中考数学三角形证明题(中等难度偏上)含答案
全等三角形相似三角形证明(中难度题型)
全等三角形证明经典50题.doc1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD1. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADBCBA CDF2 1 E4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
ADBCCDB A8.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C9.已知:AB=CD ,∠A=∠D ,求证:∠B=∠C10. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB11. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE12. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC13.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .DCBAFEAB C DP D ACBFAED C B14.(5分)如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA15.(5分)如图,已知AD∥BC,∠P AB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.16.(6分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B17.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.18.(7分)已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):19.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.20、(10分)如图:DF=CE,AD=BC,∠D=∠C。
中考数学相似三角形分类专练 证明相似三角形中的对应线段成比例重难点专练(解析版)
同上,AB可以与DE对应,也可以与DF对应,∴相似比可能是 ,也可能是 ,C不一定成立;
∵∠A=∠D,即∠A与∠D是对应角,∴它们的对边一定是对应比,即BC与EF是对应比,
∴相似比为 ,∴D一定成立,
故选D.
【考点知悉】
本题考查相似三角形的性质,注意相似三角形的性质是针对对应角和对应边而言的.
17.如图,点D、E分别在 的边AB、AC上,且 ,若DE=3,BC=6,AC=8,则 _______.
18.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.
19.如图,在△ABC中,AB=9,AC=6,D为AB边上一点,且△ABC∽△ACD,则AD=__.
∴这个三角形的边长扩大到原来的4倍,
故选B.
【考点知悉】
本题考查了相似三角形的相似比和周长比之间的关系,属于简单题,熟练掌握相似三角形的性质是解题关键.
10.D
【思路点拨】
根据①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项,进行判断即可.
30.如图, , , , ,则 ________.
31.如图,△ABC中,DE∥BC, ,△ADE的面积为8,则△ABC的面积为______
三、解答题
32.已知:如图,AB是半圆O的直径,弦CD∥AB,动点P、Q分别在线段OC、CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、D不重合),AB=20,cos∠AOC= .设OP=x,△CPF的面积为y.
∴ ,
中考几何证明题及答案
中考几何证明题及答案几何证明练题及答案知识要点:1.掌握直角三角形的性质并能熟练应用;2.能写出较难证明的求证;3.证明要合乎逻辑,能应用综合法证明几何命题。
概念回顾:1.全等三角形的性质:对应边、对应角、对应高线、对应中线、对应角的角平分线。
2.在Rt△ABC中,∠C=90°,∠A=30°,则BC:AC:AB=?例题解析:题1:已知在ΔABC中,A=108°,AB=AC,BD平分ABC。
求证:___。
题2:如图,点E为正方形ABCD的边CD上一点,点F 为CB的延长线上的一点,且EA⊥AF。
求证:DE=BF。
题3:如图,AD为ΔABC的角平分线且BCBD=CD。
求证:AB=AC。
题4:已知:如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD,证明AB=DE,AC=DF。
题5:已知:如图,△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求∠APB的度数。
题6:如图:△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足是F,过B作BD⊥BC交CF的延长线于D。
1)求证:AE=CD;2)若AC=12 cm,求BD的长。
题7:等边三角形CEF于菱形ABCD边长相等。
求证:(1)∠AEF=∠AFE;(2)角B的度数。
题8:如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B。
求证:___。
题9:如图,在三角形ABC中,AD是BC边上的中线,E是AD的中点,BE的延长线交AC于点F。
求证:___。
题10:如图,将边长为1的正方形ABCD绕点C旋转到A'B'CD'的位置,若∠B'CB=30°,求AE的长。
题11:AD,BE分别是等边△ABC中BC,AC上的高。
M,N 分别在AD,BE的延长线上,∠___∠ACN。
求证:AM=BN。
题12:已知:如图,AD、BC相交于点O,OA=OD,OB=OC,点E、F在AD上,且AE=DF,∠ABE=∠DCF。
初中数学三角形证明题重点学习的练习及标准答案.doc
三角形证明题练习1.如图,在△ ABC中,∠ C=90°, AB 的垂直平分线交AB 与 D,交 BC 于 E,连接 AE,若 CE=5, AC=12,则 BE 的长是()A.13B. 10C. 12D. 52.如图,在△ ABC中,AB=AC,∠ A=36°,BD、CE分别是∠ ABC、∠ BCD的角平分线,则图中的等腰三角形有()A.5 个B. 4 个C. 3 个D.2 个3.如图,在△ ABC中, AD 是它的角平分线,AB=8cm,AC=6cm,则S△ABD: S△ACD=()A.4: 3B. 3: 4C. 16: 9D. 9: 164.如图,在△ ABC中, AB=AC,∠ A=40°, AB 的垂直平分线交AB 于点 D,交 AC于点 E,连接 BE,则∠ CBE的度数为()A.70°B. 80°C. 40°D.30°5.如图,在△ ABC中, AB=AC,且 D 为 BC上一点, CD=AD, AB=BD,则∠ B 的度数为()A.30°B. 36°C. 40°D.45°6.如图,点O 在直线 AB 上,射线OC平分∠ AOD,若∠ AOC=35°,则∠ BOD 等于()A.145°B. 110°C. 70°D.35°7.如图,在△ ABC 中,∠ ACB=90°, BA 的垂直平分线交BC边于 D,若 AB=10,AC=5,则图中等于60°的角的个数是()A. 2B. 3C. 4D. 58.如图,已知BD 是△ ABC的中线, AB=5, BC=3,△ ABD 和△ BCD的周长的差是()A. 2B. 3C. 6D.不能确定9.在 Rt△ ABC中,如图所示,∠C=90°,∠ CAB=60°, AD 平分∠ CAB,点 D 到 AB 的距离 DE=,则 BC等于()A.B.C.D.10.△ ABC 中,点 O 是△ ABC内一点,且点O 到△ ABC 三边的距离相等;∠A=40°,则∠ BOC=()A.110°B. 120°C. 130°D.140°11.如图,已知点P 在∠ AOB 的平分线OC上, PF⊥ OA, PE⊥ OB,若 PE=6,则 PF 的长为()A.2B. 4C. 6D.812.如图,△ ABC中, DE是 AB 的垂直平分线,交 BC于点 D,交 AB 于点 E,已知 AE=1cm,△ ACD 的周长为 12cm,则△ ABC的周长是()A.13cm B. 14cm C. 15cm D.16cm13.如图,∠ BAC=130°,若 MP 和 QN 分别垂直平分AB 和 AC,则∠ PAQ等于()A. 50°B. 75°C. 80°D.105°14.如图,要用“ HL”判定 Rt△ ABC和 Rt△ A′ B′ C′全等的条件是()A.AC=A′ C′,BC=B′ C′B.∠A=∠ A′, AB=A′B′C.AC=A′ C′,AB=A′ B′D.∠B=∠ B′, BC=B′ C′15.如图, MN 是线段 AB 的垂直平分线,C在 MN 外,且与 A 点在 MN 的同一侧, BC 交 MN 于 P 点,则()A. BC> PC+AP B. BC<PC+AP C. BC=PC+AP D.BC≥ PC+AP16.如图,已知在△ABC中, AB=AC, D 为 BC 上一点, BF=CD, CE=BD,那么∠ EDF等于()A. 90°﹣∠ AB.C. 180°﹣∠ AD.45°﹣∠A90°﹣∠A17.如图,在△ ABC 中, AB=AC, AD 平分∠ BAC,那么下列结论不一定成立的是()A.△ ABD≌△ ACD B.AD 是△ ABC的高线C.AD 是△ ABC的角平分线D.△ABC是等边三角形三角形证明中经典题 21.如图,已知: E 是∠ AOB 的平分线上一点,EC⊥ OB, ED⊥ OA, C、D 是垂足,连接CD,且交 OE于点 F.(1)求证: OE 是 CD 的垂直平分线.(2)若∠ AOB=60°,请你探究 OE, EF之间有什么数量关系并证明你的结论.2.如图,点 D 是△ ABC中 BC边上的一点,且AB=AC=CD, AD=BD,求∠ BAC 的度数.3.如图,在△ ABC中, AD 平分∠ BAC,点 D 是 BC的中点, DE⊥ AB 于点 E, DF⊥ AC 于点 F.求证:( 1)∠ B=∠ C.( 2)△ ABC 是等腰三角形.4 如图, AB=AC,∠ C=67°, AB 的垂直平分线EF交 AC 于点 D,求∠ DBC的度数.5.如图,△ ABC 中, AB=AD=AE, DE=EC,∠ DAB=30°,求∠ C 的度数.6.阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.已知∠ ABC和∠ ACB 的平分线上交于点 F,过点 F 作 BC 的平行线分别交的知识说明 DE=BD+CE.”简称“等角对等边”,如图,在△ ABC中,AB、 AC于点 D、 E,请你用“等角对等边”7.如图, AD 是△ ABC的平分线, DE,DF 分别垂直 AB、 AC于 E、 F,连接 EF,求证:△ AEF是等腰三角形.2015 年 05 月 03 日初中数学三角形证明组卷参考答案与试题解析一.选择题(共20 小题)1.(2015 涉县模拟)如图,在△AC=12,则 BE 的长是()ABC中,∠ C=90°, AB 的垂直平分线交AB 与 D,交BC 于 E,连接AE,若CE=5,A 13B 10C 12D 5....考线段垂直平分线的性质.点:分先根据勾股定理求出AE=13,再由 DE 是线段 AB 的垂直平分线,得出BE=AE=13.析:解解:∵∠ C=90°,答:∴AE= ,∵DE 是线段 AB 的垂直平分线,∴BE=AE=13;故选: A.点本题考查了勾股定理和线段垂直平分线的性质;利用勾股定理求出AE 是解题的关评:键.2.(2015?淄博模拟)如图,在△ABC中, AB=AC,∠ A=36°, BD、CE分别是∠ ABC、∠ BCD的角平分线,则图中的等腰三角形有()A 5 个B 4 个C 3 个D 2 个....考等腰三角形的判定;三角形内角和定理.菁优网版权所有点:专证明题.题:分根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.析:解解:共有 5 个.答:( 1)∵ AB=AC∴△ ABC 是等腰三角形;(2)∵ BD、 CE分别是∠ ABC、∠ BCD的角平分线∴∠ EBC= ∠ ABC,∠ ECB= ∠ BCD,∵△ ABC 是等腰三角形,∴∠ EBC=∠ ECB,∴△ BCE是等腰三角形;(3)∵∠ A=36°, AB=AC,∴∠ ABC=∠ ACB= ( 180°﹣ 36 °) =72°,又BD 是∠ ABC 的角平分线,∴∠ ABD= ∠ ABC=36° =∠ A,∴△ ABD 是等腰三角形;同理可证△ CDE和△ BCD是等腰三角形.故选: A.点此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,属于中档评:题.3.( 2014 秋 ?西城区校级期中)如图,在△ ABC中, AD 是它的角平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=()A 4: 3B 3: 4C 16: 9D 9: 16....考角平分线的性质;三角形的面积.菁优网版权所有点:专计算题.题:分首先过点 D 作 DE⊥ AB,DF⊥ AC,由 AD 是它的角平分线,根据角平分线的性质,析:即可求得 DE=DF,由△ ABD 的面积为 12,可求得 DE 与 DF 的长,又由 AC=6,则可求得△ ACD的面积.解解:过点 D 作 DE⊥ AB, DF⊥ AC,垂足分别为E、 F( 1 分)答:∵ AD 是∠ BAC的平分线, DE⊥ AB, DF⊥ AC,∴DE=DF,( 3 分)∴S△ ABD= ?DE?AB=12,∴DE=DF=3( 5 分)∴S△ ADC= ?DF?AC= × 3× 6=9( 6 分)∴S△ABD: S△ACD=12:9=4: 3.故选 A.点此题考查了角平分线的性质.此题难度不大,解题的关键是熟记角平分线的性评:质定理的应用,注意数形结合思想的应用,注意辅助线的作法.4.(2014?丹东)如图,在△ABC中, AB=AC,∠ A=40°, AB 的垂直平分线交AB 于点D,交AC 于点E,连接BE,则∠ CBE的度数为()A 70°B 80°C 40°D 30°....考点:线段垂直平分线的性质;等腰三角形的性质.菁优网版权所有专题:几何图形问题.分析:由等腰△ ABC中, AB=AC,∠ A=40°,即可求得∠ABC的度数,又由线段AB 的垂直平分线交AB 于 D,交 AC 于 E,可得 AE=BE,继而求得∠ ABE的度数,则可求得答案.解答:解:∵等腰△ ABC中, AB=AC,∠ A=40°,∴∠ ABC=∠ C= =70°,∵线段 AB 的垂直平分线交AB 于 D,交 AC 于 E,∴A E=BE,∴∠ ABE=∠ A=40°,∴∠ CBE=∠ABC﹣∠ ABE=30°.故选: D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.5.(2014?南充)如图,在△ABC中, AB=AC,且 D 为 BC 上一点, CD=AD, AB=BD,则∠ B 的度数为()A 30°B 36°C 40°D 45°....考等腰三角形的性质.菁优网版权所有点:分求出∠ BAD=2∠ CAD=2∠ B=2∠ C 的关系,利用三角形的内角和是180°,求∠ B,析:解解:∵ AB=AC,答:∴∠ B=∠C,∵ AB=BD,∴∠ BAD=∠ BDA,∵ CD=AD,∴∠ C=∠CAD,∵∠ BAD+∠ CAD+∠ B+∠C=180°,∴ 5∠ B=180°,∴∠ B=36°故选: B.点本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2评:∠ CAD=2∠ B=2∠ C 关系.6.(2014?山西模拟)如图,点O 在直线 AB 上,射线 OC 平分∠ AOD,若∠ AOC=35°,则∠ BOD 等于()A 145°B 110°C 70°D 35°....考角平分线的定义.菁优网版权所有点:分首先根据角平分线定义可得∠ AOD=2∠AOC=70°,再根据邻补角的性质可得∠析:BOD 的度数.解解:∵射线 OC平分∠ DOA.答:∴∠ AOD=2∠ AOC,∵∠ COA=35°,∴∠ DOA=70°,∴∠ BOD=180°﹣ 70° =110°,故选: B.点此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.评:7.(2014?雁塔区校级模拟)如图,在△ABC中,∠ ACB=90°, BA 的垂直平分线交BC边于 D,若 AB=10, AC=5,则图中等于60°的角的个数是()A 2B 3C 4D 5....考点:线段垂直平分线的性质.菁优网版权所有分析:根据已知条件易得∠ B=30°,∠ BAC=60°.根据线段垂直平分线的性质进一步求解.解答:解:∵∠ ACB=90°,AB=10,AC=5,∴∠ B=30°.∴∠ BAC=90°﹣ 30° =60°∵ DE 垂直平分 BC,∴∠ BAC=∠ ADE=∠ BDE=∠ CDA=90°﹣ 30° =60°.∴∠ BDE 对顶角 =60°,∴图中等于60°的角的个数是4.故选 C.点评:此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.由易到难逐个寻找,做到不重不漏.8.(2014 秋 ?腾冲县校级期末)如图,已知 BD 是△ ABC 的中线, AB=5,BC=3,△ ABD 和△ BCD的周长的差是()A 2B 3C 6D 不能确定....考点:三角形的角平分线、中线和高.菁优网版权所有专题:计算题.分析:根据三角形的中线得出AD=CD,根据三角形的周长求出即可.解答:解:∵ BD 是△ ABC的中线,∴AD=CD,∴△ ABD 和△ BCD的周长的差是:(AB+BD+AD)﹣( BC+BD+CD) =AB﹣BC=5﹣3=2.故选 A.点评:本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键.9.( 2014 春 ?栖霞市期末)在Rt△ ABC 中,如图所示,∠C=90°,∠CAB=60°, AD 平分∠CAB,点 D 到AB 的距离DE=,则 BC等于()A B C D....考点:角平分线的性质.菁优网版权所有分析:由∠ C=90°,∠ CAB=60°,可得∠ B 的度数,故BD=2DE=,又AD 平分∠ CAB,故DC=DE=,由BC=BD+DC求解.解答:点评:解:∵∠ C=90°,∠ CAB=60°,∴∠ B=30°,在 Rt△BDE中, BD=2DE=,又∵ AD 平分∠ CAB,∴DC=DE=,∴BC=BD+DC=+=.故选 C.本题主要考查平分线的性质,由已知能够注意到解题的关键.D 到AB 的距离DE即为CD长,是10.( 2014 秋 ?博野县期末)△ABC中,点 O 是△ ABC内一点,且点O 到△ ABC三边的距离相等;∠A=40°,则∠BOC=()A 110°B 120°C 130 °D 140°....考角平分线的性质;三角形内角和定理;三角形的外角性质.菁优网版权所有点:专计算题.题:分由已知, O 到三角形三边距离相等,得O 是内心,再利用三角形内角和定理即可求析:出∠ BOC的度数.解解:由已知, O 到三角形三边距离相等,所以O 是内心,答:即三条角平分线交点, AO, BO,CO 都是角平分线,所以有∠ CBO=∠ ABO= ∠ ABC,∠ BCO=∠ ACO= ∠ ACB,∠ABC+∠ACB=180﹣ 40=140∠OBC+∠ OCB=70∠BOC=180﹣70=110 °故选 A.点此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识评:点的理解和掌握,难度不大,是一道基础题.11.( 2013 秋 ?潮阳区期末)如图,已知点 P 在∠ AOB的平分线 OC上,PF⊥ OA,PE⊥ OB,若 PE=6,则 PF 的长为()A 2B 4 C6 D8....考点:角平分线的性质;全等三角形的判定与性质.菁优网版权所有专题:计算题.分析:利用角平分线性质得出∠ POF=∠ POE,然后利用 AAS定理求证△ POE≌△ POF,即可求出 PF的长.解答:解:∵ OC平分∠ AOB,∴∠ POF=∠POE,∵PF⊥OA, PE⊥ OB,∴∠ PFO=∠ PEO,PO 为公共边,∴△POE≌△ POF,∴PF=PE=6.故选 C.点评:此题考查学生对角平分线性质和全等三角形的判定与性质的理解和掌握,解答此题的关键是求证△ POE≌△ POF.12.( 2013 秋 ?马尾区校级期末)如图,△ ABC中,DE 是 AB 的垂直平分线,交 BC 于点 D,交 AB 于点 E,已知 AE=1cm,△ ACD 的周长为 12cm,则△ ABC的周长是()A 13cmB 14cmC 15cmD 16cm....考线段垂直平分线的性质.菁优网版权所有点:分要求△ ABC的周长,先有AE 可求出 AB,只要求出 AC+BC即可,根据线段垂直平分析:线的性质可知, AD=BD,于是 AC+BC=AC+CD+AD等于△ ACD 的周长,答案可得.解解:∵ DE 是 AB 的垂直平分线,答:∴ AD=BD,AB=2AE=2又∵△ ACD的周长 =AC+AD+CD=AC+BD+CD=AC+BC=12∴△ ABC的周长是12+2=14cm .故选 B点此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端评:点的距离相等;进行线段的等效转移,把已知与未知联系起来是正确解答本题的关键.13.( 2013 秋 ?西城区期末)如图,∠BAC=130°,若 MP 和 QN 分别垂直平分AB 和 AC,则∠ PAQ等于()A 50°B 75°C 80°D 105°....考线段垂直平分线的性质.菁优网版权所有点:分根据线段垂直平分线性质得出BP=AP,CQ=AQ,推出∠ B=∠ BAP,∠ C=∠ QAC,求析:出∠ B+∠ C,即可求出∠ BAP+∠ QAC,即可求出答案.解解:∵ MP 和 QN 分别垂直平分AB 和 AC,答:∴ BP=AP,CQ=AQ,∴∠ B=∠ PAB,∠ C=∠ QAC,∵∠ BAC=130°,∴∠ B+∠ C=180°﹣∠ BAC=50°,∴∠ BAP+∠ CAQ=50°,∴∠ PAQ=∠ BAC﹣(∠ PAB+∠ QAC) =130°﹣ 50° =80°,故选: C.点本题考查了等腰三角形的性质,线段垂直平分线性质,三角形的内角和定理,注评:意:线段垂直平分线上的点到线段两个端点的距离相等,等边对等角.14.( 2014 秋 ?东莞市校级期中)如图,要用“HL”判定 Rt△ ABC和 Rt△ A′ B′ C′全等的条件是()A AC=A′ C′,B∠ A=∠A′,.BC=B′ C′.AB=A′B′C AC=A′ C′,D∠ B=∠ B′,.AB=A′ B′.BC=B′ C′考直角三角形全等的判定.菁优网版权所有点:分根据直角三角形全等的判定方法(HL)即可直接得出答案.析:解答:解:∵在 Rt△ ABC和 Rt△ A′ B′ C′中,如果 AC=A′C′, AB=A′ B′,那么BC一定等于Rt△ABC 和 Rt△ A′ B′ C′一定全等,B′ C′,点评:故选 C.此题主要考查学生对直角三角形全等的判定的理解和掌握,难度不大,是一道基础题.15.( 2014 秋 ?淄川区校级期中)如图,交 MN 于 P 点,则()MN 是线段AB 的垂直平分线, C 在 MN 外,且与 A 点在MN 的同一侧,BCA BC> PC+APB BC< PC+APC BC=PC+APD BC≥ PC+AP....考点:线段垂直平分线的性质.菁优网版权所有分析:从已知条件进行思考,根据垂直平分线的性质可得通过等量代换得到答案.解答:解:∵点P 在线段 AB 的垂直平分线上,PA=PB,结合图形知BC=PB+PC,∴PA=PB.∵ BC=PC+BP,∴BC=PC+AP.故选 C.点评:本题考查了垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;结合图形,进行线段的等量代换是正确解答本题的关键.16.( 2014 秋 ?万州区校级期中)如图,已知在△ABC中, AB=AC, D 为 BC 上一点, BF=CD, CE=BD,那么∠ EDF等于()A90°﹣∠ A B C 180 °﹣∠ A D.90°﹣∠ A 45°﹣∠ A ...考点:等腰三角形的性质.菁优网版权所有分析:由 AB=AC,利用等边对等角得到一对角相等,再由BF=CD,BD=CE,利用 SAS得到三角形FBD 与三角形 DEC全等,利用全等三角形对应角相等得到一对角相等,即可表示出∠ EDF.解答:解:∵ AB=AC,∴∠ B=∠ C°,在△ BDF 和△ CED中,,∴△ BDF≌△ CED( SAS),∴∠ BFD=∠ CDE,∴∠ FDB+∠ EDC=∠ FDB+∠ BFD=180°﹣∠B=180°﹣=90° + ∠ A,则∠ EDF=180°﹣(∠FDB+∠ EDC) =90°﹣∠A.故选 B.点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.17.(2014 秋 ?泰山区校级期中)如图,在△ABC中, AB=AC,AD 平分∠ BAC,那么下列结论不一定成立的是()A △ ABD≌△B AD 是△ ABC.ACD .的高线C AD 是△ ABC D △ ABC是等边.的角平分线.三角形考点:等腰三角形的性质.菁优网版权所有分析:利用等腰三角形的性质逐项判断即可.解答:解:A、在△ ABD 和△ ACD中,,所以△ ABD≌△ACD,所以A正确;B、因为 AB=AC, AD 平分∠ BAC,所以 AD 是 BC边上的高,所以 B 正确;C、由条件可知 AD 为△ ABC的角平分线;D、由条件无法得出 AB=AC=BC,所以△ ABC不一定是等边三角形,所以 D 不正确;故选 D.点评:本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”的性质是解题的关键.18.( 2014 秋 ?晋江市校级月考)如图,点P 是△ ABC内的一点,若PB=PC,则()A 点 P 在∠ABC .的平分线上C点 P 在边 AB.的垂直平分线上B 点 P 在∠ ACB .的平分线上D点 P 在边 BC .的垂直平分线上考点:线段垂直平分线的性质.菁优网版权所有分析:根据到线段两端点的距离相等的点在这条线段的垂直平分线上由PC=PB即可得出 P 在线段 BC 的垂直平分线上.解答:解:∵ PB=PC,∴P 在线段 BC 的垂直平分线上,故选 D.点评:本题考查了角平分线的性质和线段垂直平分线定理,注意:到线段两端点的距离相等的点在这条线段的垂直平分线上,角平分线上的点到角的两边的距离相等.19.(2013?河西区二模)如图,在∠ ECF的两边上有点B,A,D,BC=BD=DA,且∠ ADF=75°,则∠ ECF的度数为()A 15°B 20°C 25°D 30°....考等腰三角形的性质.菁优网版权所有点:分根据等腰三角形的性质以及三角形外角和内角的关系,逐步推出∠ECF的度数.析:解解:∵ BC=BD=DA,答:∴∠ C=∠ BDC,∠ ABD=∠ BAD,∵∠ ABD=∠ C+∠ BDC,∠ ADF=75°,∴3∠ ECF=75°,∴∠ ECF=25°.故选: C.点考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运评:用.20.( 2013 秋 ?盱眙县校级期中)如图,P 为∠ AOB 的平分线OC上任意一点,PM⊥ OA 于 M, PN⊥ OB 于 N,连接MN 交 OP 于点 D.则① PM=PN,② MO=NO ,③ OP⊥ MN,④ MD=ND.其中正确的有()A 1 个B 2 个C 3 个D 4 个....考角平分线的性质.菁优网版权所有点:分由已知很易得到△OPM≌△ OPN,从而得角相等,边相等,进而得△OMP≌△ ONP,析:△ PMD≌△ PND,可得 MD=ND,∠ ODN=∠ ODM=9O°,答案可得.解解: P 为∠ AOB 的平分线 OC上任意一点, PM⊥ OA 于 M ,PN⊥OB 于 N答:连接 MN 交 OP 于点 D,∴∠ MOP=∠ NOP,∠ OMP=∠ ONP, OP=OP,∴△ OPM≌△ OPN,∴ MP=NP, OM=ON ,又 OD=OD∴△ OMD≌△ OND,∴ MD=ND,∠ ODN=∠ ODM=9O°,∴ OP⊥ MN∴① PM=PN,② MO=NO,③ OP⊥ MN ,④ MD=ND 都正确.故选 D.点本题主要考查了角平分线的性质,即角平分线上的一点到两边的距离相等;发现并评:利用△ OMD ≌△ OND 是解决本题的关键,证明两线垂直时常常通过证两角相等且互补来解决.二.解答题(共10 小题)21.( 2014 秋 ?黄浦区期末)如图,已知ON 是∠ AOB 的平分线, OM、 OC是∠ AOB 外的射线.( 1)如果∠ AOC=α,∠ BOC=β,请用含有α,β的式子表示∠NOC.( 2)如果∠ BOC=90°, OM 平分∠ AOC,那么∠ MON 的度数是多少考点:角平分线的定义.菁优网版权所有分析:( 1)先求出∠ AOB=α﹣β,再利用角平分线求出∠ AON,即可得出∠ NOC;( 2)先利用角平分线求出∠ AOM= ∠ AOC,∠ AON= ∠AOB,即可得出∠ MON=∠BOC.解答:解:(1 )∵∠ AOC=α,∠ BOC=β,∴∠ AOB=α﹣β,∵ON 是∠ AOB 的平分线,∴∠ AON= (α﹣β),∠ NOC=α﹣(α﹣β)=(α +β);(2)∵ OM 平分∠ AOC, ON 平分∠ AOB,∴∠ AOM= ∠AOC,∠ AON= ∠ AOB,∴∠ MON=∠ AOM﹣∠ AON= (∠ AOC﹣∠ AOB) = ∠ BOC= × 90°=45°.点评:本题考查了角平分线的定义和角的计算;弄清各个角之间的数量关系是解决问题的关键.22.( 2014 秋 ?阿坝州期末)如图,已知: E 是∠ AOB 的平分线上一点, EC⊥ OB, ED⊥ OA, C、 D 是垂足,连接 CD,且交 OE 于点 F.(1)求证: OE 是 CD 的垂直平分线.(2)若∠ AOB=60°,请你探究 OE, EF之间有什么数量关系并证明你的结论.考点:线段垂直平分线的性质.菁优网版权所有专题:探究型.分析:( 1)先根据 E 是∠ AOB 的平分线上一点, EC⊥ OB,ED⊥ OA 得出△ ODE≌△ OCE,可得出 OD=OC,DE=CE, OE=OE,可得出△ DOC是等腰三角形,由等腰三角形的性质即可得出OE是 CD 的垂直平分线;( 2)先根据 E 是∠ AOB 的平分线,∠AOB=60°可得出∠ AOE=∠ BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.解答:解:( 1)∵ E 是∠ AOB 的平分线上一点,EC⊥ OB, ED⊥ OA,∴ DE=CE, OE=OE,∴ Rt△ ODE≌ Rt△ OCE,∴ OD=OC,∴△ DOC是等腰三角形,∵ OE是∠ AOB 的平分线,∴ OE是 CD的垂直平分线;( 2)∵ OE是∠ AOB 的平分线,∠AOB=60°,∴∠ AOE=∠BOE=30°,∵EC⊥ OB,ED⊥OA,∴OE=2DE,∠ ODF=∠OED=60°,∴∠ EDF=30°,∴DE=2EF,∴OE=4EF.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.23.( 2014 秋 ?花垣县期末)如图,在△ ABC中,∠ ABC=2∠C,BD 平分∠ ABC, DE⊥ AB(E 在 AB 之间), DF⊥BC,已知 BD=5, DE=3, CF=4,试求△ DFC的周长.考点:角平分线的性质.菁优网版权所有分析:根据角平分线的性质可证∠ ABD=∠ CBD,即可求得∠ CBD=∠ C,即 BD=CD,再根据角平分线上的点到角两边距离相等即可求得DE=DF,即可解题.解答:解:∵∠ ABC=2∠ C, BD 平分∠ ABC,∴∠ CBD=∠ C,∴ BD=CD,∵ BD 平分∠ ABC,∴ DE=DF,∴△ DFC的周长 =DF+CD+CF=DE+BD+CF=3+5+4=12.点评:本题考查了角平分线上点到角两边距离相等的性质,考查了角平分线平分角的性质,考查了三角形周长的计算,本题中求证DE=DF是解题的关键.24.( 2014 秋 ?大石桥市期末)如图,点 D 是△ ABC中 BC 边上的一点,且AB=AC=CD, AD=BD,求∠ BAC的度数.考点:等腰三角形的性质.菁优网版权所有分析:由AD=BD得∠ BAD=∠DBA,由AB=AC=CD得∠ CAD=∠CDA=2∠DBA,∠ DBA=∠C,从而可推出∠ BAC=3∠ DBA,根据三角形的内角和定理即可求得∠ DBA 的度数,从而不难求得∠ BAC的度数.解答:解:∵ AD=BD∴设∠ BAD=∠ DBA=x°,∵AB=AC=CD∴∠ CAD=∠ CDA=∠BAD+∠ DBA=2x°,∠ DBA=∠ C=x°,∴∠ BAC=3∠DBA=3x°,∵∠ ABC+∠ BAC+∠ C=180°∴5x=180°,∴∠ DBA=36°∴∠ BAC=3∠DBA=108°.点评:此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.25.( 2014 秋 ?安溪县期末)如图,在△ABC中, AB=AC,∠ A=α.( 1)直接写出∠ABC的大小(用含α的式子表示);( 2)以点 B 为圆心、 BC 长为半径画弧,分别交AC、 AB 于 D、 E 两点,并连接BD、 DE.若=30°,求∠ BDE 的度数.考点:等腰三角形的性质.菁优网版权所有分析:(1)根据三角形内角和定理和等腰三角形两底角相等的性质即可求得∠ABC 的大小;( 2)根据等腰三角形两底角相等求出∠BCD=∠ BDC,再求出∠ CBD,然后根据∠ABD=∠ ABC﹣∠ CBD,求得∠ ABD,再根据三角形内角和定理和等腰三角形两底角相等的性质计算即可得解.解答:解:(1)∠ ABC的大小为×( 180°﹣α) =90°﹣α;( 2)∵ AB=AC,∴∠ ABC=∠ C=90°﹣α =90°﹣× 30° =75°,由题意得: BC=BD=BE,由BC=BD得∠ BDC=∠ C=75°,∴∠ CBD=180°﹣ 75°﹣ 75° =30°,∴∠ ABD=∠ ABC﹣∠ CBD=75°﹣ 30° =45°,由 BD=BE得.点评:故∠ BDE 的度数是°.本题考查了三角形内角和定理、等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.26.( 2014 秋 ?静宁县校级期中)如图,在△ABC中, AD 平分∠ BAC,点 D 是BC 的中点,DE⊥ AB 于点E, DF⊥ AC 于点F.求证:( 1)∠ B=∠C.( 2)△ ABC 是等腰三角形.考等腰三角形的判定.菁优网版权所有点:分由条件可得出 DE=DF,可证明△ BDE≌△ CDF,可得出∠ B=∠ C,再由等腰三角形的析:判定可得出结论.解证明:( 1)∵ AD 平分∠ BAC, DE⊥AB 于点 E, DF⊥ AC 于点 F,答:∴ DE=DF,在Rt△ BDE和 Rt△CDF中,,∴Rt△ BDE≌ Rt△ CDF( HF),∴∠ B=∠C;( 2)由( 1)可得∠ B=∠C,∴△ ABC 为等腰三角形.点本题主要考查等腰三角形的判定及全等三角形的判定和性质,利用角平分线的性质评:得出 DE=DF是解题的关键.27.( 2012 秋 ?天津期末)如图, AB=AC,∠ C=67°, AB 的垂直平分线EF交 AC 于点 D,求∠ DBC的度数.考点:线段垂直平分线的性质;等腰三角形的性质.菁优网版权所有分析:求出∠ ABC,根据三角形内角和定理求出∠A,根据线段垂直平分线得出AD=BD,求出∠ ABD,即可求出答案.解答:解:∵ AB=AC,∠ C=67°,∴∠ ABC=∠ C=67°,∴∠ A=180°﹣ 67°﹣ 67° =46°,∵EF是 AB 的垂直平分线,∴ AD=BD,∴∠ A=∠ ABD=46°,∴∠ DBC=67°﹣ 46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ ABC和∠ ABD 的度数,题目比较好.28.( 2013 秋 ?高坪区校级期中)如图,△ABC 中, AB=AD=AE,DE=EC,∠ DAB=30°,求∠ C 的度数.考点:分析:解答:点评:等腰三角形的性质.菁优网版权所有首先根据AB=AD=AE, DE=EC,得到∠ B=∠ ADB,∠ ADE=∠ AED,∠ C=∠ EDC,从而得到∠ ADE=∠ AED=∠ C+∠ EDC=2∠ C,根据∠ DAB=30°,求得∠ B=∠ ADB=75°,利用∠ ADC=∠ ADE+∠ EDC=3∠ C=105°,求得∠ C 即可.解:∵ AB=AD=AE, DE=EC,∴∠ B=∠ ADB,∠ ADE=∠ AED,∠ C=∠ EDC,∴∠ ADE=∠ AED=∠ C+∠ EDC=2∠ C,∵∠ DAB=30°,∴∠ B=∠ ADB=75°,∴∠ ADC=∠ ADE+∠EDC=3∠ C=105°,∴∠ C=35°.本题考查了等腰三角形的性质,解题的关键是利用等腰三角形的性质求得有关角的度数.29.( 2012 春 ?扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.角对等边”,如图,在△ ABC 中,已知∠ ABC 和∠ ACB的平分线上交于点F,过点 F 作 BC 的平行线分别交于点 D、 E,请你用“等角对等边”的知识说明DE=BD+CE.”简称“等AB、 AC考等腰三角形的性质.菁优网版权所有点:专证明题.题:分由 DE∥ BC, BF平分∠ ABC,CF平分∠ ACB可知, DB=DF, CE=EF.便可得出结论.析:解证明:∵ BF 平分∠ ABC(已知), CF 平分∠ ACB(已知),答:∴∠ ABF=∠ CBF,∠ ACF=∠ FCB;又∵ DE 平行 BC(已知)∴∠ DFB=∠ FBC(两直线平行,内错角相等),∠ EFC=∠FCB(两直线平行,内错角相等),∴∠ DBF=∠ DFB,∠ EFC=∠ECF(等量代换)∴DF=DB, EF=EC(等角对等边)∴DE=BD+CE.点此题考查学生对等腰三角形的判定与性质和平行线的性质的理解和掌握,主要利评:用等腰三角形两边相等.稍微有点难度是一道中档题.30.( 2011?龙岩质检)如图, AD 是△ ABC 的平分线, DE, DF 分别垂直 AB、 AC于 E、 F,连接 EF,求证:△ AEF是等腰三角形.考等腰三角形的判定;全等三角形的判定与性质.菁优网版权所有点:专证明题.题:分根据角平分线的性质知∠ BAD=∠ CAD;然后根据已知条件“ DE,DF 分别垂直 AB、析:AC 于 E、 F”得到∠ DEA=∠ DFA=90°;再加上公共边AD=AD,从而证明,△ ADE≌△ ADF;最后根据全等三角形的对应边相等证明△AEF的两边相等,所以△ AEF是等腰三角形.解证明:∵ AD 是△ ABC的平分线,答:∴∠ BAD=∠CAD,(3 分)又∵ DE, DF 分别垂直 AB、 AC 于 E, F∴∠ DEA=∠ DFA=90°( 6 分)又∵ AD=AD,∴△ ADE≌△ ADF.( 8 分)∴ AE=AF,即△ AEF是等腰三角形( 10 分)点评:本题综合考查了等腰三角形的判定、全等三角形的判定与性质.解答此题时,根据全等三角形的判定定理 ASA判定△ ADE≌△ ADF.。
专练06 三角形中有关角的计算与证明-2021年中考数学压轴题专项高分突破训练(全国通用)(解析版)
专练06三角形中有关角的计算与证明1.已知△ABC ,点P 为其内部一点,连结PA 、PB 、PC ,在△PAB ,△PBC 和△PAC 中,如果存在一个三角形,其内角与△ABC 的三个内角分别相等,那么就称点P 为△ABC 的等角点.(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写“真”;反之,则写“假”. ①内角分别为30°、60°、90°的三角形存在等角点;________命题; ②任意的三角形都存在等角点;________命题.(2)如图 ①,点P 是△ABC 的等角点,若∠BAC=∠PBC ,探究图 ①中∠BPC ,∠ABC ,∠ACP 之间的数量关系,并说明理由;(3)如图②,在△ABC 中,∠BAC<∠ABC<∠ACB ,若△ABC 的三个内角的角平分线的交点P 是该三角形的等角点,直接写出△ABC 三个内角的度数.【答案】 (1) ①内角分别为30°、60°、90°的三角形存在等角点,是真命题; ②任意的三角形都存在等角点是假命题,如等边三角形不存在等角点; 故答案为:1、真,2、假.(2)解:如图①,∵△ABC 中, ∠BPC=∠ABP+∠BAC+∠ACP , ∠BAC=∠PBC ,∴∠BPC=∠ABP+∠PBC+∠ACP =∠ABC+∠ACP. (3)∵P 为三角形内角平分线的交点, ∵∠PBC=12∠ABC ,∠PCB=12∠ACB , ∵P 为△ABC 的等角点,∴∠PBC=∠A,∴∠ABC=2∠PBC=2∠A,∴∠BCP=∠ABC=2∠A,∴∠ACB=2∠BCP=4∠A,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠A+4∠A=180°,∴∠A=180°7,∴该三角形的三个内角的度数分别为:180°7,360°7,720°7.故答案为:180°7,360°7,720°7.2.将一块直角三角板XYZ放置在AABC上,使得该三角板的两条直角边XY,XZ恰好分别经过点B,C.(1)如图1,当∠A=45°时,∠ABC+∠ACB=________度,∠ABX+∠ACX=________度.(2)如图2,改变直角三角板XYZ的位置,使该三角板的两条直角边XY,XZ仍然分别经过点B,C,那么∠ABX+∠ACX的大小是否发生变化?若变化,请举例说明,若没有变化,请探究∠ABX+∠ACX与∠A的关系.【答案】(1)在三角形ABC中,∵∠A=45°∴∠ABC+∠ACB=180°-45°=135°∵∠A=45°∴∠ABC+∠ACB=180°-∠A=180°-45°=135°∵∠YXZ=90°∴∠XBC+∠XCB=90°∴∠ABX+∠ACX=135°-90°=45°(2)解:不变化,∠ABX+∠ACX =90°-∠A,理由如下∵∠x =90°,∴∠XBC+∠XCB =90°∵∠A+∠ABC+∠ACB =180°,∴∠ABX+∠ACX =(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=180°-∠A-90°=90°-∠A3.如图(1)如图,请证明∠A+∠B+∠C=180°(2)如图的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D(3)如图,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明(4)如图,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4﹣∠1﹣∠2不变,选择正确的并给予证明.【答案】(1)证明:如图1,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1,∠A=∠2,又∵∠BCD=∠BCA+∠2+∠1=180°,∴∠A+∠B+∠ACB=180°;(2)证明:如图2,在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(3)解:如图3,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+ 1(∠B+∠D);2(4)解:②∠3+∠4﹣∠1﹣∠2不变正确.理由如下:作PQ∥AB,如图4,∵AB∥CD,∴PQ∥CD,由AB∥PQ得∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,由PQ∥CD得∠5=∠2,∵∠APQ+∠5+∠1=90°,∴180°﹣∠3﹣∠4+∠2+∠1=90°,∴∠3+∠4﹣∠1﹣∠2=90°.4.如图,在△ABC中,AB=AC,D为直线BC上一动点(不与点B,C重合),在AD的右侧作△ACE,使得AE=AD,∠DAE=∠BAC,连接CE.(1)当D在线段BC上时,①求证:△BAD≌△CAE.②请判断点D在何处时,AC⊥DE,并说明理由.(2)当CE∥AB时,若△ABD中最小角为26°,求∠ADB的度数.【答案】(1)解:①∵∠DAE=∠BAC,∴∠DAB=∠EAC,在△ABD和△ACE中,{AB=AC∠DAB=∠EACAD=AE,∴△BAD≌△CAE(SAS);②如图,连接DE,若AC⊥DE,又∵AD=AE,∴AC平分∠DAE,∴∠DAB=∠CAE=∠CAD,∴AD平分∠CAB,又∵AB=AC,∴BD=CD,∴当点D在BC中点时,AC⊥DE;(2)解:当CE∥AB时,则有∠ABC=∠ACE=∠BAC=60°,∴△ABC为等边三角形,①如图1:此时∠BAD=26°,∴∠ADB=180°﹣∠BAD﹣∠B=180°﹣26°﹣60°=94°.②如图2,此时∠ADB=26°,③如图3,此时∠BAD=26°,∠ADB=60°﹣26°=34°.④如图4,此时∠ADB=26°.综上所述,满足条件的∠ADB的度数为26°或34°或94°5.如图,P是等腰△ABC内一点,AB=BC,连接PA,PB,PC.图1 图2(1)如图1,当∠ABC=90°时,PA=2,PB=4,PC=6,求∠APB.(2)如图2,当∠ABC=60°时,PA=3,PB=4,PC=5,求∠APB.【答案】(1)解:将△APB沿点B顺时针旋转90°,得到△BCP′,连接PP′,可得∠P′BP=90°,且BP=BP′=4,∴△BPP′为等腰直角三角形,∴∠BP′P=45°,PP′=4√2,在△PP′C中,PC2=62=36,P′C2+P′P2=22+(4√2)2=4+32=36,∴PC2=P′C2+P′P2,∴△PP′C为直角三角形且∠PP′C=90°,∴∠BP′C=90°,∴∠BP′C=∠BP′P+∠BP′C=45°+90°=135°,又∵旋转,∴∠APB=∠BP′C=135°(2)解:将△APB沿点B顺时针旋转60°得到△BCP′,连接PP′,可得:BP′=BP=4,∠PBP′=60°∴△PBP′为等边三角形,∴∠BP′P=60°,PP′=4,在△PP′C中,PP′2+P′C2=42+32=25,CP2=52=25,∴△PP′C为直角三角形且∠PP′C=90°,∴∠BP′C=∠BP′P+∠PP′C=60°+90°=150°,∴∠APB=∠BP′C=150°6.如图,CA=CB,CD=CE,∠ACB=∠DCE=40°,AD、BE交于点H,连接CH.(1)求证:ΔACD≌ΔBCE;(2)求证:CH 平分∠AHE;(3)求∠CHE的度数.【答案】(1)证明;∵∠ACB=∠DCE=40°,∴∠ACD=∠BCE,在△ACD和△BCE中,{CA=CB∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS)(2)证明;过点C作CM⊥AD于M,CN⊥BE于N,∵△ACD≌△BCE,∴∠CAM=∠CBN,在△ACM和△BCN中,{∠CAM=∠CBN∠AMC=∠BNC=90°AC=BC,∴△ACM≌△BCN(AAS),∴CM=CN,∴CH平分∠AHE(3)解;∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠AMC=∠AMC,∴∠AHB=∠ACB=40°,∴∠AHE=180°-40°=140°,∠AHE=70º∴∠CHE= 127.我们将内角互为对顶角的两个三角形称为“对顶三角形”.例如,在图1中,△AOB的内角∠AOB与△COD的内角∠COD互为对顶角,则△AOB与△COD为对顶三角形,根据三角形内角和定理知“对顶三角形”有如下性质:∠A+∠B=∠C+∠D.(1)性质理解:如图2,在“对顶三角形” △AOB与△COD中,∠EAO=∠C,∠D=2∠B,求证:∠EAB=∠B;(2)性质应用:①如图3,则∠A+∠B+∠C+∠D+∠E的度数为;②如图4,在△ABC中,点D,E分别在AB,AC上,∠BOD=∠A.若∠ECD比∠DBE大20∘,求∠BDO的度数;(3)拓展提高:如图5,已知BE,CD是△ABC的角平分线,且∠BDC和∠BEC的平分线DP和EP相交于点P,设∠A=α,求∠P的度数(用α表示∠P).【答案】(1)证明:据题意,得∠BAO+∠B=∠C+∠D,∴∠BAO−∠C=∠D−∠B,∵∠EAO=∠C,∠D=2∠B,∴∠BAE=∠B(2)解:①∠A+∠B+∠C+∠D+∠E=∠A+∠C+∠B+∠E+∠D=∠FGD+∠GFD+∠D=180°;故答案为:180°;②由题意得∠ECD−∠DBE=20°,由(1)得∠EBD+∠BDO=∠ECO+∠OEC,∴∠BDO−∠OEC=20°,∵∠BOD=∠A,∴∠A+∠DOE=180°,故∠ADO+∠AEO=180°,∵∠AEO+∠CEO=∠BDO+∠ADO=180°,∴∠BDO=∠AEO,∴∠BDO+∠CEO=180°,∵∠BDO−∠OEC=20°,∴∠BDO=100°;(3)解:∠P=180∘−α4,理由如下:∵∠BDC和∠BEC的平分线DP和EP相交于点P,∴∠BDP=∠CDP,∠BEP=∠CEP,由(1)得∠BDP+∠DBE=∠BEP+∠P①,∠CDP+∠P=∠CEP+∠DCE②,由①−②得∠DBE−∠P=∠P−∠DCE,∴∠P=12(∠DBE+∠DCE),即∠P=14(∠ABC+∠ACB),∴∠P=14(180°−∠A)=180°−α48.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=________;如图2,若∠ACD=90°,则∠AFB=________;如图3,若∠ACD=120°,则∠AFB=________;(2)如图4,若∠ACD=α,则∠AFB=________(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.【答案】(1)如图1,CA=CD,∠ACD=60°,所以△ACD是等边三角形.∵CB=CE,∠ACD=∠BCE=60°,所以△ECB是等边三角形.∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,又∵∠ACD=∠BCE,∴∠ACE=∠BCD.∵AC=DC,CE=BC,∴△ACE≌△DCB.∴∠EAC=∠BDC.∠AFB是△ADF的外角.∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,∴△ACE≌△DCB.∴∠AEC=∠DBC,又∵∠FDE=∠CDB,∠DCB=90°,∴∠EFD=90°.∴∠AFB=90°.如图3,∵∠ACD=∠BCE,∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.∴∠ACE=∠DCB.又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴∠EAC=∠BDC.∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣(180﹣∠ACD)=120°,∴∠FAB+∠FBA=120°.∴∠AFB=60°.故答案为:120°,90°,60°;(2)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE.∴∠ACE=∠DCB.∴∠CAE=∠CDB.∴∠DFA=∠ACD.∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.故答案为:180°﹣α;(3)解:∠AFB=180°﹣α;证明:∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中{AC=DC∠ACE=∠DCBCE=CB,则△ACE≌△DCB(SAS).则∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.∠AFB=180°﹣∠EFB=180°﹣α.9.己知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足PQPC=AQAB(如图1所示)(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;(2)在图1中,联结AP,当AD= 32,且点Q在线段AB上时,设点B、Q之间的距离为x,S△APQS△PBC=y,其中S△APQ表示S△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数关系式,并写出函数定义域;(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小【答案】(1)解:∵AD∥BC,∠ABC=90°,∴∠BAD=∠ABC=90°,当AD=2时,AD=AB,∴∠D=∠ABD=45°,∴∠PQC=∠D=45°,∵PQPC =AQAB,∴PQ=PC,∴∠C=∠PQC=45°,∴∠BPC=90°,∴PC=BC·sin45°=3√22(2)解:如图,作PE⊥AB于E,PF⊥BC于F,∵∠ABC=90°, ∴四边形EBFP 是矩形, ∴PF=BE , 又∵∠BAD=90°, ∴PE ∥AD ,∴Rt △BEP ∽Rt △BAD , ∴BE BA =EPAD , ∴BEEP =BAAD =232=43, 设BE=4k ,则PE=3k , ∴PF=BE=4k ,∵BQ=x ,AQ=AB-BQ=2-x ,∴S △APQ =12AQ·PE=12(2-x )·3k ,S △PBC =12BC·PF=12×3×4k=6k , ∵S △APQS △PBC=y ,∴12(2−x )·3k 6k =y ,∴y=2−x 4(0≤x ≤78);(3)解:∵Rt △BEP ∽Rt △BAD , ∴BE BA =EPAD ,∴BEEP =BAAD ∴PFEP =BAAD , ∵PCPQ =BAAD , ∴PFEP =PCPQ , ∴Rt △PCF ∽Rt △PQE , ∴∠FPC=∠EPQ ,∵∠EPQ+∠QPF=∠EPF=90°,∴∠FPC+∠QPF=90°,即∠QPC=90°。
中考数学三角形证明题(中等难度偏上)含答案
∴ΔADO≌ΔCDB (SAS)
∴AO=BC,∠OAD=∠BCD(全等三角形对应边、对应角相等)
∵∠AOD=∠COE(对顶角相等)∴∠COE+∠OCE=90o∴AO⊥BC
5.过D点作DF∥AC交BE于F点∵△ABC为等边三角形∴△BFD为等边三角形
F=BF-AF即EF=AB∴EF=AC
在△ACE和△DFE中,
∴△AEC≌△FED(SAS)∴EC=ED(全等三角形对应边相等)
7.8都省略
∴BF=FC(全等三角形对应边相等)
2.先证ΔABF≌ΔCDE(SAS),得到∠C=∠A,AB∥CD(内错角相等两直线平行)
3.提示:取CD中点F
∴BF=AC,且BF∥AC∴∠ACB=∠2又∵AB=AC∴∠ACB=∠3∴∠3=∠2在ΔCEB与ΔCFB中,
∴ΔCEB≌ΔCFB (SAS)∴CE=CF=CD(全等三角形对应边相等)即CD=2CE
全等三角形练习题
1.如图,已知AD=AE,AB=AC.求证:BF=FC
2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.
求证:AB∥CD
3:如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE
4:已知:如图,A、D、B三点在同一条直线上,ΔADC、ΔBDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
5如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE、DE.求证:EC=ED
6.在△ABC中,AD为BC边上的中线.求证:AD<(AB+AC)
7.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO平分∠BAC.求证:OB=OC.
初三数学解直角三角形试题
初三数学解直角三角形试题1.一公路大桥引桥长100米,已知引桥的坡度i=1:3,那么引桥的铅直高度为米(结果保留根号).【答案】10.【解析】根据坡度的定义:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,求解即可.试题解析:如图:由题意得,桥长AB=10米,∵BC:AC=1:3,∴设BC=x,AC=3x,则AB=解得:x=10【考点】解直角三角形的应用-坡度坡角问题.2.如图,若△ABC和△DEF的面积分别为、,则A.B.C.D.【答案】D.【解析】在两个图形中分别作BC、EF边上的高,求出、,比较即可.如图,过点A、D分别作AG⊥BC,DH⊥EF,垂足分别为G、H,在Rt△ABG中,AG="ABsinB=5×sin" 40°="5sin" 40°,在Rt△DHE中,∠DEH=180°﹣130°=50°,DH=DEsin∠DEH="5sin" 40°,∴AG=DH.∵BC=8,EF=5,∴.故选D.【考点】解直角三角形.3.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.B.C.D.【答案】D.【解析】∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,,∴.故选D.【考点】1.直角三角形两锐角的关系;2.锐角三角函数定义.4.如图,从热气球P上测得两建筑物A、B的底部的俯角分别为45°和30°,如果A、B两建筑物的距离为60米,P点在地面上的正投影恰好落在线段AB上,求热气球P的高度.(结果保留根号)【答案】(30-30)米.【解析】过P作AB的垂线,设垂足为G.分别在Rt△APG和Rt△BPG中,用PG表示出AG、BG的长,进而由AB=AG+BG=90求得PC的长,即热气球P的高度.试题解析:过点P作PG⊥AB与点G,设PG=x,则AG=PG=x,BG=x,∴x+x=60,∴x=30-30.答:热气球P的高度是(30-30)米.考点: 解直角三角形的应用----仰角俯角问题.5.如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度,同时他测得自己的影长NH﹦336cm,而他的身长MN为168cm,求铁塔的高度.【答案】AB=4.1米 .【解析】作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.利用勾股定理和相似三角形的性质求出DF,FE,从而得到BE的长,再用相似三角形的性质求出AB即可.试题解析:过点C作CE⊥BD于点E,延长AC交BD延长线于点F在Rt△CDE中,∴设CE="8x" ,DE="15x" ,则CD=17x∵DC=3.4米∴CE=1.6米,DE=3米在Rt△MNH中,tan∠MHN∴在Rt△ABF中,tan∠F tan∠MHN∴EF=3.2米即BF=2+3+3.2=8.2米∴在Rt△CEF中,tan∠F∴AB=4.1米答:铁塔的高度是4.1米.【考点】1.解直角三角形的应用-坡度坡角问题;2.相似三角形的应用.6. tan60°的值等于A.1B.C.D.2【答案】C.【解析】试题解析:根据tan60°=即可得出答案.故选C.考点: 特殊角的三角函数值.7.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD= cm.【答案】2.【解析】如图,过点B作BE⊥AC,垂足为点E,AB的垂直平分线交AB于点F.∵在△ABC中,AB=BC,∠B=1200,AC=6cm,∴∠A=300,AE=3cm。
2023年中考九年级数学高频考点拔高训练--相似三角形(含答案)
2023年中考九年级数学高频考点拔高训练--相似三角形1.如图所示,在矩形MBCN中,点A是边MN的中点,MB=6cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t< 10),解答下列问题:(1)求证:△AMB≌△ANC;(2)当t为何值时,△BDE的面积为7.5cm2;(3)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.2.如图是由边长为1的小正方形组成的网格,A、B、C、D四点均在正方形网格的格点上,线段AB、CD相交于点O.(1)请在网格图中画出两条线段(不添加另外的字母),构成一对相似三角形,并用“∽”符号写出这对相似三角形:(2)线段AO的长为.3.如图,在∽ABCD中,点E在BC边上,点F在DC的延长线上,且∽DAE=∽F.(1)求证:∽ABE∽∽ECF;(2)若AB=3,AD=7,BE=2,求FC的长.4.如图,已知:AD为∽ABC的中线,过B、C两点分别作AD所在直线的垂线段BE 和CF,E、F为垂足,过点E作EG∽AB交BC于点H,连结HF并延长交AB于点P。
(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形。
5.如图,在ΔABC中,点D、E分别在边AB、AC上,且AD=3,AC=6,AE=4,AB=8.(1)如果BC=7,求线段DE的长;(2)设ΔDEC的面积为a,求ΔBDC的面积(用a的代数式表示).6.如图,∽ABC内接于∽O且AB=AC,延长BC至点D,使CD=CA,连接AD交∽O于点E,连接BE、CE.(1)求证:∽ABE∽∽CDE;(2)填空:①当∽ABC的度数为时,四边形AOCE是菱形;②若AE =6,EF=4,DE的长为.7.如图,在直角坐标系中,直线y=−2x+4分别交x轴,y轴于点E,F,交直线y=x于点P,过线段OP上点A作x轴,y轴的平行线分别交y轴于点C,直线EF 于点B.(1)求点P的坐标.(2)当AC=AB时,求点P到线段AB的距离.8.如图,Rt∽ABC中,∽ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA 边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若∽BPQ与∽ABC相似,求t的值;(2)连接AQ,CP,若AQ∽CP,求t的值.9.已知:四边形ABCD内接于⊙O,对角线AC平分∽BAD.(1)如图1,求证:BC=CD;(2)如图1,若AD+AB= √2AC,四边形ABCD的面积为8,求AC的值;(3)如图2,连接BD,把∽ABD沿着BD翻折得到∽FBD,延长CF、AD交于点G, 若CG//BD, AD=2,求CG的长.10.如图,(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在∽ABC 中,点O 在线段BC 上,∽BAO =20°,∽OAC =80°,AO = 6√3 ,BO :CO =1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD∽AC ,交AO 的延长线于点D ,通过构造∽ABD 就可以解决问题(如图2),请回答:∽ADB = °,AB = . (2)请参考以上思路解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于点O ,AC∽AD ,AO =6 √3 ,∽ABC =∽ACB =75°,BO :OD =1:3,求DC 的长.11.如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∽BOD ,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F .(1)求证:OC∽AD ;(2)如图2,若DE =DF ,求AE AF的值; (3)当四边形ABCD 的周长取最大值时,求DE DF的值. 12.如图,在Rt∽ACB 中,∽C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t(s)(0<t <2),解答下列问题:(1)当t 为何值时,点A 在PQ 垂直平分线上?(2)当t为何值时,∽APQ为直角三角形?(3)是否存在某一时刻t,使线段PQ恰好把Rt∽ACB的面积平分?若存在,求出此时t的值;若不存在,说明理由.13.如图,在直角坐标系中,直线AB分别与x轴、y轴交于B、A两点,OA、OB的长是关于x的一元二次方程x2﹣12x+32=0的两个实数根,且OB>OA,以OA为一边作如图所示的正方形AOCD,CD交AB于点P.(1)求直线AB的解析式;(2)在x轴上是否存在一点Q,使以P、C、Q为顶点的三角形与∽ADP相似?若存在,求点Q坐标;否则,说明理由;(3)设N是平面内一动点,在y轴上是否存在点M,使得以A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点M的坐标;否则,请说明理由.14.如图,AC、BD为∽O的直径,且AC∽BD,P、Q分别为半径OB、OA(不与端点重合)上的动点,直线PQ交∽O于M、N.(1)比较大小:cos∽OPQ sin∽OQP;(2)请你判断MP−NP与OP·cos∽OPQ之间的数量关系,并给出证明;(3)当∽APO=60°时,设MQ=m·MP,NQ=n·NP.①求m+n的值;②以OD为边在OD上方构造矩形ODKS,已知OD=1,OS=√3−1,在Q点的移动过程中,1+√m+nMPMK−cMK恒为非负数,请直接写出实数c的最大值.15.如图,AB是∽O的直径,点C在∽O上,CD与∽O相切,AD∽BC,连结OD,AC.(1)求证:∽B=∽DCA;,OD= 3√6,求∽O的半径长.(2)若tanB= √5216.如图,∽O的弦AC与BD互相垂直于点E,OA交ED于点F.(1)如图(1),求证:∽BAC=∽OAD;(2)如图(2),当AC=CD时,求证:AB=BF;(3)如图(3),在(2)的条件下,点P,Q在CD上,点P为CQ中点,∽POQ=∽OFD,DF=EC,DQ=6,求AB的长.答案解析部分1.【答案】(1)证明:∵四边形MBCN是矩形,∴∠M=∠N=90°,MB=NC又∵点A是边MN的中点,∴AM=AN∴△AMB≌△ANC(2)解:分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G,如图:∴DF//AG,DFAG=BDAB∵△AMB≌△ANC∴AB=AC,∵MB=6 ,BC=16∴BG=8 , ∴AG=6∴∴AB=AC=10∵AD=BE=t ,∴BD=10−t ,∴DF6=10−t10解得DF=35(10−t)∵S△BDE=12BE⋅DF=7.5∴35(10−t)⋅t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(3)解:存在.理由如下:①当BE=DE时,△BDE∽△BCA,BE AB=BDBC即t10=10−t16,解得t=5013,②当BD=DE时,△BDE∽△BAC,BE BC=BDAB即t16=10−t10,解得 t =8013. 答:存在时间t 为 5013或 8013 秒时,使得 △BDE 与 △ABC 相似. 2.【答案】(1)解:如图,连接AC ,BD ,由格点图可得BD∽AC ,∴△AOC ∽△BOD ,(2)3√223.【答案】(1)证明:如图.∵四边形ABCD 是平行四边形,∴AB∽CD ,AD∽BC.∴∽B=∽ECF ,∽DAE=∽AEB.又∵∽DAE=∽F ,∴∽AEB=∽F.∴∽ABE∽∽ECF.(2)解:∵∽ABE∽∽ECF ,∴AB EC =BE CF∵四边形ABCD 是平行四边形,∴BC=AD=8.∴EC=BC − BE=8 − 2="6."∴56=2CF. ∴CF =125. 4.【答案】(1)证明:∵AD 是∽ABC 的中线,∴BD =CD , ∵∽FDC 和∽EDB 是对顶角,∴∽FDC =∽EDB ,又∵BE∽AE ,CF∽AE ,∴∽DFC =∽DEB =90°, ∴∽BDE∽∽CDF (AAS ),∴DE=DF(2)解:设 BH =11x,HC =5x 则 BD =CD =12BC =8x DH =3x,HC =5x①∵EH∽AB∴∽EDH∽∽ADB ∴DE DA =DH DB =38∵DE =DF ∴DF DA =38②∵DF DA =38∴DF FA =35∵DH HC =35∴FH∽AC ∴PH∽AC ∵EG∽AB ∴四边形HGAP 为平行四边形 5.【答案】(1)解:∵AD =3,AC =6,AE =4,AB =8 , ∴AD AC =AE AB =12, ∵∽A=∽A,∴∽ADE∽ACB,∴DE BC =12, ∵BC =7∴DE= 72(2)解:∵AE EC =46−4=2 ∴S △ADE S △EDC=AE EC =2 , ∵S △DEC =a ,∴S △ADE =2a∵∽ADE∽ACB∴S △ADE S △ACB =(12)2 , ∴2a S △BDC +a+2a=14 , ∴S △BDE =5a .6.【答案】(1)证明:∵AB=AC ,CD=CA , ∴∽ABC=∽ACB ,AB=CD ,∵四边形ABCE 是圆内接四边形,∴∽ECD=∽BAE ,∽CED=∽ABC ,∵∽ABC=∽ACB=∽AEB ,∴∽CED=∽AEB ,∴∽ABE∽∽CDE (AAS );(2)60°;97.【答案】(1)解:解 {y =−2x +4y =x 得, {x =43y =43,∴ 点P 的坐标为 (43,43) ; (2)解: ∵ 直线 y =−2x +4 分别交x 轴,y 轴于点E ,F , ∴E(2,0) , F(0, 4),∴OE =2 , OF =4 , 延长BA 交x 轴于D ,设 A(a,a) ,∴AC =AB =a ,∵ 点A 在直线OP 上,∴AC =AD =a ,∴BD =2a ,∵BD//OF ,∴△EDB ∽ △EFO ,∴DE OE =BD OF, ∴2−a 2=2a 4 , ∴a =1 ,∴ 点P 到线段AB 的距离 =43−1=13 . 8.【答案】(1)解:根据勾股定理得:BA= √62+82 分两种情况讨论:①当∽BPQ∽∽BAC 时, BP BA =BQ BC , ∵BP=5t ,QC=4t ,AB=10,BC=8,∴5t 10=8−4t 8,解得,t=1, ②当∽BPQ∽∽BCA 时, BP BC =BQ BA, ∴5t 8=8−4t 10,解得,t= 3241 ; ∴t=1或 3241时,∽BPQ∽∽BCA (2)解:过P 作PM∽BC 于点M ,AQ ,CP 交于点N ,如图所示:则PB=5t ,PM=3t ,MC=8﹣4t ,∵∽NAC+∽NCA=90°,∽PCM+∽NCA=90°,∴∽NAC=∽PCM ,∵∽ACQ=∽PMC ,∴∽ACQ∽∽CMP ,∴AC CM =CQ MP, ∴68−4t =4t 3t ,解得t= 78.9.【答案】(1)证明:如图1,∵AC 平分∽BAD ,∴∽BAC =∽DAC ,∴BD =CD∴BC =CD .(2)解:如图所示,延长AB 至点E ,使BE =AD ,连接EC ,∵四边形BACD 为圆的内接四边形,∴∽ABC+∽ADC =180°,∴∽EBC =∽ADC ,∵BC =CD ,∴∽ACD∽∽ECB (SAS ),∴EC =AC ,∵AD+AB = √2 AC ,∴AE = √2 AC = √2 EC ,∴AC 2+EC 2=AE 2,∴∽ECA =90°,∴S ⊿ACE = 12AC 2 =8, ∴AC=4.(3)解:∵∽ADB =∽FDB ,CF∽BD ,∴∽DFG =∽BDF ,∽G =∽BDA ,∴∽DFG =∽G ,∴AD =DF =DG ,∵AD =2,∴DF =DG =2,∴D 为AG 的中点,∵∽DCG =∽BDC ,∽BDC =∽BAC =∽CAG ,∴∽DCG =∽CAG ,又∵∽G =∽CGA ,∴∽DCG∽∽ACG ,∴DG CG =CG AG ,即 2CG =CG 4, ∴CG =2 √2 .10.【答案】(1)80;8 √3(2)解:过点B 作BE∽AD 交AC 于点E ,如图3所示:∵AC∽AD ,BE∽AD ,∴∽DAC =∽BEA =90°,∵∽AOD =∽EOB ,∴∽AOD∽∽EOB ,∴BO OD =EO AO =BE DA∵BO :OD =1:3,∴EO AO =BE DA =13∵AO =6 √3 ,∴EO = 13AO =2 √3 , ∴AE =AO+EO =6 √3 +2 √3 =8 √3 ,∵∽ABC =∽ACB =75°,∴∽BAC =30°,AB =AC ,∴AB =2BE ,在Rt∽AEB 中,BE 2+AE 2=AB 2,即(8 √3 )2+BE 2=(2BE )2,解得:BE =8,∴AB =AC =16,AD =3BE =24,在Rt∽CAD 中,AC 2+AD 2=DC 2,即162+242=DC 2,解得:DC =8 √13 .11.【答案】(1)证明:∵AO =OD ,∴∽OAD =∽ADO ,∵OC 平分∽BOD ,∴∽DOC =∽COB ,又∵∽DOC+∽COB∽=∽OAD+∽ADO ,∴∽ADO =∽DOC ,∴CO∽AD ;(2)解: ∵OA=OB=OC ,∴∽ADB=90°,∴∽AOD 和∽ABD 是等腰直角三角形,∴AD= √2AO ,∴AD AO =√2,∵DE=DF ,∴∽DFE=∽AED ,∵∽DFE=∽AFO ,∴∽AFO=∽AED ,∵∽AOF=∽ADE=90°,∴∽ADE∽∽AOF ,∴AE AF =AD AO = √2;(3)解:如图2,∵OD =OB ,∽BOC =∽DOC ,∴∽BOC∽∽DOC (SAS ),∴BC =CD ,设BC =CD =x ,CG =m ,则OG =2﹣m ,∵OB 2﹣OG 2=BC 2﹣CG 2,∴4﹣(2﹣m )2=x 2﹣m 2,解得:m =14x 2 ,∴OG =2 −14x 2 ,∵OD =OB ,∽DOG =∽BOG ,∴G 为BD 的中点,又∵O 为AB 的中点,∴AD =2OG =4 −12x 2 ,∴四边形ABCD 的周长为2BC+AD+AB =2x+4 −12x 2+ 4 =−12x 2+ 2x+8=−12(x −2)2+ 10,∵−12< 0,∴x =2时,四边形ABCD 的周长有最大值为10.∴BC =2,∴∽BCO 为等边三角形,∴∽BOC =60°,∵OC∽AD ,∴∽DAC =∽COB =60°, ∴∽ADF =∽DOC =60°,∽DAE =30°,∴∽AFD =90°,∴DE DA =√33 ,DF =12DA ,∴DE DF =2√33 .12.【答案】(1)解: ∵ 在 Rt △ACB 中,∽C=90°,AC =4cm ,BC =3cm ,∴AB =√AC 2+BC 2=√42+32=5(cm),由题意得:BP =tcm ,AQ =2tcm ,∴AP =AB −BP =(5−t)cm ,当点A 在PQ 垂直平分线上时,则AP =AQ ,即 5−t =2t ,解得t =53, ∴当t =53时,点A 在PQ 垂直平分线上. (2)解:①当∠AQP =90°时,∠A =∠A ,∠AQP =∠C =90°,∴△AQP ∼△ACB ,∴AQ AC =AP AB ,即2t 4=5−t 5,解得t =107; ②当∠APQ =90°时,∠A =∠A ,∠APQ =∠C =90°,∴△APQ ∼△ACB ,∴AP AC =AQ AB ,即5−t 4=2t 5,解得t =2513, ∴综上所述,当t 为107或2513时,△APQ 为直角三角形. (3)解:如图,过点P 作PH ⊥AC 于H ,∴PH ∥BC ,∴△APH ∼△ABC ,∴PH BC =AP AB,即PH 3=5−t 5, 解得PH =3−35t , ∴y =12AQ ⋅PH =12×2t ⋅(3−35t),即y =−35t 2+3t(0<t <2), 若PQ 把△ABC 面积平分,则S ΔAPQ =12S ΔABC , ∴−35t 2+3t =12×12×3×4, 解得 t =5±√52,∵0<t <2,∴t=5−√52, ∴存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的面积平分,此时t 的值为5−√52. 13.【答案】(1)解:解方程 x 2−12x +32=0 可得x=4或x=8, ∵OA 、OB 的长是关于x 的一元二次方程 x 2−12x +32=0 的两个实数根,且OB>OA , ∴OA=4,OB=8, ∴A(0,4),B(−8,0), 设直线AB 解析式为y=kx+b , ∴{−8k +b =0b =4,,解得 {k =12b =4,,∴直线AB 解析式为 y =12x +4; (2)解:∵四边形AOCD 为正方形, ∴AD=CD=OC=OA=4, ∴C(−4,0), 在y =12x +4 中,令x=−4,可得y=2, ∴PC=PD=2, 设Q(x ,0),则CQ=|x+4|, ∵以P 、C 、Q 为顶点的三角形与∽ADP 相似, ∴有∽PCQ∽∽PDA 和∽PCQ∽∽ADP 两种情况, ①当∽PCQ∽∽PDA 时,则有 PC PD =CQ AD ,即 22=|x+4|4,解得x=0或x=−8,此时Q 点坐标为(−8,0)或(0,0); ②当∽PCQ∽∽ADP 时,则有 PC AD =CQ PD , 即 24=|x+4|2,解得x=−3或x=−5,此时Q 点坐标为(−3,0)或(−5,0); 综上可知存在满足条件的点Q ,其坐标为(−8,0)或(0,0)或(−3,0)或(−5,0);(3)解:由题意可设M(0,y), ∵A(0,4),C(−4,0), ∴AC =4√2, 当AC 为菱形的一边时,则有AC=AM ,即|y−4|= 4√2 ,解得y=4± 4√2 ,此时M 点坐标为 (0,4+4√2) 或 (0,4−4√2); 当AC 为菱形的对角线时,则有MA=MC ,由题意可知此时M 点即为O 点,此时M 点坐标为(0,0); 综上可知存在满足条件的M 点,其坐标为 (0,4+4√2) 或 (0,4−4√2) 或(0,0).14.【答案】(1)=(2)解:过点O 作OG ⊥MN ,交MN 于点G∴GM =GN∴MP −NP =(GM +GP)−(GN −GP)=2GP∵OG ⊥MN∴OP ⋅cos∠OPQ =OP ×GP OP=GP ∴MP −NP =2OP ⋅cos∠OPQ ;(3)解:点O 作OG ⊥MN ,交MN 于点G ,连接BN 、MD ,AP∵MQ =m·MP ,NQ=n·NP∴m +n=MQ MP +NQ NP=MP −PQ MP +NP −PQ NP=2+PQ(1NP −1MP) =2+PQ ×MP −NP NP ×MP根据(2)的结论,得MP −NP =2GP∴m +n =2+2PQ×GP NP×MP∵∠GPO =∠OPQ ,∠PGO =∠POQ =90°∴△PGO ∽△POQ∴GP OP =OP PQ ,即GP ×PQ =OP 2∵∠BNM =∠BDM ,∠BPN =∠MPD∴△BNP ∽△MDP∴NP DP =BP MP∵OB =OD =OA∴NP ×MP =BP ×DP =(OB −OP)(OD +OP)=OB 2−OP 2∵∽APO=60°∴tan∠APO=OAOP=√3∴OA=√3OP∴OB=√3OP∴NP×MP=OB2−OP2=2OP2∴m+n=2+2×PQ×GPNP×MP=2+2×OP22OP2=3;②实数c的最大值为2√2.15.【答案】(1)证明:连结OC.∵CD与∽O相切,OC为半径,∴∽2+∽3=90°,∵AB是∽O的直径,∴∽ACB=90°,∴∽1+∽B=90°,又∵OA=OC,∴∽1=∽2,∴∽3=∽B,即∽B=∽DCA.(2)解:∵AD∽BC,AB是∽O的直径,∴∽DAC=∽ACB=90°,∵∽1+∽B=90°,∽2+∽3=90°,∽1=∽2,∴∽B=∽3,∴∽ABC∽∽DCA,∴ACDC=BC AB,∵∽B的正切值为√52,设AC= √5k,BC=2k,则AB=3k,∴√5k DC=23,∴DC=3√5k2,在∽ODC 中,OD= 3√6 ,OC= 12 AB= 32k , ∴(3√5k 2)2+(32k)2=(3√6)2 , ∴解得:k=2,∴∽O 的半径长为3.16.【答案】(1)证明:如图1,延长AO 交∽O 于M ,连接DM ,则AM 是∽O 直径,∴∽ADM =90°,∴∽AMD+∽MAD =90°∵AC∽BD ,∴∽AEB =90°,∴∽BAC+∽ABD =90°,∵∽ABD =∽AMD ,∽AMD+∽MAD =90°,∴∽BAC =∽MAD ,即∽BAC =∽OAD ;(2)证明:如图2,由(1)可得,∽BAC =∽OAD ,∴∽BAC+∽CAO =∽OAD+∽CAO ,∴∽BAF =∽CAD ,∵∽ABD =∽ACD ,∴∽ABF∽∽ACD ,∴AB AC =BF CD, ∵AC =CD ,∴AB =BF ;(3)解:连接OC 、OD ,在线CA 上取Q 1,使得CQ 1=DQ =6,连接QQ 1,OQ 1,线段QQ 1和线段O 交于点P 1,再过圆心O 作OO 1∽AC 于点O 1,如图:由(2)知:∽ABF∽∽ACD ,∴∽EFA =∽CDA ,∵∽CDA =∽EAD∴∽EAD =∽EFA ,又∵∽AEF =∽DEA =90°,∴∽EFA∽∽EAD ,∴EF AE =AE DE, ∵AC =CD ,EC =DF ,∴AE =AC ﹣EC =CD ﹣EC =CD ﹣DF ,∵DE =EF+DF ,∴EF CD−DF =CD−DF EF+DF, ∴(CD ﹣DF )2=EF (EF+DF )①,∵∽CED =90°,∴CD 2=EC 2+DE 2=DF 2+(EF+DF )2,∴(CD ﹣DF )(CD+DF )=(EF+DF )2②, 将②式除以①式得CD+DF CD−DF =EF+DF EF, ∵CD−DF+2DF CD−DF =1+2DF CD−DF ,EF+DF EF =1+DF EF , ∴2DF CD−DF =DF EF ,∴2EF=CD﹣DF,∴EF=CD−DF2,∴DE=EF+DF=CD−DF2+DF=CD+DF2,∴CD2=CE2+DE2=DF2+(CD+DF2)2∴5DF2+2CD⋅DF﹣3CD2=0,∴(5DF﹣3CD)•(DF+CD)=0,∵DF+CD>0,∴5DF﹣3CD=0,∴DF=35CD,∴EF=CD−DF2=CD−35CD2=15CD,∴AE=AC−CE=CD−DF=CD−35CD=25CD,在Rt∽AEF中AF=√AE2+EF2=√(25CD)2+(15CD)2=√55CD,∵OO1∽AC,∴∽OO1A=∽FEA=90°,O1是AC的中点,∴EF∽OO1,O1A=12AC=12CD,∴AFOA=AEO1A,即√5OA CD=25CD12CD=45,∴OA=√54CD,∴OC=OD=OA=√54CD,∵∽POQ=∽OFD,∽OFD=∽EFA,∴∽POQ=∽EFA,∵∽EAF+∽EFA=90°,∽EAF=∽CAO,∴∽CAO+∽POQ=90°,∵AC=CD,∴∽CAO=∽OCA=∽CDO=∽OCD,∴∽OCD+∽POQ=90°,∴∽COP+∽DOQ+∽CDO=90°,∵OC=OD,∽OCA=∽CDO,CQ1=DQ=6,∴∽OCQ 1∽∽ODQ (SAS ),∴OQ 1=OQ ,∽DOQ =∽COQ 1,∴∽COP+∽COQ 1+∽CDO =90°,∴∽POQ 1+∽OCD =90°,而∽OCD+∽POQ =90°,∴∽POQ =∽POQ 1,∴P 1Q 1=P 1Q ,∵P 为CQ 中点,∴P 1P 是∽CQ 1Q 的中位线,∴P 1P∽CQ 1,∴∽POC =∽OCQ 1,∴∽POC =∽CAO =∽OCA =∽CDO =∽OCD , ∴∽OPC∽∽DOC ,∴CP OC =OC CD, ∵CD =CQ+DQ =2CP+6,∴CP =CD−62, 又OC =√54CD , ∴CD−62√54CD =√54CD CD , 解得CD =16, ∴AE =25CD =325,DE =DF +EF =35CD +15CD =645 ∵∽BAC =∽BDC ,∽AEB =∽DEC , ∴∽ABE∽∽DCE ,∴AB CD =AE DE ,即AB 16=325645, ∴AB =8.。
最新中考数学三角形全等证明题、解答题精选30题 附解题过程
中考数学三角形全等证明题解答题精选30题1.如图,在四边形ABCD中,对角线AC、BD相交于点O,已知∠ADC=∠BCD,AD=BC,求证:AO=BO.证明:在△ADC和△BCD中∵,∴△ADC≌△BCD(SAS).∴∠DAO=∠CBO.在△ADO和△BCO中,∵∴△ADO≌△BCO(AAS).∴AO=BO.2.某学校花台上有一块形如图所示的三角形ABC地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,今只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.解:①用量角器量出∠A和∠B的度数,用尺子量出边AB的长度,②根据这三个数据,按照原来的位置关系去加工地砖,∵在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′.故形状和大小完全相同.3.你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?解:数量关系:AA′=BB′;理由如下:∵O是AB′、A′B的中点,∴OA=OB′,OA′=OB,在△A′OA与△BOB′中,,∴△A′OA≌△BOB′(SAS),∴AA′=BB′.4.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.5.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).6.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°-90°)=45°,∠EAB=45°-30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°-90°-15°-45°=30°.7.已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.当∠A为多少时,点D恰为AB的中点?写出一个你认为适当的角度,并利用此角的大小证明D为AB的中点.解:当∠A=30°时,点D恰为AB的中点.证明:∵∠A=30°,∠C=90°,∴∠CBA=60°.又△BEC≌△BED,∴∠CBE=∠DBE=30°,且∠EDB=∠C=90°,∴∠EBA=∠A,∴BE=AE,又∠EDB=90°,即ED⊥AB.∴D是AB的中点.8.如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.解:(1)△ABB′,△AOC和△BB′C;(2)在▱ABCD中,AB=DC,∠ABC=∠D,由轴对称知AB′=AB,∠ABC=∠AB′C,∴AB′=CD,∠AB′O=∠D.在△AB′O和△CDO中,∴△AB′O≌△CDO(AAS).9.已知:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.证明:作OE⊥AB于E,OF⊥AC于F,∵AO平分∠BAC,∴OE=OF(角平分线上的点到角两边的距离相等).∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.10.两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.解:△EMC是等腰直角三角形.理由如下:连接MA.∵∠EAD=30°,∠BAC=60°,∴∠DAB=90°,∵△EDA≌△CAB,∴DA=AB,ED=AC,∴△DAB是等腰直角三角形.又∵M为BD的中点,∴∠MDA=∠MBA=45°,AM⊥BD(三线合一),AM=BD=MD,(直角三角形斜边上的中线等于斜边的一半)∴∠EDM=∠MAC=105°,在△MDE和△CAM中,ED=AC,∠MDE=∠CAM,MD=AM∴△MDE≌△MAC.∴∠DME=∠AMC,ME=MC,又∵∠DMA=90°,∴∠EMC=∠EMA+∠AMC=∠EMA+∠DME=∠DMA=90°.∴△MEC是等腰直角三角形.11.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.解:(1)猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BP=BQ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2∴△PQC是直角三角形.12.如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.解:(1)△DEF是等边三角形.证明如下:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,∴△ADF≌△BED≌△CFE,∴DF=DE=EF,即△DEF是等边三角形;(2)AD=BE=CF成立.证明如下:如图,∵△DEF是等边三角形,∴DE=EF=FD,∠FDE=∠DEF=∠EFD=60°,∴∠1+∠2=120°,又∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠2+∠3=120°,∴∠1=∠3,同理∠3=∠4,∴△ADF≌△BED≌△CFE,∴AD=BE=CF.13.如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F 是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.证明:(1)连接BE,∵DB=BC,点E是CD的中点,∴BE⊥CD.∵点F是Rt△ABE中斜边上的中点,∴EF=;(2)[方法一]在△ABG中,AF=BF,AG∥EF,∴EF是△ABG的中位线,∴BE=EG.在△ABE和△AGE中,AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE;[方法二]由(1)得,EF=AF,∴∠AEF=∠FAE.∵EF∥AG,∴∠AEF=∠EAG.∴∠EAF=∠EAG.∵AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE.14.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.(1)证明:连接AD,∵AB=AC,∠BAC=90°,D为BC的中点,∴AD⊥BC,BD=AD.∴∠B=∠DAC=45°又BE=AF,∴△BDE≌△ADF(SAS).∴ED=FD,∠BDE=∠ADF.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.∴△DEF为等腰直角三角形.(2)解:△DEF为等腰直角三角形.证明:若E,F分别是AB,CA延长线上的点,如图所示:连接AD,∵AB=AC,∴△ABC为等腰三角形,∵∠BAC=90°,D为BC的中点,∴AD=BD,AD⊥BC(三线合一),∴∠DAC=∠ABD=45°.∴∠DAF=∠DBE=135°.又AF=BE,∴△DAF≌△DBE(SAS).∴FD=ED,∠FDA=∠EDB.∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF仍为等腰直角三角形.15.如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴AC=BC,EC=DC.∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA,∠ACB=∠ECD=90°,∴∠ACE=∠BCD.在△ACE和△BCD中,∴△ACE≌△BCD(SAS).(2)解:又∠BAC=45°∴∠EAD=∠EAC+∠BAC=90°,即△EAD是直角三角形∴DE===13.16.如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACE=∠BCD=90°,在△ACE和△BCD,∴△ACE≌△BCD(SAS);(2)解:直线AE与BD互相垂直,理由为:证明:∵△ACE≌△BCD,∴∠EAC=∠DBC,又∵∠DBC+∠CDB=90°,∴∠EAC+∠CDB=90°,∴∠AFD=90°,∴AF⊥BD,即直线AE与BD互相垂直.17.已知如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠ADF=∠CBE.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=CB.∴∠DAF=∠BCE.∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.在△ADF和△CBE中,,∴△ADF≌△CBE.∴∠ADF=∠CBE.18.如图,四边形ABCD为平行四边形,AD=2,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:EF=DF;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求DE的长.(1)证明:过点E作EG∥CD交AF的延长线于点G,则∠GEF=∠CDF,∠G=∠DCF,在平行四边形ABCD中,AB∥CD,AB=CD,∴EG∥AB.∵BE∥AC,∴四边形ABEG是平行四边形.∴EG=AB=CD.∴△EGF≌△DCF(ASA).∴EF=DF.(2)解:∵∠ADC=60°,AC⊥DC,∴∠CAD=30°.∵AD=2,∴CD=1,∴AC=,又∵AC=2CF,∴CF=.在Rt△DCF中DF==,∴DE=2DF=.19.己知:如图,点P为平行四边形ABCD中CD边的延长线上一点,连接BP,交AD,于点E,探究:当PD与CD有什么数量关系时,△ABE≌△DPE.画出图形并证明△ABE≌△DPE.解:当PD=CD时,△ABE≌△DPE.画出图形如图:证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,∴∠BAE=∠PDE,又∵PD=CD,∴AB=DP,在△ABE和△DPE中∴△ABE≌△DPE中(AAS).20.如图,AC是平行四边形ABCD的对角线.(1)请按如下步骤在图中完成作图(保留作图痕迹):①分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q.②连接PQ,PQ分别与AB,AC,CD交于点E,O,F;(2)求证:AE=CF.解:(1)作图,(2)证明:根据作图知,PQ是AC的垂直平分线,∴AO=CO,且EF⊥AC.∵四边形ABCD是平行四边形∴∠OAE=∠OCF.∴△OAE≌△OCF(ASA).∴AE=CF.21.如图,已知平行四边形ABCD中,点E为BC边的中点,延长DE,AB相交于点F.求证:CD=BF.证明:∵四边形ABCD是平行四边形,∴DC∥AB,即DC∥AF.∴∠1=∠F,∠C=∠2.∵E为BC的中点,∴CE=BE.∴△DCE≌△FBE.∴CD=BF.22.如图,在平行四边形ABCD中,E、F分别是AB、CD上的点,且∠DAF=∠BCE.(1)求证:△DAF≌△BCE;(2)若∠ABC=60°,∠ECB=20°,∠ABC的平分线BN交AF与M,交AD于N,求∠AMN的度数.(1)证明:在平行四边形ABCD中,AD=BC,∠D=∠B又∠DAF=∠BCE∴△DAF≌△BCE(ASA).(2)解:四边形QCFM的内角和为360°,∵∠ABC=60°,∠ECB=20°,∴∠BEC=100°,∵△DAF≌△BCE,∴BE=DF,∴AE=CF,AB∥CD,∴四边形AECF为平行四边形,∴∠EAF=∠BEC=100°,∴∠AEC=∠MFC=80°,则∠QMF+∠MFC+∠FCQ+∠CQM=∠AMN+80°+100°+50°=360°∴∠AMN=130°.23.已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.(1)观察图形并找出一对全等三角形:△_______≌△_______,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?解:(1)△DOE≌△BOF;证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠EDO=∠FBO,∠E=∠F.又∵OD=OB,∴△DOE≌△BOF(AAS).①△BOM≌△DON.证明:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠MBO=∠NDO,∠BMO=∠DNO.又∵BO=DO,∴△BOM≌△DON(AAS).②△ABD≌△CDB.证明:∵四边形ABCD是平行四边形,∴AD=CB,AB=CD.又∵BD=DB,∴△ABD≌△CDB(SSS).(2)绕点O旋转180°后得到或以点O为中心作对称变换得到.24.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.证明:(1)∵AE=CF,∴AE+EF=CF+FE,即AF=CE.又ABCD是平行四边形,∴AD=CB,AD∥BC.∴∠DAF=∠BCE.在△ADF与△CBE中,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.25.如图,在平行四边形ABCD中,过A、C分别作对角线的垂线,垂足分别为E、F.(1)图中有哪几对三角形全等请指出来;(2)求证:AE=CF.(1)解:3对;△ABE≌△CDF,△ADE≌△CBF,△ABD≌△CDB.(2)证明:∵ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠ABD=∠CDB,又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90.在△ABE和△CDF中有∴△ABE≌△CDF.∴AE=CF.26.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD.(2)解:∵AE平分∠DAB(已知),∴∠DAE=∠BAE;又∵∠DAE=∠AEB,∴∠BAE=∠AEB=∠B.∴△ABE为等边三角形.∴∠BAE=60°.∵∠EAC=25°,∴∠BAC=85°.∵△ABC≌△EAD,∴∠AED=∠BAC=85°.27.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.线段DF与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.即DF=_______.(写出一条线段即可)解:AB.证明:因为AE=AD,∠AEB=∠DAF,∠ABE=∠DFA=90°,∴△EAB≌△ADF(AAS),∴DF=AB.28.如图,矩形ABCD中,M是CD的中点.求证:(1)△ADM≌△BCM;(2)∠MAB=∠MBA.证明:(1)∵M是CD的中点,∴DM=CM;∵有矩形ABCD,∴AD=BC∠D=∠C=90°;∴在△ADM和△BCM中,∴△ADM≌△BCM;(SAS)(2)∵△ADM≌△BCM,∴AM=BM,∴∠MAB=∠MBA.29.如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵∠1=∠2,∠3=∠4,∴△ABE≌△DAF.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°-(∠1+∠3)=90°,∴DF⊥AG,∴DF=AD=1,∴AF=,∵△ABE≌△DAF,∴AE=DF=1,∴EF=-1.故所求EF的长为-1.30.如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF和正方形BCMN连接FN,EC.求证:FN=EC.证明:在正方形ABEF中和正方形BCMN中,AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,∵AB=2BC,即BC=BN=AB,∴BN=BE,即N为BE的中点,∴EN=NB=BC,∴△FNE≌△EBC,∴FN=EC.。
2024年中考数学复习重难点题型训练—简单几何证明题(含答案解析)
2024年中考数学复习重难点题型训练—简单几何证明题(含答案解析)类型一三角形全等1.(2022·西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【答案】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD(SAS).2.(2022·湖南省益阳市)如图,在Rt△ABC中,∠B=90°,CD//AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.【答案】证明:∵DE⊥AC,∠B=90°,∴∠DEC =∠B =90°,∵CD//AB ,∴∠A =∠DCE ,在△CED 和△ABC 中,∠DCE =∠A CE =AB ∠DEC =∠B ,∴△CED≌△ABC(ASA).3.(2022·江苏省南通市)如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .(1)求证:∠A =∠C ;(2)求证:AB//CD .【答案】证明:(1)在△AOB 和△COD 中,OA =OC ∠AOB =∠COD OB =OD ,∴△AOB≌△COD(SAS),∴∠A =∠C ;(2)由(1)得∠A =∠C ,∴AB//CD .4.(2022·上海市)如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,AE 2=AQ ⋅AB .求证:(1)∠CAE =∠BAF ;(2)CF ⋅FQ =AF ⋅BQ .【答案】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF−EF=BE−EF,即CE=BF,在△ACE和△ABF中,AC=AB∠C=∠BCE=BF,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ⋅AB,AC=AB,∴AE AQ=AC AF,∴△ACE∽AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴CF BQ=AF FQ,即CF⋅FQ=AF⋅BQ.5.(2022·贵州省铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.【答案】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠B=∠D=∠ACE=90°,∴∠DCE+∠DEC=90°,∠BCA+∠DCE=90°,∴∠BCA=∠DEC,在△ABC和△CDE中,∠BCA=∠DEC∠B=∠DAB=CD,∴△ABC≌△CDE(AAS).6.(2022·广东省云浮市)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【答案】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,OP=OPPD=PE,∴Rt△OPD≌Rt△OPE(HL).7.(2022·四川省宜宾市)已知:如图,点A、D、C、F在同一直线上,AB//DE,∠B=∠E,BC=EF.求证:AD=CF.【答案】证明:∵AB//DE,∴∠A=∠EDF.在△ABC和△DEF中,∠A=∠EDF∠B=∠EBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC−DC=DF−DC,即:AD=CF.8.(2022·陕西省)如图,在△ABC中,点D在边BC上,CD=AB,DE//AB,∠DCE=∠A.求证:DE=BC.【答案】.证明:∵DE//AB,∴∠EDC=∠B,在△CDE和△ABC中,∠EDC=∠BCD=AB∠DCE=∠A,∴△CDE≌△ABC(ASA),∴DE=BC.9.(2022·湖南省衡阳市)如图,在△ABC中,AB=AC,D、E是BC边上的点,且BD=CE.求证:AD=AE.【答案】证明:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,AB=AC∠B=∠CBD=CE,∴△ABD≌△ACE(SAS),∴AD=AE.10.(2022·四川省乐山市)如图,B是线段AC的中点,AD//BE,BD//CE.求证:△ABD≌△BCE.【答案】证明:∵点B为线段AC的中点,∴AB=BC,∵AD//BE,∴∠A =∠EBC ,∵BD//CE ,∴∠C =∠DBA ,在△ABD 与△BCE 中,∠A =∠EBC AB =BC ∠DBA =∠C ,∴△ABD≌△BCE.(ASA).11.(2021·湖南衡阳市·中考真题)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DFBC EF =.求证:ABC DEF △≌△.【答案】见解析【分析】根据//,//AC DF BC EF ,可以得到,A FDE ABC DEF ∠=∠∠=∠,然后根据题目中的条件,利用ASA 证明△ABC ≌△DEF 即可.【详解】证明:点A ,B ,C ,D ,E 在一条直线上∵//,//AC DF BC EF∴,A FDE ABC DEF∠=∠∠=∠在ABC 与DEF 中CAB FDE AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DEF ASA △≌△【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目.12.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.【答案】证明见解析【分析】根据全等三角形的性质,通过证明ABO DCO △≌△,得OB OC =,结合等腰三角形的性质,即可得到答案.【详解】∵A D AOB DOC AB DC ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴ABO DCO △≌△(AAS ),∴OB OC =,∴OBC OCB ∠=∠.【点睛】本题考查了全等三角形、等腰三角形的知识;解题的关键是熟练掌握全等三角形、等腰三角形的性质,从而完成求解.13.(2021·四川泸州市·中考真题)如图,点D 在AB 上,点E 在AC 上,AB=AC ,∠B=∠C ,求证:BD=CE【答案】证明见详解.【分析】根据“ASA”证明△ABE ≌△ACD ,然后根据全等三角形的对应边相等即可得到结论.【详解】证明:在△ABE 和△ACD 中,∵A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABE ≌△ACD (ASA),∴AE=AD ,∴BD=AB–AD=AC-AE=CE .【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.14.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.【答案】见解析【分析】直接利用SSS 证明△ACD ≌△BDC ,即可证明.【详解】解:在△ACD 和△BDC 中,AD BC AC BD CD DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BDC (SSS ),∴∠DAC=∠CBD .【点睛】本题考查了全等三角形的判定和性质,解题的关键是根据题意灵活运用SSS 的方法.15.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点E 在AC 的延长线上,ED ⊥AB 于点D ,若BC =ED ,求证:CE =DB.【分析】由“AAS ”可证△ABC ≌△AED ,可得AE =AB ,AC =AD ,由线段的和差关系可得结论.【解答】证明:∵ED ⊥AB ,∴∠ADE =∠ACB =90°,∠A =∠A ,BC =DE ,∴△ABC ≌△AED (AAS ),∴AE =AB ,AC =AD ,∴CE =BD .16.(2020•南充)如图,点C 在线段BD 上,且AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,BC =DE .求证:AB =CD .【分析】证明△ABC≌△CDE(ASA),可得出结论.【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,∠ACB=∠CEDBC=DE∠ABC=∠CDE,∴△ABC≌△CDE(ASA),∴AB=CD.17.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.【解答】证明:在△ABE与△ACD中∠A=∠AAB=AC∠B=∠C,∴△ABE≌△ACD.∴AD =AE .∴BD =CE .18.(2020•铜仁市)如图,∠B =∠E ,BF =EC ,AC ∥DF .求证:△ABC ≌△DEF .【分析】首先利用平行线的性质得出∠ACB =∠DFE ,进而利用全等三角形的判定定理ASA ,进而得出答案.【解答】证明:∵AC ∥DF ,∴∠ACB =∠DFE ,∵BF =CE ,∴BC =EF ,在△ABC 和△DEF 中,∠B =∠E BC =EF ∠ACB =∠DFE ,∴△ABC ≌△DEF (ASA ).19.(2020•无锡)如图,已知AB ∥CD ,AB =CD ,BE =CF .求证:(1)△ABF ≌△DCE ;(2)AF ∥DE .【分析】(1)先由平行线的性质得∠B =∠C ,从而利用SAS 判定△ABF ≌△DCE ;(2)根据全等三角形的性质得∠AFB =∠DEC ,由等角的补角相等可得∠AFE =∠DEF ,再由平行线的判定可得结论.【解答】证明:(1)∵AB ∥CD ,∴∠B =∠C ,∵BE =CF ,∴BE ﹣EF =CF ﹣EF ,即BF =CE ,在△ABF 和△DCE 中,∵AB =CD ∠B =∠C BF =CE ,∴△ABF ≌△DCE (SAS );(2)∵△ABF ≌△DCE ,∴∠AFB =∠DEC ,∴∠AFE =∠DEF ,∴AF ∥DE .20.(2020•台州)如图,已知AB =AC ,AD =AE ,BD 和CE 相交于点O .(1)求证:△ABD ≌△ACE ;(2)判断△BOC 的形状,并说明理由.【分析】(1)由“SAS ”可证△ABD ≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC=∠OCB,可得BO=CO,即可得结论.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.21.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∠A=∠D∠B=∠CAE=DF,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=12×(180°﹣40°)=70°.类型二特殊四边形判定及性质22.(2022·广西壮族自治区河池市)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.【答案】(1)证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC和△DEF中,AB=DEBC=EFAC=DF,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE;(2)解:如图,四边形BFEC是平行四边形,理由如下:由(1)可知,∠ACB=∠DFE,∴BC//EF,又∵BC=EF,∴四边形BFEC是平行四边形.23.(2022·青海省西宁市)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的边长.【答案】(1)证明:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD ,在△ABE 和△ADF 中,∠AEB =∠AFD ∠B =∠D AB =AD ,∴△ABE≌△ADF(AAS);(2)解:设菱形的边长为x ,∵AB =CD =x ,CF =2,∴DF =x −2,∵△ABE≌△ADF ,∴BE =DF =x −2,在Rt △ABE 中,根据勾股定理得,AE 2+BE 2=AB 2,即42+(x −2)2=x 2,解得x =5,∴菱形的边长是5.24.(2022·江苏省无锡市)如图,已知四边形ABCD为矩形,AB=22,BC=4,点E在BC 上,CE=AE,将△ABC沿AC翻折到△AFC,连接EF.(1)求EF的长;(2)求sin∠CEF的值.【答案】解:(1)∵CE=AE,∴∠ECA=∠EAC,根据翻折可得:∠ECA=∠FCA,∠BAC=∠CAF,∵四边形ABCD是矩形,∴DA//CB,∴∠ECA=∠CAD,∴∠EAC=∠CAD,∴∠DAF=∠BAE,∵∠BAD=90°,∴∠EAF=90°,设CE=AE=x,则BE=4−x,在△BAE中,根据勾股定理可得:BA2+BE2=AE2,即:(22)2+(4−x)2= x2,解得:x=3,在Rt△EAF中,EF=AF2+AE2=17.(2)过点F作FG⊥BC交BC于点G,设CG=x,则GB=3−x,∵FC=4,FE=17,∴FG2=FC2−CG2=FE2−EG2,即:16−x2=17−(3−x)2,解得:x=43,∴FG=FC2−CG2∴sin∠CEF=FG EF=25.(2022·湖北省荆门市)如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB 沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【答案】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,∠ CFE=∠AFD∠D=∠E=90°AD=CE,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8−a,∵四边形ABCD是矩形,∴AB//CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8−a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8−a)2,∴a=64−x216,∴tan∠DAF=DF AD=64−x216x.26.(2022·四川省遂宁市)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF//AC交OE的延长线于点F,连接AF.(1)求证:△AOE≌△DFE;(2)判定四边形AODF的形状并说明理由.【答案】(1)证明:∵E是AD的中点,∴AE=DE,∵DF//AC,∴∠OAD=∠ADF,∵∠AEO=∠DEF,∴△AOE≌△DFE(ASA).(2)解:四边形AODF为矩形.理由:∵△AOE≌△DFE,∴AO=DF,∵DF//AC,∴四边形AODF为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,即∠AOD=90°,∴平行四边形AODF为矩形.27.(2022·湖北省)如图,已知E、F分别是▱ABCD的边BC,AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,且AD=BC,∴AF//EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)如图所示:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°−∠2,∠4=90°−∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=12BC=5.28.(2022·云南省)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE 与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.【答案】.(1)证明:∵四边形ABCD是平行四边形,∴BA//CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,∠BAE=∠FDEAE=DE∠BEA=∠FED,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF=AD2−DF2=52−32=4,∴S矩形ABDF=DF⋅AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=12BD⋅CD=12×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.29.(2022·广西壮族自治区河池市)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.【答案】(1)证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC和△DEF中,AB=DEBC=EFAC=DF,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE;(2)解:如图,四边形BFEC是平行四边形,理由如下:由(1)可知,∠ACB=∠DFE,∴BC//EF,又∵BC=EF,∴四边形BFEC是平行四边形.30.(2022·湖南省郴州市)如图,四边形ABCD是菱形,E,F是对角线AC上的两点,且AE=CF,连接BF,FD,DE,EB.求证:四边形DEBF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠DAB=∠DCB,AC平分∠DAB,AC平分∠DCB,∴∠DAC=∠BAC=12∠DAB,∠DCA=∠ACB=12∠DCB,∴∠DAC=∠BAC=∠DCA=∠ACB,∵AE=CF,∴△DAE≌△BAE≌△BCF≌△DCF(SAS),∴DE=BE=BF=DF,∴四边形DEBF是菱形.31.(2022·山东省聊城市)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C 作CF//AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF 是菱形,证明你的结论.【答案】(1)证明:∵CF//AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD//CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=12AB=AD,∴四边形ADCF是菱形.32.(2022·北京市)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【答案】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB//DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∵OA=OC,∴DB⊥EF,∴平行四边形EBFD是菱形.33.(2022·湖南省张家界市)如图,菱形ABCD的对角线AC、BD相交于点O,点E是CD的中点,连接OE,过点C作CF//BD交OE的延长线于点F,连接DF.(1)求证:△ODE≌△FCE;(2)试判断四边形ODFC的形状,并写出证明过程.【答案】.(1)证明:∵点E是CD的中点,∴CE=DE,又∵CF//BD∴∠ODE=∠FCE,在△ODE和△FCE中,∠ODE=∠FCEDE=CE∠DEO=∠CEF,∴△ODE≌△FCE(ASA);(2)解:四边形ODFC为矩形,证明如下:∵△ODE≌△FCE,∴OE=FE,又∵CE=DE,∴四边形ODFC为平行四边形,又∵四边形ABCD为菱形,∴AC⊥BD,即∠DOC=90°,∴四边形ODFC为矩形.34.(2022·四川省内江市)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【答案】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB//CD,∴∠ABD=∠CDB,在△ABE和△CDF中,AB=CD∠ABE=∠CDFBE=DF,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°−∠AEB=180°−∠CFD,即∠AEF=∠CFE,∴AE//CF,∵AE=CF,AE//CF,∴四边形AECF是平行四边形.35.(2022·湖南省长沙市)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=32,AO=2,求BD的长及四边形ABCD 的周长.【答案】(1)证明:∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD是菱形,∴AC⊥BD;(2)解:∵点E,F分别为AD,AO的中点,∴EF是△AOD的中位线,∴OD=2EF=3,由(1)可知,四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BD=2OD=6,在Rt△AOD中,由勾股定理得:AD=AO2+OD2=22+32=13,∴菱形ABCD的周长=4AD=41336.(2021·四川广安市·中考真题)如图,四边形ABCD是菱形,点E、F分别在边AB、AD=.连接CE、CF.的延长线上,且BE DF求证:CE CF=.【答案】见解析【分析】根据菱形的性质得到BC=CD,∠ADC=∠ABC,根据SAS证明△BEC≌△DFC,可得CE=CF.【详解】解:∵四边形ABCD 是菱形,∴BC=CD ,∠ADC=∠ABC ,∴∠CDF=∠CBE ,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△DFC (SAS ),∴CE=CF .【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.37.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC.(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =,求四边形AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE ∥AB ,DF ∥AC 判定四边形AFDE 是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD ,可得AE=DE ,即可证明;(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,=2,∴∴四边形AFDE的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.38.(2021·江苏连云港市·中考真题)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;,求证:四边形ACED是矩形.(2)如果AB AE【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED是平行四边形,∴四边形ACED是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.39.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.【答案】(1)见解析;(2)EF ⊥BD 或EB =ED ,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF ;(2)连接BF ,DE ,由AOE COF V V ≌,得到OE=OF ,又AO=CO ,所以四边形AECF 是平行四边形,则根据EF ⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA =OC ,BE ∥DF∴∠E =∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE =CF(2)当EF ⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF ,DE∵四边形ABCD 是平行四边形∴OB =OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF ⊥BD ,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.40(2020•黄冈)已知:如图,在▱ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD =CE .【分析】只要证明△AOD≌△EOC(ASA)即可解决问题;【解答】证明:∵O是CD的中点,∴OD=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∠D=∠OCEOD=OC∠AOD=∠EOC,∴△AOD≌△EOC(ASA),∴AD=CE.41.(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=32,求EF的长;(2)判断四边形AECF的形状,并说明理由.【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=32,进而得出EF的长;(2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.【解析】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=32,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.42.(2020•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,∠ADC=∠CBA,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC ⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,AD=CB∠ADE=∠CBFDE=BF,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.43.(2020•新疆)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.【分析】(1)根据平行四边形的性质,可以得到AD=CB,AD∥CB,从而可以得到∠DAE=∠BCF,再根据DE∥BF和等角的补角相等,从而可以得到∠AED=∠CFB,然后即可证明△ADE和△CBF全等,从而可以得到AE=CF;(2)根据(1)中的△ADE和△CBF全等,可以得到DE=BF,再根据DE∥BF,即可得到四边形EBFD是平行四边形,再根据BE=DE,即可得到四边形EBFD为菱形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF ,∵DE ∥BF ,∴∠DEF =∠BFE ,∴∠AED =∠CFB ,在△ADE 和△CBF 中,∠DAE =∠BCF ∠AED =∠CFB AD =CB ,∴△ADE ≌△CBF (AAS ),∴AE =CF ;(2)证明:由(1)知△ADE ≌△CBF ,则DE =BF ,又∵DE ∥BF ,∴四边形EBFD 是平行四边形,∵BE =DE ,∴四边形EBFD 为菱形.类型三与相似有关的证明44.(2021·广东中考真题)如图,边长为1的正方形ABCD 中,点E 为AD 的中点.连接BE ,将ABE △沿BE 折叠得到,FBE BF 交AC 于点G ,求CG 的长.【答案】CG =【分析】根据题意,延长BF 交CD 于H 连EH ,通过证明()Rt EDH Rt EFH HL ≌、DHE AEB ∽得到34CH =,再由HGC BGA ∽得到()34CG AC CG =-,进而即可求得CG 的长.【详解】解:延长BF 交CD 于H 连EH ,∵FBE 由ABE △沿BE 折叠得到,∴EA EF =,90EFB EAB ∠=∠=︒,∵E 为AD 中点,正方形ABCD 边长为1,∴12EA ED ==,∴12ED EF ==,∵四边形ABCD 是正方形,∴90D EFB EFH ∠=∠=∠=︒,在Rt EDH △和Rt EFH 中,ED EF EH EH=⎧⎨=⎩,∴()Rt EDH Rt EFH HL ≌,又∵AEB FEB ∠=∠,∴90DEH AEB ∠+∠=︒,∵90ABE AEB ∠+∠=︒,∴ABE DEH ∠=∠,∴DHE AEB ∽,∴12DH AE DE AB ==,∴14DH =,∴13144CH CD DH =-=-=,∵CH AB ∥,∴HGC BGA ∽,∴34CG CH AG AB ==,∴()3344CG AG AC CG ==-,∵1AB =,1CB =,90CBA ∠=︒,∴AC =,∴)34CG CG =,∴CG =.【点睛】本题主要考查了三角形全等的判定及性质、三角形相似的判定及性质以及正方形的性质,熟练掌握相关几何知识是解决本题的关键.45.(2021·湖北鄂州市·中考真题)如图,在ABCD 中,点E 、F 分别在边AD 、BC 上,(1)探究四边形BEDF的形状,并说明理由;(2)连接AC,分别交BE、DF于点G、H,连接BD交AC于点O.若23AGOG=,4AE=,求BC的长.【答案】(1)平行四边形,见解析;(2)16【分析】(1)利用平行四边形的判定定理,两组对边分别平行是平行四边形即可证明;(2)根据23AGOG=,找到边与边的等量关系,再利用三角形相似,建立等式进行求解即可.【详解】(1)四边形BEDF为平行四边形.理由如下:∵四边形ABCD为平行四边形∴ABC ADC∠=∠∵ABE CDF∠=∠∴EBF EDF∠=∠∵四边形ABCD为平行四边形∴//AD BC∴EDF DFC EBF∠=∠=∠∴//BE DF∵//AD BC∴四边形BEDF 为平行四边形(2)设2AG a =,∵23AG OG =∴3OG a =,5AO a=∵四边形ABCD 为平行四边形∴5AO CO a ==,10AC a =,8CG a=∵//AD BC,,AGE CGB AEG CBG EAG BCG ∠=∠∠=∠∠=∠,∴AGE CGB∆∆∽∴14AE AG BC GC ==∵4AE =∴16BC =.【点睛】本题考查了平行四边形的判定定理、相似三角形的判定定理,解题的关键是:熟练掌握相关定理,能进行相关的证明.46.(2021·北京中考真题)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明;(2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.【答案】(1)BAE CAD ∠=∠,BM BE MD =+,理由见详解;(2)DN EN =,理由见详解.【分析】(1)由题意及旋转的性质易得BAC EAD α∠=∠=,AE AD =,然后可证ABE ACD △≌△,进而问题可求解;(2)过点E 作EH ⊥AB ,垂足为点Q ,交AB 于点H ,由(1)可得ABE ACD ∠=∠,BE CD =,易证BH BE CD ==,进而可得HM DM =,然后可得DMN DHE ∽,最后根据相似三角形的性质可求证.【详解】(1)证明:∵BAC EAD α∠=∠=,∴BAE BAD BAD CAD α∠+∠=∠+∠=,∴BAE CAD ∠=∠,由旋转的性质可得AE AD =,∵AB AC =,∴()ABE ACD SAS ≌,∴BE CD =,∵点M 为BC 的中点,∴BM CM =,∵CM MD CD MD BE =+=+,∴BM BE MD =+;(2)证明:DN EN =,理由如下:过点E 作EH ⊥AB ,垂足为点Q ,交AB 于点H ,如图所示:∴90EQB HQB ∠=∠=︒,由(1)可得ABE ACD △≌△,∴ABE ACD ∠=∠,BE CD =,∵AB AC =,∴ABC C ABE ∠=∠=∠,∵BQ BQ =,∴()BQE BQH ASA ≌,∴BH BE CD ==,∵MB MC =,∴HM DM =,∵MN AB ⊥,∴//MN EH ,∴DMN DHE ∽,∴12DM DN DH DE ==,∴DN EN =.【点睛】本题主要考查全等三角形的性质与判定、相似三角形的性质与判定及等腰三角形的性质、旋转的性质,熟练掌握全等三角形的性质与判定、相似三角形的性质与判定及等腰三角形的性质、旋转的性质是解题的关键.47.(2020•长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=23,AD=4,求EC的长;(3)若AE﹣DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)设EC=x,证明△ABF∽△FCE,可得AB CF=BF EC,由此即可解决问题.(3)首先证明tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,解直角三角形求出a,b之间的关系即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由翻折可知,∠D=∠AFE=90°,∴∠AFB+∠EFC=90°,∠EFC+∠CEF=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)设EC=x,由翻折可知,AD=AF=4,∴BF=AF2−AB2=16−12=2,∴CF=BC﹣BF=2,∵△ABF∽△FCE,∴AB CF=BF EC,∴2322,∴x=∴EC=(3)∵△ABF∽△FCE,∴AF EF=AB CF,∴tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,∴AE=DE+2CE=x+2(a﹣x)=2a﹣x,∵AD=AF=b,DE=EF=x,∠B=∠C=∠D=90°,∴BF=b2−a2,CF=x2−(a−x)2=2ax−a2,∵AD2+DE2=AE2,∴b2+x2=(2a﹣x)2,∴a2﹣ax=14b2,∵△ABF∽△FCE,∴AB CF=BF EC,−(a−x)=b2−a2a−x,∴a2﹣ax=b2−a2•2ax−a2,∴14b2=b2−a2•整理得,16a4﹣24a2b2+9b4=0,∴(4a2﹣3b2)2=0,∴b a=233,∴tanα+tanβ=BC AB=48.(2020•怀化)如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD =CA,且∠D=30°.(1)求证:CD是⊙O的切线.(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:CG2=AE•BF.【分析】(1)连接OC,∠CAD=∠D=30°,由OC=OA,进而得到∠OCA=∠CAD=30°,由三角形外角定理得到∠COD=∠A+∠OCA=60°,在△OCD中由内角和定理可知∠OCD=90°即可证明;(2)证明AC是∠EAG的角平分线,CB是∠FCG的角平分线,得到CE=CG,CF=CG,再证明△AEC∽△CFB,对应线段成比例即可求解.【解答】(1)证明:连接OC,如右图所示,∵CA=CD,且∠D=30°,∴∠CAD=∠D=30°,∵OA=OC,∴∠CAD=∠ACO=30°,∴∠COD=∠CAD+∠ACO=30°+30°=60°,∴∠OCD=180°﹣∠D﹣∠COD=180°﹣30°﹣60°=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)∵∠COB=60°,且OC=OB,∴△OCB为等边三角形,∴∠CBG=60°,又∵CG⊥AD,∴∠CGB=90°,∴∠GCB=∠CGB﹣∠CBG=30°,又∵∠GCD=60°,∴CB是∠GCD的角平分线,∵BF⊥CD,BG⊥CG,∴BF=BG,又∵BC=BC,∴Rt△BCG≌Rt△BCF(HL),∴CF=CG.∵∠D=30°,AE⊥ED,∠E=90°,∴∠EAD=60°,又∵∠CAD=30°,∴AC是∠EAG的角平分线,∵CE⊥AE,CG⊥AB,∴CE=CG,∵∠E=∠BFC=90°,∠EAC=30°=∠BCF,∴△AEC∽△CFB,。
数学中考三角形知识加例题(含答案)
a60第4题图题图NPOA三角形复习★知识点1. 三角形的定义三角形是多边形中边数最少的一种。
它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
顺次相接组成的图形叫做三角形。
★知识点2.三角形的分类(1) 按角分类按角分类(2) 按边分类按边分类例:如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是(么这个三角形一定是( )A 、锐角三角形、锐角三角形B 、直角三角形、直角三角形C 、钝角三角形、钝角三角形D 、正三角形、正三角形 解题思路:根据角度来判断是哪一种三角形。
答案B 练习:如图,已知OA =a ,P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =600,填空:,填空:(1)当OP = 时,△AOP 为等边三角形;为等边三角形; (2)当OP = 时,△AOP 为直角三角形;为直角三角形; (3)当OP 满足满足 时,△AOP 为锐角三角形;为锐角三角形; (4)当OP 满足满足 时,△AOP 为钝角三角形。
为钝角三角形。
答案:(1)a ;(2)a 2或2a ;(3)2a <OP <a 2;(4)0<OP <2a或OP >a 2 ◆知识点3.三角形三条重要线段三角形中的主要线段有:三角形的角平分线、中线和高线。
这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。
并且对这三条线段必须明确三点:握它的定义的基础上,通过作图加以熟练掌握。
并且对这三条线段必须明确三点:三角形三角形锐角三角形锐角三角形 直角三角形直角三角形钝角三角形钝角三角形三角形三角形 不等边三角形不等边三角形等腰三角形等腰三角形底边和腰不相等的等腰三角等边三角形等边三角形2A 1A 3题图题图DC B A(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。
线、中线、高线均是线段,不是直线,也不是射线。
(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。
三角形常见模型综合(解析版) -- 中考数学专题训练
三角形常见模型综合中考直击本考点是中考五星高频考点,难度中等及中等偏上,在全国各地市的中考试卷中都有考查。
1(2022年鄂尔多斯中考试卷第14题)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD= 10,BE=132,则AB的长是 .【模型】倍长中线类模型:∥+中点→三角形全等【分析】延长BE交AD于点F,由“ASA”可证△BCE≌△FDE,可得DF=BC=5,BE=EF,由勾股定理可求AB的长.【解答】解:如图,延长BE交AD于点F,∵点E是DC的中点,∴DE=CE,∵AB⊥BC,AB⊥AD,∴AD∥BC,∴∠D=∠BCE,∵∠FED=∠BEC,∴△BCE≌△FDE(ASA),∴DF=BC=5,BE=EF,∴BF=2BE=13,在Rt△ABF中,由勾股定理可得AB=12.故答案为:12.点评:本题考查了全等三角形的判定和性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键。
教材方位三角形常见模型是解决中考数学问题的有效“捷径”,因为各个模型总结了不同类题的问题特征,并且给予了问题的解决方向,熟悉模型能有效提高做题速度,节约考试时间。
本考点是中考五星高频考点,难度中等或较大,个别还会以压轴题出现,在全国各地市的中考试卷中均有考查。
技法指引全等常见模型:①K型图:图形条件与结论辅助线注意事项条件:AC=BC,AC⊥BC 结论:分别过点A、B作ADK型图可以和等腰直角三角板结合,也可以和正方12△ADC ≌△CEB (AAS )⊥l ,BE ⊥l形结合K 型全等模型变形--三垂定理:如图,亦有△ADC ≌△CEB (AAS )总结:当一个直角放在一条直线上时,常通过构造K 型全等来证明边相等,或者边之间的数量关系②手拉手:模型名称几何模型图形特点具有性质全等型手拉手AD =AEAB =AC ∠BAC =∠DAE连结BD 、CE ①△ABD ≌△ACE②△AOB ∽△HOC ③旋转角相等(即∠1=∠2=∠3)④A 、B 、C 、D四点共圆⑤AH 平分∠BHE③倍长中线:基本图形辅助线条件与结论应用环境延长AD 到点E ,使DE =AD ,连接CE条件:△ABC ,AD =BD结论:△ABD ≌△CED (SAS )①倍长中线常和△三边关系结合,考察中线长的取值范围②倍长中线也可以和其他几何图形结合,考察几何图形的面积问题相似常见模型:①A 字图:变型当DE ⎳BC 时,△ADE ∾△ABC 性质:①AD AB =AE AC=DE BC ②AD DB =AE EC当∠ADE =∠ACB 时△ADE ∽△ACB 性质:AD AC =AE AB=DEBC3②8字图:AB CD =JA JC=JBJD 变型③一线三等角常用结论:1.易得△左∽△右;2.如图②,当DE =DF 时,△BDE ≌△CFD ;3.中点型“一线三等角”中,可得三个三角形两两相似如右图,若∠1=∠2=∠3,且BD =DC ,则△1∽△2∽△一般地:当动点E 运动到底边的中点时,CF 有最大值组合常见模型:①知2得1:②勾股定理面积应用:当AB ∥CD 时△AOB ∽△DOC 性质:AB CD =OA OD =OBOC当∠A =∠C 时△AJB ∽△CJD 性质:AB CD =JA JC=JBJD ①AD 为角平分线;②DE ∥AB ;③AE=ED 若以上3个条件中有2个成立,则剩余的那个就会成立。
初三相似三角形中等难度练习题
初三相似三角形中等难度练习题相似三角形是初中数学中的重要概念,它在几何形状的判断和计算中起到了重要的作用。
相似三角形的判定条件以及相关的运用方法,是初三学生必须掌握的知识点。
在这篇文章中,我们将介绍一些中等难度的相似三角形练习题,帮助同学们巩固和应用相关的知识。
题目1:已知三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E,AB/DE=3/4。
如果AC=12cm,DF=10cm,求BC的长度。
解析:根据相似三角形的判定条件,已知的角度相等、对应边比例相等,可以推出两个三角形相似。
根据题目中给出的比例关系,我们可以得到AB/DE=3/4,即BC/EF=3/4。
根据比例关系得BC/EF=3/4,可以通过交叉相乘的方法得到BC=9cm。
题目2:在平面直角坐标系中,已知点A(-2, 3),B(4, 1),C(2, -2),D(-4, -4)。
连接AC、BD,求证:△ABC和△ADB是相似三角形。
解析:首先,我们需要计算两个三角形的边长。
根据两点间距离公式可得AC=sqrt((2-(-2))^2+(-2-3)^2)=6,BD=sqrt((-4-4)^2+(-4-1)^2)=10。
然后,我们需要计算两个三角形对应边之比。
根据坐标系中的线段长度等于两点间距离,我们可以得到AC/BD=6/10=3/5。
而根据两个三角形对应的顶点关系可知,∠A=∠A,∠B=∠D。
综上所述,根据相似三角形的判定条件,可以证明△ABC和△ADB是相似三角形。
题目3:已知△ABC和△ADE是相似三角形,AB=6cm,AC=8cm,AD=10cm。
如果BC的长度为xcm,求x的值。
解析:根据相似三角形的性质,已知AB/AD=BC/DE,即6/10=x/8。
通过交叉相乘的方法得到10x=6*8,即10x=48。
最终可以得到x=4.8cm。
题目4:在△ABC中,AB=5cm,BC=7cm,AC=8cm,通过点B引一条直线DE与AC相交于点D,且使得△ABD和△EBC为相似三角形。
中考几何证明题及答案
108,AB【题4】已知:如图,点B、F、C、E在同一直线上,BF=CE,AB ∥ED,AC∥FD,证明AB=DE,AC=DF.【题5】已知:如图,△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.【题6】如图:△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足是F,过B作BD⊥BC交CF的延长线于D。
(1)求证:AE=CD;(2)若AC=12㎝,求BD的长.【题7】等边三角形CEF于菱形ABCD边长相等.求证:(1)∠AEF=∠AFE(2)角B的度数【题8】如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,求证:AB=AC+CD.【题9】如图,在三角形ABC 中,AD 是BC 边上的中线,E 是AD 的中点,BE 的延长线交AC 于点F. 求证:AF=21FC【题10】如图,将边长为1的正方形ABCD 绕点C 旋转到A'B'CD'的位置,若∠B'CB=30度,求AE 的长.【题11】AD,BE分别是等边△ABC中BC,AC上的高。
M,N分别在AD,BE 的延长线上,∠CBM=∠ACN.求证AM=BN.【题12】已知:如图,AD、BC相交于点O,OA=OD,OB=OC,点E、F在AD上,且AE=DF,∠ABE=∠DCF.求证:BE‖CF.【巩固练习】【练1】如图,已知BE垂直于AD,CF垂直于AD,且BE=CF. (1)请你判断AD是三角形ABC的中线还是角平分线?请证明你的结论。
(2)链接BF,CE,若四边形BFCE是菱形,则三角形ABC中应添加一个什么条件?【练2】在等腰直角三角形ABC中,O是斜边AC的中点,P是斜边上的一个动点,且PB=PD,DE垂直AC,垂足为E。
(1)求证:PE=BO(2)设AC=3a,AP=x,四边形PBDE的面积为y,求y与x之间的函数关系式。
【练3】已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD,BC的延长线叫MN与E、F求证∠DEN=∠F.【练4】如图,若C在直线OB上,试判断△CDM形状。
2020年九年级数学典型中考压轴题训练:《三角形综合》(含答案)
2020年九年级数学典型中考压轴题训练:《三角形综合》1.(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②∠DCE=120°;(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想:①∠DCE的度数;②线段BD、CD、DE之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结BE,若BE=10,BC=6,直接写出AE的长.证明:(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;(2)∠DCE=90°,BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴CE===8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,DE===,∵△ADE是等腰直角三角形,∴.2.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程.【探究发现】证明:(1)∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DP=DB;【数学思考】证明:(2)∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,在△CDP和△GDB中,,∴△CDP≌△GDB(ASA)∴DP=DB.3.在△ABC中,AB=AC,D、E分别在BC和AC上,AD与BE相交于点F.(1)如图1,若∠BAC=60°,BD=CE,求证:∠1=∠2;(2)如图2,在(1)的条件下,连接CF,若CF⊥BF,求证:BF=2AF;(3)如图3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC =2,求S△CDF的值.(1)证明:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=BC,∠ABC=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠1=∠2;(2)如图2,过B作BH⊥AD,垂足为H,∵△ABD≌△BCE,∴∠BAD=∠CBE,∵∠ABF+∠CBE=60°,∴∠BFD=∠ABF+∠BAD=60°,∴∠FBH=30°,∴BF=2FH,在△AHB和△BFC中,∴△AHB≌△BFC(AAS),∴BF=AH=AF+FH=2FH,∴AF=FH,∴BF=2AF;(3)如图3,过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,∵∠BFD=2∠CFD=90°,∴∠EFC=∠DFC=45°,∴CF是∠MFN的角平分线,∴CM=CN,∵∠BAC=∠BFD=90°,∴∠ABF=∠CAD,在△AFB和△CMA中,∴△AFB≌△CMA(AAS)∴BF=AM,AF=CM,∴AF=CN,∵∠FMC=90°,∠CFM=45°,∴△FMC为等腰直角三角形,∴FM=CM,∴BF=AM=AF+FM=2CM,∴S△BDF =2S△CDF,∵AF=CM,FM=CM,∴AF=FM,∴F是AM的中点,∴S△AFC =S△AMC=S△AFB,∵AF⊥BF,CN⊥BF,AF=CN,∴S△AFB =S△BFC,设S△CDF =x,则S△BDF=2x,∴S△AFB =S△BFC=3x∴S△AFC =S△AFB=x,则3x+3x+x=2,解得,x=,即S△CDF=.4.在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N.(1)如图①,若∠BAC=110°,则∠MAN=40 °,若△AMN的周长为9,则BC=9 .(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA 的延长线于点H.若AB=5,CB=12,求AH的长.解:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AB边的垂直平分线交BC边于点M,∴AM=BM,∴∠BAM=∠B,同理:NA=NC,∴∠NAC=∠C,∴∠MAN=110°﹣(∠BAM+∠NAC)=40°,∵△AMN的周长为9,∴MA+MN+NA=9,∴BC=MB+MN+NC=MA+MN+NA=9,故答案为:40;9;(2)如图②,连接AM、AN,∵∠BAC=135°,∴∠B+∠C=45°,∵点M在AB的垂直平分线上,∴AM=BM,∴∠BAM=∠B,同理AN=CN,∠CAN=∠C,∴∠BAM+∠CAN=45°,∴∠MAN=∠BAC﹣(∠BAM+∠CAN)=90°,∴AM2+AN2=MN2,∴BM2+CN2=MN2;(3)如图③,连接AP、CP,过点P作PE⊥BC于点E,∵BP平分∠ABC,PH⊥BA,PE⊥BC,∴PH=PE,∵点P在AC的垂直平分线上,∴AP=CP,在Rt△APH和Rt△CPE中,,∴Rt△APH≌Rt△CPE(HL),∴AH=CE,在△BPH和△BPE中,,∴△BPH≌△BPE(AAS)∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH,∴AH=(BC﹣AB)÷2=3.5.5.(1)问题发现:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试写出线段DE,BD和CE之间的数量关系为DE=BD+CE;(2)思考探究:如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D、E是D、A、E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状并说明理由.解:(1)如图1,∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE,故答案为:DE=BD+CE;(2)(1)中结论成立,理由如下:如图2,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形,理由如下:如图3,由(2)可知,△ADB≌△CEA,∴BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠AFE,∵在△DBF和△EAF中,,∴△DBF≌△EAF(SAS)∴DF=EF,∠BFD=∠AFE,∴∠DFE =∠DFA +∠AFE =∠DFA +∠BFD =60°,∴△DEF 为等边三角形.6.如图所示,直线AB 交x 轴于点A (4,0),交y 轴于点B (0,﹣4).(I )如图①,若C 的坐标为(﹣1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标;(II )如图②,在(I )的条件下,连接OH ,求∠OHC 的度数;(III )如图③,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连接MD ,过D 作DN ⊥DM 交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM ﹣S △ADN 的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.解:(I )由题意,OA =OB =4,∵∠AHC =90°,∠BOC =90°,∴∠CAH =∠CBO ,在△OAP 和△OBC 中,,∴△OAP ≌△OBC (ASA ),∴OP =OC =1,则点P 的坐标为(0,﹣1);(II )如图②,过O 分别作OM ⊥BC 于M ,作ON ⊥AH 于N ,则四边形MONH 为矩形,∴∠MON =90°,∵∠COP =90°,∴∠COM =∠PON ,在△COM 和△PON 中,,∴△COM ≌△PON (AAS )∴OM =ON ,又OM ⊥BC ,作ON ⊥AH ,∴HO 平分∠MHN ,∴∠OHC =∠MHN =45°;(III )式子S △BDM ﹣S △ADN 的值不发生改变,等于4.理由如下:如图③,连接OD ,∵∠AOB =90°,OA =OB ,点D 为AB 的中点,∴OD ⊥AB ,OD =AD =BD =,∠OAB =45°,∴∠BOD =45°,∴∠MOD =135°,∴∠MOD =∠NAD =135°,∵∠ODA =90°,∠MDN =90°,∴∠MDO =∠NDA ,在△MOD 和△NAD 中,,∴△MOD ≌△NAD (ASA )∴S △MDO =S △NDA ,∴S △BDM ﹣S △ADN =S △BDM ﹣S △ODM =S △BDO =××4×4=4.7.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD=,求线段AB的长.(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED=CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD:AF=1:2,则AF=2x,∵△ECD都是等腰直角三角形,CF⊥DE,∴DF=EF,由(1)、(2)可得,在Rt△FAE中,EF===3x,∵AE2+AD2=2CD2∴,解得x=1,∴AB=2+4.8.如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)如图1,若点D是AC的中点,求证:AD=CE;(2)如图2,若点D不是AC的中点,AD=CE是否成立?证明你的结论;(3)如图3,若点D在线段AC的延长线上,试判断AD与CE的大小关系,并说明理由.(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC=BC,∵D为AC中点,∴∠DBC=30°,AD=DC,∵BD=DE,∴∠E=∠DBC=30°∵∠ACB=∠E+∠CDE,∴∠CDE=30°=∠E,∴CD=CE,∵AD=DC,∴AD=CE;(2)成立,如图2,过D作DF∥BC,交AB于F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°﹣60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∴△BFD≌△DCE(AAS),∴CE=DF=AD,即AD=CE.(3)AD=CE.证明:如图3,过点D作DP∥BC,交AB的延长线于点P,∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,∵DB=DE,∴∠DBC=∠DEC,∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC,在△BPD和△DCE中,,∴△BPD≌△DCE(AAS),∴PD=CE,∴AD=CE.9.如图(a),△ABC、△DCE都为等腰直角三角形,B、C、E三点在同一直线上,连接AD.(1)若AB=2,CE=,求△ACD的周长;(2)如图(b),点G为BE的中点,连接DG并延长至F,使得GF=DG,连接BF、AG.(i)求证:BF∥DE;(ii)探索AG与FD的位置关系,并说明理由.(1)解:∵△ABC、△DCE都是等腰直角三角形,∴AB=AC,∠ACB=45°,DC=DE,∠DCE=45°,∴∠ACD=180°﹣45°﹣45°=90°,在Rt△DCE中,DC2+DE2=CE2=()2=2,∴DC=DE=1,由勾股定理得,AD===,∴△ACD的周长=AC+CD+AD=3+;(2)(i)证明:在△BGF和△EGD中,,∴△BGF≌△EGD(SAS)∴∠GBF=∠E,∴BF∥DE;(ii)AG⊥FD,理由如下:如图(b)连接AF,∵△DEG≌△FBG,∴BF=DE=CD,∠GBF=∠E=45°,∵∠ABF=∠ABC+∠GBF=90°,∴∠ABF=∠ACD,在△ACD和△ABF中,,∴△ACD≌△ABF(SAS),∴AF=AD,又∵DG=FG,∴AG⊥FD.10.如图1,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN,(1)M点如图1的位置时,如果AM=5,求BN的长;(2)M点在如图2位置时,线段AB、BM、BN三者之间的数量关系AB+BM=BN;(3)M点在如图3位置时,当BM=AB时,证明:MN⊥AB.(1)解:∵△PAB,△PMN都是等边三角形,∴∠APB=MPN=60°,PA=PB,PM=PN,∴∠APB﹣∠MPB=MPN﹣∠MPB,即∠APM=∠BPN,在△PAM和△PBN中,∴△PAM≌△PBN(SAS)∴AM=BN=5;(2)解:AB+BM=BN,理由如下:∵△PAB,△PMN都是等边三角形,∴∠APB=MPN=60°,PA=PB,PM=PN,∴∠APB+∠MPB=MPN+∠MPB,即∠APM=∠BPN,在△PAM和△PBN中,∴△PAM≌△PBN(SAS)∴AM=BN,∴BN=AM=AB+BM,故答案为:AB+BM=BN;(3)证明:∵△PAB是等边三角形,∴AB=PB,∠ABP=60°,∵BM=AB,∴PB=BM,∴∠BPM=∠PMB,∵∠ABP=60°,∴∠BPM=∠PMB=30°,∵△PMN是等边三角形,∴∠PMN=60°,∴∠AMN=90°,∴MN⊥AB.11.如图1,张老师在黑板上画出了一个△ABC,其中AB=AC.让同学们进行探究.(1)探究一:如图2,小明以BC为边在△ABC内部作等边△BDC,连接AD.请直接写出∠ADB的度数150°;(2)探究二:如图3,小彬在(1)的条件下,又以AB为边作等边△ABE,连接CE.判断CE与AD的数量关系,并说明理由;(3)探究三:如图3,小聪在(2)的条件下,连接DE.若∠DEC=60°,DE=2,求AE 的长.解:(1)探究一:∵△BDC是等边三角形,∴BD=DC,∠BDC=60°,在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=360°﹣60°,∴∠ADB=150°,故答案为:150°.(2)探究二:结论:CE=AD.理由:∵△BDC、△ABE都是等边三角形∴∠ABE=∠DBC=60°,AB=BE,BD=DC.∴∠ABE﹣∠DBE=∠DBC﹣∠DBE∴∠ABD=∠EBC,在△ABD和△EBC中,∴△ABD≌△EBC(SAS).∴AD=CE.(3)探究三:∵△ABD≌△EBC,∴∠BDA=∠ECB=150°,∵∠BCD=60°,∴∠DCE=90°,∵∠DEC=60°,∴∠CDE=30°,∵DE=2,∴CE=1,由勾股定理得,DC=BC=,∵∠BDE=60°+30°=90°,DE=2,BD=.由勾股定理得,BE==.∵△ABE是等边三角形∴AE=BE=.12.(1)发现:如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E,由∠1+∠2=∠2+∠D=90°,得∠1=∠D,又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)应用:如图2,在△ABC中,D是BC上一点,AC=AD=BD,∠CAD=90°,AB=6,请求出△ABC的面积;(3)拓展:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣1,﹣4),点B为平面内一点.若△AOB是以OA为斜边的等腰直角三角形,请直接写出点B的坐标.解:(1)AC=DE,BC=AE;故答案为:DE,AE;(2)作AE⊥CD于E,如图2所示:∵AC=AD,∠CAD=90°,∴AE=CD=DE=CE,∴AD=AC=AE,设AE=DE=CE=x,则AC=AD=BD=x,∴BE=x+x,BC=2x+x,∴AB2=(x+x)2+x2=62,解得:x2=18﹣9,∴△ABC的面积=BC×AE=(2x+x)×x=×(2+)×x2=×(2+)×(18﹣9)=18;(3)分两种情况:①过A作AC⊥y轴于D,过B作BE⊥x轴于E,DA与EB相交于C,如图3所示:则∠C=90°,∵点A的坐标为(﹣1,﹣4),∴AD=1,OD=CE=4,∵∠OBO=90°,∴∠OBE+∠ABC=90°,∵∠ABC+∠BAC=90°,∴∠BAC=∠OBE,在△ABC与△BOE中,,∴△ABC≌△BOE(AAS),∴AC=BE,BC=OE,设OE=x,则BC=OE=CD=x,∴AC=BE=x+1,∴CE=BE+BC=x+1+x=OD=4,∴x=,x+1=,∴点B的坐标(,);②如图4,同理可得,点B的坐标(﹣,﹣),综上所述,点B的坐标为(,)或(﹣,﹣).13.模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C 的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为 5 .模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB=8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC =3+2=5,∵AE=BD,∴线段AE长的最大值为5,故答案为:5;模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.14.已知,平面直角坐标系中,A在x轴正半轴,B(0,1),∠OAB=30°.(1)如图1,已知AB=2.点C在y轴的正半轴上,当△ABC为等腰三角形时,直接写出点C的坐标为(0,3);(2)如图2,以AB为边作等边△ABE,AD⊥AB交OA的垂直平分线于D,求证:BD=OE;(3)如图3,在(2)的条件下,连接DE交AB于F,求的值.(1)解:∵B(0,1),∴OB=1,∵AB=2,点C在y轴的正半轴上,△ABC为等腰三角形,∴BC=AB=2,∴OC=OB+BC=3,∴点C的坐标为(0,3),故答案为:(0,3);(2)证明:连接OD,如图2所示:∵△ABE是等边三角形,∴AB=AE,∠BAE=60°,∵∠OAB=30°,∴∠OAE=30°+60°=90°,∵AD⊥AB,∴∠DAB=90°=∠OAE,∠OAD=90°﹣30°=60°,∵MN是OA的垂直平分线,∴OD=AD,∴△OAD是等边三角形,∴AO=AD,在△ABD和△AEO中,,∴△ABD≌△AEO(SAS),∴BD=OE;(3)解:作EH⊥AB于H,如图3所示:∵△ABE是等边三角形,EH⊥AB,∴AH=AB,∵∠AOB=90°,∠OAB=30°,∴OB=AB,∴AH=OB,在Rt△AEH和Rt△BAO中,,∴Rt△AEH≌Rt△BAO(HL),∴EH=AO=AD,在△HFE和△AFD中,,∴△HFE≌△AFD(AAS),∴EF=DF,∴DE=2DF,∴=.15.在平面直角坐标系中,M(m,n)且m、n满足m2+2n2﹣2mn+4n+4=0,B(0,b)为y轴上一动点,绕B点将直线BM顺时针旋转45°交x轴于点C,过C作AC⊥BC交直线BM于点A(a,t).(1)求点M的坐标;(2)如图1,在B点运动的过程中,A点的横坐标是否会发生变化?若不变,求a的值;若变化,写出A点的横坐标a的取值范围;(3)如图2,过T(a,0)作TH⊥BM(垂足H在x轴下方),在射线HB上截取HK=HT,连OK,求∠OKB的度数.解:(1)m2+2n2﹣2mn+4n+4=0,m2+n2﹣2mn+n2+4n+4=0,(m﹣n)2+(n+2)2=0,则m﹣n=0,n+2=0,解得,m=﹣2,n=﹣2,∴点M的坐标为(﹣2,﹣2);(2)过A作AT⊥x轴,MD⊥x轴于D,连接OM,CM,在Rt△ACB中,∠ABC=45°,∴CA=CB,∵∠ACB=90°,∴∠ACT+∠TCB=90°,∵∠BOC=90°,∴∠BCO+∠TCB=90°,∴∠ACT=∠CBO,在△CBO和△ACT中,,∴△CBO≌△ACT(AAS),∴CT=BO=﹣b,AT=CO=t,∴a=b+t,∵DO=DM,∴∠DOM=45°,∴∠MOC=135°,∴∠MOC+∠ABC=180°,∴O、M、B、C四点共圆,∴∠CMB=∠COB=90°,∵CA=CB,∴M为AB中点,∴b+t=﹣4,∴a=﹣4;(3)连TM、OM,过O作ON⊥BM于N,由(2)可知T(﹣4,0),∴OT=4,又点M的坐标为(﹣2,﹣2),∴△TMO为等腰直角三角形,∴MT=MO,∵∠THM=90°,∠TMO=90°,∴∠TMH=∠MON,在△HTM和△NMO中,,∴△HTM≌△NMO(AAS),∴HT=MN,HM=ON,∴HK=KN,∴KN=ON,∴∠OKB=45°.16.在等边三角形ABC中,点P从点B出发沿射线BA运动,同时点Q从点C出发沿线段AC 的延长线运动,P、Q两点运动的速度相同,PQ与直线BC相交于点D.(1)如图①,过点P作PE∥AC交BC于点E,求证:EP=CQ.(2)如图②,过点P作直线BC的垂线,垂足为F.①当点P在线段BA上运动时,求证:BF+CD=BC.②当点P在线段BA延长线上运动时,直接写出BF、CD与BC之间的数量关系.(1)证明:由题意得:BP=CQ,∵△ABC是等边三角形,∴∠BAC=∠BCA=∠ABC=60°,∵PE∥AC,∴∠BPE=∠BAC=60°,∠BEP=∠BCA=60°,∴∠B=∠BPE=∠BEP,∴△BPE是等边三角形,∴EP=BP,∴EP=CQ.(2)①证明:过点P作PE∥AC交BC于点E,如图②所示:由(1)得:EP=CQ,∠BEP=∠ACB=60°,△BPE是等边三角形,∴∠DEP=∠DCQ=120°,∵PF⊥BC,∴BF=EF,在△DPE和△DQC中,,∴△DPE≌△DQC(AAS),∴ED=CD,∴BF+CD=EF+ED=BC.②解:当点P在线段BA延长线上运动时,BC+2CD=2BF,理由如下:过点P作PE∥AC交BC于点E,如图③所示:同①得:△BPE是等边三角形,△DPE≌△DQC,∴ED=CD,∵PF⊥BC,∴BF=EF,∵BC﹣BF=CF,∴BC﹣BF=EF﹣2CD=BF﹣2CD,∴BC+2CD=2BF.17.问题情境:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题初探:如图1,在△ABC中,∠ACB=90°,AC=BC,点D为直线AB上的一个动点(D与A,B 不重合),连接CD,以CD为直角边作等腰直角三角形CDE,连接BE.(1)当点D在线段AB上时,AD与BE的数量关系是AD=BE;位置关系是AD⊥BE;AB,BD,BE三条线段之间的关系是AB=BD+BE.类比再探:(2)如图2,当点D运动到AB的延长线上时,AD与BE还存在(1)中的位置关系吗?若存在,请说明理由.同时探索AB,BD,BE三条线段之间的数量关系,并说明理由.能力提升:(3)如图3,当点D运动到BA的延长线上时,若AB=7,AD=2,则AE=9 .解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠ABC=45°,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS)∴AD=BE,∠CBE=∠A=45°,∴∠ABE=90°,即AD⊥BE,∴AB=BD+AD=BD+BE;故答案为:AD=BE;AD⊥BE;AB=BD+BE;(2)AD⊥BE,理由如下:∵∠ACB=90°AC=BC,∴∠A=∠ABC=45°,∵△CDE是等腰直角三角形,∴CD=CE,∠DCE=90°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS)∴∠CBE=∠A=45°,∵∠ABC=45°,∴∠ABE=∠ABC+∠CBE=90°,∴AB⊥BE,即AD⊥BE,∵△ACD≌△BCE,∴AD=BE,∵AD=AB+BD,∴BE=AB+BD;(3)∵△ABC、△CDE是等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE与△BCD中,,∴△ACE≌△BCD(SAS)∴AE=BD=AD+AB=9,故答案为:9.18.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:△ADC≌△BEC;(2)如图1,若∠BAC=60°,点F与点C重合,求证:AD∥BC;(3)如图2,若AD=AB,已知AF=10,AE=4,求BC的长.证明:(1)∵∠BAC=∠EDF=60°,△ABC和△DEF为等腰三角形,∴△ABC、△DEF为等边三角形,∴BC=AC,CD=CE,∠B=∠ACB=∠DCE=60°,∴∠BCE+∠ACE=∠ACD+∠ACE=60°,∴∠ACD=∠BCE,在△ADC和△BEC中,,∴△ADC≌△BEC(SAS);(2)证明:由(1)得:△ADC≌△BEC,∴∠DAC=∠EBC=60°,∴∠DAC=∠ACB,∴AD∥BC;(3)解:在FA上截取FM=AE,连接DM,如图2所示:∵∠BAC=∠EDF,∴∠AED=∠MFD,在△AED和△MFD中,,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,在△ABC和△DAM中,,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.∴BC=AF﹣AE=10﹣4=6.19.如图,在△ABC中,AB=AC,点D,E分别是BC,AC上的点,AD,BE相交于点P,∠EBC=∠BAD.(1)如图1,求证:∠APE=∠C;(2)作AF∥BC交DE延长线于点F,PE=EC.①如图2,求证:AD=AF;②如图3,过点E作EG⊥BC于点G,若DP=1,DC=7,直接写出DG的长为 4 .(1)证明:∠APE=∠ABP+∠BAD,∠ABC=∠ABP+∠EBC,∵∠EBC=∠BAD,∴∠APE=∠ABC,∵AB=AC,∴∠C=∠ABC,∴∠APE=∠C;(2)①证明:如图2,作EG⊥DC于G,EH⊥AD于H,在△EHP和△EGC中,,∴△EHP≌△EGC(AAS)∴EH=EG,又EG⊥DC,EH⊥AD,∴∠ADF=∠CDF,∵AF∥BC,∴∠F=∠CDF,∴∠F=∠ADF,∴AD=AF;②解:如图3,作EH⊥AD于H,由(2)①可知,△EHP≌△EGC,∴PH=GC,在△DEH和△DEG中,,∴△DEH≌△DEG(AAS)∴DH=DG,∴DG=DH=DP+PH=1+GC,∴1+GC+GC=7,解得,GC=3,∴DG=DC﹣GC=7﹣3=4,故答案为:4.20.Rt△ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E.△ACD与△CBE是否全等,并说明理由;(2)当AC=9cm,BC=6cm时,如图2,点B与点F关于直线l对称,连接BF、CF,点M 在AC上,点N是CF上一点,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,点M、N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒.①当△CMN为等腰直角三角形时,求t的值;②当△MDC与△CEN全等时,求t的值.解:(1)△ACD与△CBE全等.理由如下:∵AD⊥直线l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)①由题意得,AM=t,FN=3t,则CM=8﹣t,由折叠的性质可知,CF=CB=6,∴CN=6﹣3t,点N在BC上时,△CMN为等腰直角三角形,当点N沿C→B路径运动时,由题意得,9﹣t=3t﹣6,解得,t=,当点N沿B→C路径运动时,由题意得,9﹣t=18﹣3t,解得,t=,综上所述,当t=秒或秒时,△CMN为等腰直角三角形;②由折叠的性质可知,∠BCE=∠FCE,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD,∴当CM=CN时,△MDC与△CEN全等,当点N沿F→C路径运动时,9﹣t=6﹣3t,解得,t=﹣(不合题意),当点N沿C→B路径运动时,9﹣t═3t﹣6,解得,t=,当点N沿B→C路径运动时,由题意得,9﹣t=18﹣3t,解得,t=,当点N沿C→F路径运动时,由题意得,9﹣t=3t﹣18,解得,t=,综上所述,当t=秒或秒或6秒时,△MDC与△CEN全等.。
初中数学九年级中考复习三角形部分证明练习题精选
1.已知:如图点C 是AB 的中点,CD ∥BE ,且CD=BE.求证:∠D=∠E.2.已知:E 、F 是AB 上的两点,AE=BF ,又AC ∥DB ,且AC=DB.求证:CF=DE 。
3 如图,已知△ABC 和△DEC 都是等边三角形,∠ACB=∠DCE=60°,B 、C 、E 在同一直线上,连结BD 和AE.求证:BD=AE.4.如图,D 、E 、F 、B 在一条直线上,AB=CD ,∠B=∠D ,BF=DE 。
求证:⑴AE=CF ;⑵AE ∥CF ;⑶∠AFE=∠CEF 。
AC B ED A BC DE F A B C D E FA B CDE5.如图,D 是△ABC 的边BC 上一点,且CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线。
求证:AC=2AE 。
6.已知:如图∠B=∠E=90°AC=DF FB=EC ,则AB=DE.请说明理由。
7.如图,AD ∥BC ,∠A=90°,E 是AB 上一点,∠1=∠2,AE=BC 。
请你说明∠DEC=90°的理由。
AB E DC8.如图,已知:在等边三角形ABC 中,D 、E 分别在AB 和AC 上,且AD=CE ,BE 和CD 相交于点P 。
(1)说明△AD ≌△CEB(2)求:∠BPC 的度数.1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD证明: 延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD 即BE=AC=2在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6又AD 是整数,则AD=52.如图,在△ABC 中,AB=AC ,M 为BC 的中点,点D 、E 分别在AB 、AC 上,且AD=AE .求证:MD=ME . 证明: (法一) ∵AB=AC , ∴∠B=∠C .∵M 为BC 的中点, ∴BM=CM .∵AB=AC ,AD=AE ,∴BD=CE .在△DBM 和△ECM 中,∴BD=CE ,∠B=∠C ,BM=CM .ADBC∴△DBM ≌△ECM . ∴MD=ME .(法二)连接AM ,(1分)∵AB=AC ,M 为BC 的中点, ∴AM 平分∠BAC , ∴∠BAM=∠CAM . 在△ADM 和△AEM 中,∵AD=AE ,∠DAM=∠EAM ,AM=AM , ∴△ADM ≌△AEM . ∴MD=ME .4.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
2021年全国中考数学真题分类汇编--三角形:三角形中的计算与证明(压轴题)( 答案版)
【详解】(1)证明: ,
;
,
, ,
,
, ,
, ,
, ,
四边形AFCD是平行四边形
在 与 中.
,
(2) ,
,
在 中, ,
(2)由(1)知,△ACD≌△BCE(SAS),再证明△BCG≌△ACF(AAS),得到△GCF为等腰直角三角形,则GF= CF,即可求解;
(3)证明△BCE∽△CAD和△BGC∽△AFC,得到 = ,则BG=kAF,GC=kFC,进而求解.
【解答】解:(1)如图(2),∵∠ACD+∠ACE=90°,
【解答】解:设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,
过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,如图:
∵OA=8,AB=5,
∴OB=4,OC=AC=4,cos∠BOC= = = ,
∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',
(3)分①点P在BC外的圆弧上;②点P在BC上两种情况分别求解即可.
【解答】解:(1)证明:∵PB'⊥AC,∠CAB=90°,
∴PB'∥AB.
∴∠B'PA=∠BAP,
又由折叠可知∠BAP=∠B'AP,
∴∠B'PA=∠B'AP.
故PB′=AB′.
(2)设AB=AC=a,AC、PB'交于点D,
则△ABC为等腰直角三角形,
初中数学三角形证明提升练习含答案
三角形证明提升练习一.解答题(共32小题)1.如图,在△ABC中,AB<AC<BC,以点A为圆心,线段AB的长为半径画弧,与BC 边交于点D,连接AD过点D作DE⊥AD,交AC于点E.(1)若∠B=50°,∠C=28°,求∠AED度数;(2)若点F是BD的中点,连接AF,求证:∠BAF=∠EDC.2.已知:如图,在△ABC中,AB=AC=6,BC=4,AB的垂直平分线交AB于点E,交BC 的延长线于点D.(1)求CD的长;(2)求点C到ED的距离.3.如图,在△ABC中,AB=AC,D为BC中点,点E是BA延长线上一点,点F是AC上一点,连接EF并延长交BC于点G,且AE=AF.(1)若∠ABC=50°.求∠AEF的度数;(2)求证:AD∥EG.4.如图,在△ABC中,AB=AC,点D是BC边上一点,DE∥AB.交AC于点E,连结DE,过点E作EF⊥BC于点F.求证:F为线段CD中点.5.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE =6,DC=8,DE=20,求FG.6.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE∥DF.7.如图,△ABC是等边三角形,延长BC到E,使CE=BC.点D是边AC的中点,连接ED并延长ED交AB于F求证:(1)EF⊥AB;(2)DE=2DF.8.在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,则BE=CE吗?说明理由;(2)若∠BAC=45°,BE的延长线与AC垂直相交于点F时,如图2,BD=AE吗?说明理由.9.如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC交∠ACB 的外角∠ACE的平分线于F.(1)求证:CF∥AB;(2)若∠DAC=40°,求∠DFC的度数.10.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,求BD的长.11.如图,点O是△ABC边AC上的一个动点,过O点作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长.12.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.13.如图,等边△ABC的边长为12,D为AB边上一动点,过点D作DE⊥BC于点E.过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)当AD取何值时,DE=EF?14.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,BE⊥BD,DE∥BC,BE 与DE交于点E,DE交AB于点F.(1)若∠A=56°,求∠E的度数;(2)求证:BF=EF.15.如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE 的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.16.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AB,AC于点D,E.(1)求证:AE=2CE;(2)当DE=1时,求△ABC的面积.17.如图,在△ABC中,AB=AC,D是边BC的中点,连结AD,点E是BC延长线上一点,CF平分∠ACE,连结AF,且AF=AC.(1)若∠CAD=36°,求∠B的度数;(2)求证:AF∥BE.18.如图,在四边形ABCD中,DC∥AB,连接BD,∠ADB=90°,∠A=60°,且BD平分∠ABC,CD=4.(1)求∠CBD的度数;(2)求AB的长.19.猜想与证明:小强想证明下面的问题:“有两个角(图中的∠B和∠C)相等的三角形是等腰三角形”.但他不小心将图弄脏了,只能看见图中的∠C和边BC.(1)请问:他能够把图恢复成原来的样子吗?若能,请你帮他写出至少两种以上恢复的方法,并在备用图上恢复原来的样子.(2)你能够证明这样的三角形是等腰三角形吗?(至少用两种方法证明)20.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE=∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.21.如图,在△ABC中,∠A=60°,∠ABC=2∠C,BC边的垂直平分线交AC边于点D,交BC边于点E,连接BD,求∠ADB的度数.22.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.23.如图所示,已知∠ACD是△ABC的外角,有以下三个条件:①∠ACE=∠DCE;②AB ∥EC;③AC=BC.(1)在以上三个条件中选两个作为已知,另一个作为结论写出一个正确命题,并加以证明.(2)若AB∥EC,作∠B的平分线交射线CE于点F,判断△BCF的形状,并说明理由.24.如图,等腰△ABC,点D、E、F分别在BC、AB、AC上,且∠BAC=∠ADE=∠ADF =60°.(1)在图中找出与∠DAC相等的角,并加以证明;(2)若AB=6,BE=m,求:AF(用含m的式子表示).25.(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF之间的关系______.26.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.27.已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC的高为h.(1)若点P在一边BC上[如图①],此时h3=0,求证:h1+h2+h3=h;(2)当点P在△ABC内[如图②],以及点P在△ABC外[如图③]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.28.在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB的距离.29.在△ABC中,AB=AC,∠A=36°,CD平分∠ACB交AB于点D,DE⊥AC交AC于点E,若BD=7,且△BDC的周长为29,求AE的长.30.如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=3,求S△ABC.31.已知:如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E.(1)求证:CE=CB;(2)如果连结BE,请写出BE与AC的关系并证明.32.如图,已知△ABC,AB、AC的垂直平分线的交点D恰好落在BC边上.(1)判断△ABC的形状;(2)若点A在线段DC的垂直平分线上,求的值.三角形证明提升练习参考答案与试题解析一.解答题(共32小题)1.解:(1)由题意可得AB=AD,∴∠ADB=∠B=50°,∵DE⊥AD,∴∠ADE=90°,∴∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣50°﹣90°=40°,∵∠C=28°,∴∠AED=∠EDC+∠C=40°+28°=68°;(2)∵AB=AD,点F是BD的中点,∴AF⊥BD,∠BAF=∠DAF,∴∠DAF+∠ADB=90°∵DE⊥AD,∴∠ADE=90°,∴∠ADF+∠EDC=90°,∴∠DAF=∠EDC,∴∠BAF=∠EDC.2.解:如图,(1)过A点作AF⊥BC于点F.∵AB=AC=6,BC=4,AF⊥BC,∴BF=FC=2,∠BF A=90°,∴在Rt△ABF中,,∵AB的垂直平分线交AB于点E,AB=6,∴AE=BE=3,∠DEB=90°,在Rt△DEB中,,∴BD=9,∴CD=5.(2)过C点作CH⊥ED于点H,∵CH⊥ED,AB⊥ED,∴∠DEB=∠DHC=90°,∴CH∥AB,∴,∵BE=3,BD=9,CD=5,∴.∴点C到ED的距离CH为.3.解:(1)∵AB=AC,∴∠ABC=∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,D为BC中点,∴AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD=BAC=×80°=40°,∵AE=AF,∴∠E=∠AFE,∵∠BAC=∠BAD+∠CAD=∠E+∠AFE,∴∠AEF=∠BAD=40°;(2)证明:由(1)得∠AEF=∠BAD,∴AD∥EG.4.证明:∵AB=AC,∴∠B=∠C.∵DE∥AB,∴∠EDC=∠B.∴∠EDC=∠C,∴ED=EC.∵EF⊥BC,∴点F为线段CD中点.5.解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵BE=6,DC=8,DE=20,∴FG=DE﹣EG﹣DF=DE﹣BE﹣CD=20﹣6﹣8=6.6.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=36°,∴∠ABC=90°﹣∠A=54°,∴∠CBD=126°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=63°;(2)∵∠ACB=90°,∠CBE=63°,∴∠CEB=90°﹣63°=27°.又∵∠F=27°,∴∠F=∠CEB=27°,∴DF∥BE7.证明:(1)∵△ABC是等边三角形,∴AC=BC,∠ACB=∠B=60°,∵D为AC的中点,∴AD=CD=AC,∵CE=BC,∴CD=CE,∵∠E+∠CDE=∠ACB=60°,∴∠E=∠CDE=30°,∵∠B=60°,∴∠EFB=180°﹣60°﹣30°=90°,即EF⊥AB;(2)连接BD,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵D为AC的中点,∴∠DBC=∠ABD=ABC=30°,∵∠E=30°,∴∠DBC=∠E,∴DE=BD,∵∠BFE=90°,∠ABD=30°,∴BD=2DF,即DE=2DF.8.解:(1)成立.理由:∵AB=AC,D是BC的中点,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)成立.理由:∵∠BAC=45°,BF⊥AF.∴△ABF为等腰直角三角形∴AF=BF,由(1)知AD⊥BC,∴∠EAF=∠CBF在△AEF和△BCF中,,∴△AEF≌△BCF(ASA),∴AE=BC,∵BD=BC,∴BD=AE.9.(1)证明:∵AC=BC,∴∠ABC=∠CAB,∴∠ACE=∠ABC+∠CAB=2∠ABC∵CF是∠ACE的平分线,∴∠ACE=2∠FCE∴2∠ABC=2∠FCE,∴∠ABC=∠FCE,∴CF∥AB;(2)∵CF是∠ACE的平分线,∴∠ACE=2∠FCE=∠ADC+∠DAC∵DF平分∠ADC,∴∠ADC=2∠FDC;∴2∠FCE=∠ADC+∠DAC=2∠FDC+∠DAC,∴2∠FCE﹣2∠FDC=∠DAC∵∠DFC=∠FCE﹣∠FDC∴2∠DFC=2∠FCE﹣2∠FDC=∠DAC=40°∴∠DFC=20°.10.解:∵DE是线段AB的垂直平分线,∴AD=BD,∵∠B=30°,∴∠BAD=∠B=30°,又∵∠C=90°∴∠CAB=90°﹣∠B=90°﹣30°=60°,∴∠DAC=∠CAB﹣∠BAD=60°﹣30°=30°,∴在Rt△ACD中,,∴AD=2CD=2×3=6,∴BD=AD=6.11.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF=6,∴EF==10,∴OC=EF=5.12.(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴DE=DC,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.13.解:(1)∵AB=12,AD=2∴BD=AB﹣AD=10在Rt△BDE中∠BDE=90°﹣∠B=30°∴BE=BD=5∴CE=BC﹣BE=7在Rt△CFE中∠CEF=90°﹣∠C=30°∴CF=CE=,∴AF=AC﹣FC=;(2)在△BDE和△EFC中,∴△BDE≌△CEF(AAS)∴BE=CF∴BE=CF=EC∴BE=BC=4,∴BD=2BE=8,∴AD=AB﹣BD=4,∴AD=4时,DE=EF.14.解:(1)∵AB=AC,∠A=56°,∴∠ABC=(180°﹣56°)=62°,∵BD平分∠ABC,∴∠DBF=∠DBC=,∵DE∥BC,∴∠EDB=∠DBC=31°,∵BE⊥BD,∴∠DBE=90°,∴∠E=90°﹣31°=59°;(2)∵BD平分∠ABC,∴∠DBF=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∵BE⊥BD,∴∠EBF+∠DBF=∠E+∠BDE=90°,∴∠E=∠EBF,∴BF=EF.15.(1)证明:∵BE平分∠ABC,∴.∵AB∥CD,∴∠ABF=∠E,∴∠CBF=∠E,∴BC=CE,∴△BCE是等腰三角形.∵F为BE的中点,∴CF平分∠BCD,即CG平分∠BCD.(2)解:∵AB∥CD,∴∠ABC+∠BCD=180°.∵∠ABC=52°,∴∠BCD=128°.∵CG平分∠BCD,∴.∵∠ADE=110°,∠ADE=∠CGD+∠GCD,∴∠CGD=46°.16.(1)证明:连接BE.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣30°=60°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE;(2)∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵DE是AB边的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∴∠EBC=30°,∴EB=2ED=2,EC=BE=1,BC=EC=,∴△ABC的面积=×BC×AC=××3=.17.解:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ACB=90°﹣∠DAC=90°﹣36°=54°,∴∠B=∠ACB=54°;(2)∵CF平分∠ACE,∴∠ACF=∠ECF,∵AF=AC,∴∠ACF=∠F,∴∠ECF=∠F,∴AF∥BE.18.解:(1)∵∠ADB=90°,∠A=60°,∴∠ABD=30°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,(2)如图,过C作CE⊥BD于E,∵AB∥CD,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CD=CB=4,∴E为BD中点,Rt△CDE中,CE=CD=2∴DE=2∴BD=2DE=4Rt△ADB中,∠ABD=30°∴AB=2AD∴AD=4,AB=8.19.(1)解:方法一:如图1中,在线段BC的上方,作∠EBC=∠C,延长CF交BE于A,△ABC即为所求.方法二:如图2中,作作线段BC的垂直平分线交CF的延长线于A,△ABC即为所求.方法三:将纸片折叠使得点B与点C重合,∠C的另一边与折痕交于点A,连接AB,△ABC即为所求.(2)证明:方法一:如图4中,作AD⊥BC于D.∵∠B=∠C,∠ADB=∠ADC=90°,AD=AD,∴△ADB≌△ADC(AAS),∴AB=AC.方法二:如图5中,作AT平分∠BAC交BC于T.∵∠B=∠C.∠TAB=∠TAC,AT=AT,∴△ATB≌△ATC(AAS),∴AB=AC.20.(1)证明:∵AE=AF,∠A=∠A,∠ABE=∠ACF,∴△ABE≌△ACF(AAS),∴AB=AC,∠ABE=∠ACF,∴∠ABC=∠ACB,∴∠ABC﹣∠ABE=∠ACB﹣∠ACF,即∠DBC=∠DCB,∴△BCD是等腰三角形;(2)解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣40°)=70°,∵BD=BC,∴∠BDC=∠BCD,∵∠DBC=∠DCB,∴△DBC是等边三角形,∴∠DBC=60°,∴∠ABE=10°,∴∠BEC=∠A+∠ABE=50°.21.解:∵∠ABC=2∠C,∴设∠C=α,则∠ABC=2α,∵∠A=60°,∴∠ABC+∠C=120°,∴2α+α=120°,∴α=40°,∴∠C=40°,∵BC边的垂直平分线交AC边于点D,∴BD=CD,∴∠DBC=∠DCB=40°,∴∠ABD=40°,∴∠ADB=180°﹣60°﹣40°=80°.22.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∴∠EAB=∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.23.解:(1)如图所示,已知∠ACD是△ABC的外角,若∠ACE=∠DCE,AB∥EC,则AC=BC.证明:∵AB∥EC∴∠ACE=∠BAC,∠DCE=∠ABC∵∠ACE=∠DCE∴∠ABC=∠BAC∴AC=BC,(2)如图所示.△BCF是等腰三角形.理由:∵AB∥CE,∴∠BFC=∠ABF,∵∠ABF=∠CBF,∴∠BFC=∠CBF,∴CB=CF,∴△BCF是等腰三角形.24.解:(1)结论:∠BDE=∠DAC.理由:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠C=60°,∵∠ADB=∠3+∠ADE=∠1+∠C,∠ADE=∠C=60°,∴∠3=∠1.(2)如图,在DE上截取DG=DF,连接AG,∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠ADE=∠ADF=60°,AD=AD,∴△ADG≌△ADF(SAS),∴AG=AF,∠1=∠2,∵∠3=∠1,∴∠3=∠2∵∠AEG=60°+∠3,∠AGE=60°+∠2,∴∠AEG=∠AGE,∴AE=AG,∴AE=AF=6﹣m.25.解:(1)EF=BE+CF,理由:∵BO平分∠ABC,CO平分∠ACB,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF;(2)不成立,理由:∵BO平分∠ABC,CO平分∠ACD,∴∠EBO=∠OBC,∠FCO=∠OCD,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCD,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE﹣OF=BE﹣CF.故答案为EF=BE﹣CF.26.解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=2,∴Rt△ABC中,AB=2AC=4,∴BD=AB﹣AD=4﹣1=3.27.解:(1)如图1,连接AP,则S△ABC=S△ABP+S△APC ∴BC•AM=AB•PD+AC•PF即BC•h=AB•h1+AC•h2又∵△ABC是等边三角形∴BC=AB=AC,∴h=h1+h2;(2)点P在△ABC内时,h=h1+h2+h3,理由如下:如图2,连接AP、BP、CP,则S△ABC=S△ABP+S△BPC+S△ACP ∴BC•AM=AB•PD+AC•PE+BC•PF即BC•h=AB•h1+AC•h2+BC•h3又∵△ABC是等边三角形,∴BC=AB=AC.∴h=h1+h2+h3;点P在△ABC外时,h=h1+h2﹣h3.理由如下:如图3,连接PB,PC,P A由三角形的面积公式得:S△ABC=S△P AB+S△P AC﹣S△PBC,即BC•AM=AB•PD+AC•PE﹣BC•PF,∵AB=BC=AC,∴h1+h2﹣h3=h,即h1+h2﹣h3=h.28.解:过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.29.解:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵CD平分∠ACB,∴∠ACD=∠BCD=36°,∴∠A=∠ACD,∠BDC=∠B=72°,∵DE⊥AC,∴AD=CD,=BC,∵BD=7,△BDC的周长为29,∴AD=CD=BC=11,∴AB=AC=18,∵AD=CD,DE⊥AC,∴AE=CE=AC=9,∴AE=9.30.解:(1)∵∠B=50°,∠C=70°,∴∠BAC=60°∵AD是△ABC的角平分线,∴∠BAD=∵DE⊥AB,∴∠DEA=90°∴∠EDA=90°﹣∠BAD=60°(2)过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3又AB=10,AC=8,∴.31.(1)证明:∵AD=CD,∴∠DAC=∠DCA,∵AB∥CD,∴∠DCA=∠CAB,∴∠DAC=∠CAB,∴AC是∠EAB的角平分线,∵CE⊥AE,CB⊥AB,∴CE=CB;(2)AC垂直平分BE,证明:由(1)知,CE=CB,∵CE⊥AE,CB⊥AB,∴∠CEA=∠CBA=90°,在Rt△CEA和Rt△CBA中,,∴Rt△CEA≌Rt△CBA(HL),∴AE=AB,CE=CB,∴点A、点C在线段BE的垂直平分线上,∴AC垂直平分BE.32.解:(1)△ABC为直角三角形.∵AB、AC的垂直平分线的交点落在BC边上,∴AD=BD,AD=CD.∴∠ABD=∠DAB,∠DAC=∠DCA.又∵∠ABD+∠ACD+∠BAC=180°,即∠ABD+∠BAD+∠DAC+∠ACD=180°.∴∠BAD+∠DAC=90°,即∠BAC=90°∴△ABC为直角三角形;(2)∵点A在线段DC的垂直平分线上,∴AD=AC.又∵DA=DC,∴AD=DC=AC.∴△ADC为等边三角形.∴∠C=60°又∵∠BAC=90°∴∠ABC=30°∴=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.在△ABC中,AD为BC边上的中线.求证:AD<(AB+AC)
7.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO平分∠BAC.求证:OB=OC.
答案:1.提示:先证ΔACD≌ΔABE (SAS),再证ΔDBF≌ΔECF(AAS)
4.延长AO交BC于E,在ΔADO=BC,∠OAD=∠BCD(全等三角形对应边、对应角相等)
∵∠AOD=∠COE(对顶角相等)∴∠COE+∠OCE=90o∴AO⊥BC
5.过D点作DF∥AC交BE于F点∵△ABC为等边三角形∴△BFD为等边三角形
∴BF=BD=FD∵AE=BD∴AE=BF=FD∴AE-AF=BF-AF即EF=AB∴EF=AC
全等三角形练习题
1.如图,已知AD=AE,AB=AC.求证:BF=FC
2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.
求证:AB∥CD
3:如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE
4:已知:如图,A、D、B三点在同一条直线上,ΔADC、ΔBDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
∴BF=FC(全等三角形对应边相等)
2.先证ΔABF≌ΔCDE(SAS),得到∠C=∠A,AB∥CD(内错角相等两直线平行)
3.提示:取CD中点F
∴BF=AC,且BF∥AC∴∠ACB=∠2又∵AB=AC∴∠ACB=∠3∴∠3=∠2在ΔCEB与ΔCFB中,
∴ΔCEB≌ΔCFB (SAS)∴CE=CF=CD(全等三角形对应边相等)即CD=2CE
在△ACE和△DFE中,
∴△AEC≌△FED(SAS)∴EC=ED(全等三角形对应边相等)
7.8都省略