极坐标系的概念及其性质(含答案)

合集下载

极坐标系的概念与应用

极坐标系的概念与应用

极坐标系的概念与应用极坐标系是一种描述平面上点的坐标系统,与直角坐标系相对应。

它以极轴和极角来确定点的位置,极轴通常为原点到点的距离,而极角则是从极轴正方向旋转到线段的方向所经过的角度。

极坐标系在各个科学领域中都有广泛的应用,包括物理学、工程学、数学等等。

本文将介绍极坐标系的概念以及它在不同领域中的应用。

一、极坐标系的概念极坐标系是一种二维坐标系统,用极径和极角来描述平面上的点。

在极坐标系中,平面上的点可以表示为(r, θ),其中r是点到原点的距离,θ是从极轴正方向旋转到线段的方向所经过的角度。

极径r是一个非负实数,极角θ通常用弧度制表示。

极坐标系与直角坐标系之间的转换关系由以下公式给出:x = r * cos(θ)y = r * sin(θ)其中(x, y)是直角坐标系中的点,r是点的极径,θ是点的极角。

这些公式使得我们可以在直角坐标系和极坐标系之间进行坐标的转换,方便我们在不同坐标系中进行计算和分析。

二、极坐标系的应用1. 物理学中的应用:极坐标系在物理学中有广泛的应用,特别是在描述圆形、旋转质点和极化等问题中。

例如在力学中,我们可以用极坐标系来描述质点在圆周运动中的运动规律,方便地计算质点的速度和加速度。

此外,极坐标系还在电磁学中用于描述电场和磁场的变化规律。

2. 工程学中的应用:工程学中的许多问题,如天线的辐射方向、波传播和声纳导航等,都可以使用极坐标系来进行分析和设计。

通过将问题转化为极坐标系,我们可以更好地理解和解决实际工程中的各种应用场景。

3. 数学中的应用:极坐标系在数学中也有重要的应用,特别是在微积分和复数理论中。

在微积分中,利用极坐标系可以简化一些复杂的曲线积分和面积计算。

在复数理论中,极坐标系可以用来表示复数的幅度和幅角,方便进行复数运算和解析几何的推导。

结论极坐标系是一种二维坐标系统,以极径和极角来确定平面上的点的位置。

它在物理学、工程学、数学等多个领域中都有广泛的应用。

极坐标系

极坐标系

极坐标系:
1、概念:取平面内一定点O 引一射线Ox ,选定长度单位、角度单位及计 算角度的正方向,便建立了一个极坐标系。

2、相关概念:定点O 称为极点;射线Ox 称为极轴;平面内某点P 与极 点距离OP 称为P 点的极径,以ρ表示;以极轴为始边、射线OP 为终边的xOP ∠称为P 点的极角,以θ表示;有序数对(,)ρθ称为P 点的极坐标。

3
4、极坐标系示意图:
5、极坐标系与直角坐标系互化: (1)互化前提:极点与原点重合;极轴与x 轴正半轴重合;两种坐标系长
度单位相同。

极坐标中(,)P ρθ,直角坐标系中(,)P x y 。

(2)极化直坐标公式:cos x ρθ=;sin y ρθ=;
(3)直化极坐标公式:222x y ρ=+,tan (0)y x x
θ=≠;
注1:通常取ρ>0;
注2:θ由tan y x θ=及点(,)x y 所在象限取最小正角; 注3:当0x =时:(0,0)(0,)()R θθ⇒∈;(0,)(0,)(2y y π⇒>0);3(0,)(0,)(2
y y π⇒<0); 注4:极点与原点不重合但极轴与x 轴正半轴平行,设极点为'O ,其在直角坐标系中
坐标为:00(,)x y 。

则极化直坐标公式:0cos x x ρθ=+;0sin y y ρθ=+;
直化极:22200()()x x y y ρ=-+-;000
t a n ()y y x x x x θ-=≠-。

2022年高考数学(理)一轮复习教师用书:第十二章 坐标系与参数方程 Word版含答案

2022年高考数学(理)一轮复习教师用书:第十二章 坐标系与参数方程 Word版含答案

第1课时 坐标系1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎨⎧x =ρcos θy =ρsin θ,或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).这就是极坐标与直角坐标的互化公式.3.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝ ⎛⎭⎪⎫-π2≤θ<π2 圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ (0≤θ<π) 过极点,倾斜角为α的直线θ=α(ρ∈R ) 或θ=π+α(ρ∈R )过点(a,0),与极轴垂直的直线ρcos θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2 过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)考点一 极坐标与直角坐标的互化[例1] (1)把点M 的极坐标⎝ ⎛⎭⎪⎫-5,π6化成直角坐标;(2)把点M 的直角坐标(-3,-1)化成极坐标. 解:(1)∵x =-5cos π6=-52 3,y =-5sin π6=-52,∴点M 的直角坐标是⎝ ⎛⎭⎪⎫-52 3,-52.(2)ρ=(-3)2+(-1)2=3+1=2,tan θ=-1-3=33. ∵点M 在第三象限,ρ>0,∴最小正角θ=7π6. 因此,点M 的极坐标是⎝ ⎛⎭⎪⎫2,7π6[方法引航] (1)在由点的直角坐标化为极坐标时,肯定要留意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互化时,肯定要留意变量的范围.要留意转化的等价性.1.点P 的直角坐标为(1,-3),则点P 的极坐标为( ) A.⎝ ⎛⎭⎪⎫2,π3 B.⎝ ⎛⎭⎪⎫2,43π C.⎝ ⎛⎭⎪⎫2,-π3 D.⎝ ⎛⎭⎪⎫2,-43π 解析:选C.由于点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3. 2.若点P 的极坐标为⎝ ⎛⎭⎪⎫2,π3,则P 到x 轴的距离为________.解析:y =ρsin θ=2×sin π3= 3. 3考点二 直角坐标方程与极坐标方程的互化及应用[例2] 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程.解:(1)∵ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,∴ρcos θ·cos π3+ρsin θ·sin π3=1.∴12x +32y =1.即曲线C 的直角坐标方程为x +3y -2=0.令y =0,则x =2;令x =0,则y =233. ∴M (2,0),N ⎝⎛⎭⎪⎫0,233. ∴M 的极坐标为(2,0),N 的极坐标为⎝ ⎛⎭⎪⎫233,π2.(2)∵M ,N 连线的中点P 的直角坐标为⎝ ⎛⎭⎪⎫1,33,∴P 的极角为θ=π6.∴直线OP 的极坐标方程为θ=π6(ρ∈R ).[例3] 在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1. (1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.解:(1)设O 为极点,OD 为圆C 的直径,A (ρ,θ)为圆C 上的一个动点,则∠AOD =π4-θ或∠AOD =θ-π4,OA =OD cos ⎝ ⎛⎭⎪⎫π4-θ或OA =OD cos ⎝ ⎛⎭⎪⎫θ-π4,所以圆C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ-π4.(2)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,得22ρ(sin θ+cos θ)=1,∴直线l 的直角坐标方程为x +y -2=0,又圆心C 的直角坐标为⎝ ⎛⎭⎪⎫22,22满足直线l 的方程,∴直线l 过圆C 的圆心,故直线被圆所截得的弦长为直径2.[方法引航] 直角坐标方程与极坐标方程的互化,关键要把握好互化公式,争辩极坐标系下图形的性质,可转化为我们生疏的直角坐标系的情境.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解:(1)由于x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.[高考真题体验]1.(2022·高考全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎨⎧x =t cos αy =t sin α,(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153.2.(2021·高考课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t ,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos ty =5+5sin t ,消去参数t ,化为一般方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x-10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的一般方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1y =1,或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.3.(2021·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ. (1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝ ⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32= t 2+12,故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).课时规范训练1.已知圆O 1和圆O 2的极坐标方程为ρ=2,ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4,由于ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.2.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)求曲线C 的方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1, 故曲线C 的方程为x 2+y 24=1.(2)由⎩⎨⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.3.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,求实数a 的值.解:由ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y -2)2=4, 由直线ρsin θ=a ,得直线的直角坐标方程为y =a .设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示.由对称性知∠O ′OB =30°,OD =a . 在Rt △DOB 中,易求DB =33a , ∴B 点的坐标为⎝ ⎛⎭⎪⎫33a ,a .又∵B 在x 2+y 2-4y =0上, ∴⎝ ⎛⎭⎪⎫33a 2+a 2-4a =0, 解得a =3(a =0舍).4.从极点O 作直线与另始终线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12. (1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,求|RP |的最小值.解:(1)设动点P 的极坐标为(ρ,θ),M 的极坐标为(ρ0,θ),则ρρ0=12. ∵ρ0cos θ=4,∴ρ=3cos θ,即为所求的轨迹方程. (2)将ρ=3cos θ化为直角坐标方程, 得x 2+y 2=3x ,即⎝ ⎛⎭⎪⎫x -322+y 2=⎝ ⎛⎭⎪⎫322,知P 的轨迹是以⎝ ⎛⎭⎪⎫32,0为圆心,半径为32的圆.直线l 的直角坐标方程是x =4. 结合图形(图略)易得|RP |的最小值为1.第2课时 参数方程1.参数方程和一般方程的互化(1)曲线的参数方程和一般方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到一般方程.(2)假如知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入一般方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t )y =g (t ),就是曲线的参数方程.2.常见曲线的参数方程和一般方程点的轨迹 一般方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧ x =x 0+t cos αy =y 0+t sin α,(t 为参数) 圆x 2+y 2=r 2 ⎩⎨⎧ x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数) 双曲线 x 2a -y 2b 2=1,(a >0,b >0)⎩⎨⎧x =a sec φy =b tan φ,(φ为参数) 抛物线 y 2=2px (p >0)⎩⎨⎧x =2pt 2,y =2pt(t 为参数)考点一 参数方程与一般方程的互化及应用命题点1.求参数方程2.消参数化为一般方程[例1] (1)如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:(1)圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ, y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2)求直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos αy =3sin α,(α为参数)的交点个数.解:将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α,消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.[方法引航] 1.由一般方程求参数方程,要依据参数的意义建立关系.2.由参数方程得到一般方程的思路是消参,消去参数的方法要视状况而定,一般有三种状况:(1)利用解方程的技巧求出参数的表达式,然后代入消去参数,或直接利用加减消元法消参; (2)利用三角恒等式消去参数,一般是将参数方程中的两个方程分别变形,使得一个方程一边只含有sin θ,另一个方程一边只含有cos θ,两个方程分别平方后两式左右相加消去参数; (3)依据参数方程本身的结构特征,选用一些机敏的方法从整体上消去参数.,将参数方程化为一般方程时,要留意防止变量x 和y 取值范围的扩大或缩小,必需依据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.1.若将本例(1)改为:圆上的任一点P 与圆心的连线的旋转角为参数θ,求圆的参数方程.解:圆心为⎝ ⎛⎭⎪⎫12,0,r =12.设P (x ,y ),则x =12+12cos θ, y =12sin θ(0≤θ≤2π) ∴圆的参数方程为 ⎩⎪⎨⎪⎧x =12+12cos θ,y =12sin θ.2.若将本例(2)的曲线变为⎩⎨⎧x =3cos αy =4sin α,其余不变,求交点个数.解:⎩⎪⎨⎪⎧x =3cos αy =4sin α,即⎩⎪⎨⎪⎧x3=cos α,y 4=sin α.∴x 29+y 216=1.而直线x +y -1=0,过点(1,0),点在椭圆x 29+y 216=1内,故直线与曲线有两个交点. 考点二 极坐标方程与参数方程的综合应用命题点1.直线与圆的方程应用2.直线与椭圆的方程应用[例2] (1)(2022·高考全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t ,(t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. ①说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;②直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:①消去参数t 得到C 1的一般方程为x 2+(y -1)2=a 2.所以C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的一般方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. ②曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.(2)(2022·高考全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.①写出C 1的一般方程和C 2的直角坐标方程;②设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:①C 1的一般方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.②由题意,可设点P 的直角坐标为(3cos α,sin α).由于C 2是直线,所以|PQ |的最小值即为P到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2sin ⎝ ⎛⎭⎪⎫α+π3-2.当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.[方法引航] 对于曲线方程为极坐标方程或参数方程时,一般都化为平面直角坐标系中的一般方程f (x ,y )=0再应用.假如直接应用,要明确极坐标(ρ,θ)及参数的意义.1.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程.得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎪⎨⎪⎧t 1+t 2=32,t 1·t 2= 4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.2.(2021·甘肃三校联考)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1+t cos α,y =2+t sin α(t 为参数),在极坐标系 (与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=6sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(1,2),求|P A |+|PB |的最小值. 解:(1)由ρ=6sin θ得ρ2=6ρsin θ,化为直角坐标方程为x 2+y 2=6y ,即x 2+(y -3)2=9. 所以圆C 的直角坐标方程为x 2+(y -3)2=9.(2)将l 的参数方程代入圆C 的直角坐标方程,得t 2+2(cos α-sin α)t -7=0. 由已知得Δ=(2cos α-2sin α)2+4×7>0,所以可设t 1,t 2是上述方程的两根,则⎩⎪⎨⎪⎧t 1+t 2=-2(cos α-sin α),t 1·t 2=-7.由题意得直线l 过点(1,2),结合t 的几何意义得 |P A |+|PB |=|t 1|+|t 2|=|t 1-t 2| =(t 1+t 2)2-4t 1t 2=4(cos α-sin α)2+28 =32-4sin 2α≥32-4=27.所以|P A |+|PB |的最小值为27.[高考真题体验]1.(2021·高考课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α,(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.2.(2022·高考课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,依据(1)中你得到的参数方程,确定D 点的坐标.解:(1)C 的直角坐标方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.由于C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同.tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.3.(2022·高考课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的一般方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值. 解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的一般方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255.4.(2021·高考课标全国卷Ⅱ)已知动点P ,Q 都在曲线C :⎩⎨⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α). 故M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2αy =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.课时规范训练1.在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α,(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时, |AB |取得最大值,最大值为4.2.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4.注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1. 所以⎩⎪⎨⎪⎧b 2=1,-ab2+1=2,解得⎩⎪⎨⎪⎧a =-1,b =2.3.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试推断直线l 与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a = 2.所以直线l 的方程可化为ρcos θ+ρsinθ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 由于圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.4.在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎨⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B . (1)若α=π3,求线段AB 的中点M 的坐标;(2)若|P A |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. 解:(1)将曲线C 的参数方程化为一般方程为x 24+y 2=1. 当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎪⎨⎪⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的一般方程x 24+y 2=1,得13t 2+56t +48=0, 设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝ ⎛⎭⎪⎫1213,-313.(2)将⎩⎪⎨⎪⎧x =2+t cos α,y =3+t sin α代入曲线C 的一般方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 由于|P A |·|PB |=|t 1t 2|=12cos 2α+4sin 2α, |OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516. 由于Δ=32cos α(23sin α-cos α)>0,故tan α=54.所以直线l 的斜率为54.。

极坐标系理论考题及答案

极坐标系理论考题及答案

极坐标系理论考题及答案极坐标系是一种描述平面上点位置的坐标系统,由一个极径和一个极角组成。

在数学和物理学中,对于掌握极坐标系的理论是非常重要的。

以下是一些常见的极坐标系理论考题及其答案。

1. 什么是极坐标系?答案:极坐标系是一种通过距离和方向来表示平面上点位置的坐标系统。

它由极径(即点到原点的距离)和极角(即点到极轴的方向角)两个参数组成。

2. 如何将一个点从直角坐标系转换为极坐标系?答案:要将一个点从直角坐标系转换为极坐标系,首先需要计算点到原点的距离(即极径)。

使用勾股定理,将直角坐标系中点的横纵坐标作为直角三角形的直角边,计算出点到原点的距离。

然后,计算点与原点连线的夹角(即极角)。

可以使用反正切函数来计算夹角,即 $\theta = \arctan(\frac{y}{x})$。

3. 如何将一个点从极坐标系转换为直角坐标系?答案:要将一个点从极坐标系转换为直角坐标系,需要使用以下公式进行计算:$x = r\cos(\theta)$$y = r\sin(\theta)$其中,$r$为极径,$\theta$为极角。

4. 极坐标系中的极轴和极角的定义是什么?答案:极坐标系中,极轴是从原点开始,并沿着极径的正方向延伸的射线或线段。

极轴的方向通常被指定为0度或360度,并且可以逆时针或顺时针增加。

极角是从极轴到点连线的方向,逆时针方向被定义为正数,顺时针方向被定义为负数。

5. 极坐标系和直角坐标系之间的关系是什么?答案:极坐标系和直角坐标系是两种用于描述点在平面上位置的坐标系统。

它们之间的关系可以通过转换公式相互转换。

使用转换公式,可以将一个点的直角坐标转换为极坐标,也可以将一个点的极坐标转换为直角坐标。

以上是一些关于极坐标系理论的常见考题及答案。

了解极坐标系的概念和转换方法对于数学和物理学领域的学习非常重要。

01坐标系(含经典例题+答案)

01坐标系(含经典例题+答案)

坐标系一、极坐标系与极坐标在平面内取一个定点O ,由O 点出发的一条射线Ox 、一个长度单位、一个角 度单位(通常取弧度)及其正方向(通常取逆时针方向),合称为一个极坐标系.O 点称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为极径,θ称为极角 . 二、点的极坐标和直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y),极坐标是(ρ,θ),可以得出它们之间的关系:x =ρcos θ,y =ρsin θ.又可得到关系式:ρ2=x 2+y 2,tan θ=yx(x ≠0).这就是极坐标与直角坐标的互化公式. 三、常见曲线的极坐标方程曲线 图形 极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2rcos θ (0≤θ<2π)圆心为(r ,π2),半径为r 的圆ρ=2rsin θ (0≤θ<2π)过极点,倾斜角为α的直线θ=α(ρ∈R) 或θ=π+α(ρ∈R)过点(a,0),与极轴垂直的直线ρcosθ=a (-π2<θ<π2)过点(a ,π2),与极轴平行的直线ρsinθ=a (0<θ<π)例1:在极坐标系中,求经过点P 24,3π⎛⎫- ⎪⎝⎭且与极轴所在直线垂直的直线方程.解:∵x =ρcos θ=4cos 23π⎛⎫- ⎪⎝⎭=-2,y =ρsin θ=4sin 23π⎛⎫- ⎪⎝⎭=-23,∴点P 的直角坐标为()-2,-23.∴过点P 且与x 轴垂直的直线方程为x =-2,即极坐标方程为ρcos θ=-2.例2:求圆心为C 3,6⎛⎫⎪⎝⎭,半径为3的圆的极坐标方程.解:如图,设圆上任一点为P (ρ,θ),则|OP |=ρ,∠POA =θ-π6,|OA |=2×3=6,在Rt △OAP 中,|OP |=|OA |×cos ∠POA ,∴ρ=6cos 6πθ⎛⎫- ⎪⎝⎭.∴圆的极坐标方程为ρ=6cos 6πθ⎛⎫- ⎪⎝⎭.例3:已知直线l 的参数方程为:⎩⎪⎨⎪⎧x =2t ,y =1+4t (t 为参数),圆C 的极坐标方程为ρ=22sin θ,试判断直线l 与解:将直线⎩⎪⎨⎪⎧x =2ty =1+4t 化为普通方程得y =1+2x ,圆ρ=22sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为2-15,小于圆的半径,所以直线与圆相交. 与极坐标(ρ,θ)(ρ≠0)建立一一对应关系.2.由极坐标系上点的对称性可得到极坐标方程ρ=ρ(θ)的图形的对称性: 若ρ(θ)=ρ(-θ),则相应图形关于极轴对称;若ρ(θ)=ρ(π-θ),则图形关于射线θ=π2所在的直线对称;若ρ(θ)=ρ(π+θ),则图形关于极点Ο对称.例4:在同一平面直角坐标系中,求一个伸缩变换,使得圆x 2+y 2=1变换为椭圆x 29+y 24=1.解:将变换后的椭圆的方程x 29+y 24=1改写为x ′29+y ′24=1,设伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),代入上式得λ2x 29+μ2y 24=1,即23λ⎛⎫ ⎪⎝⎭x 2+22μ⎛⎫ ⎪⎝⎭y 2=1.与x 2+y 2=1比较系数,得221312λμ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩故⎩⎪⎨⎪⎧ λ=3,μ=2,所以伸缩变换为⎩⎪⎨⎪⎧x ′=3x y ′=2y , 即先使圆x 2+y 2=1上的点的纵坐标不变,将圆上的点的横坐标伸长到原来的3倍,得到椭圆x 29+y 2=1,再将该椭圆的点的横坐标不变,纵坐标伸长到原来的2倍,得到椭圆x 29+y 24=1.本例条件变为“求圆x 2+y 2=1经过伸缩变换⎪⎨⎪⎧x ′=2x 后的图形”解:由⎩⎪⎨⎪⎧x ′=2xy ′=3y ∴⎩⎨⎧x =12x ′y =13y ′代入x 2+y 2=1,得x ′24+y ′29=1.∴经过伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=3y 后圆x 2+y 2=1变为椭圆例5:设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y =sin x 的方程变为例6:通过平面直角坐标系中的平移变换与伸缩变换,可以把椭圆(x +1)29+(y -1)24=1变为中心在原点的单1.平移变换:在平面直角坐标系中,设图形F 上任意一点P 的坐标为(x ,y ),向量a =(h ,k ),平移后的对应点为P ′(x ′,y ′),则有(x ,y )+(h ,k )=(x ′,y ′),或表示成⎩⎪⎨⎪⎧x +h =x ′,y +k =y ′.2.伸缩变换:一般地,由⎩⎪⎨⎪⎧kx =x ′,y =y ′k >0所确定的伸缩变换,是按伸缩系数为k 向着y 轴的伸缩变换(当k>1时,表示伸长;当0<k <1时,表示压缩),即曲线上所有点的纵坐标不变,横坐标变为原来的k 倍(这里,P (x ,y )是变换前的点,P ′(x ′,y ′)是变换后的点).例7:进行直角坐标方程与极坐标方程的互化:(1)y 2=4x ;(2)x 2+y 2-2x -1=0;(3)ρ=1cos θ.x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是________.解:ρ=x 2+y 2=2,tan θ=-31=-3,θ=-π3+2k π.例9:在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=22. (1)求圆O 和直线l 的直角坐标方1.将点的直角坐标(x ,y )化为极坐标(ρ,θ)时,运用公式ρ=x 2+y 2,tan θ=yx(x ≠0)即可.在[0,2π)范围内,由tan θ=yx(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z)即可.2.极坐标与直角坐标的互化,常用方法有代入法、平方法等,还经常会用到同乘(或除以)ρ等技巧.例10:(1)(设点A 的极坐标为2,6π⎛⎫⎪⎝⎭,直线l 过点A 且与极轴所成的角为π3,则直线l 的极坐标方程为_____________.(2)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ(cos θ例11:在极坐标系中,曲线C 1:ρ=2cos θ,曲线C 2:θ=π4,若曲线C 1与C 2交于A 、B 两点,求线段AB 的例12:已知直线l 的参数方程是⎩⎨⎧x =1+12t ,y =32t(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐例13:在极坐标系中,直线l 的方程为ρsin θ=3,求点2,6⎛⎫⎪到直线l 的距离.例14:已知直线l 经过点P 1,12⎛⎫ ⎪⎝⎭,倾斜角α=π6,圆C 的极坐标方程为ρ=2cos 4θ⎛⎫- ⎪⎝⎭(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A ,B ,求点P 到A ,B 两点的距离之积.例15:已知直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4).标系的单位长度相同,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =1+t sin α(t 为参数),曲线C 的极坐标方程为ρ=4cos θ.(1)若直线l 的斜率为-1,求直线l 与曲线C 交点的极坐标;(2)若直线l 与曲线C 相交弦长为23,例17:在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α,(α为参数),M 是C 1上的动点,P 点满足OP =2OM ,P 点的轨迹为曲线C 2·(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.解:(1)设P (x ,y ),则由条件知M ,22x y ⎛⎫⎪⎝⎭.由于M 点在C 1上,所以⎩⎨⎧x2=2cos α,y 2=2+2sin α.即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数).(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.12(1)将两圆的极坐标方程化为直角坐标方程;(2)若两圆的圆心距为5,求a 的值.解:(1)由ρ=2cos θ,得ρ2=2ρcos θ.所以⊙O 1的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1.由ρ=2a sin θ,得ρ2=2aρsin θ.所以⊙O 2的直角坐标方程为x 2+y 2=2ay ,即x 2+(y -a )2=a 2. (2)⊙O 1与⊙O 2的圆心距为12+a 2=5,解得a =±2.例19:极点O 引定圆ρ=2cos θ的弦OP ,延长OP 到Q 使OP PQ =23,求点Q 的轨迹方程,并说明所求轨迹是解:设Q (ρ,θ),P (ρ0,θ0)则θ=θ0,ρ0ρ-ρ0=23,∴ρ0=25ρ.∵ρ0=2cos θ0.∴25ρ=2cos θ.即ρ=5cos θ它表示一个圆.例20:已知双曲线的极坐标方程为ρ=31-2cos θ,过极点作直线与它交于A 、B 两点,且|AB |=6.解:设直线AB 的极坐标方程为θ=θ1.A (ρ1,θ1),B (ρ2,θ1+π),ρ1=31-2cos θ1,ρ2=31-2cos θ1+π=31+2cos θ1.|AB |=|ρ1+ρ2|=⎪⎪⎪⎪31-2cos θ1+31+2cos θ1=⎪⎪⎪⎪61-4cos 2θ1,∴11-4cos 2θ1=±1,∴cos θ1=0或cos θ1=±22 故直线AB 的极坐标方程为θ=π2,θ=π4或θ=3π4.。

极坐标系的性质与极坐标方程的应用

极坐标系的性质与极坐标方程的应用

极坐标系的性质与极坐标方程的应用极坐标系是一种描述平面上点位置的坐标系统,它使用极径和极角来唯一确定一个点的位置。

极坐标系具有一些与直角坐标系不同的性质,同时,极坐标方程也有着广泛的应用。

本文将探讨极坐标系的性质以及极坐标方程在不同领域的应用。

一、极坐标系的性质在极坐标系中,一个点的位置可以由极径和极角来确定。

极径表示该点到原点的距离,而极角表示该点与极轴的夹角。

极坐标系的性质如下:1. 原点:极坐标系的原点即为极坐标的起点,表示为O。

2. 极轴:极轴是极坐标系中的一条直线,通过原点O,并与x轴方向相同。

极轴的角度为0或360度。

3. 极径:极径表示一个点到原点O的距离,通常用r表示。

极径的取值范围可以是非负实数,即r≥0。

4. 极角:极角表示一个点与极轴的夹角,通常用θ(读作西塔)表示。

极角的取值范围可以是[0, 2π) 或[0, 360°)。

5. 制正:在极坐标系中,负极径和负极角并不常见。

一般来说,极径为负表示该点位于极轴的反方向,而极径为正表示该点位于极轴方向。

极角为负表示该点位于极轴的逆时针方向,而极角为正表示该点位于极轴的顺时针方向。

二、极坐标方程的应用极坐标方程是一种通过极坐标表示点的坐标的方程形式。

极坐标方程在各个领域有着广泛的应用,以下将介绍几种常见的应用。

1. 极坐标方程与图形绘制:极坐标方程可以描述各种图形的形状,例如圆、椭圆、双曲线等。

通过调整极坐标方程中的参数,可以绘制出不同形态的图形,实现对图形的变换和调整。

2. 极坐标方程与物体运动:在物体运动的描述中,极坐标方程可以提供更直观的表达方式。

例如,在天文学中,行星绕太阳运动的轨迹可以使用极坐标方程来描述。

3. 极坐标方程与工程设计:在工程设计中,极坐标方程可以用来描述物体的形状和运动规律。

例如,在风力发电机的设计中,可以使用极坐标方程来描述风轮的叶片形状,以实现最大的能量转化效率。

4. 极坐标方程与电磁场分布:在电磁学和电路设计中,极坐标方程可以用来描述电场和磁场的分布情况。

高中数学421_极坐标系的概念(有答案)

高中数学421_极坐标系的概念(有答案)

_4.2.1 极坐标系的概念一、选择题。

1. 在极坐标系中,点A (2,0)关于极点的对称点的极坐标不能是( )A.(2,−π)B.(2,π)C.(2,2π)D.(2,3π)2. 已知点M 的极坐标为(5,π3),下列所给出的四个坐标中能表示点M 的坐标是( ) A.(5,−π3)B.(5,4π3)C.(5,−2π3)D.(5,−5π3)3. 在极坐标系中,点(ρ,θ)与点(ρ,π−θ)的位置关系是( )A.关于极轴所在直线对称B.关于极点对称C.重合D.关于过极点且垂直于极轴的直线对称4. 在极坐标系中,点A (1,π5),B (2,6π5),则|AB|等于( ) A.1B.2C.3D.45. 在极坐标系中,集合{(ρ,θ)|ρ=1,0≤θ<2π}表示的图形是( )A.射线B.直线C.圆D.半圆6. 一个三角形的一个顶点为极点O ,其它两个顶点的极坐标为P 1(4,π12),P 2(2,π2),则△P 1OP 2的面积为( )A.√6−√2B.√6+√2C.√3+1D.√3−1 二、填空题。

点M(6,5π6)到极轴的距离为________.若A (3,π3),B (4,−π6),则|AB|=________,S △AOB =________(其中O 是极点).将极轴绕极点顺时针方向旋转π4,得到射线OP ,在OP 上取一点M ,使OM =2016,则ρ>0,θ∈[0,2π)时的点M的极坐标为________.三、解答题。

在极坐标系中,作出以下各点:A(4,0),B(3,π4),C(2,π2),D(3,7π4),E(4,2π3)已知极坐标系中,O为极点,A(3,π6),OA⊥OB,|AB|=5,若ρ≥0,θ∈[0,2π),求点B的极坐标.△ABC的顶点的极坐标为A(4,4π3),B(6,5π6),C(8,7π6).判断△ABC的形状;求△ABC的面积.参考答案与试题解析4.2.1 极坐标系的概念一、选择题。

极坐标系的概念

极坐标系的概念

极坐标系的概念一、极坐标系如图所示, 在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.二、极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.三、极坐标和直角坐标的互化1、互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:2、互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:点直角坐标极坐标互化公式在一般情况下,由确定角时,可根据点所在的象限最小正角.3、常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为的圆圆心为,半径为的圆圆心为,半径为的圆过极点,倾斜角为的直线(1)(2)过点,与极轴垂直的直线过点,与极轴平行的直线注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.练习题:1.在极坐标系中,点(ρ,θ)与(-ρ, π-θ)的位置关系为( )。

A .关于极轴所在直线对称 B .关于极点对称 C .关于直线θ=2π(ρ∈R) 对称 D .重合2.点M 的直角坐标是(1,3)-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈3.极坐标方程 4ρsin 22θ=5 表示的曲线是( )。

极坐标系

极坐标系

极坐标系1.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ.②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).3.极坐标与直角坐标的互化 设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎨⎧ x =ρcos θ,y =ρsin θ;⎩⎨⎧ ρ2=x 2+y 2,tan θ=y x x ≠0.例题训练:1.(教材习题改编)点P 的直角坐标为(1,-3),则点P 的极坐标为________.2.在极坐标系中,圆ρ=4表示 .θ=π3表示________. 3.圆ρ=5cos θ-53sin θ的圆心的极坐标为________.4.在极坐标系中,求圆ρ=8sin θ上的点到直线θ=π3(ρ∈R)距离的最大值?1.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧ x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.2.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎪⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.3.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R)设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.4. 在直角坐标系中,曲线C 的参数方程为⎩⎨⎧==ϕϕsin cos 2y x ,(ϕ为参数),一坐标原点为极点,x 轴非负半轴为极轴建立极坐标系。

极坐标系与曲线的性质

极坐标系与曲线的性质

极坐标系与曲线的性质极坐标系是一种描述平面上点位置的坐标系统,它以极轴和极角来确定点的位置。

在极坐标系下,曲线的性质可以通过极坐标方程来表示和理解。

本文将介绍极坐标系的基本概念,并探讨曲线在极坐标系下的性质。

一、极坐标系的基本概念在极坐标系中,点的位置由极径r和极角θ确定。

极径表示点到原点的距离,极角表示点与极轴的夹角。

极坐标系与直角坐标系可以相互转化,而直角坐标系中的点(x, y)可以通过以下关系转换为极坐标系中的点(r, θ):r = √(x² + y²)θ = arctan(y/x)二、极坐标系下的曲线在极坐标系下,曲线由极坐标方程描述。

常见的曲线方程包括极坐标方程以及对数螺线、阿基米德螺线等。

1. 极坐标方程的一般形式极坐标方程可以表示为r = f(θ),其中f(θ)是一个关于θ的函数。

这个函数决定了曲线在极坐标系下的形状。

不同的函数f(θ)对应不同的曲线类型,如圆、椭圆、双曲线等。

2. 对数螺线对数螺线是一种以指数函数表示的曲线,其极坐标方程为r = a^θ,其中a为常数。

当a>1时,对数螺线向外蜷曲,当0<a<1时,对数螺线向内蜷曲。

3. 阿基米德螺线阿基米德螺线是一种以线性函数表示的曲线,其极坐标方程为r = a + bθ,其中a和b为常数。

阿基米德螺线是一种螺线,具有类似于一根拧入木头的螺钉的形状。

三、曲线的性质分析在极坐标系下,可以通过曲线的极坐标方程来推导和分析曲线的性质。

1. 曲线的对称性根据极坐标方程,可以判断曲线是否具有对称性。

例如,当极坐标方程中包含cosθ或sinθ时,曲线具有对称性。

当cosθ存在于r的表达式中时,曲线在极轴关于原点对称;当sinθ存在于r的表达式中时,曲线在极轴关于直线θ=π/2对称。

2. 曲线的极值点极坐标方程的极值点可通过求导数来确定。

通过对极坐标方程中的r关于θ求导,可以求得极值点的极角。

3. 曲线的曲率曲线的曲率可以通过曲线的极坐标方程以及柯西-罗尔定理来计算。

极坐标系认识极坐标系和极坐标的表示

极坐标系认识极坐标系和极坐标的表示

极坐标系认识极坐标系和极坐标的表示极坐标系是一种在数学和物理中常用的坐标系,它可以用来描述平面上的点的位置。

本文将介绍极坐标系的概念、极坐标的表示以及极坐标系的应用。

一、极坐标系的概念极坐标系是由极轴和极角组成的坐标系。

极轴是指从原点到点的有向线段,通常用正方向表示。

而极角是指极轴与固定参考线之间的夹角,通常用弧度表示。

极坐标系的标准位置通常以极轴平行于x轴的正方向并通过原点的直线来表示。

二、极坐标的表示在极坐标系中,点的位置可以用极径和极角来表示。

极径是指从原点到点的距离,而极角则是指从极轴到线段所经过的角度。

通常,极径用大写字母r表示,极角用希腊字母θ表示。

因此,一个点可以用(r,θ)来表示。

三、极坐标系的转换在直角坐标系和极坐标系之间可以进行转换。

如果已知一个点在直角坐标系中的坐标(x,y),那么可以通过以下公式将其转换为极坐标系中的坐标:r = √(x² + y²)θ = arctan(y / x)反之,如果已知点在极坐标系中的坐标(r,θ),则可以通过以下公式将其转换为直角坐标系中的坐标:x = r * cosθy = r * sinθ四、极坐标系的应用极坐标系在许多应用中起着重要的作用。

例如,极坐标系常用于描述极坐标图,这些图形在科学研究、工程设计和技术绘图中广泛应用。

此外,极坐标系还可以用于描述极坐标方程的图形,如极坐标方程r =a +b * cosθ和r = a + b * sinθ等。

在物理学中,极坐标系也被用来描述旋转和循环运动。

总结:通过本文的介绍,我们对极坐标系和极坐标的表示有了更深入的了解。

极坐标系通过极轴和极角描述平面上的点的位置,其转换关系可以方便地将点在直角坐标系和极坐标系之间进行转换。

极坐标系在科学研究、工程设计和技术绘图中具有广泛的应用。

通过掌握极坐标系的概念和表示方法,我们能更好地理解和应用相关的数学和物理知识。

极坐标系的性质和运算

极坐标系的性质和运算

极坐标系的性质和运算极坐标系是一种描述平面上点位置的坐标系,它由极径和极角两个参数组成。

本文将深入探讨极坐标系的性质和运算,帮助读者更好地理解和应用。

1. 极坐标系的性质极坐标系是一种极限清晰的坐标系统,它具有以下几个重要性质:1.1 极径和极角极坐标系以原点为中心,极径表示点到原点的距离,而极角表示点与正x轴的夹角。

极径通常使用正数,而极角通常使用弧度单位或角度单位。

1.2 到极坐标系的转换通过极坐标系的转换,我们可以将笛卡尔坐标系(直角坐标系)中的点转换为极坐标系中的点,反之亦可。

这种转换可以通过一系列的三角函数计算实现。

2. 极坐标系的运算极坐标系具有一些特殊的运算规则,包括极坐标系中点的距离运算和点的坐标运算。

2.1 点的距离在极坐标系中,两个点之间的距离可以通过使用勾股定理进行计算。

对于两个点(r1,θ1)和(r2,θ2),其距离可以表示为:d = √((r1)^2 + (r2)^2 - 2r1r2cos(θ1-θ2))2.2 点的坐标在极坐标系中,可以通过两个参数r和θ来表示一个点的位置。

通过极坐标系的转换,我们可以将笛卡尔坐标系的点转换为极坐标系的点,反之亦可。

2.3 点的运算在极坐标系中,点的运算包括点的加法和点的乘法。

点的加法可用于计算两个点之间的相对位置,点的乘法可用于计算向量的缩放和旋转。

3. 极坐标系的应用极坐标系具有广泛的应用,尤其在物理学和工程学领域。

它被用于描述复杂的旋转运动、电磁场和天体力学等问题。

3.1 旋转运动极坐标系非常适合描述物体的旋转运动。

通过将物体相对于一个参考点的位置表示为极角,并根据时间推导出极角的变化,我们可以精确地描述物体的角速度和角加速度。

3.2 电磁场电磁场通常由两个分量(电场和磁场)组成,可以使用极坐标系来描述其方向和振幅的变化。

极坐标系的使用可以简化电场和磁场的计算和分析。

3.3 天体力学极坐标系在天体力学中有着广泛的应用。

例如,通过将行星的轨道表示为极坐标,可以更容易地分析其运行轨迹和运动规律。

极坐标系 课件

极坐标系   课件

A322,-322,B(-1,- 3),C- 23,0,D(0,-4).
(2)根据
ρ2=x2+y2,tan
θ=yx得
A2
3,116π,
B 35,π2,C4,23π.
ቤተ መጻሕፍቲ ባይዱ
2.把直角坐标化为极坐标的注意事项 设点 M 的直角坐标为(x,y),极坐标是(ρ,θ). (1)由于 ρ≥0,解得 ρ= x2+y2. (2)tan θ=yx(x≠0),当 x=0 时,点 M(x,y)在 y 轴上, 当 y>0 时,点 M 的极角可取π2;当 y=0 时,点 M 的极角可 取 0;当 y<0 时,点 M 的极角可取32π. 当 x≠0 时,由 tan θ 的值确定 θ,要注意点 M 所在的象限.
极坐标系
1.极坐标系的概念 在平面内取一个定点 O,叫做极点;自极点 O 引一条射线 Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧 度)及其正方向(通常取逆时针方向),这样就建立了一个 __极__坐__标__系____.设 M 为平面内一点,极点 O 与点 M 的距离|OM| 叫做点 M 的_极___径__,记为 ρ;以极轴 Ox 为始边,射线 OM 为终 边的角 xOM 叫做点 M 的__极__角__,记为 θ.有序数对(ρ,θ)叫做点 M 的极坐标,记为 M(ρ,θ).
要点一 点的极坐标 1.求点 M 的极坐标的方法 (1)根据图形求点 M 到极点 O 的距离|OM|; (2)根据图形确定∠xOM 的一个值(一般取极轴 Ox 按逆时针 方向旋转到与 OM 重合时转过的角,即在[0,2π)内的一个角; (3)得点 M 的极坐标.
2.由极坐标确定点的位置的方法步骤
问题探究 1:极坐标系与平面直角坐标系有什么区别和联 系?

高一数学极坐标系知识点

高一数学极坐标系知识点

高一数学极坐标系知识点极坐标系是一种用极径和极角来表示平面上的点坐标的方法,它在数学的解析几何、物理学等领域中有着广泛的应用。

在高一数学学习中,了解和掌握极坐标系的知识点是非常重要的。

本文将介绍高一数学中极坐标系的相关概念、坐标变换、直角坐标系与极坐标系的转换等内容。

一、极坐标系的基本概念极坐标系由极轴和极径两个要素组成。

其中,极轴是由原点O 出发的射线,极径是由原点O到点P的线段,表示点P到原点O 的距离,常用符号r表示。

极径的正方向是由原点O指向点P,但不限于正方向,可以是任何方向。

二、极坐标系与直角坐标系的转换在直角坐标系中,一个点的坐标由x和y两个分量表示;而在极坐标系中,一个点的坐标由极径r和极角θ两个分量表示。

两种坐标系之间的转换可以通过下列公式来实现:1. 由直角坐标系转换到极坐标系:极径:r = √(x² + y²)极角:θ = arctan(y / x),其中x不等于0时,θ在(-π, π]范围内;x等于0时,θ为±π/2或0。

2. 由极坐标系转换到直角坐标系:x = r * cosθy = r * sinθ在实际问题中,我们常常需要将极坐标系中的方程转换为直角坐标系中的方程,或者反过来。

通过上述转换公式,我们可以方便地在两种坐标系之间进行转换和计算。

三、极坐标系中的图形方程在极坐标系中,不同的图形有着不同的极坐标方程。

下面列举几种常见的图形方程:1. 极径为常数的圆:r = a,其中a为圆的半径。

2. 极心在极轴上的直线:θ = α,其中α为与极轴的夹角。

3. 极径为函数f(θ)的曲线:r = f(θ),如叶形线、心形线等。

通过对不同图形方程的了解,我们可以准确地在极坐标系中绘制出相应的图形。

四、极坐标系中的曲线的一般方程一般而言,极坐标方程的形式为r = f(θ)。

在解析几何中,我们常常需要推导出这样的一般方程,以便更好地研究和描述曲线的性质。

极坐标与参数方程带答案(教师版)

极坐标与参数方程带答案(教师版)

选修4-4 坐标系与参数方程第一节 坐 标 系1.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标的概念 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,从O 点引一条射线Ox ,叫做极轴,选定一个单位长度和角及其正方向(通常取逆时针方向),这样就确定了一个平面极坐标系,简称为极坐标系。

(2)极坐标:对于平面内任意一点M ,用ρ表示线段OM 的长,θ表示以Ox 为始边、OM 为终边的角度,ρ叫做点M 的极径,θ叫做点M 的极角,有序实数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ)。

当点M 在极点时,它的极径ρ=0,极角θ可以取任意值。

(3)点与极坐标的关系:平面内一点的极坐标可以有无数对,当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点,而用平面直角坐标表示点时,每一个点的坐标是唯一的。

如果规定ρ>0,0≤θ<2π,或者-π<θ≤π,那么,除极点外,平面内的点和极坐标就一一对应了。

3.极坐标和直角坐标的互化(1)互化背景:把平面直角坐标系的原点作为极点,x 轴的正半轴作为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度,如图所示。

(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ>0,θ∈[0,2π)),于是极坐标与直角坐标的互化公式如表:⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ4.常见曲线的极坐标方程1.明辨两个坐标伸缩变换关系式⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),点(x ,y )在原曲线上,点(x ′,y ′)在变换后的曲线上,因此点(x ,y )的坐标满足原来的曲线方程,点(x ′,y ′)的坐标满足变换后的曲线方程。

极坐标系的概念和应用

极坐标系的概念和应用

极坐标系的概念和应用极坐标系是一种描述平面上点位置的坐标系,它由极径和极角两个参数组成。

在极坐标系中,每一个点都可以表示为(r,θ)的形式,其中r 代表该点到原点的距离,θ代表该点与参考线的夹角。

极坐标系能够简洁地描述圆形、对称图形以及其他一些具有旋转特性的图形,因此在数学、物理、工程等领域都有广泛的应用。

一、极坐标系的定义极坐标系是一种二维坐标系统,它与直角坐标系密切相关。

在直角坐标系中,每一个点都可以表示为(x,y)的形式,其中x为该点与x轴的水平距离,y为该点与y轴的垂直距离。

而在极坐标系中,每一个点都可以表示为(r,θ)的形式,其中r为该点到原点的距离,θ为该点与参考线的夹角。

二、极坐标系与直角坐标系的转换极坐标系与直角坐标系之间存在着一种转换关系,通过这种关系可以实现坐标系的相互转换。

具体而言,对于给定的极坐标(r,θ),可以通过以下公式将其转换为直角坐标(x,y):x = r * cos(θ)y = r * sin(θ)同样地,对于给定的直角坐标(x,y),可以通过以下公式将其转换为极坐标(r,θ):r = sqrt(x^2 + y^2)θ = arctan(y/x)这种转换关系使得在不同的应用场景中能够灵活地使用极坐标系和直角坐标系。

三、极坐标系的应用1. 圆的极坐标方程在极坐标系中,圆可以用简洁的形式进行表示。

对于圆心在原点,半径为a的圆,其极坐标方程为:r = a通过这个方程,我们可以方便地描述和计算圆的性质。

2. 极坐标下的曲线方程在极坐标系中,某些曲线的方程可以用极坐标表示。

例如,对于给定的极坐标方程r = f(θ),其中f(θ)是一个与θ有关的函数,我们可以通过描绘不同θ值对应的r值来绘制出相应的曲线。

3. 极坐标系在物理学中的应用极坐标系在物理学中有着重要的应用。

例如,极坐标系可以用来描述某些旋转对称的物理问题,比如自转的刚体、天体运动等。

通过使用极坐标系,可以更加简洁地描述物体在旋转过程中的运动规律。

极坐标系

极坐标系

极坐标系一、 极坐标系的概念: 在平面内取一个定点O ,叫极点,引一条射线Ox ,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内任何一点M ,用 ρ 表示线段OM 的长度,θ表示从Ox 到OM 的角度,ρ 叫做点M 的极径,θ 叫做点M 的极角,对应 (ρ,θ)就叫点M 的极坐标,这样建立的坐标系叫做极坐标系。

二、极坐标与直角坐标的转化:在直角坐标系中一点M 0为(x 0,y 0)则在以其处直角坐标系的原点为极点的极坐标系中其极径ρ0=√x 02+y 02 , 极角θ0=tan −1(y0x 0) (极角所在象限由原角而定),得M 0极坐标为(√x 02+y 02,tan −1(y0x 0))。

那么得极坐标方程与直角坐标方程的互化公式: {ρ=2+y 2θ=tan −1(y x ) {x =ρcos θ y =ρsin θ三、极坐标系的运用及简单图像的方程:1) 极坐标系中两点的距离:若在极坐标系中存在不同的两点A (ρ1,θ1)、B (ρ2,θ2)则其距离d 为:d =√ρ12+ρ22−2ρ1ρ2cos (θ1−θ2) 推导过程: 由余弦定理c 2=a 2+b 2−2abcosC得:|AB |2=|OA |2+|OB |2−2|OA ||OB |cos ∠AOB其中有:|OA |=ρ1 , |OB |=ρ2 ∠AOB =θ1−θ2则有:|AB |2=ρ12+ρ22−2ρ1ρ2cos (θ1−θ2)即:d =√ρ12+ρ22−2ρ1ρ2cos (θ1−θ2)2) 极坐标系中直线的方程:若在极坐标系中存在过极点的直线l 0,其倾斜角为φ,则该直线的的极坐标方程为:θ=φ (ρ ∈R )3) 极坐标系中圆的方程:若在极坐标系中存在一个圆,圆心在极点上,半径为r ,则该圆的的极坐标方程为:ρ=r (θ ∈R )若其圆心在点O (ρ1,θ1)则该圆的的极坐标方程为:ρ2+ρ12−2ρρ1cos (θ−θ1)=r 2 M (ρ,θ)x θρ极坐标系O )4)极坐标系中圆锥曲线的方程:圆锥曲线的极坐标方程为ρ=±ep1−ecosθ或ρ=±ep1−esinθp表示准线到焦点的距离。

(完整版)极坐标系的概念及其性质(含答案),推荐文档

(完整版)极坐标系的概念及其性质(含答案),推荐文档

极坐标系的概念及其性质典题探究例1 写出图中A ,B ,C ,D ,E ,F ,G 各点的极坐标.)20,0(πθρ<≤>例2在下面的极坐标系里描出下列各点(3,0)(6,2)(3,245(5,(3,(4,)365(6,)3A B C D E F G ππππππ例3 如图,用点A ,B ,C ,D ,E 分别表示教学楼,体育馆,图书馆,实验楼,办公楼的位置.建立适当的极坐标系,写出各点的极坐标.例4已知点,分别按下列要求求出点P 的一个极坐标.),(θρQ (1)P 是点Q 关于极点O 的对称点;(2)P 是点Q 关于极轴的对称点.演练方阵A 档(巩固专练)A .(5,−) B .(5,) C .(5,−) D .(−5,−)3π43π23π53πA .(−2,) B .(−2,) C .(2,−) D .(2,−)3π43π3π23π4.在极坐标系中,与(ρ,θ)关于极轴对称的点是( )A .B .C .D .),(θρ),(θρ-),(πθρ+),(θπρ-5.如图,在平面内取一个 ,叫做 ;自极点引一条射线,叫做O O Ox ;在选定一个 及其计算角度的 (通常取逆时针方向为正方向),这样就建立了一个。

6.设是平面内一点,极点与的距离叫做点的 ,记为 ;以M O M ||OM M 极轴为始边,射线为终边的角叫做点的 ,记为 。

有序数对Ox OM xOM M 叫做点的,记作。

M 7. 、表示同一个点的是 .6,4(πA )65,4(πB )67,4(πC )6,4(π-D )613,4(πE 8.写出图中各点的极坐标:9.如图,在极坐标系中,写出点A ,B ,C 的极坐标,并标出点所在的位置.)35,5.3(),43,4(),6,2(πππF E D10.中央气象台在2004年7月15日10:30发布的一则台风消息:今年第9号热带风暴“圆规”的中心今天上午八点钟已经移到了广东省汕尾市东南方大约440公里的南海东北部海面上,中心附近最大风力有9级.请建立适当的坐标系,用坐标表示出该台风中心的位置.B 档(提升精练)1.已知,下列所给出的能表示该点的坐标的是( )5,3M π⎛⎫⎪⎝⎭A . B . C . D .⎪⎭⎫⎝⎛-3,5π⎪⎭⎫ ⎝⎛34,5π⎪⎭⎫⎝⎛-32,5π55,3π⎛⎫- ⎪⎝⎭2. 在极坐标系中,与点(-3,)重合的点是( )6πA.(3,) B. (-3, -) C. (3, -) D. (-3, -) 6π6π56π56π3.在极坐标系中,与点(-8,)关于极点对称的点的一个坐标是 ( )6πA.(8,) B. (8, -) C. (-8,) D.(-8, -) 6π56π56π6π 4.已知△ABC 的三个顶点的极坐标分别为A (4,0°), B (-4,-120°), C (2+2,330°),则△ABC 为 .5.在极坐标系中,点关于直线的对称点的一个极坐标是 .)6,5(πM 4πθ=6.在极坐标系中,点与的位置关系是 .),(θρ),(θπρ+7.在极坐标系中,设O 是极点,A 、B 两点的极坐标分别是、,则⊿OAB )3,4(π)65,5(π-的面积是 .8.在极坐标系中,已知,则线段AB 中点的极坐标是 .34,8(),3,6(ππB A 9.在极坐标系中,求与两点间的距离.3,3(πA )32,1(πB 10.边长为a 的正六边形OABCDE 在极坐标系中的位置如图所示,求这个正六边形各顶点的极坐标.C 档(跨越导练)1.在极坐标中,若等边∆ABC 的两个顶点是、,那么顶点C 的坐标可能)4,2(πA 45,2(πB 是( ))43,4.(πA 43,32(πB ),32.(πC ),3.(πD 2.在极坐标系内,点关于直线的对称点坐标为( ))2,3(π.6πθ=)(R ∈ρA (3,0)2,3(πB )32,3(π-C 611,3(πD 3.若是极坐标系中的一点,则3,2(π--P ).35,2(38,2(32,2(πππ-M R Q 四点中与P 重合的点有( ))352,2(ππ-k N )(Z k ∈A .1个 B 2个 C 3个 D 4个4.设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A.(,) B. () C. (3,) D. (3,)23π43π45π45π435.点关于直线的对称点的一个极坐标是 .),(θρP 2πθ=6.在极坐标系中,已知两点,则A ,B 两点间的距离是________.32,1(),3,3(ππB A -7.已知两点的极坐标,则|AB|=______,AB 与极轴正方向所成的角为)6,3(2,3(ππB A ________.8.极坐标系中,点A 的极坐标是,则)6,3(π(1)点A 关于极轴对称的点是_______;(2)点A 关于极点对称的点的极坐标是___;(3)点A 关于直线的对称点的极坐标是________.(规定: 2πθ=)0(>ρ[)πθ2,0∈9.在极坐标系中,描出点,并写出点M 的统一极坐标。

人教A版2019年高中数学选修4-4教学案: 第一讲 第2节 极坐标系_含答案

人教A版2019年高中数学选修4-4教学案: 第一讲 第2节 极坐标系_含答案

[核心必知]1.极坐标系的概念 (1)极坐标系的建立在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)点的极坐标设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 2.极坐标与直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位.(2)互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ; ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0)W. [问题思考]1.平面上的点与这一点的极坐标是一一对应的吗?为什么?提示:不是.在极坐标系中,与给定的极坐标(ρ,θ)相对应的点是唯一确定的;反过来,同一个点的极坐标却可以有无穷多个.如一点的极坐标是(ρ,θ)(ρ≠0),那么这一点也可以表示为(ρ,θ+2n π)或(-ρ,θ+(2n +1)π)(其中n ∈Z ).2.若ρ>0,0≤θ<2π,则除极点外,点M (ρ,θ)与平面内的点之间是否是一一对应的?提示:如果我们规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)来表示,这时,极坐标与平面内的点之间就是一一对应的关系.3.若点M 的极坐标为(ρ,θ),则M 点关于极点、极轴、过极点且垂直于极轴的直线的对称点的极坐标是什么?提示:设点M 的极坐标是(ρ,θ),则M 点关于极点的对称点的极坐标是(-ρ,θ)或(ρ,θ+π);M 点关于极轴的对称点的极坐标是(ρ,-θ);M 点关于过极点且垂直于极轴的直线的对称点的极坐标是(ρ,π-θ)或(-ρ,-θ).已知定点P ⎝⎛⎭⎫4,π3.(1)将极点移至O ′⎝⎛⎭⎫23,π6处极轴方向不变,求P 点的新坐标;(2)极点不变,将极轴顺时针转动π6角,求P 点的新坐标.[精讲详析] 本题考查极坐标系的建立及极坐标的求法.解答本题需要根据题意要求建立正确的极坐标系,然后求相应的点的极坐标.(1)设P 点新坐标为(ρ,θ),如图所示,由题意可知|OO ′|=23, |OP |=4,∠POx =π3,∠O ′Ox =π6,∴∠POO ′=π6.在△POO ′中,ρ2=42+(23)2-2·4·23·cos π6=16+12-24=4,∴ρ=2. 即|O ′P |=2.∴|OP |2=|OO ′|2+|O ′P |2,∠OO ′P =π2.∴∠OPO ′=π3.∴∠OP ′P =π-π3-π3=π3.∴∠PP ′x =2π3.∴∠PO ′x ′=2π3.∴P 点的新坐标为(2,2π3).(2)如图,设P 点新坐标为(ρ,θ),则ρ=4,θ=π3+π6=∴P 点的新坐标为(4,π2).—————————————建立极坐标系的要素是(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向.四者缺一不可.极轴是以极点为端点的一条射线,它与极轴所在的直线是有区别的;极角θ的始边是极轴,它的终边随着θ的大小和正负而取得各个位置;θ的正方向通常取逆时针方向,θ的值一般是以弧度为单位的量数;点M 的极径ρ表示点M 与极点O 的距离|OM |,因此ρ≥0;但必要时,允许ρ<0.1.边长为a 的正六边形的一个顶点为极点,极轴通过它的一边,求正六边形各顶点坐标.解:由点的极坐标的定义可知,正六边形各顶点的极坐标分别为:(0,0)、(a ,0)、(3a ,π6)、(2a ,π3)、(3a ,π2)、(a ,23π)或(0,0)、(a ,0)、(3a ,-π6)、(2a ,-π3)、(3a ,-π2)、(a ,-23π).若以极点为原点,极轴为x 轴正半轴建立直角坐标系. (1)已知点A 的极坐标⎝⎛⎭⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)[精讲详析] 本题考查极坐标和直角坐标的互化.解答此题只需将已知条件代入相关公式即可.(1)∵x =ρcos θ=4·cos 5π3=2. y =ρsin θ=4sin5π3=-2 3. ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1.且点B 位于第四象限内, ∴θ=7π4.∴点B 的极坐标为(22,7π4).又∵x =0,y <0,ρ=15, ∴点C 的极坐标为(15,3π2).(1)将极坐标(ρ,θ)化为直角坐标(x ,y )的公式是:x =ρcos θ,y =ρsin θ;(2)将直角坐标(x ,y )化为极坐标(ρ,θ)的公式是:ρ2=x 2+y 2,tan θ=yx (x ≠0),在利用此公式时要注意ρ和θ的取值范围.2.(1)把点M 的极坐标⎝⎛⎭⎫8,2π3化成直角坐标;(2)把点P 的直角坐标(6,-2)化成极坐标.(ρ>0,0≤θ<2π) 解:(1)x =8cos 2π3=-4, y =8sin2π3=43, 因此,点M 的直角坐标是(-4,43). (2)ρ=(6)2+(-2)2=22, tan θ=-26=-33,又因为点在第四象限,得θ=116π.因此,点P 的极坐标为(22,11π6).在极坐标系中,已知A ⎝⎛⎭⎫3,-π3,B ⎝⎛⎭⎫1,23π,求A 、B 两点之间的距离. [精讲详析] 本题考查极坐标与直角坐标的互化、极坐标系中两点间的距离公式.解答此题可直接利用极坐标系中两点间的距离公式求解,也可以先将极坐标化为直角坐标,然后利用两点间的距离公式求解.法一:由A (3,-π3)、B (1,2π3)在过极点O 的一条直线上,这时A 、B 两点的距离为|AB |=3+1=4,所以,A 、B 两点间的距离为4.法二:∵ρ1=3,ρ2=1,θ1=-π3,θ2=2π3,由两点间的距离公式得|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)=32+12-2×3×1×cos (-π3-23π)=10-6cos π =10+6 =16 =4.法三:将A (3,-π3),B (1,2π3)由极坐标化为直角坐标,对于A (3,-π3)有x =3cos (-π3)=32,y =3sin(-π3)=-332,∴A (32,-332).对于B (1,2π3)有x =1×cos 2π3=-12,y =1×sin2π3=32, ∴B (-12,32).∴|AB |=(32+12)2+(-332-32)2=4+12=4. ∴AB 两点间的距离为4.对于这类问题的解决方法,可以直接用极坐标内两点间的距离公式d =ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)求得;也可以把A 、B 两点由极坐标化为直角坐标,利用直角坐标中两点间的距离公式d =(x 1-x 2)2+(y 1-y 2)2求得;极坐标与直角坐标的互化体现了化归的解题思想;还可以考虑其对称性,根据对称性求得.3.在极坐标系中,如果等边三角形的两个顶点是A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,54π,则求第三个顶点C 的坐标.解:由题设知,A 、B 两点关于极点O 对称,又|AB |=4,由正三角形的性质知,|CO |=23,∠AOC =π2,从而C 的极坐标为(23,34π)或(23,-π4).极坐标与直角坐标的互化在高考模拟中经常出现.本考题将极坐标与直角坐标的互化同极坐标系中两点间的距离和简单的三角恒等变换相结合考查,是高考模拟命题的一个新亮点.[考题印证]已知极坐标系中,极点为O ,将点A (4,π6)绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.[命题立意] 本题主要考查点的极坐标的求法以及直角坐标与极坐标的转化. [解析] 依题意,点B 的极坐标为(4,5π12),∵cos 5π12=cos (π4+π6)=cos π4cos π6-sin π4·sin π6=22·32-22·12=6-24, sin 5π12=sin (π4+π6)=sin π4cos π6+cos π4·sin π6=22·32+22·12=6+24, ∴x =ρcos θ=4×6-24=6-2, y =ρsin θ=6+ 2.∴点B 的直角坐标为(6-2,6+2). [答案] (6-2,6+2)一、选择题1.在极坐标系中,点M ⎝⎛⎭⎫-2,π6的位置,可按如下规则确定( )A .作射线OP ,使∠xOP =π6,再在射线OP 上取点M ,使|OM |=2 B .作射线OP ,使∠xOP =7π6,再在射线OP 上取点M ,使|OM |=2 C .作射线OP ,使∠xOP =7π6,再在射线OP 的反向延长线上取点M ,使|OM |=2 D .作射线OP ,使∠xOP =-π6,再在射线OP 上取点M ,使|OM |=2解析:选B 当ρ<0时,点M (ρ,θ)的位置按下列规定确定:作射线OP ,使∠xOP =θ,在OP 的反向延长线上取|OM |=|ρ|,则点M 就是坐标(ρ,θ)的点.2.在极坐标平面内,点M ⎝⎛⎭⎫π3,200π,N ⎝⎛⎭⎫-π3,201π,G ⎝⎛⎭⎫-π3,-200π,H ⎝⎛⎭⎫2π+π3,200π中互相重合的两个点是( )A .M 和NB .M 和GC .M 和HD .N 和H 解析:选A 由极坐标定义可知,M 、N 表示同一个点.3.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点 (ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称. 4.已知极坐标平面内的点P ⎝⎛⎭⎫2,-5π3,则P 关于极点的对称点的极坐标与直角坐标分别为( )A.⎝⎛⎭⎫2,π3,(1,3)B.⎝⎛⎭⎫2,-π3,(1,-3)C.⎝⎛⎭⎫2,2π3,(-1,3)D.⎝⎛⎭⎫2,-2π3,(-1,-3)解析:选D 点P (2,-5π3)关于极点的对称点为(2,-5π3+π),即(2,-2π3),且x =2cos (-2π3)=-2cos π3=-1,y =2sin (-2π3)=-2sin π3=- 3.二、填空题5.限定ρ>0,0≤θ<2π时,若点M 的极坐标与直角坐标相同,则点M 的直角坐标为________.解析:点M 的极坐标为(ρ,θ),设其直角坐标为(x ,y ),依题意得ρ=x ,θ=y , 即x 2+y 2=x 2. ∴y =θ=0,ρ>0,∴M (ρ,0). 答案:(ρ,0)6.已知极坐标系中,极点为O ,0≤θ<2π,M ⎝⎛⎭⎫3,π3,在直线OM 上与点M 的距离为4的点的极坐标为________.解析:如图所示,|OM |=3,∠xOM =π3,在直线OM 上取点P 、Q ,使|OP |=7,|OQ |=1,∠xOP =π3,∠xOQ =4π3,显然有|PM |=|OP |-|OM |=7-3=4,|QM |=|OM |+|OQ |=3+1=4.答案:(7,π3)或(1,4π3)7.直线l 过点A ⎝⎛⎭⎫3,π3,B ⎝⎛⎭⎫3,π6,则直线l 与极轴夹角等于________.解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=3, ∠AOB =π3-π6=π6,所以∠OAB =π-π62=5π12.所以∠ACO =π-π3-5π12=π4.答案:π48.已知点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为________.解析:∵tan θ=-43,π2<θ<π,∴cos θ=-35,sin θ=45.∴x =5cos θ=-3,y =5sin θ=4. ∴点M 的直角坐标为(-3,4). 答案:(-3,4) 三、解答题9.设点A ⎝⎛⎭⎫1,π3,直线L 为过极点且垂直于极轴的直线,分别求出点A 关于极轴,直线L ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π)解:如图所示:关于极轴的对称点为 B (1,-π3)关于直线L 的对称点为C (1,2π3).关于极点O 的对称点为D (1,-2π3).10.已知点P 的直角坐标按伸缩变换⎩⎨⎧x ′=2x ,y ′=3y变换为点P ′(6,-3),限定ρ>0,0≤θ≤2π时,求点P 的极坐标.解:设点P 的直角坐标为(x ,y ),由题意得⎩⎨⎧6=2x -3=3y ,解得⎩⎨⎧x =3,y =- 3.∴点P 的直角坐标为(3,-3).ρ=32+(-3)2=23,tan θ=-33,∵0≤θ<2π,点P 在第四象限, ∴θ=11π6.∴点P 的极坐标为(23,11π6). 11.在极轴上求与点A ⎝⎛⎭⎫42,π4的距离为5的点M 的坐标. 解:设M (r ,0),因为A (42,π4), 所以 (42)2+r 2-82r ·cos π4=5. 即r 2-8r +7=0.解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标系的概念及其性质
典题探究
例1 写出图中A ,B ,C ,D ,E ,F ,G 各点的极坐标)20,0(πθρ<≤>.
例2在下面的极坐标系里描出下列各点
例3 如图,用点A ,B ,C ,D ,E 分别表示教学楼,体育馆,图书馆,实验楼,办公楼的位置.建立适当的极坐标系,写出各点的极坐标
.
(3,0)(6,2)(3,)245(5,)(3,)(4,)365(6,)
3A B C D E F G ππππππ
例4已知点),(θρQ ,分别按下列要求求出点P 的一个极坐标.
(1)P 是点Q 关于极点O 的对称点; (2)P 是点Q 关于极轴的对称点.
演练方阵
A 档(巩固专练)
A .(5,−)
B .(5,)
C .(5,−)
D .(−5,−)
A .(−2,3)
B .(−2,3)
C .(2,−3
) D .(2,−3)
4.在极坐标系中,与(ρ,θ)关于极轴对称的点是( )
A .),(θρ
B .),(θρ-
C .),(πθρ+
D .),(θπρ-
5.如图,在平面内取一个 O ,叫做 ;自极点O 引一条射线Ox ,叫做 ;在选定一个 及其计算角度的 (通常取逆时针方向为正方向),这样就建立了一个 。

6.设M 是平面内一点,极点O 与M 的距离||OM 叫做点M 的 ,记为 ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的 ,记为 。

有序数对 叫做点M 的 ,记作 。

7. )6
,
4(π
A 、)65,
4(πB )67,4(πC )6,4(π-D )6
13,4(πE 表示同一个点的是 .
8.写出图中各点的极坐标:
9.如图,在极坐标系中,写出点A ,B ,C 的极坐标,并标出点)3
5,5.3(),43,
4(),6
,2(πππ
F E D 所在的位置.
10.中央气象台在2004年7月15日10:30发布的一则台风消息:今年第9号热带风暴“圆规”的中心今天上午八点钟已经移到了广东省汕尾市东南方大约440公里的南海东北部海面上,中心附近最大风力有9级.请建立适当的坐标系,用坐标表示出该台风中心的位置.
B 档(提升精练) 1.已知5,
3M π⎛⎫
⎪⎝⎭,下列所给出的能表示该点的坐标的是( ) A .⎪⎭⎫

⎛-
3,5π B .⎪⎭⎫ ⎝⎛34,5π C .⎪⎭⎫ ⎝
⎛-32,5π D .55,3π⎛

- ⎪⎝⎭
2. 在极坐标系中,与点(-3,
6
π
)重合的点是( ) A.(3, 6π ) B. (-3, -6
π
) C. (3, -56π) D. (-3, -56π)
3.在极坐标系中,与点(-8, 6
π
)关于极点对称的点的一个坐标是 ( )
A.(8,6π)
B. (8, -56π)
C. (-8,56π)
D.(-8, -6
π
)
4.已知△ABC 的三个顶点的极坐标分别为A (4,0°), B (-4,-120°), C (23+2, 30°),则△ABC 为 . 5.在极坐标系中,点)6
,
5(π
M 关于直线4
π
θ=
的对称点的一个极坐标是 .
6.在极坐标系中,点),(θρ与),(θπρ+的位置关系是 . 7.在极坐标系中,设O 是极点,A 、B 两点的极坐标分别是)3
,
4(π
、)6
5,5(π
-
,则⊿OAB 的
面积是 .
8.在极坐标系中,已知)34,
8(),3,
6(π
π
B A ,则线段AB 中点的极坐标是 .
9.在极坐标系中,求)3,3(πA 与)3
2,1(π
B 两点间的距离.
10.边长为a 的正六边形OABCDE 在极坐标系中的位置如图所示,求这个正六边形各顶点的极坐标.
C 档(跨越导练)
1.在极坐标中,若等边∆ABC 的两个顶点是)4
,2(π
A 、)4
5,
2(π
B ,那么顶点
C 的坐标可能是( )
)4
3,
4.(π
A )4
3,
32(πB ),32.(πC
),3.(πD
2.在极坐标系内,点)2
,3(π
关于直线.6
π
θ=
)(R ∈ρ的对称点坐标为( )
A (3,0)
)2,3(π
B
)3
2,
3(π-C
)6
11,3(πD
3.若)3
,2(π
-
-P 是极坐标系中的一点,则).3
5,2()..38,2()..32,
2(πππ-M R Q
)3
52,2(π
π-
k N )(Z k ∈四点中与P 重合的点有( ) A .1个 B 2个 C 3个 D 4个
4.设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A.(23,
π43
) B. (π45) C. (3,π45) D. (3,π4
3) 5.点),(θρP 关于直线2
π
θ=
的对称点的一个极坐标是 .
6.在极坐标系中,已知两点)3
2,
1(),3
,3(π
π
B A -,则A ,B 两点间的距离是________. 7.已知两点的极坐标)6
,3(),2,3(π
π
B A ,则|AB|=______,AB 与极轴正方向所成的角为________.
8.极坐标系中,点A 的极坐标是)6
,
3(π,则
(1)点A 关于极轴对称的点是_______;
(2)点A 关于极点对称的点的极坐标是___; (3)点A 关于直线2
π
θ=
的对称点的极坐标是________.(规定: )0(>ρ[)πθ2,0∈
9.在极坐标系中,描出点)3
,
2(πM ,并写出点M 的统一极坐标。

10.在极坐标系中,已知△ABC 三个顶点的极坐标为A (2,10°),B (-4,220°),C (3,100°),(1)求△ABC 的面积;(2)求△ABC 的边AB 的的长度.
极坐标系的概念及其性质参考答案
典题探究
例1解: ),6
5,1(),2,3(),4,
2(),0,3(π
ππ
D C B A )35,4(),34,5(),,5.2(πππG F
E .
X
例2解:
例3解:),3
,120(),060(),0,0(πC ,B A )43,50(),2,360(ππE D . 例4解: (1)),(θπρ+;(2)),(θρ-
演练方阵
A 档(巩固专练)
1.【答案】 C[解析]极坐标系中,同一个点,极角可以不同,一个点可由多个极坐标表示.
2.【答案】 A[解析]根据极坐标系的定义判断即可.
3.【答案】 D[解析] 在极坐标系中,与点P (2 ,3
π
)关于极点对称的点的坐标是:(2 , −
23
π) 4.【答案】 B[解析] 在极坐标系中,与(ρ,θ)关于极轴对称的点的坐标是:与(ρ,-θ)
5.【答案】定点,极点,极轴,单位长度,正方向,极坐标系.
6.【答案】极径,ρ,极角,θ,坐标,(ρ,θ). 7.【答案】A 、E.
8.解:),6
5,5(),2,4(),4,2(),0,4(π
ππD C B A )35,3(),34,5(),,3(πππG F E .
9. 解:)3
4,5(),2,4(),0,1(π
πC B A ,
10.解:以汕尾市为极点,正东方向为极轴建立极坐标系,则台风中心的极坐标为)4
7,440(π
.
B 档(提升精练)
1.【答案】D 2.【答案】C. 3.【答案】A . 4.【答案】等腰直角三角形. 5.【答案】)3
,
5(π
.
6.【答案】关于极点对称. 7.【答案】5[解析]56
5sin 5421=⨯⨯⨯=πS . 8.【答案】)3
4,
1(π. 9.解:73
cos 1321322=⨯⨯⨯-+=πAB ;
10.解:O (0,0),A (a, 3π-),B a , 6π-),C (2a , 0),D , 6π),F (a , 3
π
).
C 档(跨越导练)
1.【答案】B .
2.【答案】D . 3.【答案】C . 4.【答案】A[解析] 先求出点P 的直角坐标,P 到原点的距离r ,根据点P 的位置和极角的定义求出极角,从而得到点P 的极坐标. 5.【答案】),(θπρ-. 6.【答案】4.
7.【答案】3, 6
5π.[解析]根据极坐标的定义可得|AO|=|BO|=3,∠AOB=600
,即∆AOB 为等边三角形,所以|AB|=|AO|=|BO|=3, ∠ACX=6

8. 【答案】(1)11(3,
)6
π; (2)7(3,)6π ;(3)5(3,)6π
. 9.解:点)3
,
2(π
M 的统一极坐标表示式为)3
2,2(π
π+k ,如果允许0<ρ,还可以表示为
)3
)12(,2(π
π+
+-k 。

10. 解:(1)△ABC 的AB 边上的高h=328+ S △ABC =S △OAB +S △OBC -S △OAC =2+33-3=33
-1, (2)|AB |=2325 .。

相关文档
最新文档