专题平抛运动中的临界问题
平抛运动临界问题典型例题
平抛运动临界问题平抛运动是指一个物体在不受外力影响下,沿着一个水平方向进行抛掷的运动。
在平抛运动中,物体受到重力的作用而向下做加速运动,而在水平方向上则保持匀速直线运动。
当物体的初速度和抛掷角度确定时,我们可以通过解析的方法来求解物体的最大高度、最大飞行距离以及落地处的速度等问题。
问题描述一个足球运动员以θ的角度用力将足球从地面上以v0的初速度抛出。
为了使足球能够在某一距离d处接触地面,求抛出足球时的最小速度v0。
解题思路根据平抛运动的基本公式,可以得到足球在竖直方向的运动方程为:ℎ=v0sinθt−gt2 2其中,ℎ是足球抛出后的最大高度,g是重力加速度,t是足球从抛出到落地所需的时间。
当足球接触地面时,ℎ的值为0,即:0=v0sinθt−gt22 ⇒ v0sinθt=gt22将t表示为:t=2v0sinθg代入求解接触地面的位置d与时间t的关系:d=v0cosθ⋅t ⇒ d=v0cosθ⋅2v0sinθg化简得到:d=2v02sinθ⋅cosθg将上述方程转化为关于v0的二次方程形式:v02sin2θ−gd2=0解二次方程,并根据物理意义得到一个物理解:v 0=√gd 2sin2θ该解即为足球抛出时的最小速度。
示例计算假设 d =50 m ,θ=45∘,g =9.8 m/s²,代入上述公式可得:v 0=√9.8×502sin90∘≈22.142≈11.07 m/s 因此,足球抛出时的最小速度为约 11.07 m/s 。
总结本文使用物理学中的平抛运动公式,通过计算和代数运算的方法,解决了一个关于平抛运动临界问题的例题。
通过该例题,我们了解到通过解析方法可以推导出平抛运动的高度和水平距离与初速度和抛射角度之间的关系,并使用这个关系来解决实际问题。
平抛运动的临界问题
平抛运动的临界问题平抛运动的临界问题,解决这类问题有三点:1.是明确运动平抛运动的基本性质公式;基本规律及公式:①速度:,合速度方向:tanθ=②位移x=vot y=合位移大小:s=方向:tanα=③时间由y=得t=(由下落的高度y决定)④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
2.是确定临界状态;3.是确定临界轨迹——在轨迹示意图寻找出几何关系。
模型讲解:(排球不触网且不越界问题)模型简化(运动简化):将排球看成质点,把排球在空中的运动看成平抛运动。
问题:标准排球场场总长为l1=18m,宽l2=9m女排网高h=2.24m如上图所示。
若运动员在3m线上方水平击球,则认为排球做类平抛运动。
分析方法:设击球高度为H,击球后球的速度水平为v0。
当击球点高度为H 一定时,击球速度为υ1时恰好触网;击球速度为υ2时恰好出界。
当击球点高度为h时,击球速度为υ时,恰好不会触网,恰好不会出界,其运动轨迹分别如下图中的(a)、(b)、(c)所示。
如图(a)、(b)当击球点高度为H一定时,要不越界,需飞行的水平距离由于结论:1 若H一定时,则v0越大越易越界,要不越界,需2 若v0一定时,则H越大越易越界,越不越界,需如图(c)要不触网,则需竖直高度:水平距离:以上二式联立得:结论:1) 若H一定()时,则v0越小,越易触网。
要不触网,需2) 若v0一定时,则H越小,越易触网。
要不触网,需总结论:1 当H一定时,不触网也不越界的条件是:(即当H一定时,速度太大太小均不行,太小会触网,太大又易越界)2 若v0一定时,且v0在之外则无论初速度多大,结果是或越界或触网。
简言之:时,无论初速度多大,结果是或越界或触网。
例:如图所示,排球场总长为18m,设网的高度为2m,运动员站在离网3m远的线上正对网前竖直向上跳起把球垂直于网水平击出。
(g=10)(1)设击球点的高度为2.5m,问球被水平击出时的速度在什么范围内才能使球既不触网也不出界。
高考物理热点:平抛运动中的临界问题
答案 (1)
3h g
(2)L
4gh≤v≤L
g 2h
(3)L=2
2h
转到解析 目录
3.规律方法
1.处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件; (2)要用分解速度或者分解位移的思想分析平抛运动的临界问题。 2.平抛运动临界极值问题的分析方法 (1)确定研究对象的运动性质; (2)根据题意确定临界状态; (3)确定临界轨迹,画出轨迹示意图; (4)应用平抛运动的规律结合临界条件列方程求解。
的初速度分别从 A、B 两点相差 1 s 先后水 平相向抛出,a 小球从 A 点抛出后,经过 时间 t,a、b 两小球恰好在空中相遇,且 速度方向相互垂直,不计空气阻力,取 g=10m/s2,则抛出点 A、B 间的水平距离是( )
A.80 5 m B.100 m C.200 m D.180 5 m
转到解析
6gh<v<L1
g 6h
B.L41
hg<v<
(4L12+L22)g 6h
C.L21 D.L41
6gh<v<12 hg<v<12
(4L21+L22)g 6h
(4L21+L22)g 6h
提示:球速最小时, 射程最小;球速最大
时,射程最大。
转到解析
目录
4.(2017·江西重点中学联考)如图 15
所示,将 a、b 两小球以大小为 20 5 m/s
目录
D.若石子不能落入水中,则v0越大,落 到斜面上时速度方向与斜面的夹角越大
转到解析 目录
4.备选训练
平抛运动与日常生活紧密联系,如乒乓球、足球、排球等运动模型,飞
平抛运动临界问题典型例题
平抛运动临界问题典型例题平抛运动是指一个物体在水平方向上以一定的初速度抛出后,在重力作用下在竖直方向上做自由落体运动的过程。
临界问题是指当物体以一定的初速度抛出时,求解它的最大高度、飞行时间以及最大水平距离等相关参数的问题。
下面是一个典型的平抛运动临界问题例题,我将从多个角度进行全面解答。
例题:一个物体以初速度v0 = 20 m/s沿着水平方向抛出,求解它的最大高度、飞行时间以及最大水平距离。
解答:1. 最大高度:在平抛运动中,物体的竖直运动与水平运动是独立的。
在竖直方向上,物体受到重力的作用,在水平方向上,物体的速度保持不变。
因此,最大高度发生在物体竖直速度为零的时刻。
首先,我们需要知道物体的竖直初速度和竖直加速度。
竖直初速度为0,竖直加速度为重力加速度g ≈ 9.8 m/s^2。
使用竖直运动的运动学公式,v = u + at,其中v为最终速度,u为初速度,a为加速度,t为时间。
将v取为0,u取为20 m/s,a取为-9.8 m/s^2,代入公式,解得t = 2.04 s。
再使用竖直运动的位移公式,s = ut + 1/2at^2,其中s为位移。
将u取为20 m/s,t取为2.04 s,a取为-9.8 m/s^2,代入公式,解得s = 20.4 m。
所以,最大高度为20.4 m。
2. 飞行时间:飞行时间是指物体从抛出到落地所经过的时间。
在平抛运动中,物体的水平速度保持不变,所以飞行时间等于物体竖直运动的时间。
根据上面的计算结果,飞行时间为2.04 s。
3. 最大水平距离:最大水平距离是指物体从抛出到落地时在水平方向上的位移。
在平抛运动中,水平方向上的速度保持不变,所以最大水平距离等于水平速度乘以飞行时间。
水平速度为20 m/s,飞行时间为2.04 s,所以最大水平距离为40.8 m。
综上所述,当一个物体以初速度v0 = 20 m/s沿着水平方向抛出时,它的最大高度为20.4 m,飞行时间为2.04 s,最大水平距离为40.8 m。
专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标 导练内容目标1 平抛运动临界问题 目标2 平抛运动中的相遇问题目标3 类平抛运动 目标4斜抛运动一、平抛运动临界问题擦网压线既擦网又压线由21122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 得:()h H gx v -=211由222122121⎪⎪⎭⎫⎝⎛+==v x x g gt H 得:()Hg x x v 2212+= 由20122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 和202122121⎪⎪⎭⎫ ⎝⎛+==v x x g gt H 得:()22121x x x H h H +=-【例1】如图排球场,L=9m,球网高度为H=2m ,运动员站在网前s=3m 处,正对球网跳起将球水平击出,球大小不计,取重力加速度为g=10m/s.(1)若击球高度为h=2.5m,为使球既不触网又不出界,求水平击球的速度范围; (2) 当击球点的高度h 为何值时,无论水平击球的速度多大,球不是触网就是出界? 【答案】(1)10m /s <v 2/s (2)2.13m【详解】(1)当球刚好不触网时,根据h 1−h =12gt 12,解得:()()1122 2.521010h h t s g -⨯-===,则平抛运动的最小速度为:11/310/10min x v s m s t ===.当球刚好不越界时,根据h 1=12gt 22,解得:1222 2.5210h t s g ⨯=== ,则平抛运动的最大速度为:22/122/2max x v s m s t ===,则水平击球的速度范围为10/s <v 2/s .(2)设击球点的高度为h .当h 较小时,击球速度过大会出界,击球速度过小又会触网,1222()h h H g g -=,其中x 1=12m ,x 2=3m ,h=2m ,代入数据解得:h=2.13m ,即击球高度不超过此值时,球不是出界就是触网. 二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:ght 2<平抛与平抛相遇(1)若等高(h 1=h 2),两球同时抛;(2)若不等高(h 1>h 2)两球不同时抛,甲球先抛; (3)位移关系:x 1+x 2=L(1)A 球先抛; (2)t A >t B ; (3)v 0A <v 0B(1)A 、B 两球同时抛; (2)t A =t B ; (3)v 0A >v 0B 平抛与竖直上抛相遇(1)L=v 1t ;(2)22222121v h t h gt t v gt =⇒=-+; (3)若在S 2球上升时两球相遇,临界条件:2v t g<,即:22h v v g<,解得:2v gh >;(4)若在S 2球下降时两球相遇,临界条件:222v v t g g <<,即2222v h vg v g<<, 解得:22ghv gh <<平抛与斜上抛相遇(1)Ltvt v=⋅+θcos21;(2)θθsin21sin212222vhthgttvgt=⇒=-+;(3)若在S2球上升时两球相遇,临界条件:2sinvtgθ<,即:22sinsinh vv gθθ<,解得:2singhvθ>;(4)若在S2球下降时两球相遇,临界条件:22sin2sinv vtg gθθ<<,即222sin2sinsinv h vg v gθθθ<<,解得:22sin singhghvθθ<<【例2】如图,两个弹性球P、Q在距离水平地面一定高度处,若给P水平向右的初速度0(00v≠),同时释放Q,(两球在同一竖直面内运动)两球与地面接触时间可忽略不计,与地面接触前后水平方向速度不变,竖直方向速度大小不变,方向相反。
好题精析:平抛运动的临界问题
好题精析:平抛运动的临界问题
球落在对方界外.
2.某次网球比赛中,某选手将球在边界处正上方水平向右击出,球刚好过网落在场中(不计空气阻力),已知网球比赛场地相关数据如图所示,下列说法中正确的是()
A.击球高度h1与球网高度h2之间的关系为h1=1.8h2
B.若保持击球高度不变,球的初速度v0只要不
大于x
h12gh1,一定落在对方界内
C.任意降低击球高度(仍大于h2),只要击球初速度合适,球一定能落在对方界内
D.任意增加击球高度,只要击球初速度合适,球一定能落在对方界内
答案AD
解析根据平抛运动的规律有
x
2(h1-h2)
g
=
1.5x 2h 1
g
,解得h 1=1.8h 2,选项A 正确;若保持击球高度不变,当球的初速度v 0足够小时,球会落在自己界内,选项B 错误;设击球高度为h (仍大于h 2)时球刚好擦网而过,落地时又恰好压在
底线上,则有2x 2h
g =x
2(h -h 2)
g ,解得h =43h 2,即击球高度低于此值时,球不是出界就是触网,选项C 错误;任意增加击球高度,只要击球初速度合适,球一定能落在对方界内,选项D 正确.。
物理高考专题 平抛运动与圆周运动组合中的双临界问题(解析版)
尖子生的自我修养系列(一)曲线运动中的一个难点——双临界问题(细化题型)平抛运动和圆周运动是两种典型的曲线运动模型,均是高考的重点,两者巧妙地结合对学生的推理能力提出更高要求,成为高考的难点。
双临界问题能有效地考查学生的分析能力和创新能力,从而成为高考命题的重要素材。
下面分三类情况进行分析。
[例1] [多选](2020·将一锅水烧开,拿一块面团放在锅旁边较高处,用刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅上沿的竖直距离为0.8 m ,面团离锅上沿最近的水平距离为0.4 m ,锅的直径为0.4 m 。
若削出的面片能落入锅中,则面片的水平初速度可能是(g =10 m/s 2)( )A .0.8 m/sB .1.2 m/sC .1.8 m/sD .3.0 m/s【解析】水平飞出的面片发生的运动可看成平抛运动,根据平抛运动规律,水平方向:x =v 0t ①,竖直方向:y =12gt 2 ②,其中水平位移大小的范围是0.4 m≤x ≤0.8 m ,联立①②代入数据解得1 m/s≤v 0≤2 m/s ,故B 、C 项正确。
【答案】BC[方法规律] 解决平抛运动中双临界问题的一般思路(1)从题意中提取出重要的临界条件,如“恰好”“不大于”等关键词,准确理解其含义。
(2)作出草图,确定物体的临界位置,标注速度、高度、位移等临界值。
(3)在图中画出临界轨迹,运用平抛运动的规律进行解答。
[集训冲关]1.(2020·济南模拟)套圈游戏是一项很受欢迎的群众运动,要求每次从同一位置水平抛出圆环,套住与圆环前端水平距离为3 m 的20 cm 高的竖直细杆,即为获胜。
一身高1.7 m 的人从距地面1 m 高度水平抛出圆环,圆环半径为8 cm ,要想套住细杆,他水平抛出圆环的速度可能为(g 取10 m/s 2)( ) A .7.4 m/s B .7.8 m/s C .8.2 m/s D .8.6 m/s 【解析】选B 根据h 1-h 2=12gt 2得,t =2(h 1-h 2)g=2×(1.0-0.2)10s =0.4 s 。
专题 平抛运动中的临界问题
解题方法:通过画出运动轨迹图,找到临界条件!
1.如图所示,水平屋顶高H=5m,墙高h=,墙到房子的距离L=,墙外马路宽x=,小球从房顶水平飞出落在墙外的马路上,求小球离开房顶时的速度.(取g=10m/s2)
2.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L1和L2,中间球网高度为h,发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h,不计空气的作用,重力加速度大小为g,若乒乓球的发射率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,到v的最大取值范围是()
A.<v<L1B.<v<
C.<v<D.<v<
3.如图,窗子上、下沿间的高度H=1.6m,墙的厚度d=0.4m,某人在离墙壁距离L=1.4m、距窗子上沿h=0.2m处的P点,将可视为质点的小物件以v的速度水平抛出,小物件直接穿过窗口并落在水平地面上,取
g=10m/s2。
则v的取值范围是()
A.m/s B.m/s
、
C.D.
4.如图所示的排球场总长为18m,设球网高度为2m,运动员站在网前3m线上正对球网跳起将球水平击出,求:
(1)若击球点的高度为,则击球的速度符合什么条件时,才能使球既不触网也不越界
(2)当击球点的高度小于多少时,无论水平击球的速度多大,球不是触网就是越界(排球可视为质点)。
第四讲 平抛运动、圆周运动的临界问题
能力提升课第四讲 平抛运动、圆周运动的临界问题热点一 平抛运动中的临界问题 (师生共研)1.有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在着临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程中存在着“起止点”,而这些起止点往往就是临界点.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点.[典例1] (2015·全国卷Ⅰ)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g6h D.L 14g h <v <12(4L 21+L 22)g6h解析:当发射机正对右侧台面发射,乒乓球恰好过网时,发射速度最小.由平抛运动规律得L 12=v 1t,2h =12gt 2,联立解得v 1=L 14gh .当发射机正对右侧台面的某个角发射,乒乓球恰好到达角上时,发射速度最大.由平抛运动规律得 L 21+(L 22)2=v2t′,3h=12gt′2,联立解得v2=12(4L21+L22)g6h.即速度v的最大取值范围为L1 4gh<v<12(4L21+L22)g6h,D正确,选项A、B、C错误.答案:D[反思总结]处理平抛运动临界问题应抓住两点1.分析平抛运动中的临界问题时一般运用极限分析的方法,即把要求的物理量设定为极大或极小,让临界问题突现出来,找到产生临界状态的条件.2.要用分解速度或者分解位移的方法分析平抛运动的临界问题.如图,窗子上、下沿间的高度H=1.6 m,墙的厚度d=0.4 m.某人在离墙壁距离L=1.4 m,距窗子上沿高h=0.2 m处的P点,将可视为质点的小物体以速度v垂直于墙壁水平抛出,小物体直接穿过窗口并落在水平地面上,g取10 m/s2,则v的取值范围是()A.v>7 m/sB.v>2.3 m/sC.3 m/s<v<7 m/sD.2.3 m/s<v<3 m/s解析:小物体穿过窗口并落在地上,需满足的条件为能穿过窗口的右上沿和左下沿,结合公式h=12gt2,x=v t,沿右上沿时,x1=L=1.4 m,h1=h=0.2 m时,代入数据得v1=7 m/s,沿左下沿时,x2=L+d=1.8 m,h2=H+h=1.8 m时,代入数据得v2=3 m/s,则3 m/s<v<7 m/s,故选C.答案:C热点二水平面内圆周运动的临界问题(自主学习)水平面内圆周运动的临界极值问题通常有两类,一类是与摩擦力有关的临界问题,一类是与弹力有关的临界问题. 1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有f m =m v 2r ,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心. 2.与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等.2-1. [摩擦力有关的临界问题] 如图所示,叠放在水平转台上的小物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 与转台、C 与转台间的动摩擦因数都为μ,B 、C 离转台中心的距离分别为r 、1.5r .设本题中的最大静摩擦力等于滑动摩擦力.以下说法中正确的是( )A .B 对A 的摩擦力一定为3μmgB .C 与转台间的摩擦力大于A 与B 间的摩擦力 C .转台的角速度一定满足ω≤ 2μg3r D .转台的角速度一定满足ω≤ μg 3r答案:C2-2.[绳子张力的临界问题] (2019·山东滕州一中检测)质量为m 的小球由轻绳a 、b 分别系于一轻质木架上的A 和C 点,绳长分别为l a 、l b (且l a ≠l b ),如图所示,当轻杆绕轴BC 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a 在竖直方向,绳b 在水平方向,当小球运动到图示位置时,绳b 被烧断的同时轻杆停止转动,则( )A .小球仍在水平面内做匀速圆周运动B .在绳b 被烧断瞬间,绳a 中张力突然增大到 mg +mω2l aC .无论角速度ω多大,小球都不可能再做完整的圆周运动D .绳b 未被烧断时,绳a 的拉力等于 mg ,绳b 的拉力为 mω2l b解析:绳子断开前,小球做匀速圆周运动,合力指向C 点,对小球受力分析,受重力G ,a 绳子的拉力F 1,b 绳子的拉力F 2,根据牛顿第二定律有:F 1= mg ;F 2=mω2l b ;小球的线速度为:v =ωl b ;绳子断开后,杆停止转动,由于惯性,小球将绕A 点转动,若速度较小,小球将在垂直于平面ABC 的竖直平面内摆动,若速度较大,也有可能在垂直于平面ABC 的竖直平面内绕A 点做完整的圆周运动,故A 、C 错误,D 正确;在最低点时:F a - mg =m (ωl b )2l a;解得:F a =mg +m (ωl b )2l a,则a 绳中张力突然增大到 mg +m (ωl b )2l a,B 错误.答案:D2-3.[接触与脱离的临界问题] 用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图甲所示,设小球在水平面内做匀速圆周运动的角速度为ω,线的张力为F T ,则F T 随ω2变化的图象是图乙中的( )解析:设绳长为L ,锥面与竖直方向夹角为θ,当ω=0时,小球静止,受重力mg 、支持力F N 和绳的拉力F T 而平衡,F T =mg cos θ≠0,A 错误;ω增大时,F T 增大,F N 减小,当F N =0时,角速度为ω0,当ω<ω0时,由牛顿第二定律得F T sin θ-F N cos θ=mω2L sin θ,F T cos θ+F N sin θ=mg ,解得F T =mω2L sin 2 θ+mg cos θ,当ω>ω0时,小球离开锥面,绳与竖直方向夹角变大,设为β,由牛顿第二定律得F T sin β=mω2L sin β,所以F T=mLω2,可知F T-ω2图线的斜率变大,所以B正确,C、D错误.答案:B热点三竖直面内圆周运动的临界问题(师生共研)1.轻绳和轻杆模型概述在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类.一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.2.两类模型对比弹力可能向下,可能向上,也直面内做半径为R的圆周运动,如图所示,则下列说法正确的是()A.小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小解析:轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R ,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R ,随v 增大,F 增大,故C 、D 均错误. 答案:A [反思总结]3-1.[过山车问题] 乘坐游乐园的翻滚过山车时,质量为m 的人随车在竖直平面内旋转,下列说法正确的是( )A .过山车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B .人在最高点时对座位不可能产生大小为mg 的压力C .人在最低点时对座位的压力等于mgD .人在最低点时对座位的压力大于mg解析:人过最高点时,F N +mg =m v 2R ,当v ≥gR 时,不用保险带,人也不会掉下来,当v =2gR 时,人在最高点时对座位产生的压力为mg ,A 、B 均错误;人在最低点具有竖直向上的加速度,处于超重状态,故人此时对座位的压力大于mg ,C 错误,D 正确. 答案:D3-2.[绳模型问题] 如图所示,轻绳的一端固定在O 点,另一端系一质量为m 的小球(可视为质点).当小球在竖直平面内沿逆时针方向做圆周运动时,通过传感器测得轻绳拉力F T 、轻绳与竖直线OP 的夹角θ满足关系式F T =a +b cos θ,式中a 、b 为常数.若不计空气阻力,则当地的重力加速度为( )A.b2m B .2bm C.3b m D .b 3m答案:D3-3. [杆模型问题] 如图所示,长为3L 的轻杆可绕光滑水平转轴O 转动,在杆两端分别固定质量均为m 的球A 、B ,球A 距轴O 的距离为L .现给系统一定能量,使杆和球在竖直平面内转动.当球B 运动到最高点时,水平转轴O 对杆的作用力恰好为零,忽略空气阻力,已知重力加速度为g ,则球B 在最高点时,下列说法正确的是( )A .球B 的速度为零 B .球B 的速度为2gLC .球A 的速度为2gLD .杆对球B 的弹力方向竖直向下 答案:B3-4.[斜面上的轻杆模型分析] 如图所示,在倾角为α=30°的光滑斜面上,有一根长为L =0.8 m 的轻杆,一端固定在O 点,另一端系一质量为m =0.2 kg 的小球,沿斜面做圆周运动,取g=10 m/s2,若要小球能通过最高点A,则小球在最低点B的最小速度是()A.4 m/s B.210 m/sC.2 5 m/s D.2 2 m/s解析:小球受轻杆控制,在A点的最小速度为零,由2mgL sin α=12m v2B可得v B=4 m/s,A正确.答案:A1. (多选)如图所示是网球比赛场地,已知底线到网的距离为L,运动员在网前截击,若他在球网正上方距地面H处,将球以水平速度沿垂直球网的方向击出,球刚好落在底线上.将球的运动视为平抛运动,重力加速度为g,则下列说法正确的是( ABD )A.根据题目条件能求出球的水平速度vB.根据题目条件能求出球从击出至落地所用时间tC.球从击球点至落地点的位移等于LD.球从击球点至落地点的位移与球的质量无关2. (2019·河南滑县联考)螺旋测微器是常见的长度测量工具,如图所示,旋动旋钮一圈,旋钮同时会随测微螺杆沿着旋转轴线方向前进或后退一个螺距的距离,已知旋钮上的可动刻度“0”刻线处A点的旋转半径为R=5.0mm,内部螺纹的螺距x =0.5mm,若匀速旋动旋钮,则A点绕轴线转动的线速度和沿轴线水平移动的速度大小之比为( C )A .10∶1B .10π∶1C .20π∶1D .20∶1解析:旋动旋钮一圈,测微螺杆便沿着旋转轴线方向前进或后退一个螺距的距离,A 点做圆周运动的线速度为:v A 1=2πR T ,A 点水平移动的速度为:v A 2=xT ,带入数据得:v A 1v A 2=20π∶1,选项C正确.3. (2018·安徽六安舒城中学仿真卷)如图所示,一倾斜的圆筒绕固定轴OO 1以恒定的角速度ω转动,圆筒的半径r =1.5 m .筒壁内有一小物体与圆筒始终保持相对静止,小物体与圆筒间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),转动轴与水平面间的夹角为60° ,重力加速度g 取10 m/s 2,则ω的最小值是( C )A .1 rad/sB .303rad/s C.10 rad/sD .5 rad/s解析:受力分析如图,受重力G ,弹力N ,静摩擦力f .由牛顿第二定律可知,mg cos θ+N =m ω2r ,在平行于桶壁方向上,f max =μN ≥mg sin θ.由以上式子,可得ω≥10rad/s ,则ω最小值是10 rad/s ,故C 正确.[A 组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( C )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( D )A.μ(M-m)gml B.μ(M-m)gMlC.μ(M+m)gMl D.μ(M+m)gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( B )A.二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心 解析:大圆盘和小圆盘边缘上的线速度大小相等,当小圆盘以角速度ω转动时,大圆盘以ω2转动;两物块做圆周运动的半径相等,但是角速度不同,则线速度大小不等,A 错误;根据v =ωr 知,大圆盘以ω2转动,则小物块甲受到的摩擦力f=m ⎝ ⎛⎭⎪⎫ω22R =14mω2R ,B 正确;根据μmg =mω2r 知,临界角速度ω=μg r ,两物块的半径相等,知临界角速度相等,在角速度ω逐渐增大的过程中,ω大=12ω小,可知物块乙先滑动,C 错误;在角速度ω逐渐增大的过程中,甲乙的线速度逐渐增大,根据动能定理知,摩擦力对两物块均做正功,可知摩擦力一定有沿线速度方向的分力,所以物块受到的摩擦力的方向一定不是指向圆心,D 错误.4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( A )A.76RB .52RC .5RD .7R解析:设OP 之间的距离为h ,则A 下落的高度为h -12R ,A 随圆轮运动的线速度为12ωR ,设A 下落的时间为t 1,水平位移为s ,则有:在竖直方向上有:h -12R =12gt 21在水平方向上有:s=12ωRt1B下落的高度为h-R,B随圆轮运动的线速度为ωR,设B下落的时间为t2,水平位移也为s,则有:在竖直方向上有:h-R=12gt22在水平方向上有:s=ωRt2联立上式解得:h=7 6R选项A正确,B、C、D错误.5.(多选) 水平面上有倾角为θ、质量为M的斜面体,质量为m的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( AC )A.小物块受到斜面的最大摩擦力为F+mg sin θB.小物块受到斜面的最大摩擦力为F-mg sin θC.斜面体受到地面的最大摩擦力为FD.斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( BC )A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解析:小球过最高点时可能受到外壁对其向下的压力或内壁对其向上的支持力,类似于轻杆端点的小球过最高点,则其通过最高点的最小速度为零.故A项错误,B项正确;小球在管道中运动时,向心力的方向要指向圆心;小球在水平线ab以下时,重力沿半径的分量背离圆心,则管壁必然提供指向圆心的支持力,只有外侧管壁才能提供此力,内侧管壁对小球一定无作用力,C项正确;同理在水平线ab以上时,重力沿半径的分量指向圆心,外侧管壁对小球可能没有作用力,D项错误.7. 如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L =3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.解析:(1)设小球恰好落到空地的右侧边缘时的水平初速度为v01,则小球的水平位移:L+x=v01t1小球的竖直位移:H=12gt21解以上两式得v01=(L+x)g2H=13 m/s设小球恰好越过围墙的边缘时的水平初速度为v02,则此过程中小球的水平位移:L=v02t2小球的竖直位移:H-h=12gt22解以上两式得:v02=Lg2(H-h)=5 m/s小球离开屋顶时的速度大小为5 m/s≤v0≤13 m/s.(2)小球落在空地上,下落高度一定,落地时的竖直分速度一定,当小球恰好越好围墙的边缘落在空地上时,落地速度最小.竖直方向:v2y=2gH又有:v min=v202+v2y解得:v min=5 5 m/s.答案:(1)5 m/s≤v0≤13 m/s(2)5 5 m/s[B组·能力题]8. (多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( BC )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( AB )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g=10 m/s2.(1)若选手以速度v 0水平跳出后,能跳在水平跑道上,求v 0的最小值;(2)若选手以速度v 1=4 m/s 水平跳出,求该选手在空中的运动时间.解析:(1)运动员从A 到B 点做平抛运动,设刚好能到达B 点,水平方向上h sin 60°=v 0t竖直方向上h cos 60°=12gt 2计算可得v 0=3102 m/sv 0的最小值为3102 m/s.(2)若选手以速度v 1=4 m/s 水平跳出,v 1<v 0,选手会落到圆弧上,水平方向上x =v 1t 1竖直方向上y =12gt 21根据几何关系x 2+y 2=h 2计算可得t 1=0.6 s.答案:(1)3102 m/s (2)0.6 s11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面所成的倾角.板上一根长为l =0.60 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g =10 m/s 2)解析:小球在倾斜平板上运动时受到绳子拉力、平板弹力、重力.在垂直平板方向上合力为0,重力在沿平板方向的分量为mg sin α小球在最高点时,由绳子的拉力和重力沿平板方向的分力的合力提供向心力,有F T+mg sin α=m v21 l①研究小球从释放到最高点的过程,根据动能定理有-mgl sin α=12m v21-12m v2②若恰好能通过最高点,则绳子拉力F T=0③联立①②③解得sin α=12,解得α=30°故α的范围为0°≤α≤30°. 答案:0°≤α≤30°。
高考物理热点:平抛运动中的临界问题
转到解析 目录
4.备选训练
平抛运动与日常生活紧密联系,如乒乓球、足球、排球等运动模型,飞
镖、射击、飞机投弹模型等。这些模型经常受到边界条件的制约,如网
球是否触网或越界、飞镖是否能击中靶心、飞机投弹是否能命中目标等。 解题的关键是能准确地运用平抛运动规律分析对应的运动特征。
目录
的初速度分别从 A、B 两点相差 1 s 先后水 平相向抛出,a 小球从 A 点抛出后,经过 时间 t,a、b 两小球恰好在空中相遇,且 速度方向相互垂直,不计空气阻力,取 g=10m/s2,则抛出点 A、B 间的水平距离是( )
A.80 5 m B.100 m C.200 m D.180 5 m
转到解析
目录页
Contents Page
热点突破: 平抛运动中的临界问题
1.热点透析
2.典例剖析
3.规律方法
4.备选训练 5.高考模拟演练
基础课
目录
1.热点透析
平抛运动中的临界问题 1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明 题述的过程中存在着临界点。 2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语 ,表明题述的过程中存在着“起止点”,而这些起止点往往就是临 界点。 3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼, 表明题述的过程中存在着极值,这些极值点也往往是临界点。
6gh<v<L1
g +L22)g 6h
C.L21 D.L41
6gh<v<12 hg<v<12
(4L21+L22)g 6h
(4L21+L22)g 6h
提示:球速最小时, 射程最小;球速最大
平抛运动的临界和极值问题
平抛运动的临界和极值问题平抛运动是物理学中一个重要的运动形式,涉及到许多临界和极值问题。
平抛运动是指一个物体在水平方向上以一定的速度进行抛射,同时在竖直方向上受到重力的作用。
根据初始速度和发射角度的不同,我们可以分析出平抛运动的临界和极值问题。
首先,我们来讨论平抛运动的临界问题。
临界问题指的是物体抛射时的最大或最小条件。
在平抛运动中,当物体抛射的角度与速度达到一定数值时,可以达到最远的水平距离。
这个临界角度被称为最大射程角,对应的速度称为最大射程速度。
根据物理学的公式推导,我们可以得到最大射程角的正切值等于加速度由竖直向下变为零时的时间(即物体上抛到最高点的时间)。
而最大射程速度则由最大射程角与重力加速度确定。
通过计算和实验,我们可以得到最大射程角和最大射程速度的具体数值。
然后,我们转向讨论平抛运动的极值问题。
极值问题指的是物体在平抛运动过程中出现的最高点和最远点。
对于最高点问题,我们称为极大值,物体上抛到达最高点时速度为零,此时只受重力加速度的作用,该高度被称为最大抛高。
通过应用基本物理公式,我们可以计算出物体抛高与初始速度、发射角度和重力加速度的关系。
对于最远点问题,我们称为极小值,物体水平运动距离的极小值点就是物体的最远点。
通过计算最远点的水平距离,我们可以得到相应的极小值。
总结来说,平抛运动的临界和极值问题是通过运动学公式和物理原理来解决的。
通过计算和实验,我们可以得到平抛运动中最远距离、最大抛高以及相关极大值和极小值的具体数值。
这些问题的解决在理论上和实际应用中都有重要的意义,对于设计抛射物体的轨迹和优化射击等问题都有深远影响。
微专题19 平抛运动的临界问题
微专题19 平抛运动的临界问题【核心方法点拨】涉及平抛运动的临界问题关键是找出“恰好”“刚好”对应的状态物理量关系。
【微专题训练】(2016·宁夏银川高三质检)如图所示为四分之一圆柱体OAB 的竖直截面,半径为R ,在B 点上方的C 点水平抛出一个小球,小球轨迹恰好在D 点与圆柱体相切,OD 与OB 的夹角为60°,则C 点到B 点的距离为( )A .R B.R 2 C.3R 4 D.R 4【解析】设小球平抛运动的初速度为v 0,将小球在D 点的速度沿竖直方向和水平方向分解,则有v y v 0=tan 60°,得gt v 0=3。
小球平抛运动的水平位移x =R sin 60°,x =v 0t ,解得v 20=Rg2,v 2y =3Rg 2。
设平抛运动的竖直位移为y ,v 2y=2gy ,解得y =3R 4,则BC =y -(R -R cos 60°)=R 4,D 选项正确。
【答案】D(2014·上海)如图所示,宽为L 的竖直障碍物上开有间距d =0.6 m 的矩形孔,其下沿离地高h =1.2 m .离地高H =2 m 的质点与障碍物相距x ,在障碍物以v 0=4 m/s 匀速向左运动的同时,质点自由下落,为使质点能穿过该孔,L 的最大值为______m ;若L =0.6 m ,x 的取值范围是________m .(取g =10 m/s 2)【解析】以障碍物为参考系,相当于质点以v 0的初速度,向右平抛,当L 最大时,从抛出点经过孔的左上边界飞到孔的右下边界时,L 最大,y 1=H -d -h =12gt 21,x 1=v 0t 1;y 2=H -h =12gt 22,x 2=v 0t 2;解得t 1=0.2 s ,t 2=0.4 s ,x 1=0.8 m ,x 2=1.6 m ,L =x 2-x 1=0.8 m ;从孔的左上边界飞入小孔的临界的值x ′1=v 0t 1=0.8 m ,x ′2+0.6 m =v 0t 2,解得x ′2=1 m ,知0.8 m≤x ≤1 m.【答案】0.8 0.8 m≤x ≤1 m(2015·新课标全国Ⅰ)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g6h <v <L 1g6h B.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h【解析】发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确. 【答案】D(河北省衡水中学2014届高三上学期三调)“套圈”是一项老少皆宜的体育运动项目.如图所示,水平地面上固定着3根直杆1、2、3,直杆的粗细不计,高度均为0.1 m ,相邻两直杆之间的距离为0.3 m.比赛时,运动员将内圆直径为0.2 m的环沿水平方向抛出,刚抛出时环平面距地面的高度为1.35 m,环的中心与直杆1的水平距离为1 m.假设直杆与环的中心位于同一竖直面,且运动中环心始终在该平面上,环面在空中保持水平,忽略空气阻力的影响,g取10 m/s2.以下说法正确的是()A.如果能够套中直杆,环抛出时的水平初速度不能小于1.8 m/sB.如果能够套中第2根直杆,环抛出时的水平初速度范围在2.4 m/s到2.8 m/s之间C.如以2.3 m/s的水平初速度将环抛出,就可以套中第1根直杆D.如环抛出的水平速度大于3.3 m/s,就不能套中第3根直杆【解析】由平抛运动可得h=12gt2、L-r=vt,解得v=1.8 m/s,故选项A正确;如果能够套中第2根直杆,水平位移在1.2~1.4 m之间,水平初速度范围在2.4 m/s到2.8 m/s之间,故选项B正确;如果能够套中第1根直杆,水平位移在0.9~1.1 m之间,水平初速度范围在1.8 m/s到2.2 m/s之间,故选项C错误;如果能够套中第3根直杆,水平位移在1.5~1.7 m 之间,水平初速度范围在3 m/s到3.4 m/s之间,故选项D错误.【答案】AB(多选)如图所示,在水平地面上的A点以速度v1与地面成θ角射出一弹丸,恰好以速度v2垂直穿入竖直壁上的小孔B,下列说法正确的是(不计空气阻力)()A.在B点以与v2大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上的A点B.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上的A点C.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上A点的左侧D.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上A点的右侧【解析】以速度v1与地面成θ角射出一弹丸,恰好以速度v2垂直穿入竖直壁上的小孔B,说明弹丸在B点的竖直速度为零,v2=v1cos θ,根据“逆向”思维:在B点以与v2大小相等方向相反的速度射出弹丸,它必落在地面上的A点,A正确;在B点以与v1大小相等的速度,与v2方向相反射出弹丸,由于v1>v2,弹丸在空中运动的时间不变,所以它必定落在地面上A点的左侧,C正确,B、D错误.【答案】AC(2016·江西八校联考)某电视台娱乐节目进行了一项抛球入筐游戏,如图所示,该游戏球筐(筐壁厚度忽略不计)紧靠竖直墙壁放在水平地面上,球筐高度和球筐左侧壁离墙壁的距离均为L 。
平抛运动典型问题讲解
(2)当两个质点位移相互垂直时,它们之间的距离
解:(1)在相等时间内下落的高度相同, 画出运动示意图
v1y= v2y= g t1 = vy
v1
v2
v1y / v1x=tgα v2x / v2y =tgα vy2 = v1 v2=12
v1x
2h (L s) g
g 2h
h
H
vmin s /
2(h H ) s g
g 2(h H )
s
L
H s L2 hmin LL 2s
典型问题2 遵从反射定律的问题
2.如图所示,平行竖直的两块钢板高为H,相距S,从左上角A 点垂直于板水平抛出一小球,球在B、C两处与板做弹性碰撞 (碰撞前后速率大小不变,方向改变)后落在两块钢板的正中
7.光滑斜面倾角为θ,长为L,上端一小球沿斜面水平方向以速 度v0抛出,如图,求小球滑到底端时,水平方向位移s有多大?
解析:沿斜面向下
L 1 at2 1 (g sin )t 2
22
水平方向 s v0t
s v0
2L
g sin
• 8.(2004·西安)如右图所示,光滑斜面长为a’, 宽为b’, 倾角为θ,一物块沿斜面左上方顶点P 水平射入,而从右下方顶点Q离开斜面,求入 射初速度.
v0
tg 2tg37 0
t vy g
法3
t
2v0
sin 370
gy
g y g cos370
370
v0
t 2v0tg37 0 g
v
v0 370
370
vy v0 sin 37 0
抛体运动的规律——平抛临界问题 物理人教版(2019)必修第二册
不计空气阻力,则( ABC)
首先要突出说明的是选题的现实价值,
每一个研究的目的都是为了指导现实
生活,一定要讲清本选题的研究有什
么实际作用、解决什么问题;其次再
A.小球a比小球b先抛出
写课题的理论和学术价值。
B.初速度Va小于Vb
C.小球a、b抛出点距地面高度之比为 vb2 : va2
生活,一定要讲清本选题的研究有什
A.初速度V1<V2
么实际作用、解决什么问题;其次再
写课题的理论和学术价值。
B.若两球同时抛出,则两球一定相遇
C.若A先抛出,B后抛出,则两球可能相遇
D.若两球能相遇,则从抛出到相遇的过程中
两球的速度变化相同
Part 03
随 堂 检 测
1.如图,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度Va和Vb
例 4.一带有乒乓球发射机的乒乓球台如图所示。水平台面的长和宽分别为 L1 和 L2,中间球网高
度为 h。发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点
距台面高度为 3h。不计空气的作用,重力加速度大小为 g。若乒乓球的发射速率 v 在某范围内,通过
选择合适的方向,就能使乒乓球落到球网右侧台面上,则 v 的最大取值范围是(
6ℎ
(41 2 +2 2 )g
6ℎ
写课题的理论和学术价值。
例5.如下图所示,自足够高的同一水平直线上A、B两点相向水平抛出两个小球,
两球的初速度分别为V1、V2,运动轨迹如图所示,AO>BO,不计空气阻力。则下
列说法正确的是( BD )
平抛运动的临界问题
平抛运动的临界问题平抛运动的临界问题,解决这类问题有三点: 1.是明确运动平抛运动的基本性质公式; 基本规律及公式:① 速度:0v v x =,gt v y =合速度 22y x v v v +=方向 :tan θ=oxy v gt v v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o ⋅=2 ③时间由y =221gt 得t =xy2(由下落的高度y 决定) ④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
2.是确定临界状态;3.是确定临界轨迹——在轨迹示意图寻找出几何关系。
模型讲解:(排球不触网且不越界问题)模型简化(运动简化):将排球看成质点,把排球在空中的运动看成平抛运动。
问题:标准排球场场总长为l 1=18m ,宽l 2=9m 女排网高h=如上图所示。
若运动员在3m 线上方水平击球,则认为排球做类平抛运动。
分析方法:设击球高度为H ,击球后球的速度水平为v 0。
当击球点高度为H 一定时,击球速度为υ1时恰好触网;击球速度为υ2时恰好出界。
当击球点高度为h 时,击球速度为υ时,恰好不会触网,恰好不会出界,其运动轨迹分别如下图 中的(a )、(b )、(c )所示。
如图(a )、(b)当击球点高度为H 一定时,要不越界,需飞行的水平距离m m l l 12321=+〈 由于时,不越界。
因此,m gHv l gt H t v l 12221020〈===结论:① 若H 一定时,则v 0越大越易越界,要不越界,需H ggHv 2122120=<② 若v 0一定时,则H 越大越易越界,越不越界,需00022722144212v gv g v g H ==< 如图(c )要不触网,则需 竖直高度:221gt h H >- 水平距离:m t v 30=以上二式联立得:0229v t h H >-结论:1) 若H 一定(()一定h H -)时,则v 0越小,越易触网。
专题 平抛运动中的临界问题与斜面问题
高一物理导学案平抛运动中的临界问题与斜面问题【学习目标】1、能够利用平抛运动特点分析解决临界问题2、能够分析三种斜面问题,针对不同斜面问题,关键是弄清楚需要分解速度还是分解位移知识点一平抛运动中的临界问题【问题导入】例1 在2016年里约奥运会女排比赛中,中国女排时隔12年再次获得奥运会冠军,这是值得中国人骄傲的一刻。
在排球比赛中,扣球时的状态可以简化为如图所示的模型。
若运动员从距离球网某一高度处竖直跃起扣球时。
当她将排球水平扣出,使排球获得水平方向的初速度v0。
(g =10 m/s2)问题1排球水平扣出后,排球做什么运动?有什么运动特点?问题2若C点为击球的位置,距地面高度为3.2 m,排球需要多长时间落地?若此时击球速度为10 m/s,排球落地点距击球点C的水平距离是多少?(假设排球一定能过网)问题3若图中B点为球网位置,球网高度为AB =2.4 m,击球点C距离球网的水平距离为3 m,要想使球过网,击球的速度v0至少是多少?问题4若图中D点为排球场边界线,排球场半场的长度BD=9 m,若要使排球既过网又不能出界,那么击球速度v0的取值范围是多少?【巩固练习】刀削面是西北人喜欢的面食之一,全凭刀削得名。
如图所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅的上沿的竖直距离为,面团离锅上沿最近的水平距离为,锅的直径为。
若削出的面片落入锅中,则面片的水平初速度不可能是(g =10 m/s2)A.B.C.D.知识点二平抛运动中的斜面问题【问题导入】例2如图所示,以v0的速度水平抛出的物体飞行一段时间后,垂直撞在倾角θ的斜面上问题1当物体与斜面垂直碰撞时,物体的瞬时速度方向与斜面方向之间有什么关系?问题2此时合速度v方向与竖直分速度v y方向之间的夹角与斜面的倾角有什么关系?问题3以v0=10 m/s的速度水平抛出的物体飞行一段时间后,垂直撞在倾角θ=30°的斜面上,这段飞行的时间t是多少?求撞击时的速度v大小是多少?例3如图所示,以v0的速度水平抛出的物体飞行一段时间后,恰好无碰撞的开始沿斜面滑下。
专题22 平抛运动的图像问题、相遇问题、临界问题、与圆周运动结合问题(解析版)
2023届高三物理一轮复习重点热点难点专题特训专题22 平抛运动的图像问题、相遇问题、临界问题、与圆周运动结合问题特训目标特训内容目标1 平抛运动的图像问题(1T—4T)目标2 平抛运动的相遇问题(5T—8T)目标3 平抛运动的临界问题(9T—12T)目标4 平抛运动与周期性圆周运动相结合问题(13T—16T)一、平抛运动的图像问题1.如图,在倾角为 的斜面顶端,将小球以v0的初速度水平向左抛出,经过一定时间小球发生第一次撞击。
自小球抛出至第一次撞击过程中小球水平方向的位移为x,忽略空气阻力,则下列图像正确的是()A.B.C .D .【答案】D【详解】如果小球落在斜面上,小球位移方向与水平方向夹角为α,则有0tan 2y gt x v α==则水平位移200002tan v x v t v v gα==∝小球落水平面上,小球飞行时间恒定,水平位移正比于0v ,故D 正确,ABC 错误。
故选D 。
2.如图甲所示,挡板OA 与水平面的夹角为θ,小球从O 点的正上方高度为H 的P 点以水平速度0v 水平抛出,落到斜面时,小球的位移与斜面垂直;让挡板绕定的O 点转动,改变挡板的倾角θ,小球平抛运动的初速度0v 也改变,每次平抛运动,使小球的位移与斜面总垂直,22011tan v θ-函数关系图像如图乙所示,重力加速度210m/s g =,下列说法正确的是( )A .图乙的函数关系图像对应的方程式220111tan 2gH v θ=⨯+ B .图乙中a 的数值2-C .当图乙中1b =,H 的值为0.1mD .当45θ=︒,图乙中1b =2【答案】D 【详解】A .设平抛运动的时间为t ,如图所示把平抛运动的位移分别沿水平和竖直方向分解,由几何关系02tan 12v tgt θ=解得0an 2t v t g θ=根据几何关系有201tan 2H gt v t θ-=⨯联立整理220111tan 2gH v θ=⨯-故A 错误; B .结合图乙22011tan v θ-函数关系图像可得1a =-故B 错误; C .由图乙可得22011tan v θ-函数关系图像的斜率2a gH kb =-=又有1a =-,1b =可得0.2m H =故C 错误;D .当45θ︒=,0.2m H =根据220111tan 2gH v θ=⨯-解得02v =根据0an 2t v t g θ=解得2t =故D 正确。
【2024寒假分层作业】专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)
2024年高考物理一轮大单元综合复习导学练专题23平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标导练内容目标1平抛运动临界问题目标2平抛运动中的相遇问题目标3类平抛运动目标4斜抛运动【知识导学与典例导练】一、平抛运动临界问题【例1】某天,小陈同学放学经过一座石拱桥,他在桥顶A处无意中把一颗小石子水平沿桥面向前踢出,他惊讶地发现小石子竟然几乎贴着桥面一直飞到桥的底端D处,但是又始终没有与桥面接触。
他一下子来了兴趣,跑上跑下量出了桥顶高OA=3.2m,桥顶到桥底的水平距离OD=6.4m。
这时小陈起一颗小石,在A处,试着水平抛出小石头,欲击中桥面上两块石板的接缝B处(B点的正下方B′是OD的中点),小陈目测小石头抛出点离A点高度为1.65m,下列说法正确的是()A .石拱桥为圆弧形石拱桥B .小陈踢出的小石头速度约为6.4m/sC .小陈抛出的小石头速度约为4.6m/sD .先后两颗小石子在空中的运动时间之比为2:1【答案】C【详解】A .石头做平抛运动,石子几乎贴着桥面一直飞到桥的底端D 处,且始终没有与桥面接触,则石拱桥为抛物线形石拱桥,故A 错误;B .石头做平抛运动,水平方向为匀速直线运动,竖直方向为自由落体运动,水平方向,有11OD v t =竖直方向,有2112OA gt =代入数据联立解得10.8s t =,18m/s v =故B 错误;C .小陈踢出的石子经过B 点时,水平方向的位移为总位移的12,则时间为总时间的12,A 和B 竖直方向的距离为21111( 3.2m 0.8m 2244AB t h g OA ===⨯=小陈抛出的小石头做平抛运动,水平方向的位移为2212OD v t =竖直方向位移为2212AB h h gt +=代入数据解得20.7s t =,232m/s 4.6m/s 7v =≈故C 正确;D .先后两颗小石子在空中的运动时间之比为12:8:7t t =故D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题方法:通过画出运动轨迹图,找到临界条件!
1.如图所示,水平屋顶高H=5m,墙高h=,墙到房子的距离L=,墙外马路宽x=,小球从房顶水平飞出落在墙外的马路上,求小球离开房顶时的速度.(取g=10m/s2)
2.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L
1和L
2
,
中间球网高度为h,发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h,不计空气的作用,重力加速度大小为g,若乒乓球的发射率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,到v的最大取值范围是()
A.<v<L
1
B.<v<
C.<v<D.<v<
3.如图,窗子上、下沿间的高度H=1.6m,墙的厚度d=0.4m,某人在离墙壁距离L=1.4m、距窗子上沿h=0.2m处的P点,将可视为质点的小物件以v的速度水平抛出,小物件直接穿过窗口并落在水平地面上,取
g=10m/s2。
则v的取值范围是()
A.m/s B.m/s
C. D.
4.如图所示的排球场总长为18m,设球网高度为2m,运动员站在网前3m线上正对球网跳起将球水平击出,求:
(1)若击球点的高度为,则击球的速度符合什么条件时,才能使球既不触网也不越界
(2)当击球点的高度小于多少时,无论水平击球的速度多大,球不是触网就是越界(排球可视为质点)。