第1讲 函数与方程思想
新高考二轮数学理科金版学案专题复习同步练习8.1函数与方程思想(含答案解析)
第一部分 知识复习专题专题八 思想方法专题 第一讲 函数与方程思想一、选择题1. (2014·安徽卷)设函数f(x)(x ∈R)满足f(x +π)=f(x)+sin x .当0≤x <π时,f(x)=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解析:由题意,f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6=f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6=f ⎝⎛⎭⎫5π6+sin5π6+sin 11π6+sin 17π6=0+12-12+12=12.故选A. 答案:A2.设a >1,若对于任意的x ∈[a ,2a],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值的集合为( )A .{a|1<a≤2}B .{a|a ≥2}C .{a|2≤a ≤3}D .{2,3}解析:依题意得y =a 3x ,当x ∈[a ,2a]时,y =a 3x ∈⎣⎡⎦⎤12a 2,a 2 [a ,a 2],因此有12a 2≥a ,又a >1,由此解得a≥2.故选B.答案:B3.对任意a ∈[-1,1],函数f(x)=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是( )A.{}x |1<x <3B.{}x |x <1或x >3C.{}x |1<x <2D.{}x |x <1或x >2解析:由f(x)=x 2+(a -4)x +4-2a>0得 a(x -2)+x 2-4x +4>0.令g(a)=a(x -2)+x 2-4x +4,由不等式f (x)>0恒成立,即g(a)>0在[-1,1]上恒成立.∴有⎩⎪⎨⎪⎧g (-1)>0,g (1)>0,即⎩⎪⎨⎪⎧-(x -2)+x 2-4x +4>0,(x -2)+x 2-4x +4>0. 解得x<1或x>3. 答案:B4.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,其一交点为P ,则|PF 2|=( )A.32B. 3C.72D .4 解析:如图,令|F 1P|=r 1,|F 2P|=r 2,那么⎩⎪⎨⎪⎧r 1+r 2=2a =4,r 22-r 21=(2c )2=12⎩⎪⎨⎪⎧r 1+r 2=4,r 2-r 1=3 r 2=72.答案:C5.(2014·大纲卷)奇函数f(x)的定义域为R ,若f(x +2)为偶函数,且f(1)=1,则f(8)+f(9)=( )A .-2B .-1C .0D .1解析:因为函数f(x)是奇函数,所以f (-x)=-f(x), 又因为f(x +2)是偶函数,则f(-x +2)=f(x +2),所以f(8)=f(6+2)=f(-6+2)=f(-4)=-f(4),而f(4)=f(2+2)=f(-2+2)=f(0)=0,f(8)=0,同理f(9)=f(7+2)=f(-7+2)=f(-5)=-f(5);而f(5)=(3+2)=f(-3+2)=f(-1)=-f(1)=-1,f(9)=1,所以f(8)+f(9)=1.故选D.答案:D6.(2014·湖南卷)已知函数f(x)=x 2+e x -12(x <0)与g(x)=x 2+ln(x +a)图象上存在关于y 轴对称的点,则a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B.()-∞,e C.⎝⎛⎭⎫ -1e ,e D.⎝⎛⎭⎫-e ,1e解析:由题可得存在x 0∈(-∞,0)满足f(x 0)=g(-x 0) x 20+ex 0-12=(-x 0)2+ln(-x 0+a) ex 0-ln(-x 0+a)-12=0,令h(x)=e x -ln(-x +a)-12,因为函数y =e x 和y =-ln(-x +a)在定义域内都是单调递增的,所以函数h(x)=e x -ln(-x +a)-12在定义域内是单调递增的,又因为x 趋近于-∞时,函数h(x)<0且h(x)=0在(-∞,0)上有解(即函数h(x)有零点),所以h(0)=e 0-ln(0+a)-12>0 ln a <ln e a < e.故选B.答案:B二、填空题7.若关于x 的方程(2-2-|x -2|)2=2+a 有实根,则实数a 的取值范围是________.解析:令f(x)=(2-2-|x -2|)2,∵-|x -2|≤0,∴0<2-|x -2|≤1.∴f(x)∈[1,4).∵方程有实根, ∴1≤2+a<4,解得-1≤a<2. 答案:[-1,2)8. (2014·陕西卷)已知4a =2,lg x =a ,则x =________.解析:由4a =2得a =12,所以lg x =12,解得x =10.答案:10三、解答题9.已知函数f(x)(x∈R)满足f(x)=2bxax-1,a≠0,f(1)=1且使f(x)=2x成立的实数x只有一个,求函数f(x)的表达式.解析:∵f(x)=2bxax-1,f(1)=1,∴2ba-1=1.∴a=2b+1.又f(x)=2x,即2bxax-1=2x只有一个解,也就是2ax2-2(1+b)x=0(a≠0)只有一解.∴Δ=[-2(1+b)]2-4×2a×0=0,即(1+b)2=0.得b=-1.∴a=-1.故f(x)=2xx+1.10.某地区要在如图所示的一块不规则用地规划建成一个矩形商业楼区,余下的作为休闲区,已知AB⊥BC,OA∥BC,且AB=BC=2OA=4 km,曲线OC段是以O为顶点且开口向上的抛物线的一段,如果矩形的两边分别落在AB,BC上,且一个顶点在曲线OC段上,应当如何规划才能使矩形商业楼区的用地面积最大?并求出最大的用地面积.解析:以点O为原点,OA所在的直线为x轴,建立直角坐标系,设抛物线的方程为x2=2py,由C(2,4)代入得:p=1 2,所以曲线段OC的方程为:y=x2(x∈[0,2]).A(-2,0),B(-2,4),设P(x,x2)(x∈[0,2])在OC上,过P作PQ⊥AB于Q,PN ⊥BC于N,故PQ =2+x ,PN =4-x 2, 则矩形商业楼区的面积 S =(2+x)(4-x 2)(x ∈[0,2]).S =-x 3-2x 2+4x +8,令S′=-3x 2-4x +4=0得x =23或x =-2(舍去),当x ∈⎣⎡⎦⎤0,23时,S ′>0,S 是x 的增函数, 当x ∈⎣⎡⎦⎤23,2时,S ′<0,S 是x 的减函数, 所以当x =23时,S 取得最大值,此时PQ =2+x =83,PN =4-x 2=329,S max =83×329=25627(km 2).故该矩形商业楼区规划成长为329 km ,宽为83 km 时,用地面积最大为25627km 2.11.进入2007年以来,猪肉价格上涨,养猪所得利润比原来有所增加.某养殖户拟建一座平面图(如图所示)是矩形且面积为200平方米的猪舍养殖生猪,由于地形限制,猪舍的宽x 不少于5米,不多于a 米,如果该养殖户修建猪舍的地基平均每平方米需投入10元,房顶(房顶与地面形状相同)每平方米需投入15元,猪舍外面的四周墙壁每米需投入20元,中间四条隔墙每米需投入10元.问:当猪舍的宽x 定为多少时,该养殖户投入的资金最少?最少是多少元?解析:设该养殖户投入资金为y 元,易知猪舍的长为200x米, ∵y =200×10+200×15+⎝⎛⎭⎫2x +2×200x ×20+4x ×10=80⎝⎛⎭⎫x +100x +5 000(5≤x≤a), ∵函数f(x)=x +100x在[5,10]上单调递减,在[10,+∞)上单调递增, ∴当a≥10时,y min =6 600,此时x =10;当5≤a <10时,y min =80⎝⎛⎭⎫a +100a +5 000,此时x =a. ∴若a≥10米,猪舍的宽定为10米,该养殖户投入的资金最少是6 600元;若5≤a <10米,猪舍的宽就定为a 米,该养殖户投入的资金最少是[80⎝⎛⎭⎫a +100a +5 000]元.12.直线m :y =kx +1和双曲线x 2-y 2=1的左支交于A ,B 两点,直线l 过点P(-2,0)和线段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.解析:由⎩⎪⎨⎪⎧y =kx +1,x 2-y 2=1(x≤-1)消去y , 得(k 2-1)x 2+2kx +2=0.①(联立方程是解决交点问题的一般方法)因为直线m 与双曲线的左支有两个交点,所以方程①有两个不相等的负实数根.所以⎩⎨⎧Δ=4k 2+8(1-k 2)>0,x 1+x 2=2k 1-k 2<0,x 1·x 2=-21-k2>0,解得1<k < 2.设M(x 0,y 0),则⎩⎪⎨⎪⎧x 0=x 1+x 22=k1-k2,y 0=kx 0+1=11-k 2.由P(-2,0),M ⎝⎛⎭⎫k 1-k 2,11-k 2,Q(0,b)三点共线,得出b =2-2k 2+k +2,……(构造出b 和k 的函数关系式)设f(k)=-2k 2+k +2=-2⎝⎛⎭⎫k -142+178,…(使函数更加清晰) 则f(k)在(1,2)上为减函数, ∴f(2)<f(k)<f(1),且f(k)≠0. ∴-(2-2)<f(k)<0或0<f(k)<1. ∴b <-2-2或b >2.∴b 的取值范围是(-∞,-2-2)∪(2,+∞).13.若关于x 的方程4x +a·2x +a +1=0有实数解,求实数a 的取值范围.解析:解法一 令2x =t(t >0),则原方程可化为 t 2+at +a +1=0,(*)问题转化为方程(*)在(0,+∞)上有实数解,求a 的取值范围. ①当方程(*)的根都在(0,+∞)上时,可得下式 ⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0⎩⎪⎨⎪⎧a≤2-22或a≥2+22,a <0,a >-1,即-1<a≤2-22,②当方程(*)的根一个在(0,+∞)上,另一根在(-∞,0]上时, 令f(t)=t 2+at +a +1得f(0)≤0,即a≤-1. 由①②知满足条件的a 的取值范围为 (-∞,2-22]. 解法二 令t =2x (t >0), 则原方程可化为t 2+at +a +1=0. 变形为a =-1+t 21+t =-(t 2-1)+21+t=-⎣⎡⎦⎤(t -1)+2t +1=-⎣⎡⎦⎤(t +1)+2t +1-2≤-(22-2)=2-2 2.当且仅当t =2-1时取等号. 所以a 的取值范围是(-∞,2-22).。
函数与方程思想
=,求正整数1000【课堂练习】2.已知函数()1f x x =-,关于x 的方程2()()0f x f x k -+=,给出下列四个命题: ① 存在实数k ,使得方程恰有2个不同的实根;② 存在实数k ,使得方程恰有4个不同的实根;③ 存在实数k ,使得方程恰有5个不同的实根;④ 存在实数k ,使得方程恰有8个不同的实根.其中真命题的序号是 .1.关于x 的方程(x 2-1)2-|x 2-1|+k =0,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根。
其中假命题的个数是 ( )A . 0B . 1C . 2D . 42.如果函数y ax b x =++21的最大值是4,最小值是-1,求实数a 、b 的值。
解:课后作业总结回顾3.已知函数的定义域和值域都是(其图像如下图所示),函数.定义:当且时,称是方程的一个实数根.则方程的所有不同实数根的个数是 .4.已知()()20,f x ax bx c a =++≠且方程()f x x =无实数根,下列命题:① 方程x x f f =)]([也一定没有实数根;② 若0>a ,则不等式x x f f >)]([对一切实数x 都成立;③ 若0<a ,则必存在实数0x ,使00)]([x x f f >;④ 若0=++c b a ,则不等式x x f f <)]([对一切实数x 都成立。
其中正确命题的序号是 .已知,若关于的方程有实根,则的取值范围是 .6.(普陀区一模文理科14) 已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 .)(x f y =]1,1[-],[,sin )(ππ-∈=x x x g ])1,1[(0)(11-∈=x x f ]),[()(212ππ-∈=x x x g 2x 0))((=x g f 0))((=x g f a ∈R x 2104x x a a ++-+=a。
高中数学七大基本思想方法讲解
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
函数与方程思想
函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。
高三数学复习学案:第1讲 函数与方程思想
函数与方程是中学数学的重要概念,它们之间有着密切的联系.函数与方程的思想是中学数学的基本思想,主要依据题意,构造恰当的函数,或建立相应的方程来解决问题,是历年高考的重点和热点.1.函数的思想用运动和变化的观点,集合与对应的思想分析和研究具体问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题使问题获得解决.函数思想是对函数概念的本质认识.2.方程的思想在解决问题时,用事先设定的未知数沟通问题中所涉及的各量间的等量关系,建立方程或方程组,求出未知数及各量的值,或者用方程的性质去分析、转化问题,使问题获得解决.题型二 函数与方程思想在方程问题中的应用例2 如果方程cos 2x -sin x +a =0在(0,π2]上有解,求a 的取值范围.变式训练 已知方程9x -2·3x +(3k -1)=0有两个实根,求实数k 的取值范围.题型三 函数与方程思想在不等式问题中的应用例3 已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有的实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.变式训练 设不等式2x -1>m (x 2-1)对满足|m |≤2的一切实数m 的取值都成立,求x 的取值范围.第1讲 函数与方程思想(推荐时间:60分钟)一、填空题1.双曲线x 29-y 216=1的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为________.2.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是________.3.已知向量a =(3,2),b =(-6,1),而(λa +b )⊥(a -λb ),则实数λ=__________.4.方程m +1-x =x 有解,则m 的最大值为________.5.已知R 上的减函数y =f (x )的图象过P (-2,3)、Q (3,-3)两个点,那么|f (x +2)|≤3的解集为________.6.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围为__________.7.若关于x 的方程4cos x -cos 2x +m -3=0恒有实数解,则实数m 的取值范围是________.8.已知函数f (x )=(x -a )(x -b )-2,其中a <b ,且α,β(α<β)是函数f (x )的两个零点,则实数a ,b ,α,β的大小关系为________.9.已知等差数列{a n }共有10项,其奇数项的和为15,偶数项的和为30,则它的公差d =________.10.已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是__________.11.若存在a ∈[1,3],使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围是____________.12.已知函数f (x )=⎩⎨⎧-x 2, -3≤x ≤3,x 2-6,x <-3或x >3,若0<m <n ,且f (m )=f (n ),则mn 2的取值范围是________.二、解答题13.设P (x ,y )是椭圆x 24+y 22=1上的动点,定点M (12,0),求动点P 到定点M 距离的最大值与最小值.14.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }前n 项和S n 的最大值.15.已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x -1)=f (3-x ),且方程f (x )=2x 有等根.是否存在实数m ,n (m <n ),使f (x )定义域和值域分别为[m ,n ]和[4m,4n ],如果存在,求出m ,n 的值;如果不存在,说明理由.。
高中数学竞赛专题一函数与方程思想
高中数学竞赛专题一函数与方程思想函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。
函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。
函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路.和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。
一、考点回顾函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。
比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的.如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。
高考数学:专题七 第一讲 函数与方程思想配套限时规范训练
A.{a|1<a≤2}B.{a|a≥2}
C.{a|2≤a≤3}D.{2,3}
3.(2012·浙江)设a>0,b>0,则下列命题正确的是()
A.若2a+2a=2b+3b,则a>b
所以x1x2+y1y2=0,而y1y2=x1x2-(x1+x2)+1,
所以2x1x2-(x1+x2)+1=0.
由即(a2+b2)x2-2a2x+a2(1-b2)=0.
又直线与椭圆相交于两点,所以Δ=(-2a2)2-4(a2+b2)·a2(1-b2)>0,整理得a2b2(a2+b2-1)>0,即a2+b2>1.
12.若数列{an}的通项公式为an=×n-3×n+n(其中n∈N*),且该数列中最大的项为am,则m=______.
三、解答题
13.已知直线y=-x+1与椭圆+=1(a>b>0)相交于A,B两点,且OA⊥OB(O为坐标原点),若椭圆的离心率e∈,求a的最大值.
14.(2012·山东)已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
A.B.2C.4D.8
6.定义在R上的偶函数f(x)在[0,+∞)上递增,f=0,则满足f(logx)>0的x的取值范围是()
A.(0,+∞)B.(0,)∪(2,+∞)
C.(0,)∪(,2)D.
7.设函数f(x)=x3+sinx,若0≤θ≤时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是()
A.(0,1)B.(-∞,0)
C.(-∞,1)D.
高中数学七大基本思想方法讲解
高中数学七大基本思想方法讲解第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想:(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想:(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想:(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。
2021年中考数学复习专题3 方程、函数思想 - 副本(教学课件)
精讲释疑
重重点点题题型型
题组训练
题 型 一 用方程思想解决实际问题
例1.欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中 一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服 装的盈利情况是( B )
A.盈利
B.亏损
C.不盈不亏
D.与售价a有关
重重点点题题型型
题组训练
【解析】列一元一次方程求出两件衣服的进价,进而求出总盈 亏.设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设 第二件衣服的进价为y元,依题意得:y(1-20%)=a,得出x(1 +20%)=y(1-20%),整理得:3x=2y,该服装店卖出这两件 服装的盈利情况为:0.2x-0.2y=0.2x-0.3x=-0.1x,即赔了 0.1x元.
重重点点题题型型
题组训练
解:(1)根据题意,得y与x的解析式为:y=22+2(x-1)=2x+ 20(1≤x≤12); (2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200-800)(2x +20)=800x+8000,∵800>0,∴w随x的增大而增大,∴当x =6时,w最大值=800×6+8000=12800.
重重点点题题型型
题组训练
题 型 二 用方程思想解决几何问题
例 3.(温州一模)如图,在△ABC 中,分别以 AB,AC 为边向外 作正方形 ABED,ACGF.若点 E,A,G 在同一直线上,EG=8 2 ,
15 BC=7,则△ABC 的面积为__4__.
重重点点题题型型
题组训练
【解析】设 AB=x,AC=y,∵EG=8 2 ,BC=7,∴x2 +y2=72, 2 x+ 2 y=8 2 ,∴x+y=8,∴(x+y)2=x2+y2 +2xy=64,∴2xy=15,∴xy=125 ,∴△ABC 的面积=12 AB·AC =12 xy=145 .
3-24函数与方程思想
数学(理) 第3页
新课标· 高考二轮总复习
考情分析
化为方程模型加以解决.函数与方程思想几乎渗透到中 学数学的各个领域,在解题中有着广泛的应用.
数学(理) 第4页
新课标· 高考二轮总复习
要点串讲
函数与方程思想是高中数学的一条主线,也是数学 最本质的思想之一.函数思想使常量数学进入了变量数 学,高中数学中的初等函数、数列、不等式、解析几何 等问题都可以转化为函数与方程问题.
数学(理) 第19页
新课标· 高考二轮总复习
[证明] 令 f(n)= (n=2,3,„). 则 f(n+1)=
1 1 1+ 1 1+ 1+ „ 3 5 2n-1
1+2n
1 1 1+ 1 1+ 1 1+ 1+ „ 3 5 2n-1 2n+1
④
由③④可得所求实数 a 的取值范围是- 2 1- 10 ≤a≤ . 2
数学(理) 第31页
新课标· 高考二轮总复习
[点评] 此类已知恒成立的不等式求参数的问题,常 见的解题思路: 一是分离参数与已知范围的变化, 通过求 函数最值来确定参数的取值范围; 二是数形结合, 寻找参 数满足的关系式, 进而求出参数的取值范围. 在解题过程 中注意区分以下情形: (1)a>f(x)恒成立⇔a>f(x)max; (2)a<f(x)恒成立⇔a<f(x)min; (3)a>f(x)有解⇔a>f(x)min; (4)a<f(x)有解⇔a<f(x)max.
方程思想涉及的知识点多、知识面广,在概念性、理解
数学(理) 第6页
新课标· 高考二轮总复习
性、应用性等方面都有一定的要求,所以是高考考查的重 点.我们应用函数与方程思想解题时可以从以下几个方面去
专题1函数与方程思想
* a n N a n n (3)已知数列 中, n 98 , ,则数列 an 的
n 97
前30项中最大项和最小项分别是( A、 a1 , a30 B、a1 , a9
)
a10 , a30 C、a10 , a9 D、
(4)已知 f t log2 t, t [ 2,8], 对于 f t 值域内的所 2 有实数m,不等式 x mx 4 2m 4 x 恒成立,则 x 的取 值范围为 .
专题一:函数与方程的思想
四、巩固与提高
x2 y2 1 1、设点 F1 是椭圆 3 的左焦点,弦AB过椭圆的右焦点, 2 求△F1 AB 的面积的最大值。
2 2 x y 2、已知双曲线C的方程为 2 1 (a 0, b 0) , 2 a b 5 ,顶点到渐近线的距离为 2 5 . 离心率e 5 2
专题一:函数与方程的思想
2 6 (2)过点 F1 的直线 l与该椭圆交与M、N两点,且F2 M F2 N , 3 求直线 l 的方程。
(1)求曲线 y f x 在点M (t , f t ) 处的切线方程;
专题一:函数与方程的思想
六、课堂总结
(1)掌握函数思想的实质:建立函数关系,构造函数
(2)掌握方程思想的实质:建立方程或方程组
B 、1 实根的个数是( C、2 D、无数 )
(1)方程 A 、0
(2)设 f x , g x 分别是定义在上的奇函数和偶函数,当 x<0时, f ' x.g x f x.g ' x 0 ,则不等式 f x .g x 0 的解集 为 .
专题一:函数与方程的思想
则该双曲线的离心率等于( ) A、 3 B、 2 C、 5 D、 6
函数与方程的思想
函数与方程的思想1、专题概述函数思想,就是通过建立函数关系式或构造函数,运用函数的概念和性质等知识去分析、转化和解决问题。
这种思想方法在于揭示问题的数量关系的特征,重在对问题的变量的动态研究。
方程的思想,就是分析变量间的等量关系,通过构造方程,从而建立方程〔组〕或方程与不等式的混合组,或运用方程的性质去分析、转化问题,使问题得以解决。
方程的思想与函数的思想是密切相关的,方程0)(=x f 的解,就是函数)(x f y =的图像与x 轴的交点的横坐标,函数式)(x f y =也可以看作二元方程0)(=-x f y ;函数与不等式也可以相互转化,对于函数)(x f y =,当0>y 时,就化为不等式0)(>x f ,借助于函数的图像与性质可以解决不等式的有关问题,而研究函数的性态,也离不开不等式。
这种函数与方程、不等式之间的关系表达了“联系和变化〞的辩证唯物主义观点,应注意函数思想与方程思想是相辅相成的。
利用函数思想方法解决问题,要求我们必须深刻理解掌握初等图像与性质,以及函数与反函数、最值或值域、图像的变换、函数图像的交点个数,这是必备的基础。
因此,在解题中要善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
运用函数思想解题具体表现在:〔1〕遇到变量,构造函数关系,利用函数沟通知识间的联系;〔2〕有关的不等式恒成立、方程根的个数及其一元二次方程根的分布、最值、值域之类的问题转化为函数问题;〔3〕含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系,使问题得以解决;〔4〕等差、等比数列中,通项公式、前n 项和公式都可以看成关于自然数n 的函数,因此数列问题可以用函数思想解决;〔5〕解析几何中的直线与直线、直线与二次曲线的位置关系问题,需要通过方程或方程组解决;〔6〕利用函数)()()(+∈+=N n b a x f n 用赋值法或比较系数法可以解决很多有关二项式定理的问题;〔7〕通过构造函数〔或建立函数关系〕,解决实际或应用问题。
中学数学6大重要思想 强烈推荐
1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。
2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。
“构造”是一种重要而灵活的思维方式,它没有固定的模式,要想用好它,需要敏锐的观察、丰富的联想、创新性的思维等能力,故有一定的难度,高考中常见的构造对象有构造数学模型(即实际问题数学化)、构造方程、构造恒等式、构造函数、构造数列、构造图形、构造反例等。
六,整体的思想方法
人们在研究某些数学问题时,往往不是着眼于问题的各个组成部分,而是有意识地放大考察问题的“视角”,将需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体功能、或作种种处理以后,达到顺利而以简捷地解决问题的目的,象这种从整体观点出发研究问题的思维活动过程,我们称它为“整体的思想方法”.
解题方法指导:1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径.
2.运用整体的思想方法解题,在思维方向上,既有正向的,又有逆向的;在思维形态上,既有集中的又有发散的,既有直观的,又有抽象的.
7.解析几何本身的创建过程就是“数”与“形”之间互相转化的过程。解析几何把数学的主要研究对象数量关系与几何图形联系起来,把代数与几何融合为一体。
函数与方程思想专题
函数与方程思想专题淮南三中 蔡田1 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函 数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
2方程的思想,是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
3函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x 轴交点问题,方程f(x)=a 有解,当且仅当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。
函数与方程都是中学数学中最为重要的内容。
而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点。
例1.若a 、b 是正数,且满足ab=a+b+3,求ab 的取值范围。
解析:方法一:(看成函数的值域)∵3++=b a ab,∴()31+=-a a b ∵1=a 不满足上式,∴1≠a∴13-+=a ab ,由于0>b ,∴013>-+a a 可得1>a 或3-<a (舍) ∴514)1(14)1(5)1(131322+-+-=-+-+-=-+=-+⋅=a a a a a a a a a a a ab∵1>a ,∴01>-a 由基本不等式得9≥ab当且仅当14)1(-=-a a,即3=a 时,等号成立. ∴ab 的取值范围是[9,+∞). 方法二(看成不等式的解集) ∵a 、b 为正数, ∴ab b a 2≥+,又因为3-=+ab b a∴ab ab 23≥- 即032)(2≥--ab ab解得3≥ab 或1-≤ab (舍去)∴9≥ab ,即ab 的取值范围是[9,+∞).例2:已知a ,b ,c R ∈,0=++c b a ,01=-+bc a ,求a 的取值范围。
高中数学6种数学思想
高中数学6种数学思想1.函数与方程思想函数与方程的思想是中学数学最基本的思想。
所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。
而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合思想数与形在一定的条件下可以转化。
如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。
因此数形结合的思想对问题的解决有举足轻重的作用。
解题类型:①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3.分类讨论思想分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。
原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型:类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
2015届高考数学(理)二轮专题配套练习:专题8_第1讲_函数与方程思想(含答案)
第1讲 函数与方程思想1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系. 2.和函数与方程思想密切关联的知识点(1)函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解.(4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.热点一 函数与方程思想在不等式中的应用例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________.思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.(1)若2x +5y ≤2-y +5-x ,则有( )A .x +y ≥0B .x +y ≤0C .x -y ≤0D .x -y ≥0(2)已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <32热点二 函数与方程思想在数列中的应用 例2 已知数列{a n }是各项均为正数的等差数列.(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ; (2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1S 2n ,若对任意的n ∈N *,不等式b n ≤k恒成立,求实数k 的最小值.思维升华 (1)等差(比)数列中各有5个基本量,建立方程组可“知三求二”;(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意利用函数的思想求解.(1)(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.(2)已知函数f (x )=(13)x ,等比数列{a n }的前n 项和为f (n )-c ,则a n 的最小值为( )A .-1B .1C .23D .-23热点三 函数与方程思想在几何中的应用例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值. 思维升华 几何最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.(1)(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过点F 1的直线交椭圆E于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为__________. (2)若a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( )A .(1,2)B .(2,5)C .[2,5]D .(3,5)1.在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当题目与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量.2.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.3.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.4.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.真题感悟1.(2014·辽宁)已知a =2-13,b =log 213,c =121log 3,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a2.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 23.(2014·江苏)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.4.(2014·福建)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元) 押题精练1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)2.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当|MN |达到最小时t 的值为( ) A .1 B .12 C .52 D .223.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .[-6,-98] C .[-6,-2] D .[-4,-3]4.若关于x 的方程(2-2-|x -2|)2=2+a 有实根,则实数a 的取值范围是________.5.已知函数f (x )=ax 2+ax 和g (x )=x -a ,其中a ∈R ,且a ≠0.若函数f (x )与g (x )的图象相交于不同的两点A 、B ,O 为坐标原点,试求△OAB 的面积S 的最大值.6.如图,已知椭圆G :x 2a 2+y 2a 2-1=1(a >1),⊙M :(x +1)2+y 2=1,P 为椭圆G 上一点,过P 作⊙M 的两条切线PE 、PF ,E 、F 分别为切点. (1)求t =|PM →|的取值范围;(2)把PE →·PF →表示成t 的函数f (t ),并求出f (t )的最大值、最小值.例1 (1)4 (2)(-∞,-3)∪(0,3) 变式训练1 (1)B (2)A 例2 解 (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0,所以(2+2d )2=(2+d )(3+3d ), 得d =2或d =-1(舍去),所以数列{a n }的通项公式a n=2n .(2)因为S n =n (n +1),b n =1S n +1+1S n +2+…+1S 2n =1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=1n +1-12n +1=n 2n 2+3n +1=12n +1n+3,令f (x )=2x +1x(x ≥1),则f ′(x )=2-1x 2,当x ≥1时,f ′(x )>0恒成立,所以f (x )在[1,+∞)上是增函数,故当x =1时,[f (x )]min =f (1)=3,即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =16,所以实数k 的最小值为16.变式训练2 (1)4 (2)D3.解 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b = 2.所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2.所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2, 所以△AMN 的面积为S =12|MN |·d =|k |4+6k 21+2k 2.由|k |4+6k 21+2k 2=103,解得k =±1.所以,k 的值为1或-1. 变式训练3 (1)x 2+32y 2=1 (2)BC D 3.-3 4.160 B D C 4.[-1,2)5.解 依题意,f (x )=g (x ),即ax 2+ax =x -a ,整理得ax 2+(a -1)x +a =0,① ∵a ≠0,函数f (x )与g (x )的图象相交于不同的两点A 、B , ∴Δ>0,即Δ=(a -1)2-4a 2=-3a 2-2a +1=(3a -1)·(-a -1)>0,∴-1<a <13且a ≠0.设A (x 1,y 1),B (x 2,y 2),且x 1<x 2,由①得x 1x 2=1>0,x 1+x 2=-a -1a.设点O 到直线g (x )=x -a 的距离为d ,则d =|-a |2,∴S =121+12|x 1-x 2|·|-a |2=12-3a 2-2a +1=12-3⎝⎛⎭⎫a +132+43.∵-1<a <13且a ≠0,∴当a =-13时,S 取得最大值33. 即△OAB 的面积S 的最大值为33. 6.解 (1)设P (x 0,y 0),则x 20a 2+y 20a 2-1=1(a >1),∴y 20=(a 2-1)⎝⎛⎭⎫1-x 20a 2, ∴t 2=|PM →|2=(x 0+1)2+y 20=(x 0+1)2+(a 2-1)⎝⎛⎭⎫1-x 20a 2=⎝⎛⎭⎫1a x 0+a 2, ∴t =⎪⎪⎪⎪1a x 0+a .∵-a ≤x 0≤a ,∴a -1≤t ≤a +1(a >1).(2)∵PE →·PF →=|PE →||PF →|cos ∠EPF =|PE →|2(2cos 2∠EPM -1) =(|PM →|2-1)⎣⎢⎡⎦⎥⎤2(|PM →|2-1)|PM |2-1 =(t 2-1)⎣⎡⎦⎤2(t 2-1)t 2-1=t 2+2t 2-3,∴f (t )=t 2+2t2-3(a -1≤t ≤a +1).对于函数f (t )=t 2+2t2-3(t >0),显然在t ∈(0,42]时,f (t )单调递减,在t ∈[42,+∞)时,f (t )单调递增.∴对于函数f (t )=t 2+2t 2-3(a -1≤t ≤a +1),当a >42+1,即a -1>42时,[f (t )]max =f (a +1)=a 2+2a -2+2(a +1)2, [f (t )]min =f (a -1)=a 2-2a -2+2(a -1)2;当1+2≤a ≤42+1时,[f (t )]max =f (a +1)=a 2+2a -2+2(a +1)2, [f (t )]min =f (42)=22-3; 当1<a <1+2时,[f (t )]max =f (a -1)=a 2-2a -2+2(a -1)2,[f(t)]min=f(42)=22-3.。
高考数学二轮复习 第二部分 技法 专题二 4大数学思想系统归纳——统一统思想课件 理(普通生)
函数与方程的思想在解题中的应用主要表现在两个方面: 一是借助有关初等函数的性质,解决有关求值、解(证明)不等 式、解方程以及讨论参数的取值等问题;二是在问题的研究 中,通过建立函数关系式或构造中间函数,把所研究的问题转 化为讨论函数的有关性质,达到化难为易、化繁为简的目的.
12/11/2021
第三页,共一百二十七页。
∴―A→E ·―B→E =32+y2- 23y=y- 432+2116,
∴当 y= 43时,―A→E ·―B→E 有最小值2116.
答案:A
12/11/2021
第二十四页,共一百二十七页。
6.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都
有f(x)+f(-x)=2x2,当x<0时,f′(x)+1<2x,若f(a+1)
∴12acsin B= 43×2accos B, ∴tan B= 3, 12∵/11/B202∈1 0,π2,∴∠B=π3.
第九页,共一百二十七页。
又∵∠C为钝角,∴∠C=23π-∠A>π2,∴0<∠A<π6.
由正弦定理得ac=sin2s3πin-A∠A
=
3 2 cos
A+12sin
sin A
A=12+
于是对∀x∈R ,都有 g′(x)>0,
所以 g(x)在 R 上单调递增.
数学思想之函数与方程思想概述
1 函数与方程思想的涵义函数是刻画现实世界中一类重要变化规律(运动变化)的模型,利用函数我们可以由某一事物的变化信息推知另一事物信息的对应关系 。
高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言描述函数,函数的思想方法将贯穿高中数学课程的始终 。
比如可以把数的运算看成是一个特殊的二元函数 ;可以很容易地把代数式改造成一个函数 ;数列的通项公式就是定义在自然数集上的函数 ;解三角形实质上也就是一个三角函数的问题 。
函数思想的实质是:用联系及变化的观点提出(数学对象)—抽象(数量特征)—建立(函数关系) 。
与函数思想相联系的就是方程的思想,即在解决数学问题时,先设定一些未知数,再把它们当成已知数,然后根据题设中各量间的关系,列出方程,最后求得未知数 。
所设的未知数沟通了变量之间的关系,将问题转化。
方程与函数是相互联系的,若一个函数有解式,那么这个解析式可以看成是一个方程 ;一个二元方程中,两个变量间存在着对应关系,若这个对应关系是函数,则这个方程就可以看成是一个函数。
如:解方程f(x)=0就是求函数Y = f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数Y=f(x)的正(负)区间 。
函数与方程思想就是用函数及方程的观点和方法处理变量或者未知数之间的关系,进而解决问题的思维方式 。
2 函数与方程思想的意义函数思想是对函数概念的本质认识,就是利用函数知识(观点)来观察、分析和解决问题 。
在中学数学中,函数思想主要体现在以下两个方面:一是借助初等函数的单调性、奇偶性和周期性等有关性质,解决一些求值、解(证)不等式和解方程,及讨论参数取值范围等相关问题 ;二是通过建立若干函数解析式或者构造中间函数,将研究的问题化归转化为讨论函数的相关性质,从而达到化难为易的目的 。
方程思想则是从本质上认识方程概念,就是利用方程(组)的观点观察、处理问题 。
许多有关函数的问题可以用方程来解决,反之,许多有关方程的问题也可以用函数的方法来解决 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考命题中,以知识为载体,以能力立意、思想方法为灵魂,以核心素养为统领,兼顾试题的基础性、综合性、应用性和创新性,展现数学的科学价值和人文价值.高考试题一是着眼于知识点新颖巧妙的组合,二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学的内容,可用文字和符号来记录和描述,那么数学思想方法则是数学的意识,重在领会、运用,属于思维的范畴,用于对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想等.
第1讲 函数与方程思想 思想概述 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.
方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析问题、转化问题,使问题得以解决. 方法一 运用函数相关概念的本质解题
在理解函数的定义域、值域、性质等本质的基础上,主动、准确地运用它们解答问题.常见问题有:求函数的定义域、解析式、最值,研究函数的性质.
例1 若函数f (x )=⎩⎪⎨⎪⎧
-x +3a ,x <0,a x ,x ≥0(a >0且a ≠1)是R 上的减函数,则实数a 的取值范围为( )
A .(0,1)
B.⎣⎡⎭⎫13,1
C.⎝⎛⎭⎫13,1
D.⎝⎛⎭
⎫0,13 思路分析 先求出f (x )=a x 是减函数时a 的范围→满足-0+3a ≥a 0时a 的范围→取交集 答案 B
解析 ∵函数f (x )是R 上的减函数,
∴⎩
⎪⎨⎪⎧
0<a <1,3a ≥a 0,解得13≤a <1. ∴实数a 的取值范围为⎣⎡⎭⎫13,1.故选B.
批注 在函数的第一段中,虽然没有x =0,但当x =0时,本段函数有意义,故可求出其对应的“函数值”,且这个值是本段的“最小值”,为了保证函数是减函数,这个“最小值”应不小于第二段的最大值,即f (0),这是解题的一个易忽视点.究其原因,就是未把分段函数看成是一个函数,一个整体.
解答本题,首先要明确分段函数和减函数这两个概念的本质,分段函数是一个函数,根据减函数的定义,两段函数都是减函数,但这不足以说明整个函数是减函数,还要保证在两段的衔接处呈减的趋势,这一点往往容易被忽视.
方法二 利用函数性质求解方程问题
函数与方程相互联系,借助函数的性质可以解决方程解的个数及参数取值范围的问题. 例2 (1)(2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则( )
A .a >2b
B .a <2b
C .a >b 2
D .a <b 2 答案 B
解析 由指数和对数的运算性质可得
2a +log 2a =4b +2log 4b =22b +log 2b .
令f (x )=2x +log 2x ,
则f (x )在(0,+∞)上单调递增,
又∵22b +log 2b <22b +log 2b +1=22b +log 22b ,
∴2a +log 2a <22b +log 22b ,
即f (a )<f (2b ),∴a <2b .
(2)设x ,y 为实数,满足(x -1)3+2 020(x -1)=-1,(y -1)3+2 020(y -1)=1,则x +y =________.
思路分析 观察两方程形式特征→借助函数f (t )=t 3+2 020t 的单调性、奇偶性→f (x -1)=f (1-y )→求出x +y
答案 2
解析 令f (t )=t 3+2 020t ,则f (t )为奇函数且在R 上是增函数.
由f (x -1)=-1=-f (y -1)=f (1-y ),
可得x -1=1-y ,∴x +y =2.
批注 通过方程的特征构造函数,利用函数性质寻求变量间的关系.
例3 已知a ,b 为不全为0的实数,求证:方程3ax 2+2bx -(a +b )=0在(0,1)内至少有一个实数根.
思路分析 方程至少有一个根→函数至少有一个零点→零点存在性定理
证明 若a =0,则b ≠0,此时方程的根为x =12
, 所以f (x )在(0,1)内有一个零点;
当a ≠0时,令f (x )=3ax 2+2bx -(a +b ).
(1)若a (a +b )<0,
则f (0)f ⎝⎛⎭⎫12=-(a +b )⎝⎛⎭⎫-14a =14a ·(a +b )<0,
所以f (x )在⎝⎛⎭
⎫0,12内有一个零点. (2)若a (a +b )≥0,则f ⎝⎛⎭⎫12f (1)=-14
a (2a +
b )= -14a 2-14
a (a +
b )<0, 所以f (x )在⎝⎛⎭⎫12,1内有一个零点.
综上,原方程在(0,1)内至少有一个实数根.
函数与方程的相互转化:对于方程f (x )=0,可利用函数y =f (x )的图象和性质求解问题. 方法三 构造函数解决一些数学问题
在一些数学问题的研究中,可以通过建立函数关系式,把要研究的问题转化为函数的性
质,达到化繁为简,化难为易的效果.
例4 求使不等式2x -1>m (x 2-1)对于|m |≤2的一切实数m 都成立的x 的取值范围. 思路分析 恒成立问题→函数最值问题→构造关于m 的一次函数
解 构造函数f (m )=(x 2-1)m -(2x -1),m ∈[-2,2],
f (m )<0在m ∈[-2,2]上恒成立⇔⎩⎨⎧ f (-2)<0,f (2)<0
⇔⎩⎪⎨⎪⎧ -2(x 2-1)-(2x -1)<0,2(x 2-1)-(2x -1)<0⇔⎩⎪⎨⎪⎧
2x 2+2x -3>0,2x 2-2x -1<0 ⇔7-12<x <3+12
. 所以x 的取值范围是⎝ ⎛⎭⎪⎫7-12
,3+12. 例5 如图,已知在△ABC 中,∠C =90°,P A ⊥平面ABC ,AE ⊥PB 于点E ,AF ⊥PC 于点F ,AP =AB =2,∠AEF =θ,当θ变化时,求三棱锥P -AEF 体积的最大值.
思路分析 思路分析 求V P -AEF 的最值→用θ表示V P -AEF ,构造函数→求函数的最值 解 因为P A ⊥平面ABC ,BC ⊂平面ABC ,所以P A ⊥BC ,
又BC ⊥AC ,P A ∩AC =A ,P A ,AC ⊂平面P AC ,
所以BC ⊥平面P AC ,
而AF ⊂平面P AC ,所以BC ⊥AF .
又因为AF ⊥PC ,PC ∩BC =C ,PC ,BC ⊂平面PBC ,
所以AF ⊥平面PBC ,
而EF ⊂平面PBC ,所以AF ⊥EF .
所以EF 是AE 在平面PBC 内的射影.
因为AE ⊥PB ,所以EF ⊥PB ,
又AE ∩EF =E ,AE ,EF ⊂平面AEF ,
所以PB ⊥平面AEF ,所以PE ⊥平面AEF .
在Rt △P AB 中,因为AP =AB =2,AE ⊥PB ,
所以PE =2,AE =2,AF =2sin θ,EF =2cos θ.
V P -AEF =13S △AEF ·PE =13×12×2sin θ·2cos θ×2=26
sin 2θ. 因为0<θ<π2
,所以0<2θ<π. 所以当2θ=π2,即θ=π4
时,sin 2θ取得最大值1, 则V P -AEF 取得最大值26
. 批注 θ的变化是由AC ,BC 的变化引起的.三棱锥P -AEF 的高PE 为定值,只要S △AEF 最大即可.
在构造函数求解数学问题的过程中,要确定合适的变量,揭示函数关系,使问题明晰化.。