数值计算方法试题及答案
《数值计算方法》试题集及答案
《数值计算方法》复习试题四、计算题:1、用高斯-塞德尔方法解方程组 ⎪⎩⎪⎨⎧=++=++=++225218241124321321321x x x x x x x x x ,取T)0,0,0()0(=x ,迭代四次(要求按五位有效数字计算)。
答案:迭代格式⎪⎪⎪⎩⎪⎪⎪⎨⎧--=--=--=++++++)222(51)218(41)211(41)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x2、求A 、B 使求积公式⎰-+-++-≈11)]21()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求⎰=211dxx I (保留四位小数)。
答案:2,,1)(x x x f =是精确成立,即⎪⎩⎪⎨⎧=+=+32212222B A B A 得98,91==B A求积公式为)]21()21([98)]1()1([91)(11f f f f dx x f +-++-=⎰-当3)(x x f =时,公式显然精确成立;当4)(x x f =时,左=52,右=31。
所以代数精度为3。
69286.014097]321132/11[98]311311[91311113221≈=+++-++++-≈+=⎰⎰--=dt t dx x x t3、已知分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。
答案:)53)(43)(13()5)(4)(1(6)51)(41)(31()5)(4)(3(2)(3------+------=x x x x x x x L)45)(35)(15()4)(3)(1(4)54)(34)(14()5)(3)(1(5------+------+x x x x x x差商表为)4)(3)(1(41)3)(1()1(22)()(33---+----+==x x x x x x x N x P5.5)2()2(3=≈P f4、取步长2.0=h ,用预估-校正法解常微分方程初值问题⎩⎨⎧=+='1)0(32y yx y )10(≤≤x答案:解:⎪⎩⎪⎨⎧+++⨯+=+⨯+=++++)]32()32[(1.0)32(2.0)0(111)0(1n n n n n n n n n n y x y x y y y x y y即 04.078.152.01++=+n n n y x y5、已知求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。
《数值计算办法》试题集及参考答案
精心整理《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,式为。
答案:-1,)3)(1(2)3)(2(21)(2-----=x x x x x L 4、近似值5、设)(x f ();答案1n x =+6、对)(x f =]4,3,2,1(0);78n 次后的误差限为(12+-n ab ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。
14、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 代矩阵的谱半径)(M ρ=121。
15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l (1l )1(716)(2-+=x x x x N 。
16、(高斯型)求积公式为最高,具有(12+n )次代21]内的根精确到三位小数,需对分(10)次。
22、已知≤≤≤≤3110(x x S 是三次样条函数,则a =(3 ),b 23、(),(10l x l Lagrange 插值基函数,则∑==nk kx l)((1),=k 0(j),当时=++=)()3(204x l x xk k k k (324++x x )。
数值计算方法试题及答案解析
数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法试题及答案
数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n Λ是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则 ∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii满足( )条件时,这种分解是唯一的。
(完整版)数值计算方法试题及答案
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算试题及答案
数值计算试题及答案一、单项选择题(每题3分,共30分)1. 在数值计算中,下列哪种方法用于求解线性方程组?A. 牛顿法B. 牛顿-拉弗森方法C. 高斯消元法D. 蒙特卡洛方法答案:C2. 以下哪个不是数值分析中常用的插值方法?A. 拉格朗日插值B. 牛顿插值C. 多项式插值D. 傅里叶变换答案:D3. 在数值积分中,梯形规则的误差项与下列哪个因素有关?A. 积分区间的长度B. 被积函数的二阶导数C. 被积函数的一阶导数D. 被积函数的三阶导数答案:B4. 下列哪种方法不是数值微分的方法?A. 前向差分法B. 中心差分法C. 牛顿迭代法D. 后向差分法答案:C5. 以下哪个算法不是用于求解非线性方程的?A. 牛顿法B. 弦截法C. 牛顿-拉弗森方法D. 欧拉法答案:D6. 在数值分析中,下列哪个概念与误差分析无关?A. 截断误差B. 舍入误差C. 条件数D. 插值多项式的阶答案:D7. 以下哪种方法不是数值解常微分方程的方法?A. 欧拉法B. 龙格-库塔法C. 牛顿法D. 亚当斯法答案:C8. 在数值分析中,下列哪个概念与病态问题无关?A. 条件数B. 误差放大C. 稳定性D. 收敛性答案:D9. 以下哪种情况不会导致数值解的不稳定?A. 步长过大B. 初始条件不精确C. 算法本身稳定D. 计算精度过高答案:C10. 在数值计算中,下列哪种方法用于求解特征值问题?A. 高斯消元法B. 幂法C. 牛顿法D. 蒙特卡洛方法答案:B二、填空题(每题3分,共30分)1. 在数值计算中,使用______方法可以提高插值的精度。
答案:牛顿插值2. 梯形规则的误差与被积函数的______阶导数有关。
答案:二阶3. 在数值微分中,使用______差分法可以提高微分的精度。
答案:中心4. 非线性方程的求解可以通过______法来实现。
答案:牛顿5. 常微分方程的数值解法中,______法是最基本的方法之一。
答案:欧拉6. 对于线性方程组的求解,______法是最基本的方法之一。
数值计算方法总结计划试卷试题集及答案
一、选择题(每题2分,共20分)1.数值计算的基本思想是()。
A.精确求解B.近似求解C.解析表达D.图像显示2.下列哪种方法不属于数值计算方法?()A.有限差分法B.有限元法C.插值法D.微积分3.在数值计算中,为避免数值计算误差,通常采用()方法。
A.精确计算B.误差分析C.误差校正D.舍入运算4.下列哪种数值方法适用于求解偏微分方程?()A.欧拉法B.龙格-库塔法C.有限差分法D.牛顿法5.下列哪种方法不属于求解线性方程组的数值方法?()A.高斯消元法B.追赶法C.迭代法D.矩阵分解法二、填空题(每题2分,共20分)6.数值计算方法是利用计算机求解科学和工程问题的_______方法。
7.数值计算的主要目的是将_______问题转化为_______问题。
8.在数值计算中,通常需要对实际问题进行_______,以简化计算过程。
9.有限差分法的核心思想是将偏微分方程转化为_______方程。
10.牛顿法是一种_______方法,适用于求解非线性方程组。
三、判断题(每题2分,共20分)11.数值计算方法只能解决线性问题。
()12.在数值计算中,误差只能通过增加计算精度来减小。
()13.迭代法求解线性方程组时,需要预先知道方程组的解。
()14.数值计算方法在实际应用中具有较高的可靠性。
()15.有限元法适用于求解所有类型的偏微分方程。
()四、简答题(每题10分,共30分)16.请简要说明数值计算的基本思想及其应用范围。
17.请简要介绍有限差分法的原理及应用。
18.请简要说明牛顿法求解非线性方程组的原理。
五、计算题(每题10分,共50分)2x+3yz=14xy+5z=2-x+2y+z=3y'=-y+e^x,初始条件y(0)=1答案:一、选择题1.B2.D3.B4.C5.A二、填空题6.近似7.连续离散8.简化9.差分10.迭代三、判断题11.×12.×13.×14.√15.×四、简答题16.数值计算的基本思想是将实际问题转化为数学问题,再通过计算机求解。
数值计算方法试题和答案解析
数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。
数值计算方法试题和答案解析
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法试题及答案
数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法试题及答案
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法试题和答案解析
数值计算⽅法试题和答案解析数值计算⽅法试题⼀⼀、填空题(每空1分,共17分)1、如果⽤⼆分法求⽅程在区间内的根精确到三位⼩数,需对分()次。
2、迭代格式局部收敛的充分条件是取值在()。
3、已知是三次样条函数,则=( ),=(),=()。
4、是以整数点为节点的Lagrange插值基函数,则( ),( ),当时( )。
5、设和节点则和。
6、5个节点的⽜顿-柯特斯求积公式的代数精度为,5个节点的求积公式最⾼代数精度为。
7、是区间上权函数的最⾼项系数为1的正交多项式族,其中,则。
8、给定⽅程组,为实数,当满⾜,且时,SOR迭代法收敛。
9、解初值问题的改进欧拉法是阶⽅法。
10、设,当()时,必有分解式,其中为下三⾓阵,当其对⾓线元素满⾜()条件时,这种分解是唯⼀的。
⼆、⼆、选择题(每题2分)1、解⽅程组的简单迭代格式收敛的充要条件是()。
(1), (2) , (3) , (4)2、在⽜顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应⽤中,当()时的⽜顿-柯特斯求积公式不使⽤。
(1),(2),(3),(4),(1)⼆次;(2)三次;(3)四次;(4)五次4、若⽤⼆阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。
(1), (2), (3), (4)三、1、2、(15(1)(1) 试⽤余项估计其误差。
(2)⽤的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。
四、1、(15分)⽅程在附近有根,把⽅程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。
判断迭代格式在的收敛性,选⼀种收敛格式计算附近的根,精确到⼩数点后第三位。
选⼀种迭代格式建⽴Steffensen迭代法,并进⾏计算与前⼀种结果⽐较,说明是否有加速效果。
2、(8分)已知⽅程组,其中,(1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。
《数值计算方法》试题集及答案
《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。
答案:2.367,0.253、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( )],(),([2111+++++=n n n n n n y x f y x f hy y );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
《数值计算方法》试题集及答案
《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( )],(),([2111+++++=n n n n n n y x f y x f hy y );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
《数值计算方法》试题及答案
数值计算方法考试试题一、选择题(每小题4分,共20分)1. 误差根据来源可以分为四类,分别是( A )A. 模型误差、观测误差、方法误差、舍入误差;B. 模型误差、测量误差、方法误差、截断误差;C. 模型误差、实验误差、方法误差、截断误差;D. 模型误差、建模误差、截断误差、舍入误差。
2. 若132)(356++-=x x x x f ,则其六阶差商=]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。
3. 数值求积公式中的Simpson 公式的代数精度为 ( D )A. 0;B. 1;C. 2;D. 3 。
4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B )A. 都发散;B. 都收敛C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散;D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。
5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C )A. 02≤≤-h ;B. 0785.2≤≤-h ;C. 02≤≤-h λ;D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分)1. 已知⎪⎪⎭⎫⎝⎛--='-=4321,)2,1(A x ,则 =2x 5,=1Ax 16 ,=2A 22115+2. 已知3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。
3. 要使20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。
三、利用下面数据表,1. 用复化梯形公式计算积分dxx f I )(6.28.1⎰=的近似值;解:1.用复化梯形公式计算 取2.048.16.2,4=-==h n 1分分分分7058337.55))6.2()2.08.1(2)8.1((22.04))()(2)((231114=+++=++=∑∑=-=f k f f b f x f a f hT k n k k10.466758.030146.042414.425693.12014f (x ) 2.6 2.4 2.2 2.0 1.8 x2. 用复化Simpson 公式计算积分dxx f I )(6.28.1⎰=的近似值。
《数值计算方法》试题集及答案解析
=
9
。
4 8 2 A= 2 5 7 1 3 6 的 A = LU ,则 U = 32、设矩阵
4 8 2 U = 0 1 6 1 0 0 − 2
。
3
33、若 f ( x ) = 3 x + 2 x + 1 ,则差商 f [ 2, 4, 8,16, 32] =
5、舍入误差是( A )产生的误差。 A. 只取有限位数 C. 观察与测量 B.模型准确值与用数值方法求得的准确值 D.数学模型准确值与实际值
6、3.141580 是π的有( B )位有效数字的近似值。 A. 6 B. 5 C. 4 C )误差。 D. 舍入
4
D. 7
7、用 1+x 近似表示 ex 所产生的误差是( A. 模型 B. 观测
1 x +1 + x
27 、若用二分法求方程 f ( x ) = 0 在区间 [1,2] 内的根,要求精确到第 3 位小数,则需要对分 10 次。
2 x 3 , 0 ≤ x ≤ 1 S (x ) = 3 2 x + ax + bx + c, 1 ≤ x ≤ 2 是 3 次样条函数,则 28、设
C. 截断
8、解线性方程组的主元素消去法中选择主元的目的是( A )。 A.控制舍入误差 C.防止计算时溢出 B. 减小方法误差 D. 简化计算
x 3 9、用 1+ 3 近似表示 1 + x 所产生的误差是(
D )误差。 D. 截断 )位有效数字。 D. 8
A. 舍入
B. 观测
C. 模型
10、-324.7500 是舍入得到的近似值,它有( C A. 5 B. 6 C. 7
数值计算方法试题集及答案
数值计算⽅法试题集及答案《数值计算⽅法》复习试题⼀、填空题:1、,则A的LU分解为。
答案:2、已知,则⽤⾟普⽣(⾟⼘⽣)公式计算求得,⽤三点式求得。
答案:,3、,则过这三点的⼆次插值多项式中的系数为,拉格朗⽇插值多项式为。
答案:-1,4、近似值关于真值有( 2 )位有效数字;5、设可微,求⽅程的⽜顿迭代格式是( );答案6、对,差商( 1 ),( 0 );7、计算⽅法主要研究( 截断 )误差和( 舍⼊ )误差;8、⽤⼆分法求⾮线性⽅程f (x)=0在区间(a,b)内的根时,⼆分n次后的误差限为( );9、求解⼀阶常微分⽅程初值问题= f (x,y),y(x0)=y0的改进的欧拉公式为( );10、已知f(1)=2,f(2)=3,f(4)=,则⼆次Newton插值多项式中x2系数为( );11、两点式⾼斯型求积公式≈( ),代数精度为( 5 );12、解线性⽅程组A x=b的⾼斯顺序消元法满⾜的充要条件为(A的各阶顺序主⼦式均不为零)。
13、为了使计算的乘除法次数尽量地少,应将该表达式改写为,为了减少舍⼊误差,应将表达式改写为。
14、⽤⼆分法求⽅程在区间[0,1]内的根,进⾏⼀步后根的所在区间为,1 ,进⾏两步后根的所在区间为,。
15、计算积分,取4位有效数字。
⽤梯形公式计算求得的近似值为,⽤⾟⼘⽣公式计算求得的近似值为,梯形公式的代数精度为 1 ,⾟⼘⽣公式的代数精度为3 。
16、求解⽅程组的⾼斯—塞德尔迭代格式为,该迭代格式的迭代矩阵的谱半径= 。
17、设,则,的⼆次⽜顿插值多项式为。
18、求积公式的代数精度以( ⾼斯型 )求积公式为最⾼,具有( )次代数精20、设f (1)=1,f(2)=2,f (3)=0,⽤三点式求( )。
21、如果⽤⼆分法求⽅程在区间内的根精确到三位⼩数,需对分( 10 )次。
22、已知是三次样条函数,则=( 3 ),=( 3 ),=( 1 )。
23、是以整数点为节点的Lagrange插值基函数,则( 1 ),( ),当时( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
二、 二、选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+)()1(收敛的充要条件是( )。
(1)1)(<A ρ, (2) 1)(<B ρ, (3) 1)(>A ρ, (4) 1)(>B ρ2、在牛顿-柯特斯求积公式:⎰∑=-≈bani i n i x f C a b dx x f 0)()()()(中,当系数)(n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。
(1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , 3、有下列数表(1)二次; (2)三次; (3)四次; (4)五次4、若用二阶中点公式)),(4,2(1n n n n n n y x f hy h x hf y y +++=+求解初值问题1)0(,2=-='y y y ,试问为保证该公式绝对稳定,步长h 的取值范围为( )。
(1)20≤<h , (2)20≤≤h , (3)20<<h , (4)20<≤h 三、1、(8分)用最小二乘法求形如2bx a y +=的经验公式拟合以下数据:2、(15分)用8=n 的复化梯形公式(或复化 Simpson 公式)计算dxex ⎰-1时, (1)(1) 试用余项估计其误差。
(2)用8=n 的复化梯形公式(或复化 Simpson 公式)计算出该积分的近似值。
四、1、(15分)方程013=--x x 在5.1=x 附近有根,把方程写成三种不同的等价形式(1)31+=x x 对应迭代格式311+=+n n x x ;(2)xx 11+=对应迭代格式n n x x 111+=+;(3)13-=x x 对应迭代格式131-=+n n x x 。
判断迭代格式在5.10=x 的收敛性,选一种收敛格式计算5.1=x 附近的根,精确到小数点后第三位。
选一种迭代格式建立Steffensen 迭代法,并进行计算与前一种结果比较,说明是否有加速效果。
2、(8分)已知方程组f AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=4114334A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=243024f(1) (1) 列出Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式。
(2) (2) 求出Jacobi 迭代矩阵的谱半径,写出SOR迭代法。
五、1、(15分)取步长1.0=h ,求解初值问题⎪⎩⎪⎨⎧=+-=1)0(1y y dxdy用改进的欧拉法求)1.0(y 的值;用经典的四阶龙格—库塔法求)1.0(y 的值。
2、(8分)求一次数不高于4次的多项式)(x p 使它满足)()(00x f x p =,)()(11x f x p =,)()(00x f x p '=',)()(11x f x p '=',)()(22x f x p =六、(下列2题任选一题,4分) 1、1、 数值积分公式形如⎰'+'++=≈1)1()0()1()0()()(f D f C Bf Af x S dx x xf(1) (1) 试确定参数D C B A ,,,使公式代数精度尽量高;(2)设]1,0[)(4C x f ∈,推导余项公式⎰-=1)()()(x S dx x xf x R ,并估计误差。
2、 2、 用二步法)],()1(),([111101---+-+++=n n n n n n n y x f y x f h y y y θθαα求解常微分方程的初值问题⎩⎨⎧=='00)(),(y x y y x f y 时,如何选择参数θαα,,10使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。
数值计算方法试题二一、判断题:(共16分,每小题2分)1、若A 是n n ⨯阶非奇异阵,则必存在单位下三角阵L 和上三角阵U ,使LU A =唯一成立。
( )2、当8≥n 时,Newton -cotes 型求积公式会产生数值不稳定性。
( )3、形如)()(1i ni i ba x f A dx x f ∑⎰=≈的高斯(Gauss )型求积公式具有最高代数精确度的次数为12+n 。
( )4、矩阵⎪⎪⎪⎭⎫⎝⎛=210111012A 的2-范数2A =9。
( )5、设⎪⎪⎪⎭⎫ ⎝⎛=a a a a A 000002,则对任意实数0≠a ,方程组b Ax =都是病态的。
(用∞⋅) ( )6、设n n R A ⨯∈,n n R Q ⨯∈,且有I Q Q T =(单位阵),则有22QA A =。
( )7、区间[]b a ,上关于权函数)(x W 的直交多项式是存在的,且唯一。
( )8、对矩阵A 作如下的Doolittle 分解:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=6001032211012001542774322b a A ,则b a ,的值分别为=a 2,=b 2。
( )二、填空题:(共20分,每小题2分)1、设102139)(248+++=x x x x f ,则均差 =]2,,2,2[810 f __________,=]3,,3,3[910 f __________。
2、设函数)(x f 于区间[]b a ,上有足够阶连续导数,[]b a p ,∈为)(x f 的一个m 重零点,Newton 迭代公式)()('1k k k k x f x f mx x -=+的收敛阶至少是 __________阶。
3、区间[]b a ,上的三次样条插值函数)(x S 在[]b a ,上具有直到__________阶的连续导数。
4、向量T X )2,1(-=,矩阵⎪⎪⎭⎫⎝⎛--=1327A ,则 =1AX __________,=∞)(A cond __________。
5、为使两点的数值求积公式:⎰-+≈1110)()()(x f x f dx x f 具有最高的代数精确度,则其求积基点应为=1x __________,=2x __________。
6、设n n R A ⨯∈,A A T =,则)(A ρ(谱半径)__________2A 。
(此处填小于、大于、等于)7、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2141021A ,则=∞→k k A lim __________。
三、简答题:(9分)1、 1、 方程x x 24-=在区间[]2,1内有唯一根*x ,若用迭代公式:2ln /)4ln(1k k x x -=+ ),2,1,0( =k ,则其产生的序列{}k x 是否收敛于*x 说明理由。
2、 2、 使用高斯消去法解线性代数方程组,一般为什么要用选主元的技术3、 3、 设001.0=x ,试选择较好的算法计算函数值2cos 1)(x x x f -=。
四、(10分)已知数值积分公式为: )]()0([)]()0([2)(''20h f f h h f f hdx x f h-++≈⎰λ,试确定积分公式中的参数λ,使其代数精确度尽量高,并指出其代数精确度的次数。
五、(8分)已知求)0(>a a 的迭代公式为:2,1,00)(2101=>+=+k x x ax x kk k证明:对一切a x k k ≥=,,2,1 ,且序列{}k x 是单调递减的, 从而迭代过程收敛。
六、(9分)数值求积公式⎰+≈3)]2()1([23)(f f dx x f 是否为插值型求积公式为什么其代数精度是多少七、(9分)设线性代数方程组b AX =中系数矩阵A 非奇异,X 为精确解,0≠b ,若向量~X 是b AX =的一个近似解,残向量~X A b r -=,证明估计式:b rA cond XXX )(~≤-(假定所用矩阵范数与向量范数相容)。
八、(10分)设函数)(x f 在区间[]3,0上具有四阶连续导数,试求满足下列插值条件的一个次数不超过3的插值多项式)(x H ,并导出其余项。
九、(9分)设)(x n ϕ是区间],[b a 上关于权函数)(x w 的直交多项式序列,)1,,,2,1(+=n n i x i 为{})(1x n +ϕ的零点,)1,,,2,1)((+=n n i x l i 是以{}i x 为基点的拉格朗日(Lagrange)插值基函数,∑⎰+=≈11)()()(n k k k b ax f A dx x w x f 为高斯型求积公式,证明:(1) (1)当j k n j k ≠≤≤,,0时,)()(11=∑+=i j i kn i i x x A ϕϕ(2)⎰≠=ba j kj k dx x w x l x l )(0)()()((3)∑⎰⎰+==112)()()(n k b abakdxx w dx x w x l十、(选做题8分)若)())(()()(101n n x x x x x x x x f ---==+ ω,),,1,0(n i x i =互异,求],,,[10p x x x f 的值,其中1+≤n p 。