇楼神器”.由物理学知识可知,某阻尼器模型的运动过程可近似为单摆运动,其离开平衡位置的位移s (cm )和时间t (s )的函数关系式为s =2sin(ωt +φ),其中ω>0,若该阻尼器模型在摆动过程中连续三次位移为s 0(−2<s 0<2)的时间分别为t 1,t 2,t 3,且t 3−t 1=2,则ω=( ) A .π2B .πC .3π2D .2π 答案:B分析:利用正弦型函数的性质画出函数图象,并确定连续三次位移为s 0的时间t 1,t 2,t 3,即可得T =t 3−t 1,可求参数ω.由正弦型函数的性质,函数示意图如下:所以T =t 3−t 1=2,则2πω=2,可得ω=π. 故选:B7、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度 C .向右平移π6个单位长度D .向左平移π6个单位长度答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果. 因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A.8、已知角α的终边经过点P (−3,4),则sinα−cosα−11+tanα的值为( )A .−65B .1C .2D .3答案:A分析:由三角函数的定义可得sinα=45,cosα=−35,tanα=−43,将其代入即可求解. 由√(−3)2+42=5,得sinα=45,cosα=−35,tanα=−43,代入原式得=45−(−35)−11+(−43)=−65.故选:A9、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( )A .π12B .π6C .π3D .2π3 答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3), ∵y =2sin (x +m +π3)图象关于原点对称,∴m +π3=kπ(k ∈Z ),解得:m =−π3+kπ(k ∈Z ),又m >0, ∴当k =1时,m 取得最小值2π3. 故选:D.10、已知简谐振动f (x )=Asin (ωx +φ)(|φ|<π2)的振幅是32,图象上相邻最高点和最低点的距离是5,且过点(0,34),则该简谐振动的频率和初相是( ) A .16,π6B .18,π3 C .18,π6D .16,π3答案:C分析:根据正弦型函数的图象与性质求出振幅、周期,再由过点(0,34)求出初相即可得解. 由题意可知,A =32,32+(T2)2=52,则T =8,ω=2π8=π4, ∴ y =32sin (π4x +φ). 由32sin φ=34,得sin φ=12.∵|φ|<π2,∴φ=π6.因此频率是18,初相为π6.故选:C 填空题11、已知sinθ−cosθ=12,则sin 3θ−cos 3θ=______. 答案:1116分析:根据sinθ−cosθ=12平方可得sinθ⋅cosθ=38,结合立方差公式即可代入求值. 因为sinθ−cosθ=12,平方得(sinθ−cosθ)2=14,所以sinθ⋅cosθ=38,所以sin 3θ−cos 3θ=(sinθ−cosθ)⋅(sin 2θ+sinθcosθ+cos 2θ)=12×(1+38)=1116.所以答案是:111612、已知函数f(x)=3sin (ωx +π6)(ω>0) 在(0,π12) 上单调递增,则ω的最大值是____. 答案:4分析:根据正弦型函数的单调性即可求解.由函数f(x)=3sin (ωx +π6)(ω>0)在区间(0,π12)上单调递增, 可得ω⋅π12+π6≤π2,求得ω≤4,故ω的最大值为4,所以答案是:4 13、已知cos (π6+α)=√33,则cos (5π6−α)=________.答案:−√33分析:本题可根据诱导公式得出结果.cos (5π6−α)=cos [π−(π6+α)]=−cos (π6+α)=−√33,所以答案是:−√3314、函数f(x)=sinx的图象向左平移π6个单位得到函数g(x)的图象,则下列函数g(x)的结论:①一条对称轴方程为x=7π6;②点(5π6,0)是对称中心;③在区间(0,π3)上为单调增函数;④函数g(x)在区间[π2,π]上的最小值为−12.其中所有正确的结论为______.(写出正确结论的序号)答案:②③④解析:先求得g(x),然后利用代入法判断①②,根据单调区间和最值的求法判断③④.函数f(x)=sinx的图象向左平移π6个单位得到函数g(x)=sin(x+π6),g(7π6)=sin(7π6+π6)=sin4π3=sin(π+π3)=−sinπ3=−√32≠±1,所以①错误.g(5π6)=sin(5π6+π6)=sinπ=0,所以②正确.由2kπ−π2≤x+π6≤2kπ+π2,解得2kπ−2π3≤x≤2kπ+π3,k∈Z.令k=0得−2π3≤x≤π3,所以g(x)在区间(0,π3)上为单调增函数,即③正确.由π2≤x≤π得2π3≤x+π6≤7π6,所以当x=π,x+π6=7π6时,g(x)有最小值为sin7π6=sin(π+π6)=−sinπ6=−12,所以④正确.所以答案是:②③④小提示:解决有关三角函数对称轴、对称中心的问题,可以考虑代入验证法.考查三角函数单调区间的问题,可以考虑整体代入法.15、设函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[π6,π2]上单调,且f(π2)=f(2π3)=−f(π6),则f(x)的最小正周期为____.答案:π分析:根据单调性可确定0<ω≤3,结合f(π2)=f(2π3)=−f(π6),可得x=7π12,(π3,0)分别为对称轴和对称中心,即可结合周期求解.函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[π6,π2]上单调,则T 2=πω≥π2-π6,∴0<ω≤3.∵f (π2)=f (2π3)=−f (π6),∴x =π2+2π32=7π12为f (x )=sin (ωx +φ)的一条对称轴,且(π6+π22,0)即(π3,0)为f (x )=sin (ωx +φ)的一个对称中心,只有当T4=14⋅2πω=7π12−π3=π4时,解得ω=2∈(0,3],∴T=2π2=π,故答案为:π 解答题16、已知cosα=35,α∈(−π2,0).(1)求tanα,sin2α的值; (2)求sin (π3−α)的值.答案:(1)−43,−2425;(2)3√3+410分析:(1)首先利用同角三角函数关系求出sinα=−45,从而得到tanα=−43,再利用正弦二倍角公式计算sin2α即可.(2)利用正弦两角差公式展开计算即可得到答案.(1)因为cosα=35,α∈(−π2,0),所以sinα=−√1−(35)2=−45,所以tanα=sinαcosα=−4535=−43,sin2α=2sinαcosα=−2425.(2)sin (π3−α)=sin π3cosα−cos π3sinα=√32×35−12×(−45)=3√3+410. 小提示:本题主要考查三角函数的恒等变换,同时考查同角三角函数关系,属于简单题. 17、已知函数f (x )=sin(ωx +π3)(ω>0). (1)当ω=2时,求f (x )在[0,π2]的值域;(2)若至少存在三个x 0∈(0,π3),使得f (x 0)=−1,求f (x )最小正周期的取值范围;(3)若f(x)在(π2,π)上单调递增,且存在m∈(π2,π),使得f(2m−π3ω)>√22,求ω的取值范围.答案:(1)[−√32,1](2)(0,4π31)(3)18<ω≤16分析:(1)当ω=2时,求出2x+π3的范围,根据三角函数的性质,可得答案;(2)由题意,设f(x)最小正周期为T,则可得T满足的不等式,由此求得T的范围.(3)由题意f(x)在(π2,π)上单调递增,列出相应不等式组,可得0<ω≤16,再根据存在m∈(π2,π),使得f(2m−π3ω)>√22能成立,列出不等式,即可求得ω的范围.(1)当ω=2时,f(x)=sin(ωx+π3)(ω>0),由x∈[0,π2]知π3≤2x+π3≤4π3,−√32≤sin(2x+π3)≤1,∴f(x)的值域为[−√32,1].(2)∵对于函数f(x)=sin(ωx+π3)(ω>0),至少存在三个x0∈(0,π3),使得f(x0)=−1,设f(x)最小正周期为T,∴(2π−π32π⋅T+T+34⋅T)<π3,即3112T<π3,∴0<T<4π31,∴f(x)的最小正周期的取值范围为(0,4π31).(3)若f(x)在(π2,π)上单调递增,ωx+π3∈(ωπ2+π3,ωπ+π3) ,∴{ωπ+π3≤π2+2kπ2kπ−π2≤ωπ2+π3,k ∈Z ,∴4k −53≤ω≤16+2k,k ∈Z , 当k =0时,−53≤ω≤16,又ω>0,故0<ω≤16, 当k =1时, 73≤ω≤136,ω 不存在,同理k 取其它整数时,ω不存在,故0<ω≤16∵存在m ∈(π2,π),使得f(2m −π3ω)>√22, 即sin[ω(2m −π3ω)+π3]>√22能成立, 即sin2ωm >√22能成立. ∵2ωm ∈(ωπ,2ωπ),∴需π4+2kπ<2ωπ<3π4+2kπ,k ∈Z ,∴18+k <ω<38+k,k ∈Z .,而0<ω≤16,故18<ω≤16 综上可得,18<ω≤16.18、函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图:(1)求f (x )解析式;(2)写出函数f (x )在[0,π2]上的单调递减区间. 答案:(1)y =2sin (2x +π4)(2)[π8,π2]分析:(1)根据图象求得A,ω,φ,从而求得f (x )解析式.(2)利用整体代入法求得f (x )在区间[0,π2]上的单调递减区间. (1)由图象知A =2,T =7π8−(−π8)=π,所以ω=2,又过点(−π8,0), 令−π8×2+φ=2kπ,φ=2kπ+π4,由于|φ|<π2,故φ=π4,所以y =2sin (2x +π4). (2)由2kπ+π2≤2x +π4≤2kπ+3π2(k ∈Z ), 可得kπ+π8≤x ≤kπ+5π8(k ∈Z ), 当k =0时π8≤x ≤5π8, 故函数f (x )在[0,π2]上的单调递减区间为[π8,π2].19、已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过函数f (x )=−3−a x−3(a >0且a ≠1)的定点M .(1)求sinα−2cosα的值;(2)求sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)的值.答案:(1)−2(2)5221分析:(1)易知函数f (x )=−3−a x−3的定点M 的坐标为(3,−4),利用三角函数的定义则可求出sinα=−45,cosα=35则可求出答案;(2)利用诱导公式化简,再将sinα=−45,cosα=35,tanα=−43代入,即可得出答案.(1)∵函数f (x )=−3−a x−3(a >0且a ≠1)的定点M 的坐标为(3,−4),∴角α的终边经过点M (3,−4),∴OM =√32+(−4)2=5(O 为坐标原点), 根据三角函数的定义可知sinα=−45,cosα=35, ∴sinα−2cosα=−45−2×35=−2.(2)sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)=−sinα−sinαcosα−sinα−tanα=−2sinαcosα−sinα−(−43) =−2×(−45)35−(−45)+43=87+43=5221.。
高中数学三角函数易错题精选
三角部分易错题选一、选择题:1.为了得到函数 y sin 2x的图象,可以将函数 y cos 2x 的图象()6A 向右平移B 向右平移C 向左平移D 向左平移答案 :B63 632.函数xysin x 1 tan x tan 的最小正周期为()2AB2CD 23 2答案 : B3.曲线 y=2sin(x+) 4 cos(x- ) 和直线 y= 412 在 y 轴右侧的交点按横坐标从小到大依次记为P 1 、P 2、P 3,, ,则P 2P 4 等于() A .B .2C .3D .4 正确答案: A 4.下列四个函数 y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+), 其中以点 ( ,0) 为中心对称44的三角函数有( )个A .1B .2C .3D .4正确答案: D5.函数 y=Asin(x+ )( >0,A 0) 的图象与函数y=Acos( x+ )( >0, A 0) 的图象在区间(x 0,x 0+) 上()A .至少有两个交点B .至多有两个交点C .至多有一个交点D .至少有一个交点正确答案: C6. 在 ABC 中, 2sinA+cosB=2 ,sinB+2cosA= 3 ,则 C 的大小应为 ( )A .B .C .或 6365 D .6 3或23 正确答案: A 错因:学生求 C 有两解后不代入检验。
7.已知 tan tan 是方程 x2+3 3 x+4=0 的两根,若 , (- 2+3 3 x+4=0 的两根,若, (-, 2 2) ,则 + =()A .B . 或- 332 C .-3 3 或 2 D .- 3 23正确答案: D 错因:学生不能准确限制角的范围。
nn,sincos的取值为() 8. 若sin cos 1,则对任意实数nA. 1B. 区间( 0,1)C.1n D. 不能确定12解一: 设点 (sin ,cos ) ,则此点满足x y22xy11解得xy1或xy1即s incos或1sincos1n n 1 选A s in c o s解二:用赋值法,n n 1 令sin 0,cos 1 同样有sin cos选A说明:此题极易认为答案 A 最不可能,怎么能会与n无关呢?其实这是我们忽略了一2 2 1,导致了错选为 C 或D。
2023届高考复习数学易错题专题(三角函数与解三角形)汇编(附答案)
2023届高考复习数学易错题专题(三角函数与解三角形)汇编1.集合⎩⎨⎧⎭⎬⎫α|k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )2.在△ABC 中,若sin 2A =sin 2C ,则△ABC 的形状是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰三角形或直角三角形3.已知角θ的顶点与原点重合,始边与x 轴非负半轴重合,若A (-1,y )是角θ终边上的一点,且sin θ=-3 10,则y =( )A .3B .-3C .1D .-14. 已知θ是第三象限角,且cos(π+θ)=13,则tan θ=( )A.24B .2C .2 2 D.105.已知α终边与单位圆的交点P ⎝⎛⎭⎫x ,35,且α是第二象限角,则1-sin 2α+2+2cos 2α 的值等于( )A.15B .-15C .3D .-36.设α角属于第二象限,且⎪⎪⎪⎪cos α2=-cos α2,则α2角属于( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知sin α,cos α是方程x 2-2kx +k 2+k =0的两根,则k 的值为( ) A.1±32 B.1-32 C .1± 3 D .1+ 38. 若θ∈(0,π),tan θ+1tan θ=6,则sin θ+cos θ=( ) A .233 B .-233 C .±233 D .239.在△ABC 中,cos A =513,sin B =35,则cos C 的值为( )A.1665 B .-5665 C .-1665 D.1665或-566510.已知cos α=255,sin β=10,且α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,则α+β的值是( ) A.3π4 B .π4 C.7π4 D.5π411.已知φ∈R,则“φ=0”是“y =sin(x +φ)为奇函数”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a cos A =b cos B ,且c 2=a 2+b 2-ab ,则△ABC 的形状为( )A .等腰三角形或直角三角形B .等腰直角三角形C .直角三角形D .等边三角形13.把函数f (x )=2cos ⎝⎛⎭⎫2x -π4的图象向左平移m (m >0)个单位,得到函数g (x )=2sin ⎝⎛⎭⎫2x -π3的图象,则m 的最小值是( )A.724πB.1724πC.524πD.1924π14.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在区间⎣⎡⎦⎤π2,π上单调递减,则实数ω的取值范围是( ) A. ⎣⎢⎡⎦⎥⎤12,54 B. ⎣⎢⎡⎦⎥⎤12,34 C .⎝⎛⎦⎤0,12 D . (0,2] 15.已知函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的图象的一部分如图所示,则ω,φ的值分别为( )A .1,π3B .1,-π3C .2,-π3D .2,π316.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6 (ω>0),对任意x ∈R ,都有f (x )≤f ⎝⎛⎭⎫π3,并且f (x )在区间⎣⎡⎦⎤-π6,π3上不单调,则ω的最小值是( ) A .1 B .3 C .5 D .717.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b =23,c =3,A +3C =π,则下列结论正确的是( )A .cos C =33B .sin B =23C .a =3D .S △ABC = 218.(多选题)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A .sin⎝⎛⎭⎫x +π3B .sin ⎝⎛⎭⎫π3-2x C .cos ⎝⎛⎭⎫2x +π6 D .cos ⎝⎛⎭⎫5π6-2x 19. 若0<α<π2,-π<β<-π2,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=-3,则cos ⎝⎛⎭⎫α+β2=( ) A .-539 B.539 C .-33 D.3320.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.21.已知函数f (x )=2sin(ωx +φ)(ω>0,-π<φ<0)的相邻两个零点间的距离为π2,且f ⎝⎛⎭⎫-π8=-2,则φ=________.22.化简sin (n π+α)cos (n π-α)cos[(n +1)π-α](n ∈Z)的结果为________. 23.在锐角△ABC 中,BC =2,sin B +sin C =2sin A ,则中线AD 长的取值范围是________.24.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡π,3π2,则α+β的值是________.25.设f (x )=m cos ⎝⎛⎭⎫2x -π3+m -1(m ≠0). (1)若m =2,求函数f (x )的零点;(2)当x ∈⎣⎡⎦⎤0,π2时,-3≤f (x )≤4恒成立,求实数m 的取值范围.所以sin θ=-1-cos 2θ=- 1-⎝⎛⎭⎫-132=-223,所以tan θ=sin θcos θ=-223-13=2 2. 5.已知α终边与单位圆的交点P ⎝⎛⎭⎫x ,35,且α是第二象限角,则1-sin 2α+2+2cos 2α 的值等于( )A.15B .-15C .3D .-3 【参考答案】C【答案解析】因为α终边与单位圆的交点P ⎝⎛⎭⎫x ,35,且α是第二象限角,所以sin α=35, cos α=-45,则1-sin 2α+2+2cos 2α=1-2sin αꞏcos α+2(1+cos 2α)=(sin α-cos α)2+4cos 2α=|sin α- cos α|+2|cos α|=75+85=3.6.设α角属于第二象限,且⎪⎪⎪⎪cos α2=-cos α2,则α2角属于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【参考答案】C【答案解析】∵α是第二象限角,∴90°+k ꞏ360<α<180°+k ꞏ360°,k ∈Z ,∴45°+k ꞏ180°<α2<90°+k ꞏ180°,k ∈Z.当k =2n ,n ∈Z 时,α2在第一象限;当k =2n +1,n ∈Z 时,α2在第三象限,∴α2在第一象限或在第三象限,∵⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0,∴α2角在第三象限. 7.已知sin α,cos α是方程x 2-2kx +k 2+k =0的两根,则k 的值为( )A.1±32B.1-32 C .1± 3 D .1+ 3【参考答案】B【答案解析】由题意得⎩⎪⎨⎪⎧sin α+cos α=2k ,sin αcos α=k 2+k , ∵sin 2α+cos 2α=(sin α+cos α)2-2sin αcos α=4k 2-2(k 2+k )=1,即2k 2-2k -1=0,解得k =2±234=1±32.∵sin α+cos α=2sin ⎝⎛⎭⎫α+π4, ∴sin α+cos α∈[]-2,2,即2k ∈[]-2,2,∴k ∈⎣⎡⎦⎤-22,22,∴k =1-32.8. 若θ∈(0,π),tan θ+1tan θ=6,则sin θ+cos θ=( )A .233B .-233C .±233D .23【参考答案】A【答案解析】因为tan θ+1tan θ=sin θcos θ+cos θsin θ=sin 2θ+cos 2θsin θcos θ=6,所以sin θcos θ=16, 又θ∈(0,π),则sin θ>0,cos θ>0,所以sin θ+cos θ>0.所以(sin θ+cos θ)2=1+2sin θcos θ=43,所以sin θ+cos θ=233.9.在△ABC 中,cos A =513,sin B =35,则cos C 的值为( )A.1665 B .-5665 C .-1665 D.1665或-5665【参考答案】A【答案解析】在△ABC 中,由cos A =513,sin B =35,可得sin A =1-cos 2A =1213,因为sin B <sin A 且A 为锐角,则b <a ,所以A >B ,所以B 为锐角,所以cos B =1-sin 2B =45则cos C =cos [π-(A +B )]=-cos(A +B )=-cos A cos B +sin A sin B =-513×45+1213×35=1665.10.已知cos α=255,sin β=1010,且α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,则α+β的值是( )A.3π4B .π4 C.7π4 D.5π4 【参考答案】B【答案解析】因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,所以sin α=1-cos 2α=55,cos β=1-sin 2β=31010, cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.又0<α+β<π,故α+β=π4.11.已知φ∈R,则“φ=0”是“y =sin(x +φ)为奇函数”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件【参考答案】A【答案解析】当φ=0时,y =sin(x +φ)为奇函数;当y =sin(x +φ)是奇函数时,φ=k π,k ∈Z ,所以“φ=0”是“y =sin(x +φ)为奇函数”的充分不必要条件,故选A.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a cos A =b cos B ,C .cos ⎝⎛⎭⎫2x +π6 D .cos ⎝⎛⎭⎫5π6-2x 【参考答案】BC【答案解析】由题图可知,函数的最小正周期T =2⎝⎛⎭⎫2π3-π6=π,∴2π|ω|=π,ω=±2. 当ω=2时,y =sin(2x +φ),将点⎝⎛⎭⎫π6,0代入得,sin ⎝⎛⎭⎫2×π6+φ=0, ∴2×π6+φ=2k π+π,k ∈Z ,即φ=2k π+2π3,k ∈Z ,∴y =sin ⎝⎛⎭⎫2x +2π3,故A 错误;由sin ⎝⎛⎭⎫2x +2π3=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2x =sin ⎝⎛⎭⎫π3-2x 知B 正确; 由sin ⎝⎛⎭⎫2x +2π3=sin ⎝⎛⎭⎫2x +π2+π6=cos ⎝⎛⎭⎫2x +π6知C 正确; 由sin ⎝⎛⎭⎫2x +2π3=cos ⎝⎛⎭⎫2x +π6=cos ⎣⎡⎦⎤π+⎝⎛⎭⎫2x -5π6=-cos ⎝⎛⎭⎫5π6-2x 知D 错误. 综上可知,正确的选项为B 、C.19. 若0<α<π2,-π<β<-π2,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=-33,则cos ⎝⎛⎭⎫α+β2=( ) A .-539 B.539 C .-33 D.33【参考答案】D【答案解析】∵0<α<π2,-π<β<-π2,则π4<π4+α<3π4,π2<π4-β2<3π4,∴sin ⎝⎛⎭⎫π4+α= 1-cos 2⎝⎛⎭⎫π4+α=223,sin ⎝⎛⎭⎫π4-β2= 1-cos 2⎝⎛⎭⎫π4-β2=63,因此,cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2=cos ⎝⎛⎭⎫π4+αcos ⎝⎛π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2 =13×⎝⎛⎭⎫-33+223×63=33. 20.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.【参考答案】(-2,3]【答案解析】∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3. 21.已知函数f (x )=2sin(ωx +φ)(ω>0,-π<φ<0)的相邻两个零点间的距离为π2,且f ⎝⎛⎭⎫-π8=-2,则φ=________.【参考答案】-π4【答案解析】由题意T =2×π2=π,ω>0,所以ω=2πT =2,f ⎝⎛⎭⎫-π8=2sin ⎝⎛⎭⎫-π4+φ=-2, -π4+φ=2k π-π2,k ∈Z ,又-π<φ<0,所以φ=-π4.22.化简sin (n π+α)cos (n π-α)cos[(n +1)π-α](n ∈Z)的结果为________. 【参考答案】(-1)n +1sin α(n ∈Z) 【答案解析】①当n =2k (k ∈Z)时,原式=sin (2k π+α)cos (2k π-α)cos[(2k +1)π-α]=sin αcos α-cos α=-sin α. ②当n =2k +1(k ∈Z)时,原式=sin[(2k +1)π+α]cos[(2k +1)π-α]cos[(2k +2)π-α]=(-sin α)(-cos α)cos α=sin α. 综上,化简的结果为(-1)n +1sin α(n ∈Z).23.在锐角△ABC 中,BC =2,sin B +sin C =2sin A ,则中线AD 长的取值范围是________.【参考答案】⎣⎡⎭⎫3,132. 【答案解析】设AB =c ,AC =b ,BC =a =2,对sin B +sin C =2sin A 运用正弦定理,得b +c =2a =4,解得c =4-b ,结合该三角形为锐角三角形,得到不等式组⎩⎪⎨⎪⎧ b 2+c 2=b 2+(4-b )2>4,c 2+4=(4-b )2+4>b 2,b 2+4>c 2=(4-b )2,解得32<b <52,故bc =b (4-b )=-b 2+4b ,结合二次函数的性质,得到154<bc ≤4.运用向量得到AD ―→=12(AB ―→+AC ―→),所以|AD ―→|=12AB 2―→+AC 2―→+2|AB ―→|ꞏ|AC ―→|ꞏcos ∠BAC =12b 2+c 2+2bc ꞏb 2+c 2-42bc =122b 2+2c 2-4=1228-4bc ,结合bc 的范围,得|AD ―→|的范围为⎣⎡⎭⎫3,132. 24.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡π,3π2,则α+β的值是________. 【参考答案】7π4【答案解析】∵α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,∴2α∈⎣⎡⎦⎤π2,2π,又0<sin 2α=55<12, ∴2α∈⎝⎛⎭⎫5π6,π,即α∈⎝⎛⎭⎫5π12,π2,∴β-α∈⎝⎛⎭⎫π2,13π12, ∴cos 2α=-1-sin 22α=-255.又sin(β-α)=1010,∴β-α∈⎝⎛⎭⎫π2,π,∴cos(β-α)=-1-sin 2(β-α)=-31010,∴cos(α+β)=cos[2α+(β-α)]=cos 2αcos(β-α) -sin 2αsin(β-α) =-255×⎝⎛⎭⎫-31010-55×1010=22.又α∈⎝⎛⎭⎫5π12,π2,β∈⎣⎡π,3π2, ∴α+β∈⎝⎛⎭⎫17π12,2π,∴α+β=7π4. 25.设f (x )=m cos ⎝⎛⎭⎫2x -π3+m -1(m ≠0). (1)若m =2,求函数f (x )的零点;(2)当x ∈⎣⎡⎦⎤0,π2时,-3≤f (x )≤4恒成立,求实数m 的取值范围. 解:(1)由m =2⇒f (x )=2cos ⎝⎛⎭⎫2x -π3+1,令f (x )=0,则cos ⎝⎛⎭⎫2x -π3=-12, 即2x -π3=2k π+2π3或2x -π3=2k π+4π3(k ∈Z ),解得x =k π+π2或x =k π+5π6(k ∈Z ),∴f (x )的零点是x =k π+π2或x =k π+5π6(k ∈Z ).(2)由0≤x ≤π2可得-π3≤2x -π3≤2π3,所以-12≤cos ⎝⎛⎭⎫2x -π3≤1. ①当m >0时,易得m 2-1≤f (x )≤2m -1,由-3≤f (x )≤4恒成立可得⎩⎪⎨⎪⎧f (x )min ≥-3,f (x )max ≤4, 即⎩⎪⎨⎪⎧ m 2-1≥-3,2m -1≤4,m >0,解得0<m ≤52;②当m <0时,可得2m -1≤f (x )≤m 2-1,由-3≤f (x )≤4恒成立可得⎩⎪⎨⎪⎧f (x )min ≥-3,f (x )max ≤4, 即⎩⎪⎨⎪⎧ 2m -1≥-3,m 2-1≤4,m <0,解得-1≤m <0.综上可得,m 的取值范围是[-1,0)∪⎝⎛⎦⎤0,52.。
易错专题04 三角函数
4、三角函数易错点1 利用同角三角函数基本关系式时忽略参数取值1、已知角θ的终边上一点(3,4)(0)P a a a ≠,求θ角的正弦、余弦和正切值.2、已知角α的终边在直线3x +4y =0上,求sin α, cos α, tan α的值.易错点2 不能准确运用诱导公式进行化简求值3、若sin θ=33,求cos(π)cos(2π)3ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+--++-+的值. A .0B .1C .6D .6- 4、化简:=++⋅-++-⋅+)sin()2cos()sin()cos()2cos()2sin(απαπαπαπαπαπ________. 易错点3 忽略隐含条件致错5、已知θ∈(0,π),sin θ+cos θ=3-12,则tan θ的值为__________.6、已知sin αcos α=18,且π<α<5π4,则cos α-sin α的值为 . 易错点4 不能正确理解三角函数图象变换规律7、为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位 8、为了得到函数sin y x =的图像,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图像( ) A .横坐标伸长为原来的两倍,纵坐标不变,再向右平移6π个单位 B .横坐标伸长为原来的两倍,纵坐标不变,再向左平移6π个单位C .横坐标缩短为原来的12,纵坐标不变,再向右平移6π个单位 D .横坐标缩短为原来的12,纵坐标不变,再向左平移6π个单位 易错点5 因忽视换元前后变量范围的区别与联系而致错9、求函数x x x x y cos sin cos sin -+=(R x ∈)的值域.10、求函数x x x x y cos sin cos sin -+=(R x ∈)的值域.易错点6 三角恒等变换中忽略角的范围致误11、已知α、β为三角形的两个内角,cos α=17,sin (α+β53,则β= A .3π B .23π C .233ππ或 D .34ππ或 12、已知,(0,)2παβ∈,1tan 7α=,sin 10β=,则2παβ--的值为 . 易错点7 求函数sin()y A x ωϕ=+的性质时出错12、函数y =5sin(x +20°)+4cos(x +50°)的最大值为 .13、如果函数y =3sin(2x +φ)的图象关于直线x =π6对称,则|φ|的最小值为 . 易错点8解三角形时忽略角的取值范围致误14、在ABC △中,若3C B =,则c b的取值范围为 . 15、在ABC ∆中,角A,B,C 所对的边分别为,2,41sin sin 2sin,,,2=+=+-c b C B C B c b a 且则实数a 的取值范围是____________. 专题训练1、已知 π()0,α∈,且3cos28cos 5αα-=,则sin α= . 2.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f(x)的最小正周期为 .3.若α为第四象限角,则( )A. cos2α>0B. cos2α<0C. sin2α>0D. sin2α<04.已知2tan θ–tan(θ+π4)=7,则tan θ= . 5.下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= .6.已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论,所有正确结论的序号是 . ①()f x 的最小正周期为2π;②2f π⎛⎫ ⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 7.关于函数()sin |||sin |f x x x =+有下述四个结论,所有正确结论的序号是 . ①f(x)是偶函数;②f(x)在区间(2π,π)单调递增;③f(x)在[,]-ππ有4个零点;④f(x)的最大值为28.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f(x)=|cos2x|B .f(x)=|sin2x|C .f(x)=cos|x|D .f(x)=sin|x|9.已知α∈(0,2π),2sin2α=cos2α+1,则sin α=_______10.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论中所有正确结论的序号是 : ①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,) 11.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭( ) A .2- B. CD .212.若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.13.关于函数f (x )=1sin sin x x+有如下四个命题,其中所有真命题的序号是__________. ①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.14.已知2sin ()4πα+ =23,则sin 2α的值是____. 15.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 16.函数f (x )=sin 22x 的最小正周期是__________.17.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
为参数)上的点到两坐标轴的距离之和的最大值是(
)。
A、 1 B、 2
C、1
2
2
正解:D。
d cos sin
D、 2
由于
x y
cos sin
所表示的曲线是圆,又由其对称性,可考虑
I
的情况,即
d sin cos
则d
2
sin
4
∴
d max
2
误解:计算错误所致。
25.(丁中)在锐角⊿ABC 中,若 tan A t 1, tan B t 1,则 t 的取值范围为( )
12 . ( 城 西 中 学 ) 函 数 y 2sin( 2x)(x [0, ]) 为 增 函 数 的 区 间 6
是………………………… ( )
A. [0, ] 3
正确答案:C
B. [ , 7 ] 12 12
错因:不注意内函数的单调性。
C. [ , 5 ] 36
D. [5 , ] 6
13.(城西中学)已知 , , 且 cos sin 0 ,这下列各式中成立的是 2
A. (2,2 2) B. 2 2 C. ( 2,) D. (2,2 2 ]
正确答案:A
错因:不知利用数形结合寻找突破口。
11.(城西中学)已知函数 y=sin( x+ )与直线 y= 1 的交点中距离最近的两点距离为 ,
2
3
那么此函数的周期是( )
A B C 2 D 4 3
正确答案:B
错因:不会利用范围快速解题。
正确答案:C 错因:学生不能采用取特殊值和数形结合的思想方法来解题。
6.(石庄中学) 在 ABC 中,2sinA+cosB=2,sinB+2cosA= 3 ,则 C 的大小应为( )
A. 6
B. 3
C. 或 5 66
正确答案:A 错因:学生求 C 有两解后不代入检验。
D. 或 2 33
7.已知 tan tan 是方程 x2+3
A A
tan tan B
B
1 3
3 5
5
tan(A B) tan A tan B 1 tan A tan B
3 2
5 2
3
在 ABC中, tan C tan[ (A B)] tan(A B) 5 0 2
C 是钝角,ABC是钝角三角形。
24.(江安中学)曲线
x
y
cos sin
A. 0 3 2
正确答案 A
B. 0 2
C. 0 24 D. 2
7
错因:大部分学生无法从正面解决,即使解对也是利用的特殊值法。
16.(一中)在(0,2π)内,使 cosx>sinx>tanx 的成立的 x 的取值范围是 ()
A、
(
, 3
)
44
B、
5
(
, 3
)
42
C、( 3 ,2 ) 2
A、 ( 2,) B、 (1,) C、 (1, 2)
D、 (1,1)
错解: B.
错因:只注意到 tan A 0, tan B 0, 而未注意 tan C 也必须为正.
正解: A.
26.(丁中)已知 sin m 3 , cos 4 2m ( ),则 tan
m5
m5 2
A、 4 2m m3
)
2
A、[ 1 , 1 ] 22
B、[ 3 , 1 ] 22
C、[ 1 , 3] 22
D、 [1,1]
答案:A 设 cosx sin y t,则(sin x cos y)(cosx sin y) 1 t ,可得 sin2x sin2y=2t,由 2
sin 2x sin 2y 1即2t 1 1 t 1 。 22
错解:B、C
错因:将 sin x cos y 1 与cosx sin y t相加得sin(x y) 1 t 由
2
2
1 sin(x y) 1得 1 1 t 1得 3 t 1 选 B,相减时选 C,没有考虑上述两种
2
22
情况均须满足。
31.(薛中)在锐角 ABC 中,若 C=2B,则 c 的范围是( ) b
A、[k , k ] ( k z )
4
4
B、[k , k 3 ](k z)
4
4
C、[2k ,2k ](k z)
4
2
D、[k , k ](k z)
4
2
答案:D
错解:B
错因:没有考虑根号里的表达式非负。
30.(薛中)已知 sin x cos y 1 ,则cosx sin y 的取值范围是(
A、(0,2) B、 ( 2,2)
C、 ( 2, 3)
D、 (1, 3)
答案:C 错解:B 错因:没有精确角 B 的范围
40.(案中)函数 y sin x和y tan x的图象在 2,2 上交点的个数是 ( )
A、3
B、5
C、7
D、9
正确答案:B
错误原因:在画图时,0< x < 时, tan x > sin x 意识性较差。 2
C. 或 5 66
D. 或 2 33
解:由
3sin A 4cos 3cos A 4sin
B B
6 1
平方相加得
sin( A B) 1 2
sinC 1 2
C 或 5 66
若C 5 6
则 AB 6
1 3cos A 4sin B 0
cos A 1
又1 1 32
3
A 3
C 5 6
D、( 3 , 7 ) 24
正确答案:C
17.(一中)设 f (x) sin(x ) ,若在 x 0, 2 上关于 x 的方程 f (x) m 有两个不等
4
的实根 x1, x2 ,则 x1 x2 为
A、 或 5 22
正确答案:A
B、 2
C、 5 2
D、不确定
18.(蒲中)△ABC 中,已知 cosA= 5 ,sinB= 3 ,则 cosC 的值为( )
2
(
)
A
B 2
C
3
D
2
2
错误分析:将函数解析式化为 y tan x 后得到周期T ,而忽视了定义域的限制,导致
出错. 答案: B
3.(石庄中学) 曲线 y=2sin(x+ ) cos(x- )和直线 y= 1 在 y 轴右侧的交点按横坐标从
4
4
2
小到大依次记为 P1、P2、P3……,则P2P4等于 ( )
B、 m 3 4 2m
C、 5 12
D、 3 或 5 sin 2 cos2 1,而不解出 m
正解:C π
27.(丁中)先将函数 y=sin2x 的图象向右平移 3 个单位长度,再将所得图象作关于 y 轴的
对称变换,则所得函数图象对应的解析式为 ( )
选 A 说明:此题极易认为答案 A 最不可能,怎么能会与 n 无关呢?其实这是我们忽略了一
个隐含条件 sin2 cos2 1,导致了错选为 C 或 D。
9.(搬中)在 ABC 中,3sin A 4cosB 6,3cos A 4sin B 1,则 C 的大小为( )
A.
6
B. 5 6
A.
B.2
C.3
D.4
正确答案:A 错因:学生对该解析式不能变形,化简为 Asin( x+ )的形式,从
而借助函数图象和函数的周期性求出P2P 4 。
4.(石庄中学)下列四个函数 y=tan2x,y=cos2x,y=sin4x,y=cot(x+ ),其中以点( ,0)
4
4
为中心对称的三角函数有(
13
5
A、 16 65
B、 56 65
C、 16 或 56 65 65
D、 16 65
答案:A
点评:易误选 C。忽略对题中隐含条件的挖掘。
19.(蒲中)在△ABC 中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C 的大小为( )
A、 6
B、 5 6
C、 或 5 66
D、 或 2 33
B. 区间(0,1) D. 不能确定
解一:设点 (sin,cos) ,则此点满足
x y 1
x
2
y2
1
解得
x
y
0 1
或
x y
1 0
即
sin cos
01或 scions
1 0
sinn cosn 1
选 A 解二:用赋值法,
令 sin 0,cos 1
同样有 sinn cosn 1
π 2
,那么 sin x
的取值范围是(
)
A.[ 1 , 1 ] B.[ 1 ,1] C.[ 1 , 1) (1 ,1] D.[ 1 , 3 ) ( 3 ,1]
22
2
22 2
22
2
错解: D.
错因:只注意到定义域 x ,而忽视解集中包含 x 2 .
3
3
正解: B.
29.(薛中)函数 y sin x cos x 的单调减区间是( )
)个
A.1
B.2
C.3
D.4
正确答案:D 错因:学生对三角函数图象的对称性和平移变换未能熟练掌握。
5.(石庄中学)函数 y=Asin(x+)(>0,A0)的图象与函数 y=Acos(x+)(>0, A0)的图
象在区间(x0,x0+ )上(
)
A.至少有两个交点
B.至多有两个交点
C.至多有一个交点
D.至少有一个交点
答案:A