北京航空航天大学 基础物理实验 研究性试验报告

合集下载

北航基础学习知识物理实验研究性报告-使用振幅法测量声速

北航基础学习知识物理实验研究性报告-使用振幅法测量声速

基础物理实验研究性报告使用振幅法测量声波的速度第一作者学号第二作者学号院系使用振幅法测量声波的速度(北京航空航天大学,北京102206)摘要:本文以“使用分振幅法测量声波的速度”为主要研究内容,在了解模拟示波器的使用和基本操作的基础上介绍实验原理和步骤,并利用已经记录的原始实验数据进行数据的处理和不确定度的计算。

另外,根据计算结果分析探究实验误差及其来源,并提出一些减小实验误差的建议。

关键词:模拟示波器;分振幅法;数据处理;不确定度;误差分析Using Amplitude Method of Measuring Sonic SpeedLi Huiqiang Ma Linghai(School of Astronautics Beihang University Beijing 102206)Abstract: This article takes "Using Amplitude Method of Measuring Sonic Speed" as the main research content, presenting experiments principle and steps based on the understanding of the use of an analog oscilloscope and its basic operating principles, and has recorded the raw experimental data for data processing and calculation of the uncertainty. In addition, it explores experimental errors and their sources according to the results of calculation analysis, and makes recommendations to reduce the experimental error.Key words: analog oscilloscope; amplitude method; data processing; uncertainty; error analysis一、实验重点(1)、了解模拟示波器的主要结构和波形显示及参数测量的基本原理,掌握示波器、信号发生器的使用方法;(2)、学习用示波器观察波形以及测量电压、周期和频率的方法;(3)、学习振幅法测量声波速度的原理及操作方法。

北航基础物理实验研究性报告迈克尔逊干涉

北航基础物理实验研究性报告迈克尔逊干涉

北航基础物理实验研究性报告-迈克尔逊干涉基础物理实验研究性报告迈克尔逊干涉Michelson interferometerAuthor 作者姓名School number作者学号Institute所在院系2013 年12 月3 日目录摘要 0一.实验目的 (2)二. 实验仪器 (2)三.实验原理 (2)1.干涉仪的光学结构 (3)四. 实验内容 (8)1.观察激光的非定域干涉现象 (8)2.测量激光波长 (9)五. 数据处理 (10)1.波长计算 (10)2.不确定度计算 (11)3. 相对误差计算 (12)5.误差分析: (12)六.条纹计数的改进——应用迈克尔逊干涉条纹自动计数仪 (13)1. 工作原理 (13)1.1 采样 (14)1.2 信号处理 (16)1.3 功放与显示 (17)1.3 应用该装置的实验结果分析 (17)七.实验后的教训、感想、收获 (18)教训——实验原则是严谨 (18)感想——实验态度是认真 (19)收获——实验中的思考和合作 (20)八.结束语 (21)参考文献 (22)摘要本文先介绍了如何通过迈克尔逊干涉仪观察光的分振幅干涉现象,采集数据并进行处理,计算出所测激光的波长及其不确定度。

然后通过实验的亲身经历思考实验仪器的改进之处,并举例说明在条纹计数方面可做的改进,以使实验过程更简便,测得的实验数据更精准。

关键词:迈克尔逊干涉,条纹计数AbstractThis article first describes how to observe the light interference, collect and processing data , calculate the wavelength of the laser and its uncertainty in the Michelson interferometer experiment. Then it thinks about the improvements in the experimental laboratory instrumentsthrough personal experience, and outlines what can be done in terms of fringe counting improvements to make the process more simple and the experimental data more accurately.Key words: Michelson interferometer, fringe counting一.实验目的(1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法;(2)学习一种测定光波波长的方法,加深对等倾、等厚干涉的理解。

北航基础物理研究性实验报告双电桥测低电阻

北航基础物理研究性实验报告双电桥测低电阻

双电桥测低电阻研究性实验报告 3 / 19
北京航空航天大学报告
正文
一、实验目的 1、掌握电桥平衡的原理——零示法。 2、学习用正反接法来降低实验误差 2、了解双电桥测低电阻的原理,以及它对惠斯通电桥的改进。 3、学习使用 QJ19 型单双电桥测低电阻以及相关仪器。 4 对一元线性回归法的进一步巩固并且学会对误差进行正确的分析。 5、了解测量线性导电材料(铜丝)电导率的测量方法。 二、实验原理 用惠斯通电桥测量电阻时, 其所测电阻值一般可以达到四位有效数字,最高 −6 阻值可测到10 欧姆, 最低阻值为 10 欧姆左右。 当被测电阻的阻值低于 10 欧姆 时称为低值电阻, 单臂电桥测量到的电阻的有效数字将减小,另外其测量误差也 显著增大起来, 究其原因是因为被测电阻接入测量线路中,连接用的导线本身具 有电阻称为接线电阻, 被测电阻与导线的接头处亦有附加电阻称为接触电阻。接 线电阻和接触电阻的阻值约为10−4 ~10−2 欧姆,接触电阻虽然可以用清洁接触点 等措施使之减小,但终究不可能完全清除。当被测电阻仅为 10−3 ~10−6 欧姆时, 其接线电阻及接触电阻值都已超过或大大超过被测电阻的阻值, 这样就会造成很 大误差,甚至完全无法得出测量结果。所以,用单臂电桥来测量低值电阻是不可 能精确的, 必须在测量线路上采取措施,避免接线电阻和接触电阻对低值电阻测 量的影响。 为了消除接线电阻和接触电阻的影响,先要弄清楚它们是怎样影响测 量结果的。
如上图 T—1 所示,单电桥测量低电阻时,附加电阻是直接与待测电阻 Rx 串联的, 当附加电阻的大小与待测电阻大小相比不能被忽略时,用单电桥测量电 阻的公式:Rx=R1 R0就不能准确地得出 Rx 的值;再者,由于 Rx 很小,如 R1≈R2 时,电阻 R0 也应该是小电阻,其附加电阻的影响也不能被忽略,这也是不能准 确测量 Rx 的原因。开尔文电桥是惠斯通电桥的变形,在测量小电阻的时候有很 高的准确度, 如图 1 所示,用单电桥测低电阻时,附加电阻 R’与 R’’和 Rx 是直接串联的, 双电桥测低电阻研究性实验报告 4 / 19

北航基础物理实验研究性报告(自己写的,仅供参考)

北航基础物理实验研究性报告(自己写的,仅供参考)

电位差计及其应用实验的误差分析尹天杰刘昫辰(北京航空航天大学机械工程及自动化学院北京 102206)摘要:本文分析了电位差计及其应用实验中的测量待测电源电动势的实验误差,发现当工作电流没有进行标准化处理时,实验不确定度将增加,影响实验精确性。

这个问题告诉我们,实验的优化设计,往往可以起到获得更准确的数据、提高实验精度的作用。

关键词:电位差计、工作电流标准化、实验误差中图分类号:043文献标识码:A文章编号:补偿法在电磁测量技术中有广泛的应用,一些自动测量和控制系统中经常用到电压补偿电路。

电位差计是电压补偿原理应用的典型范例,它是利用电压补偿原理是电位差计变成内阻无穷大的电压表,同于精密测量电动势或电压。

同理,利用电流补偿原理也可制作一内阻为零的电流表,用于电流的精密测量。

电位差计的测量准确度高,且避免了测量的接入误差,但他操作比较复杂,也不易实现测量的自动化。

在数字仪表迅速发展的今天,电压测量已逐步被数字电压表所代替,后者因为内阻高、自动化测量容易,得到了广泛的应用。

尽管如此,电位差计作为补偿法的典型应用,在电学实验中仍有重要的训练价值。

此外,直流比较式电位差计仍是目前准确度最高的电压测量仪表,在数字电压表及其他精密电压测量仪表的检定中,常作为标准仪器使用。

一、实验目的1.学会设计自组电位差计电路图并连接电路 2.学习补偿原理、零示法、比较测量法二、实验原理1.补偿原理测量干电池电动势EX的最简单办法就是把伏特表接到电池的正负极上直接读数,但由于电池和伏特表的内阻,测得的电压V=EXR/(R+r)并不等于电池的电动势EX。

由于伏特表的接入,总要从被测电路分出一部分电流,从而产生接入误差。

为了避免接入误差,可以采用补偿电路(如图所示)。

如果cd可调,E>EX,则总可以找到一个cd位置,使EX所在回路中无电流通过,这时Vcd=EX。

上述原理称为补偿原理。

2.零示法为了确认补偿回路中没有电流通过(完全补偿),应当在补偿回路中接入一个具有足够灵敏度的检流计G,这种用检流计来判断电流是否为零的方法,称为零示法。

北京航空航天大学物理研究性实验报告

北京航空航天大学物理研究性实验报告

S=
为电桥(绝对)灵敏度。电桥灵敏度的大小与工作电压有关,为使电桥灵敏度足 够,电源电压不能过低;当然也不能过高,否则可能损坏电桥。显然,若 RX 改 变,很大范围内尚不足引起检流计指针的反应,则此电桥系统的灵敏度很低,它 将对测量的精确度产生很大影响。电桥灵敏度与检流计的灵敏度、电源电压及桥 臂电阻配置等因素有关, 选用较高灵敏度的检流计,适当提高电源电压都可提高 电桥灵敏度。如果电阻 RX 不可改变,这时可使标准电阻改变△ RN ,其效果相当 于 RX 改变△ RX 。由 RX

B、判断内外接法: 采用试触法判断内外接法,若 则采用电流表内接法;否则采用 电流表外接法。 经测得: 内接: , 外接:, ,故采用电流表内接法。 C、测量中电阻:
电路图
测量原始数据
电流表选择 15mA 量程,电压表选择 1.5V 量程 1 U/V 2 3 4 5 6 7 8
0.925 0.951 0.986 1.005 1.037 1.065 1.102 1.139 9.80 10.09 10.29 10.65 10.95 11.28 11.53
Rg ug (799.3 0.6)

(2)电压表 7.5V 量程:
3000 0.1% 900 0.2% 90 0.5% 4 5% 0.02 4.12 ;
u 2.38 ; 3
Rg ug (3994 2)

(3)电流表 15mA 量程:
二、实验原理及主要步骤
方法 1 伏安法测电阻
伏安法是同时测量电阻两端电压及其流过电阻的电流,由欧姆定律 U
R I
求得阻值 R。 亦可用作图法, 画电阻的伏安特性曲线, 从曲线上求出电阻的阻值。 图 2.1.1 为伏安法测电阻的两种原理电路,显然由于电表内阻( RV 、 RA ) 的影响,无论采用电流表内接或电流表外接,都不能严格满足欧姆定律: I、 II、 若采用内接法,则电压表所测电压为

北航基础物理实验研究性实验报告密立根油滴

北航基础物理实验研究性实验报告密立根油滴

北航基础物理实验研究性实验报告密立根油滴1.实验目的和原理1.1实验目的本实验旨在通过密立根油滴实验,研究带电粒子在电场中的运动规律,验证电荷的电量、电荷的量子化,并测量电子电量的数值。

1.2实验原理密立根油滴实验利用了油滴在电场中做匀速下降运动的性质。

在实验过程中,需要在两个平行金属板之间建立一个均匀电场,可通过高压电源及电容器组成。

经过适当处理的油滴,通过喷雾器喷入观察舱中,被电荷所带起,当油滴进入电场时,由于电力的作用,油滴会开始向上加速或减速,直到达到的稳定运动的速度为止。

根据牛顿第二定律,此时电力与油滴重力平衡,即:eE=m×g其中,e为油滴所带电荷,E为电场强度,m为油滴质量,g为重力加速度。

考虑到油滴的存在电子荷负度的事实,我们可以写出油滴电量的表达式为:e=n×e其中,e为油滴带的电荷,e为电子电量,n为一个整数。

由此可得,油滴的表达式可以改写为:(mg−eE) = 0在实验中,我们将通过测量油滴在不同电压下的稳定下降速度,来计算电量的数值。

2.实验装置和步骤2.1实验装置本实验的主要装置有:高压电源、电容器、喷雾器、驱动装置、显微镜及摄像设备等。

2.2实验步骤2.2.1准备工作a.接通电源,使电荷采集装置工作。

b.调整显微镜使得目标所在位置清晰可见。

c.调节电容器中的电压,使之为一定的数值。

2.2.2实验操作a.先通过射灯预热机器,预热时间约为15分钟。

b.打开电流调节开关,调整到合适的数值。

c.打开电压调节开关,缓慢增加电压,使带电滴油进入视野。

d.若带电滴油向上运动,则减小电压,反之则增大电压。

e.再次观察带电滴油的上升或下降方向,调整电压大小,直至带电滴油保持匀速下降。

f.记录下匀速下降的电压。

2.2.3数据处理a.根据实验数据计算带电滴油的质量,并计算电量。

b.对多次测量的结果求平均值,以提高数据准确性。

3.结果与分析通过实验我们得到了多组测量数据,并利用公式计算出带电滴油的质量,进而计算出电子的电量。

北航基础物理实验研究性报告

北航基础物理实验研究性报告

B
图-8 2、读数装置改进 实验中,要求准确找到极大值或极小值的位置,现有的实验仪器 基础上会产生很大的误差,如果对实验的读数装置进行改进,提高精 度, 就可提高实验的准确率。 改进方法同布拉格衍射的读数装置改进。
外部环境的改进
在实验室中进行实验,由于各组发出的信号之间有干扰,所以的 各组实验应该隔离开来来做,以免发出的信号互相影响,这样可以提 高实验的准确性。 三、实验数据的误差分析 布拉格衍射实验数据如下:
理论
=4.84° =1.83° =1.57°
相对误差:7.3% 5.0% 2.8%
平均
理论
平均
理论
根据实验结果以及相对误差给分析可知,在误差允许范围内,能够验 证布拉格衍射公式。但是,实验中由于实验仪器精度和读数误差,实 验结果仍存在较大误差, 下面针对由晶格常数求波长的数据处理进行 定量的误差分析: 已知:a=4.00cm;(1 0 0)面 k=1;β =57.10°。 ∴d=a/ 2=2.83cm ∴λ =2dcosβ =3.074cm 误差定量分析: 实验操作中,由于人眼读书时存在误差,理论上人言分辨率的 误差为 0.2div,但实际上,由于需要读载物台分读盘和电流表的读 数,实验中积累的人眼读数的误差将近 0.5°,此误差构成 A 类不确 定度,而在之前的实验数据处理中,忽略了这一误差认为 A 类不确定
图-7
二,实验改进 1、由于 A,B 两板固定在仪器上时是用肉眼观测其是否垂直,这 样就会产生比较大的误差, 所以可以对 A,B 两板的固定方式进行改进,
6
使两板的固定位置更准确。改进方式如下: 将 A,B 两板固定于如图示的导槽 A,B 两个位置,由于导槽是相互严 格垂直的, 这样就保证了 A,B 的相互垂直, 再将导槽固定在载物台上, 调整导槽到合适位置,这样 A 板就固定在导槽上,B 板可以沿着其法 线方向前后移动, 就达到了实验的要求, 而且降低了实验的误差。 (如 图-8) A

北航基础物理实验研究性报告

北航基础物理实验研究性报告

北航基础物理实验研究性报告全息照相与全息干涉法实验误差分析与相关改进摘要:全息摄影亦称:“全息照相”,一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。

全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。

全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。

本实验的内容为反射式和透射式全息照相,并在反射式全息照相的基础上用二次曝光法测定铝板的杨氏模量,通过实验不仅可以学到全息照相的相关知识和技能,还可以获得在二维光学平台上进行光路调整的训练。

通过实验及相关分析,对全息照相与全息干涉法实验中的误差进行分析并做出相关改进。

关键词:全息照相反射式全息透视式全息两次曝光法1. 实验要求1.1 实验重点1)了解全息照相的基本原理,熟悉反射式全息照相与透射式全息照相的基本技术和方法;2)掌握在光学平台上进行光路调整的基本方法和技能;3)学习用二次曝光法进行全息干涉测量,并以此测定铝板的弹性模量;4)通过全息照片的拍摄和冲洗,了解有关照相的一些基础知识。

1.2 实验原理1.2.1 全息照相全息照相所记录和再现的是包括物光波前的振幅和位相在内的全部信息。

但是,感光乳胶和一切光敏元件都只对光强敏感,不能直接记录相位,从而借助一束相干参考光,通过拍摄物光和参考光之间的干涉条纹,间接记录下物光的振幅和位相信息,然后使照明光按一定方向照射到全息图上,通过全息图的衍射再现物光波前,这时人眼便能看到物体的立体像。

根据记录光路的不同,全息照相又分为透射式全息和反射式全息,若物光和参考光位于记录介质(干板)的同侧,则称为透射全息;若物光和参考光位于记录介质的异侧,则称为反射全息。

(1)透视射全息照相1)透视全息照相的记录两束平行光的干涉将感光板垂直于纸面放置,两书相干平行光o 、r 按照图1所示方向入射到感光板上,他们与感光板法向夹角分别为o ϕ和r ϕ,并且o 光中的两条光线1、2与r 光中的两条光线'1和'2在A 、O 两点相遇并相干,于是在垂直于纸面方向产生平行的明暗相间的干涉条纹,亦即在感光板上形成一个光栅。

北航基础物理研究性实验报告-氢原子光谱

北航基础物理研究性实验报告-氢原子光谱

氢原子光谱和里德伯常量测定—-定量误差分析和创新实验改进摘要:本文详细地介绍了氢原子光谱和里德伯常量实验的实验要求、实验原理、仪器介绍、实验内容和数据处理,并从钠黄双线无法区分的现象触发定量地分析了此现象的原因和由此产生的误差,结合光谱不够锐亮和望远镜转动带来的误差提出了创新的实验方案。

从理论上论证了实验方案的可行性,总结了基础物理实验的经验感想。

关键字:氢原子光谱里德伯常量钠黄双线Abstract:This paper introduced the hydrogen atoms spectrum and Rydberg constant experiment from experimental requirements, experimental principle, instruments required, content and Data processing. Considering that the wavelength difference of Na-light double yellow line is indistinguishable from human eyes, we analyze the cause of this phenomenon and the resulting errors quantitatively and propose an innovate experiment method combined with inadequate sharpness and lightness of the spectrum as well as the errors brought during the turning of telescope. We verify the feasibility of this method In theory and summarizes the experience and understanding of basic physics experiment.Key words: hydrogen atoms spectrum, Rydberg constant, Na-light double yellow line目录摘要: (1)关键字 (1)目录 (2)一.实验目的 (3)二.实验原理 (3)1.光栅衍射及其衍射 (3)2.光栅的色散本领与色分辨本领 (4)3.氢原子光谱 (5)4.测量结果的加权平均 (6)三.实验仪器 (7)四.实验内容 (7)五.实验数据及处理 (7)1.光栅常数测量 (8)2.氢原子光谱测里德波尔常数 (8)3.色散率和色分辨本领 (10)六.误差的定量分析 (11)1.人眼的分辨本领 (11)2.计算不确定度和相对误差: (11)七.实验方案的创新设想 (11)1.实验思路及理论验证 (11)2.实验光路 (12)3.方案理论评估 (12)八.实验感想与总结 (13)九.参考文献 (14)一.实验目的1. 巩固提高从事光学实验和使用光学仪器的能力; 2. 掌握光栅的基本知识和使用方法;3. 了解氢原子光谱的特点并用光栅衍射测量巴耳末系的波长和里德伯常数;4. 巩固与扩展实验数据的处理方法,及测量结果的加权平均,不确定度和误差计算,实验结果的讨论等。

北航物理研究性实验报告

北航物理研究性实验报告

实验名称:电磁场与电磁波的研究实验日期:2023年3月15日实验地点:北航物理实验室实验目的:1. 理解电磁场的基本概念和特性。

2. 掌握电磁波的传播规律。

3. 通过实验验证电磁波的理论。

4. 培养实验操作能力和数据分析能力。

实验原理:电磁场是电荷和电流在空间中产生的场,它由电场和磁场两部分组成。

当电荷静止时,周围存在电场;当电荷运动时,会产生磁场。

电磁波是电磁场在空间中的传播形式,其传播速度等于光速。

根据麦克斯韦方程组,电磁波在真空中传播的速度为光速c,且满足以下关系:\[ c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} \]其中,\(\mu_0\)为真空磁导率,\(\epsilon_0\)为真空电容率。

实验器材:1. 电磁场发生器2. 电磁场探测器3. 光电传感器4. 信号发生器5. 示波器6. 信号线7. 电源实验步骤:1. 将电磁场发生器连接到信号发生器,调节信号发生器的频率和幅度。

2. 将电磁场探测器放置在电磁场发生器的正前方,确保探测器与发生器之间的距离固定。

3. 打开信号发生器和电磁场发生器,记录探测器的输出信号。

4. 改变信号发生器的频率和幅度,重复步骤3,记录数据。

5. 将光电传感器放置在电磁场探测器的正前方,记录光电传感器的输出信号。

6. 改变电磁场发生器的位置,重复步骤5,记录数据。

7. 使用示波器观察和记录电磁波信号的波形。

实验结果与分析:1. 当信号发生器的频率为10MHz时,电磁场探测器的输出信号稳定,说明电磁场发生器产生的电磁波能够被探测器接收。

2. 随着信号发生器频率的增加,电磁场探测器的输出信号幅度逐渐减小,说明电磁波的传播速度与频率有关。

3. 当电磁场发生器与探测器的距离增加时,光电传感器的输出信号幅度逐渐减小,说明电磁波的传播距离与距离有关。

4. 通过示波器观察,电磁波信号的波形为正弦波,符合电磁波的理论。

实验结论:1. 电磁场是电荷和电流在空间中产生的场,由电场和磁场两部分组成。

物理实验研究性报告

物理实验研究性报告

北京航空航天大学大学2013年基础物理实验研究性报告第一作者:郭小艳第二作者:梁丁元2013.12实验一:拉伸法测钢丝弹性模量一:摘要本文采用拉伸法及光杠杆原理对直径约为0.8厘米钢丝的弹性模量进行了测量。

其中光杠杆法是一种利用光学放大方法测量微小长度(物体微小位移)的装置,它采用光学机制以光线来代替机械杠杆的长臂而实现间接放大测量,主要讨论了对影响测量结果的可能因素和用逐差法减少相应误差的方法。

二:实验原理1. 弹性模量一粗细均匀的金属丝,长度为l ,截面积为S ,一端固定后竖直悬挂,下端挂以质量为m 的砝码;则金属丝在外力F=mg 的作用下伸长Δl 。

单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。

有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比,即ll ∆=E S F 其中的比例系数ll S F E //∆= 称为该材料的弹性模量。

性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。

实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得,而l ∆的数量级很小,故使用光杠杆镜尺法来进行较精确的测量。

2. 光杠杆原理光杠杆的工作原理如下:初始状态下,平面镜为竖直状态,此时标尺读数为n 0。

当金属丝被拉长l ∆以后,带动平面镜旋转一角度α,到图中所示M ’位置;此时读得标尺读数为n 1,得到刻度变化为01n n n -=∆。

Δn 与l ∆呈正比关系,且根据小量忽略及图中的相似几何关系,可以得到n Bb l ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系,和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlB E ∆=28π (式中B 既可以用米尺测量,也可以用望远镜的视距丝和标尺间接测量;后者的原理见附录。

)根据上式转换,当金属丝受力F i 时,对应标尺读数为n i ,则有028n F bED lB n i i +⋅=π 可见F 和n 成线性关系,测量多组数据后,线性回归得到其斜率, 即可计算出弹性模量E 。

北航物理研究性实验报告

北航物理研究性实验报告

北航物理研究性实验报告北航物理研究性实验报告导言:物理学是一门基础学科,通过实验研究能够验证理论,提供实际应用的科学依据。

本实验旨在通过对某一物理现象的研究,探索其背后的原理和规律。

通过实验,我们可以深入了解物理学的实践意义,培养实验观察和数据处理的能力。

实验目的:本实验的目的是研究光的折射现象,通过测量折射角和入射角之间的关系,验证折射定律,并计算出光在不同介质中的折射率。

实验原理:光的折射是光线从一种介质传播到另一种介质时,由于介质的密度不同而改变方向的现象。

根据折射定律,入射角i、折射角r和两个介质的折射率之间存在着如下关系:n1sin(i) = n2sin(r)。

其中,n1和n2分别是两个介质的折射率。

实验步骤:1. 准备实验所需材料,包括光源、凸透镜、直尺、半反射镜等。

2. 将光源放置在一定距离处,使其成为平行光。

3. 将凸透镜放置在光源和半反射镜之间,调整凸透镜的位置和方向,使光线经过凸透镜后成为平行光。

4. 在半反射镜上方放置一块透明介质,如水,调整其位置和倾斜角度,使光线从空气中射入水中。

5. 使用直尺测量入射角和折射角,并记录下来。

6. 重复上述步骤,将透明介质更换为其他材料,如玻璃、油等,测量不同介质中的入射角和折射角。

实验结果与讨论:通过实验测量得到的入射角和折射角数据,我们可以计算出不同介质的折射率。

根据折射定律,我们可以得到n1sin(i) = n2sin(r),通过这个公式,我们可以推导出不同介质的折射率。

在实验中,我们发现当光线从空气射入水中时,入射角较大时,折射角也较大,光线弯曲的程度较大。

而当光线从水射入空气中时,入射角较小时,折射角也较小,光线弯曲的程度较小。

这与折射定律中的sin函数的性质相符合。

在不同介质中,光的速度会发生改变,从而导致光线的折射。

根据光的速度和波长的关系,我们可以计算出不同介质的折射率。

折射率越大,介质对光的阻碍越大,光线的弯曲程度也越大。

北航基础物理实验研究性实验报告_分光仪的调整及应用

北航基础物理实验研究性实验报告_分光仪的调整及应用

北京航空航天大学物理研究性实验报告分光仪的调整及其应用第一作者:所在院系:就读专业:第二作者:所在院系:就读专业:目录目录一.报告简介 .............................................................................................................. 错误!未定义书签。

二.实验原理 (1)实验一.分光仪的调整 (1)实验二.三棱镜顶角的测量 (3)实验三.最小偏向角法测棱镜折射率 (1)二.实验仪器 (1)三.实验主要步骤 (2)实验1.分光仪的调整 (2)1.调整方法 (2)2.要求 (4)实验2.三棱镜顶角的测量 (4)1.调整要求 (4)2.实验操作 (5)实验3.棱镜折射率的测定(最小偏向角法) (6)四.实验数据记录 (6)五.数据处理 (6)实验2.反射法测三棱镜顶角 (6)实验3.最小偏向角法测棱镜折射率 (7)六.误差分析 (8)七.分析总结 (8)八.实验改进 (9)九.实验感想 (9)十.参考文献及图片附件: (11)一.报告简介本报告以分光仪的调整、三棱镜顶角和其折射率的测量为主要内容,先介绍了实验的基本原理与过程,而后进行了数据处理与不确定度计算。

并以实验数据对误差的来源进行了分析。

同时还给出了调节分光仪的经验总结与方法,并对现有实验仪器和试验方法提出了改进的意见。

二.实验原理实验一.分光仪的调整分光仪的结构因型号不同各有差别,但基本原理是相同的,一般都由底座、刻度读数盘、自准直望远镜、平行光管、载物平台5部分组成。

1-狭缝套筒;2-狭缝套筒紧固螺钉;3-平行光管;4-制动架;5-载物台;6-载物台调平螺钉;7-载物台锁紧螺钉;8-望远镜;9-望远镜锁紧螺钉;10-阿贝式自准直目镜;11-目镜;12-仰角螺钉;13-望远镜光轴水平螺钉;14-支臂;15-望远镜转角微调螺钉;16-读数刻度盘止动螺钉;17-制动架;18-望远镜止动螺钉;19底座;20-转座;21-读数刻度盘;22-游标盘;23-立柱;24-游标盘微调螺钉;25-游标盘止动螺钉;26-平行光管光轴水平螺钉;27-仰角螺钉;28-狭缝宽度调节螺钉;1.三角底座在三角底座中心,装有一个垂直的固定轴,望远镜、主刻度圆盘、游标刻度盘都可绕它旋转。

北航_基础物理实验_研究性报告_双电桥测低电阻

北航_基础物理实验_研究性报告_双电桥测低电阻

基础物理实验研究性报告——双电桥测低电阻实验专题双电桥测低电阻整理刘永超学号11241058院(系)名称中法工程师学院2012年11月29日目录一、实验原理 (1)二、实验仪器 (3)三、主要步骤 (4)3.1准备工作 (4)3.2实验操作与记录 (4)3.3实验仪器整理 (4)四、数据记录与处理 (5)五、讨论 (6)5.1 误差分析 (7)5.1.1对实验误差的定性分析 (7)5.1.2对双电桥测低电阻的实验误差的定量分析 (7)5.2 实验改进建议 (8)5.2.1对实验原理的改进 (8)5.2.2 对实验器材的改进 (10)5.3 实验总结 (11)5.3.1实验经验教训: (11)5.3.2实验感想与收获: (11)六、参考文献 (12)摘要本文以“双电桥测低电阻”的实验报告为主要内容,通过与惠斯通电桥的对比,详细介绍了了开尔文双电桥测量低电阻的原理以及具体的实验过程,而后通过已取得的实验数据进行了严格的数据处理与不确定度的计算。

并以实验数据对误差的进行了更为深入的分析,并根据自己实际操作实验的经历对本实验的实验仪器等提出了自己的看法,以及本次试验给自己的感受。

关键词:开尔文双电桥、低电阻、误差、实验改进。

一、实验原理惠斯通电桥(单电桥)测量的电阻,其数值一般在10~106之间,为中电阻。

对于10以下的电阻,例如变压器绕组的电阻、金属材料的电阻等,测量线路的附加电阻(导线电阻和端钮处的接触电阻的总和为10-4~10-2)不能忽略,普通惠斯通电桥难以胜任。

如图1. 1所示,用单电桥测低电阻时,附加电阻与和是直接串联的,当和的大小与被测电阻大小相比不能被忽略时,用单电桥测电阻的公式就不能准确地得出的值;再则,由于很小,如≈,电阻也应是小电阻,其附加电阻(图中未画出)的影响也不能忽略,这也是得不出准确值的原因。

开尔文电桥是惠斯通电桥的变形,在测量小阻值电阻时能给出相当高的准确度。

它的电路原理见图1.2。

北航基础物理实验研究性报告_菲涅耳双棱镜干涉

北航基础物理实验研究性报告_菲涅耳双棱镜干涉

物理实验研究性报告菲涅耳双棱镜干涉第一作者:第二作者:班级:日期:目录摘要 (3)一.实验目的 (3)二.实验原理 (3)三.实验方案 (6)1.光源的选择 (6)2.测量方法 (6)3.光路组成 (7)四.实验仪器 (7)五.实验内容 (7)1.各光学元件的共轴调节 (7)2.波长的测量 (9)六.数据处理 (9)1.原始数据 (9)2.用一元线性回归计算条纹间距 (10)3.计算不确定度 (10)七.误差分析 (11)1.两虚像间距测量的误差 (11)2.物距测量的误差 (11)八.实验的注意事项及改进建议 (13)九.感想 (14)十.参考文献 (15)摘要本文先对菲涅耳双棱镜激光干涉实验的实验原理、实验仪器和实验内容进行了简单的介绍,而后进行了数据处理和不确定度计算,并对实验数据的误差进行定量分析。

误差分析是研究的重点,本文主要考虑的是测量物距时带来的误差。

关键词:菲涅耳双棱镜;数据处理;误差分析一.实验目的1.熟悉掌握等高共轴调节的方法和技术;2.用实验研究菲涅耳双棱镜干涉并测定单色光波长;3.观察双棱镜产生的双光束干涉现象,进一步理解产生干涉的条件。

二.实验原理菲涅耳双棱镜实验是一种分波阵面的干涉实验,实验装置简单,但设计思想巧妙。

它通过测量毫米量级的长度,可以推算出小于微米量级的光波波长。

1881年菲涅耳用双棱镜实验和双面镜实验再次证明了光的波动性质,为波动光学奠定了坚实的基础。

如图1所示,将一块平玻璃板的上表面加工成两楔形,两端与棱脊垂直,楔角较小(一般小于1度)。

当单色光源照射在双棱镜表面时,经其折射后形成两束好像由两个光源发出的光,即两列光波的频率相同,传播方向几乎相同,相位差不随时间变化,那么,在两列光波相交的区域内,光强的分布是不均匀的,满足光的相干条件,称这种棱镜为双棱镜。

菲涅耳利用图2所示的装置,获得了双光束的干涉现象。

图中双棱镜 是一个分割波前的分束器。

从单色光源 发出的光波,经透镜 会聚于狭缝 ,使 成为具有较大亮度的线状光源。

北京航空航天大学物理研究性实验报告1021

北京航空航天大学物理研究性实验报告1021

测量冰的溶解热实验的误差分析与改进(北京航空航天大学 xxxxxxx xxxxxxxx)摘要: 本文对测量冰的溶解热实验进行了探讨,对实验误差进行了定量分析,并提出了实验的改进方法,总结了实验中的教训,表达了此次试验的感想和收获。

关键词:冰的溶解热;误差分析;改进1. 实验目的1.熟悉热学实验中的基本问题——量热和计温;2.学习进行散热修正的方法——牛顿冷却定律法;3.了解热学实验中合理安排实验和选择参量的重要性;4.熟悉热学实验中基本仪器的使用。

2. 实验原理2.1一般概念本实验用混合量热法来测定冰的熔解热。

其基本做法是:把待测的系统A和一个已知其热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B),这样A(或B)所放出的热量,全部为B(或A)所吸收,因为已知热容的系统在实验过程中所传递的热量Q,是可由其温度的改变Tδ和热容C。

计算出来的,即Q=C sδT。

2.2装置简介为了使实验系统(包括待测系统与已知其热容的系统)成为一个孤立系统,本实验采用了量热器。

量热器由良导体做成的内筒放在一较大的外筒中组成。

通常在内筒中放水、温度计及搅拌器,它们(内筒、温度计、搅拌器及水)连同放进的待测物体就构成了我们所考虑的(进行实验的)系统。

内筒置于一绝热架上,外筒用绝热盖盖住,因此空气与外界对流很小,又因空气是不良导体,所以内、外筒靠传导方式传递的热量同样可以减至很小,同时由于内筒的外壁及外筒的内外壁都电镀的十分光亮,使得它们发射或吸收辐射热的本领变得很小,于是实验系统和环境之间因辐射而产生的热量传递也得以减小,这样的量热器就可以使实验系统粗略地接近于一个孤立系统了。

2.3实验原理若有质量为M,温度为T1的冰(在实验室环境下其比热容为c1,熔点为T),与质量为m,温度为T2的水(比热容为c)混合,冰全部溶解为水后的平衡温度为T3,设量热器的内筒和搅拌器的质量分别为m1、m2,比热容分别为c1、c2,温度计的热容为mδ。

北航基础物理实验研究性实验报告-分光仪的调整及应用

北航基础物理实验研究性实验报告-分光仪的调整及应用

北京航空航天大学物理研究性实验报告分光仪的调整及其应用第一作者:所在院系:就读专业:第二作者:所在院系:就读专业:目录目录一.报告简介 (1)二.实验原理 (1)实验一.分光仪的调整 (1)实验二.三棱镜顶角的测量 (3)实验三.最小偏向角法测棱镜折射率 (1)二.实验仪器 (1)三.实验主要步骤 (2)实验1.分光仪的调整 (2)1.调整方法 (2)2.要求 (4)实验2.三棱镜顶角的测量 (4)1.调整要求 (4)2.实验操作 (5)实验3.棱镜折射率的测定(最小偏向角法) (6)四.实验数据记录 (6)五.数据处理 (7)实验2.反射法测三棱镜顶角 (7)实验3.最小偏向角法测棱镜折射率 (7)六.误差分析 (8)七.分析总结 (8)八.实验改进 (9)九.实验感想 (10)十.参考文献及图片附件: (11)一.报告简介本报告以分光仪的调整、三棱镜顶角和其折射率的测量为主要内容,先介绍了实验的基本原理与过程,而后进行了数据处理与不确定度计算。

并以实验数据对误差的来源进行了分析。

同时还给出了调节分光仪的经验总结与方法,并对现有实验仪器和试验方法提出了改进的意见。

二.实验原理实验一.分光仪的调整分光仪的结构因型号不同各有差别,但基本原理是相同的,一般都由底座、刻度读数盘、自准直望远镜、平行光管、载物平台5部分组成。

1-狭缝套筒;2-狭缝套筒紧固螺钉;3-平行光管;4-制动架;5-载物台;6-载物台调平螺钉;7-载物台锁紧螺钉;8-望远镜;9-望远镜锁紧螺钉;10-阿贝式自准直目镜;11-目镜;12-仰角螺钉;13-望远镜光轴水平螺钉;14-支臂;15-望远镜转角微调螺钉;16-读数刻度盘止动螺钉;17-制动架;18-望远镜止动螺钉;19底座;20-转座;21-读数刻度盘;22-游标盘;23-立柱;24-游标盘微调螺钉;25-游标盘止动螺钉;26-平行光管光轴水平螺钉;27-仰角螺钉;28-狭缝宽度调节螺钉;1.三角底座在三角底座中心,装有一个垂直的固定轴,望远镜、主刻度圆盘、游标刻度盘都可绕它旋转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探究测定冰的熔解热实验冰水质量比以及实验过程和数据处理的改进方法周晓城,巨建树(北京航空航天大学生物与医学工程学院北京 100191)摘要:本文通过计算得到混合量热法中的最佳冰水质量比并在实验中对此进行比较讨论,验证计算值,得出结论;验证牛顿冷却定律,同时得到实验参照值;并就本人在实验过程中遇到的一些问题提出实验操作以及数据处理方面的一些改进意见和建议;以及在数据处理过程中发现的水量、温差与冷却常数和实验误差之间的大致关系。

关键词:冰水质量比;牛顿冷却定律;数据处理;改进意见;误差规律中图分类号:043文献标识码:A文章编号:1.实验背景测量冰的熔解热的实验方法有很多,在大学物理实验中使用最多的是混合量热法,而作为大学物理少数几个热学实验中的一员,其重要性显而易见。

然而在实验的操作过程中很多同学反映实验不好操作,具体的问题有:1.依据《基础物理实验》[1],实验中需要保证加冰前与加冰后的稳定温度与室温的温差大约在10-15℃能较好地依据牛顿冷却定律绘制温度补偿修正曲线,而对于没有经验的实验者来说实验中的水量和冰量添加不好把握,加冰太少,可能造成冰块溶解后水温高于室温而无法温度修正,或者加冰太多,造成温度稳定后冰块无法溶解完全,在实验中往往需要经过多次尝试才能取得较好的实验数据,费时费力费水;2.取冰时,所有同学都是徒手取冰的,而对于较低温度(-21℃)的冰块,手的温度较高(30℃左右),即使在取冰和透冰过程中接触的时间很短(亲测至少15s),参照实验过程中冰块溶解降温曲线,吸热也会很明显,从而使得实验结果偏低,而在没有同伴的情况下,为了协调记录时间、记录温度,同时还要投冰动作迅速而使水不外溅,观察到通常同学会找特殊时刻投冰,在这种情况下不是冰块在外界的时间过长甚至开始融化了,就是手忙脚乱实验数据很难记录,实验效果不是很好;3.同时,由于投冰之后冰融化的最初几分钟铂电阻温度计示数变化非常快,而且需记录的数据比较多,同时还要不断搅拌,使得这段数据点很容易记录不全或者记录偏差,而这段数据是数据处理过程中非常重要的部分,直接影响到温度的修正,所以很容易造成实验误差;4.还有数据处理中绘制温度修正曲线时,要求室温线上方的温度修正线与室温线所围面积与下方的面积相等,使用的方法是在坐标纸中绘图,然后通过数格子找到使面积大概相等的时刻t=t0,由于坐标纸大小有限、比例有限,数格子非常麻烦而且这样做是十分不准确的,使得T2′,T3′有了误差,影响实验效果。

为此,本文提出一些实验方法、数据处理方法、实验技巧和对实验室的建议等改进方法相互结合,可以相对较好地解决上述问题。

为了文章叙述方便,把目前课本《基础物理实验》上的实验称为经典实验,本文提出的研究实验称为实验。

经典实验的详细实验原理不再经行赘述,以下对主要原理和需要补充和改进的部分经行说明。

2.实验原理(1)混合量热法原理若有质量为M、温度为T1的冰(在实验室条件下其比热容为c I,熔点为T0),与质量为m、温度为T2的水(比热容为c0)混合,并全部熔解为水后的平衡温度为T3,设量热器的内筒和搅拌器的质量分别为m1和m2,比热容分别为c1和c2,温度计的热容为δm。

如果系统为孤立系统,则冰水混合的热平衡方程为:c I M(T0−T1)+ML+c0M(T3−T0)=(c0m+c1m1+c2m2+δm)(T2−T3)式中,L为冰的熔解热。

可以认为冰的熔点为0℃,即T0=0℃,所以:L=1M(c0m+c1m1+c2m2+δm)(T2−T3)−c0T3+c I T1(2)牛顿冷却定律一个系统的温度如果高于环境温度,则该系统散失热量,而如果低于环境温度,则会放热。

据文献可知,当系统与环境温度差比较小时(不超过10-15℃),散热速率与温度成正比,这就是牛顿冷却定律,可写成:δq=K(T−θ)式中,δq是系统散失的热量;δt为时间间隔;K是散热常数(与系统表面积成正比,并随表面的吸散热本领不同而不同);T、θ分别为系统与环境的温度;δqδt称为散热速率,即单位时间内系统所散失的热量。

1)温度修正原理根据牛顿散热定律,容易推得,(T−θ)关于t的积分与系统散热量成正比,如下图2.21-1的情况,可认为系统从外界总共吸收的热量为面积S=S2+S5−S4;而将降温曲线与升温曲线向中间延长至T2′和T3′,使得有S1+S2=S3,则新的温度变化曲线中系统总共吸收的热量为S′=S3+S5−S1−S4,而又已经有S1+S2=S3,所以S′=S,所以新的曲线实际上与原曲线是等价的。

此时环境温度较高,但如果像图2.21-2的情况,即环境温度较低,则使得有S1=S3+S2,S2在环境温度曲线上方,则推导过程与上面的方法类似,系统从外界总共吸收的热量为面积S=S5−S2−S4,而新作温度变化图像系统总共吸收的热量依然为S′=S3+S5−S1−S4,又有S1=S3+S2,所以依然可以得到S′=S。

综上所述,在上图两种情况下,均只需要每个图中两部分阴影区域面积相等即可,即修正曲线与原温度变化曲线之差在t2~t3的积分为零。

可以利用这个关系,再使用相应的数据拟合分析软件,即可用积分关系的不定积分方程得到准确的t=t0,再代入降温和升温曲线方程中,即可得到修正后的T2′和T3′。

温度修正曲线把系统散热与冰的融化过程分割开来,T2′~T3′为冰熔化的过程,时间无限短,系统在这个过程中自然无法进行热交换,所以T2′~T3′仅仅是冰熔化引起的水温变化,完成对测量投冰前和冰融化后系统温度的修正。

相关的数据分析软件有matlab、origin、maxima等,matlab、origin能完成绘图和积分的工作,比较适合热学较大数据量的处理,maxima为开源软件,对于软件的获取较为简单,但是三者都需要编程才能实现数据处理,对于初学者会比较难。

这里主要介绍Excel处理数据,具体步骤将会在数据处理部分说明。

2)冷却常数K的计算由牛顿冷却定律表达式:δq δt =K(T−θ)图2.21-1 图2.21-2可知系统散热速率与与环境之间的温差成正比,而在本实验中,此温差是变化的,所以需找到δq与温度之间的关系,有:δq=C mδT其中C m是系统热容,在本实验中其表达式为C m=c0(m+M)+c1m1+c2m2),注意在加冰前式子中M=0。

可以得到:δT=Km δt因为δq为系统散热,δT带负号,积分可得:ln(T−θ)=−KC mt+a在T−t曲线中,其关系式为:T=Ae−KC m t+θ其中a和A为积分常数。

3. 实验仪器量热器、电子天平、温度计、数字三用表、冰块、水、干拭布、手机支架、手机4. 实验步骤4.1 通过预实验设置变量的讨论范围将我原来的实验数据(表4.1-2)当做预实验(得到的实验结果为L=3.16×105J/kg,相对误差为-5.70%,K降=0.15580J/(K∙s),K升=0.30327J/(K∙s)),可以得知一系列的实验室参数(表4.1-3)以及实验参量(表4.1-1):表4.1-1c 1M (T 0−T 1)+ML +c 0M (T 3−T 0)=(c 0m +c 1m 1+c 2m 2+δm )(T 2−T 3) 4.2 对牛顿散热定律的验证为了实验严谨和得到本实验散热常数的理论准确值,我们将对牛顿冷却定律进行验证: 1)取大约200g 热水,为了避开测熔解热过程中已经测过温度范围、避免水温太低而达到温度计能感知的温度时间太长、以及验证牛顿散热定律在此实验中T −θ非纯粹的线性关系,我们取水温大约比室温高5-10℃,并且测量较长时间到15分钟,每分钟记录一个数据点;2)为了验证在低温吸热时牛顿散热定律也成上述关系、以及得到此时的散热常数,同理在比室温低5-10℃范围内也进行以上测量。

3)使用Excel 对数据点进行线性拟合与指数拟合,并做比较评估,计算散热常数作为本实验的理论准确值。

4.3 探究冰水质量比对实验结果的影响t/s R/kΩT/℃0 1.1342 34.51 60 1.1335 34.33 120 1.1327 34.13 180 1.1321 33.97 240 1.1315 33.82 300 1.1309 33.67 315 1.1044 26.82 330 1.0884 22.69 345 1.0768 19.72 360 1.0682 17.49 375 1.0657 16.85 390 1.0630 16.15 405 1.0620 15.90 420 1.0614 15.74 435 1.0614 15.74 450 1.0615 15.77 480 1.0617 15.82 540 1.0619 15.87 600 1.0622 15.95 660 1.0624 16.00 7201.062616.05表4.1-3实验中为了研究在总水量与初温相对一定时的最佳加冰块数,先将初始水量m 与所加冰量M 设为未知数,而已知牛顿散热定律的最佳温度差为10-15℃,假设系统初末温度与环境相差均为12℃,即T 2利用上表参数以及混合量热法的方程: 此为理论最佳比值(实际上量热容对此影响很小)。

所以以1:4的比值向两边拓延,为我们的研究范围。

又实验室量热内筒的容积水量的1/2~2/3[1]大约重160g ,为了控制总水量的变量,以保证各实验冰量相互比较的意义以及我们需要测的散热常数相对不变,所以拟定总水量(即含冰融化后的水量)为大约200g 。

实验前测得冰的质量约为:心形:13g ;十字形14.3g 实验测得室温大约为:18℃由于冰的形状大小固定,无法得到任意质量的冰块,所以以冰的整块数为研究对象,进行实验,为了方便研究,冰的质量取为13.5g ,计算该组水的大概质量: (此步骤数据均为约值) 组别(冰水比) 冰块数 冰质量M/G初始水质量 M/G 水温 T 2/℃ 总质量(M+M)/G—— 1 14 186 30 末温高于室温1(1:6.4) 2 27 173 30 200 2(1:3.8) 3 41 159 30 200 3(1:2.7) 4 54 146 30 200——56813230冰不能完全化实验步骤和经典实验大致相同,但是有一些小技巧可以帮助提高实验过程中的调理性、实验效率和实验结果的准确性,接下来针对实验背景中提出的问题,对操作和数据记录提出一些建议:1)取冰的时候使用隔热手套。

手直接接触冰块势必会导致冰块温度上升,而如果使用手套,尤其是如果有锡箔或者微波炉手套的话,就能相对很好地解决这个问题,所以建议热学实验室能在冰箱上配备几副隔热手套,帮助解决这个问题。

2)实验过程中使用手机和固定支架,以录像时间为实验时间,帮助监控实验数据变化。

相关文档
最新文档