AVL用户手册

合集下载

AVL DIGAS4000LIGHT英文说明书

AVL DIGAS4000LIGHT英文说明书
AVL DITEST GMBH
Alte Poststraße 152 A-8020 Graz / Austria Phone: +43 316 787-0 Fax: +43 316 787-1460
DIAGNLeabharlann SETECHNIKIdent. number: Revision number: Edition:
Connected equipment that uses voltages higher than 50 V AC or 75 V DC must comply with the Low Voltage Directive 73/23/EWG.
To comply with the requirements of the 89/336/EWG Directive on electromagnetic compatibility, only shielded cables with appropriately shielded plug connections may be used. Mains connections with standard plugs and the specific cases listed as exceptions do not have to be shielded.
Important Notice! Important Notice!
This manual contains important warning and safety instructions to be observed by the user. This product is only intended for one certain area of application which is prescribed in the instructions. Furthermore the most important necessary prerequisites for application and operation as well as the safety measures are explained to ensure smooth operation.No warranty or liability will be granted if the product is applied in areas others than those described or if the necessary prerequisites and safety measures are not met. The product is to be operated and used only by qualified personnel capable of observing the required safety measures. Only accessories and supplies either delivered by AVL or approved by AVL are to be used with the product. Due to the operating principle of this product the accuracy of measurement results which it produces does not only depend upon its correct operation and function, but also upon a variety of boundary conditions beyond the control of the manufacturer. Therefore the results obtained from this product must be subjected to careful examination by an expert (e.g. for plausibility) before action based upon the results is undertaken. Adjustment and maintenance of instruments when open and under voltage are only to be carried out by a professional technician being aware of the dangers involved. Repairs on the product are to be carried out by the manufacturer or qualified service personnel only. Upon application of the product an expert is to ensure that neither the object of examination nor the testing equipment are operated under conditions that my lead to damage or injury.

AVL使用手册_Flow_meter

AVL使用手册_Flow_meter

Technical Information TI047D/06/en 50096459ElectromagneticFlow Measuring System PROline promag 50/53 PFlow rate measurement inchemical or process applicationsFeatures and benefits•Nominal diameters DN 15...600•PFA or PTFE lining•PFA for high temperature applications up to +180°C•Fitting lengths to DVGW and ISO •High accuracy:–Promag 50: ± 0.5% (option: ±0.2%)–Promag 53: ± 0.2%•Robust field housing, IP 67•IP 67 wall-mount housing for straight-forward installation of the remote ver-sion•Promag 53 with Touch Control:Operation without opening the housing − also for Ex-rated applications •Additionalsoftware packages:–pulsating flow–for batching applications –with the electrode cleaning•Interfaces for integration into all major process-control systems:–HART interface as standard –Promag 50: PROFIBUS-PA–Promag 53: PROFIBUS-PA/-DP , FOUNDATION Fieldbus•“Quick Setup” menus for straightfor-ward commissioning in the field•Ex approval for installation in Zone 1 (ATEX, FM, CSA, etc.)ApplicationAll fluids with a minimum conductivity of ≥5 µS/cm can be measured:•acids and caustic solutions •paints, lacquers •pastes, mashes•water, wastewater etc.A minimum conductivity of ≥20 µS/cm is required for measuring demineralized water.Liner specific applications:•PTFE lining for standard applications in chemical and process industries.•PFA lining for all applications in chemi-cal and process industries; especially for high process temperatures andapplications with temperature shocks.PROline Promag 50/53 PFunction and system designMeasuring principle Faraday’s law of induction states that a voltage is induced in a conductor moving in a magneticfield.In electromagnetic measuring, the flowing medium corresponds to the moving conductor. Theinduced voltage is proportional to the flow velocity and is detected by two measuring electrodesand transmitted to the amplifier. Flow volume is computed on the basis of the pipe's diameter. Theconstant magnetic field is generated by a switched direct current of alternating polarity.Ue = B · L · vQ = A · vUe = induced voltageB = magnetic induction (magnetic field)L = electrode gapv = flow velocityQ = volume flowA = pipe cross-sectionI = current strengthMeasuring system The measuring system consists of a transmitter and a sensor.Two versions are available:•Compact version: transmitter and sensor form a single mechanical unit.•Remote version: transmitter and sensor are installed separately.Transmitter:•Promag 50 (user interface with push buttons for operation, two-line display)•Promag 53 (“Touch Control” without opening the housing, four-line display)Sensor:•Promag P (DN 15…600)2Endress+HauserPROline Promag 50/53 PInputMeasured variable Flow rate (proportional to induced voltage)Measuring range Typically v = 0.01...10 m/s with the specified measuring accuracyOperable flow range Over 1000 : 1Input signal Status input (auxiliary input):U = 3…30 V DC, R i = 5 kΩ,galvanically isolated.Configurable for: totalizer(s) reset, measured value suppression, error-message reset.Current input (for Promag 53 only):Active/passive selectable, galvanically isolated, full scale value selectable, resolution: 3 µA,temperature coefficient: typ. 0.005% o.r./°C (o.r. = of reading)active: 4...20 mA, R i≤ 150 Ω, U out = 24 V DC, short-circuit-proofpassive: 0/4...20 mA, R i≤ 150 Ω, U max = 30 V DCOutputOutput signal Promag 50Current output:active/passive selectable, galvanically isolated, time constant selectable (0.01...100 s),full scale value selectable, temperature coefficient: typ. 0.005% o.r./°C (o.r. = of reading),resolution: 0.5 µA•active: 0/4…20 mA, R L < 700 Ω (HART: R L≥ 250 Ω)•passive: 4…20 mA, operating voltage V S 18...30 V DC, R i≤ 150 ΩPulse/frequency output:passive, open collector, 30 V DC, 250 mA, galvanically isolated.•Frequency output: full scale frequency 2...1000 Hz (f max = 1250 Hz), on/off ratio 1:1, pulse widthmax. 10 s.•Pulse output: pulse value and pulse polarity selectable, max. pulse width configurable(0.5...2000 ms)PROFIBUS-PA interface:•PROFIBUS-PA in accordance with EN 50170 Volume 2, IEC 61158-2 (MBP),galvanically isolated•Current consumption: 11 mA•Permissible supply voltage: 9...32 V•FDE (Fault Disconnection Electronic): 0 mA•Data transmission rate, supported baudrate: 31.25 kBit/s•Signal encoding: Manchester II•Function blocks: 1x Analog Input, 1 x Totalizer•Output data: Volume flow, Totalizer•Input data: Positive zero return (ON/OFF), Control totalizer, Value for local display•Bus address adjustable via DIP-switches at the measuring deviceEndress+Hauser3PROline Promag 50/53 PPromag 53Current output:active/passive selectable, galvanically isolated, time constant selectable (0.01...100 s),full scale value selectable, temperature coefficient: typically 0.005% o.r./°C (o.r. = of reading),resolution: 0.5 µA•active: 0/4…20 mA, R L < 700 Ω (HART: R L≥ 250 Ω)•passive: 4…20 mA, operating voltage V S 18...30 V DC, R i≤ 150 ΩPulse/frequency output:active/passive selectable, galvanically isolated (Ex i version: only passive)•active: 24 V DC, 25 mA (max. 250 mA during 20 ms), R L > 100 Ω•passive: open collector, 30 V DC, 250 mA•Frequency output: full scale frequency 2...10000 Hz (f max = 12500 Hz), EEx-ia: 2...5000 Hz;on/off ratio 1:1; pulse width max. 10 s.•Pulse output: pulse value and pulse polarity adjustable, pulse width configurable(0.05...2000 ms)PROFIBUS-DP interface:•PROFIBUS-DP/-PA in accordance with EN 50170 Volume 2, IEC 61158-2(MBP),galvanically isolated•Data transmission rate, supported baudrat: 9.6 kBaud...12 MBaud•Automatic data transmission rate recognition•Signal encoding: NRZ-Code•Function blocks: 2 x Analog Input, 3 x Totalizer•Output data: Volume flow, Corrected volumen flow, Totalizer 1 (3)•Input data: Positive zero return (ON/OFF), Totalizer control, Value for local display•Bus address adjustable via DIP-switches at the measuring devicePROFIBUS-PA interface:•PROFIBUS-PA in accordance with EN 50170 Volume 2, IEC 61158-2 (MBP),galvanically isolated•Current consumption: 11 mA•Permissible supply voltage: 9...32 V•Data transmission rate, supported baudrate: 31.25 kBit/s•Error current FDE (Fault Disconnection Electronic): 0 mA•Signal encoding: Manchester II•Function blocks: 2 x Analog Input, 3 x Totalizer•Output data: Volume flow, Corrected volumen flow, Totalizer 1 (3)•Input data: Positive zero return (ON/OFF), Totalizer control, Value for local display•Bus address adjustable via DIP-switches at the measuring deviceFOUNDATION Fieldbus interface:•FOUNDATION Fieldbus H1, IEC 61158-2 (MBP), galvanically isolated•Current consumption: 12 mA•Permissible supply voltage: 9...32 V•Error current FDE (Fault Disconnection Electronic): 0 mA•Data transmission rate, supported baudrate: 31.25 kBit/s•Signal encoding: Manchester II•Function blocks: 5 x Analog Input, 1 x Discrete Output, 1 x PID•Output data: Volume flow, Corrected volumen flow, Totalizer 1 (3)•Input data: Positive zero return (ON/OFF), Reset totalizer•Link Master (LM) functionality is supported4Endress+HauserPROline Promag 50/53 PSignal on alarm•Current output→failure response selectable (e.g. in accord. with NAMUR Recom. NE 43)•Pulse/frequency output→ failure response selectable•Status output (Promag 50) → non-conductive by fault or power supply failure•Relay output (Promag 53)→ de-energized by fault or power supply failureLoad See “Output signal”Switching output Status output (Promag 50):Open collector, max. 30 V DC / 250 mA, galvanically isolated.Configurable for: error messages, Empty Pipe Detection (EPD), flow direction, limit values.Relay outputs (Promag 53):Normally closed (NC or break) or normally open (NO or make) contacts available(default: relay 1 = NO, relay 2 = NC)max. 30 V / 0.5 A AC; 60 V / 0.1 A DC, galvanically isolated.Configurable for: error messages, Empty Pipe Detection (EPD), flow direction, limit values,batching contacts.Low flow cutoff Switch points for low flow cutoff are selectableGalvanic isolation All circuits for inputs, outputs, and power supply are galvanically isolated from each other. Endress+Hauser5PROline Promag 50/53 P6Endress+HauserPower supplyElectrical connection Measuring unitConnecting the transmitter, cable cross-section: max. 2.5 mm 2Top: field housingBottom: wall-mount housing aCable for power supply: 85...260 V AC, 20...55 V AC, 16...62 V DC Terminal No. 1: L1 for AC, L+ for DC Terminal No. 2: N for AC, L- for DCb Signal cable: Terminals Nos. 20–27→Page 8c Ground terminal for protective conductor d Ground terminal for signal-cable shielde Service connector for connecting service interface FXA 193 (FieldCheck, ToF Tool-FieldTool Package)f Cover of the connection compartment gSecuring clampPROline Promag 50/53 PEndress+Hauser 7Electrical connection Measuring unit(bus communication)Connecting the transmitter, cable cross-section: max. 2.5 mm 2Top: field housingBottom: wall-mount housing aCable for power supply: 85...260 V AC, 20...55 V AC, 16...62 V DC Terminal No. 1: L1 for AC, L+ for DC Terminal No. 2: N for AC, L- for DC bFieldbus cable:Terminal No. 26: DP (B) / PA (+) / FF (+) (with reverse polarity protection)Terminal No. 27: DP (A) / PA (–) / FF (–) (with reverse polarity protection)DP (A) = RxD/TxD-N; DP (B) = RxD/TxD-P c Ground terminal for protective conductor d Ground terminal for Fieldbus cablee Service connector for connecting service interface FXA 193 (FieldCheck, ToF Tool-FieldTool Package)f Cover of the connection compartmentgCabel for external termination (only PROFIBUS):Terminal No. 24: +5 V Terminal No. 25: DGND hSecuring clampabgPROline Promag 50/53 P8Endress+HauserTerminal assignment, Promag 50Terminal assignment, Promag 53The inputs and outputs on the communication board can be either permanently assigned or var-iable, depending on the version ordered (see table). Replacements for modules which are defec-tive or which have to be replaced can be ordered as accessories.Terminal No. (inputs / outputs)Order variant 20 (+) / 21 (–)22 (+) / 23 (–)24 (+) / 25 (–)26 (+) / 27 (–) 50***-***********W −−−Current outputHART 50***-***********A −−Frequency output Current outputHART 50***-***********D Status inputStatus outputFrequency outputCurrent outputHART 50***-***********H –––PROFIBUS-PA 50***-***********S ––Frequency output Ex i, passive Current output Ex i active, HART 50***-***********T––Frequency output Ex i, passiveCurrent output Ex i passive, HARTGround connection, power supply →Page 6Terminal No. (inputs / outputs)Order variant20 (+) / 21 (–)22 (+) / 23 (–)24 (+) / 25 (–)26 (+) / 27 (–)Fixed communication boards (fixed assignment)53***-***********A −−Frequency output Current outputHART 53***-***********B Relay outputRelay outputFrequency outputCurrent outputHART 53***-***********F –––PROFIBUS-PAEx i 53***-***********G –––FOUNDATION Fieldbus, Ex i 53***-***********H –––PROFIBUS-PA 53***-***********J –––PROFIBUS-DP 53***-***********K −−−FOUNDATION Fieldbus 53***-***********S −−Frequency outputEx i Current output Ex i active, HART 53***-***********T−−Frequency outputEx iCurrent output Ex i passive, HARTFlexible communication boards 53***-***********C Relay output Relay output Frequency output Current outputHART 53***-***********D Status input Relay output Frequency output Current outputHART 53***-***********L Status input Relay output Relay output Current outputHART 53***-***********M Status input Frequency output Frequency output Current outputHART 53***-***********2Relay output Current output Frequency output Current outputHART 53***-***********4Current input Relay output Frequency output Current outputHART 53***-***********5Status inputCurrent inputFrequency outputCurrent outputHARTGround connection, power supply →Page 6PROline Promag 50/53 PEndress+Hauser9Electrical connection remote versionn.c. = isolated cable shields, not connectedCable entryPower supply and signal cables (inputs/outputs):•Cable entry M20 x 1.5 (8...12 mm)•Threads for cable entries, PG 13.5 (5...15 mm), 1/2" NPT, 1/2"Connecting cable for remote version:•Cable entry M20 x 1.5 (8...12 mm)•Threads for cable entries, PG 13.5 (5...15 mm), 1/2" NPT, 1/2"Cable specifications remote versionCoil cable:•2 x 0.75 mm 2 PVC cable with common, braided copper shield (Ø approx. 7 mm)•Conductor resistance: ≤ 37 Ω/km•Capacitance: core/core, shield grounded: ≤ 120 pF/m •Permanent operating temperature: –20…+80 °C •Cable cross-section: max. 2.5 mm 2Signal cable:•3 x 0.38 mm 2 PVC cable with common, braided copper shield (Ø approx. 7 mm) and individu-ally shielded cores•With Empty Pipe Detection (EPD): 4 x 0.38 mm 2 PVC cable with common, braided copper shield (Ø approx. 7 mm) and individually shielded cores.•Conductor resistance: ≤ 50 Ω/km •Capacitance: core/shield: ≤ 420 pF/m•Permanent operating temperature: –20…+80 °C •Cable cross-section: max. 2.5 mm 2a = signal cable,b = coil current cable (cross-section: max. 2.5 mm 2)1 = core,2 = core insulation,3 = core shield,4 = core jacket,5 = core strengthening,6 = cable shield,7 = outer jacketPROline Promag 50/53 POptionally, E+H also supplies reinforced connecting cables with an additional, metal strenghten-ing braid. We recommend such cables for the following cases:•Cables laid underground•Danger of rodent attack•Device used with ingress protection IP 68Operation in zones of severe electrical interference:The measuring device complies with the general safety requirements in accordance withEN61010, the EMC requirements of EN61326/A1, and NAMUR recommendation NE21.Caution!Grounding is by means of the ground terminals provided for the purpose inside the connectionhousing. Keep the stripped and twisted lengths of cable shield to the terminals as short aspossible.Supply voltage85…260 V AC, 45…65 Hz20…55 V AC, 45…65 Hz16…62 V DCPROFIBUS-PA and FOUNDATION FieldbusNon-Ex: 9...32 V DCEx i: 9...24 V DCEx d: 9...32 V DCPower consumption AC: <15 VA (including sensor)DC: <15 W (including sensor)Switch-on current:•max. 13.5 A (< 50 ms) at 24 V DC•max. 3 A (< 5 ms) at 260 V ACPower supply failure Lasting min. 1 power cycle:•EEPROM or T-DAT™ (Promag 53 only) retain the measuring system data in the event of a powersupply failure•S-DAT™ = exchangeable data storage chip which stores the data of the sensor (nominal diam-eter, serial number, calibration factor, zero point, etc.)Potential equalisation Standard casePerfect measurement is only ensured when the medium and the sensor have the same electricalpotential. Most Promag sensors have a standard installed reference electrode which guaranteesthe required connection. This usually means that additional potential matching measures areunnecessary.For installation in metal pipes, it is advisable to connect the ground terminal of the transmitterhousing to the piping. Also, observe company-internal grounding guidelines.Caution!For sensors without reference electrodes or without metal process terminals, carry out potentialmatching as per the instructions for special cases described below. These special measures areparticularly important when standard grounding practice cannot be ensured or extremely strongmatching currents are expected.10Endress+HauserMetal, ungrounded pipingIn order to prevent outside influences on measurement, it is advisable to use ground cables toconnect each sensor flange to its corresponding pipe flange and ground the flanges. Connect thetransmitter or sensor connection housing, as applicable, to ground potential by means of theground terminal provided for the purpose.Caution!Also, observe company-internal grounding guidelines.Note!The ground cable for flange-to-flange connections can be ordered separately as an accessoryfrom E+H.•DN ≤ 300: The ground cable is in direct connection with the conductive flange coating and issecured by the flange screws.•DN ≥ 350: The ground cable connects directly to the metal transport bracket.Endress+Hauser11Plastic pipes and isolating lined pipesNormally, potential is matched using the reference electrodes in the measuring tube. However, inexceptional cases it is possible that, due to the grounding plan of a system, large matching cur-rents flow over the reference electrodes. This can lead to destruction of the sensor, e.g. throughelectrochemical decomposition of the electrodes. In such cases, e.g. for fibre-glass or PVC pip-ing, it is recommended that you use additional ground disks for potential matching.When using ground disks, note the following points:•Ground disks (DN 15...300) can be ordered separately from E+H as an accessory.•Ground disks (incl. seals) increase the installation length. You can find the dimensions ofground disks on Page30.Caution!•Risk of damage from electrochemical corrosion. Note the electrochemical insulation rating, ifthe ground disks and measuring electrodes are made of different materials.•Also, observe company-internal grounding guidelines.Pipes with cathodic protectionIn such cases, install the measuring instrument without potential in the piping:•When installing the measuring device, make sure that there is an electrical connection betweenthe two piping runs (copper wire, 6 mm2).•Make sure that the installation materials do not establish a conductive connection to the meas-uring device and that the installation materials withstand the tightening torques applied whenthe threaded fasteners are tightened.•Also comply with the regulations applicable to potential-free installation.1 = isolation transformer,2 = electrically isolated12Endress+HauserPerformance characteristicsReference operating conditions To DIN 19200 and VDI/VDE 2641:•Medium temperature: +28 °C ± 2 K •Ambient temperature: +22 °C ± 2 K •Warm-up period: 30 minutes Installation:•Inlet run >10 x DN•Outlet run > 5 x DN•Sensor and transmitter grounded.•Sensor centered relative to the pipe.Maximum measured error Promag 50:Pulse output: ± 0.5% o.r. ± 1 mm/s (o.r. = of reading)Current output: plus typically ± 5 µAPromag 53:Pulse output: ± 0.2% o.r. ± 2 mm/s (o.r. = of reading)Current output: plus typically ± 5 µASupply voltage fluctuations have no effect within the specified range.Max. measured error in % of readingRepeatability max. ± 0.1% o.r. ± 0.5 mm/s (o.r. = of reading)Endress+Hauser13Operating conditionsInstallation conditionsInstallation instructions Mounting locationCorrect measuring is possible only if the pipe is full. Avoid the following locations:•Highest point of a pipeline. Risk of air accumulating.•Directly upstream of a free pipe outlet in a vertical pipe.Installation of pumpsDo not install the sensor on the intake side of a pump. This precaution is to avoid low pressureand the consequent risk of damage to the lining of the measuring tube. Information on the lining'sresistance to partial vacuum can be found on Page21.It might be necessary to install pulse dampers in systems incorporating reciprocating, diaphragmor peristaltic pumps. Information on the measuring system's resistance to vibration and shock canbe found on Page19.Partially filled pipesPartially filled pipes with gradients necessitate a drain-type configuration. The Empty Pipe Detec-tion (EPD) function offers additional protection by detecting empty or partially filled pipes.Caution!Risk of solids accumulating. Do not install the sensor at the lowest point in the drain. It is advisableto install a cleaning valve.14Endress+HauserVertical pipesInstall a siphon (b) or a vent valve (a) downstream of the sensor in vertical pipes longer than5meters. This precaution is to avoid low pressure and the consequent risk of damage to the liningof the measuring tube. These measures also prevent the system losing prime, which could causeair inclusions. Information on the lining's resistance to partial vacuum can be found on Page21.a = vent valve,b = siphonOrientationAn optimum orientation helps avoid gas and air accumulations and deposits in the measuringtube. Promag, nevertheless, supplies a range of options and accessories for correct measuringof problematic mediums:•Electrode Cleaning Circuitry (ECC) to remove electrically conductive deposits in the measuringtube, e.g. in accretive mediums.•Empty Pipe Detection (EPD) for recognition of partially filled measuring tubes, or for degassingmediums or for applications with fluctuating process pressure.Vertical orientation:This orientation is ideal for self-emptying piping systems and for use in conjunction with EmptyPipe Detection.Endress+Hauser15Horizontal orientation:The measuring electrode-plane should be horizontal. This prevents brief insulation of the two elec-trodes by entrained air bubbles.Caution!Empty Pipe Detection functions correctly only when the measuring device is installed horizontallyand the transmitter housing is facing upward. Otherwise there is no guarantee that Empty PipeDetection will respond if the measuring tube is only partially filled or empty.1 = EPD electrode (Empty Pipe Detection)2 = Measuring electrodes (signal detection)3 = Reference electrode (potential equalisation)VibrationsSecure the piping and the sensor if vibration is severe.Caution!It is advisable to install sensor and transmitter separately if vibration is excessively severe.Information on resistance to vibration and shock can be found on Page19.16Endress+HauserFoundations, supportsIf the nominal diameter is DN ≥ 350, mount the transmitter on a foundation of adequate load-bearing strength.Caution!Do not allow the casing to take the weight of the sensor. This would buckle the casing anddamage the internal magnetic coils.Inlet and outlet runs If possible, install the sensor well clear of fittings such as valves, T-pieces, elbows, etc. Compli-ance with the following requirements for the inlet and outlet runs is necessary in order to ensuremeasuring accuracy:•Inlet run ≥ 5 x DN•Outlet run ≥ 2 x DNEndress+Hauser17Adapters Suitable adapters to (E) DIN EN 545 (double-flange junction sections) can be used to install thesensor in larger-diameter pipes. The resultant increase in the rate of flow improves measuringaccuracy with very slow-moving fluids.The nomogram shown here can be used to calculate the pressure loss caused by reducers andexpanders. The nomogram applies only to fluids of viscosity similar to water:1.Calculate the ratio of the diameters d/D.2.From the nomogram read off the pressure loss as a function of flow velocity (downstream fromthe reduction) and the d/D ratio.Length of connecting cable Permissible cable length Lmax depends on the conductivity of the medium. A minimum conduc-tivity of 20µS/cm is required for measuring demineralized water.Gray shaded area = permissible range for medium conductivityLmax = length of connecting cable in [m]Medium conductivity in [µS/cm]In order to ensure measuring accuracy, moreover, comply with the following instructions wheninstalling the remote version:•Secure the cable run or route the cable in a conduit. Movement of the cable can falsify themeasuring signal, particularly if the conductivity of the medium is low.•Route the cable well clear of electrical machines and switching elements.•Ensure potential equalisation between sensor and transmitter, if necessary.18Endress+HauserEnvironmentAmbient temperature Standard: –20…+60 °C (sensor, transmitter)Optional: –40...+60 °C (transmitter)Note the following points:•Install the device at a shady location. Avoid direct sunlight, particularly in warm climatic regions.•If both fluid and ambient temperatures are high, install the transmitter at a remote location fromthe sensor (→ “Medium temperature”)•At ambient temperatures below –20 °C the readability of the display may be impaired. Storage temperature–10...+50 °C (preferably +20 °C)•The measuring device must be protected against direct sunlight during storage in order toavoid unacceptably high surface temperatures.•Choose a storage location where moisture does not collect in the measuring device. This willhelp prevent fungus and bacteria infestation which can damage the liner.•Do not remove the protective plates or caps on the process connections until the device isready to install. This is particularly important in the case of sensors with PTFE linings.Degree of protection•Standard: IP 67 (NEMA 4X) for transmitter and sensor•Optional: IP 68 (NEMA 6P) for Promag P sensor, remote versionShock and vibration resistance Acceleration up to 2 g by analogy with IEC 68-2-6 (high-temperature version: no data available)Electromagneticcompatibility (EMC)To EN 61326/A1 and NAMUR recommendation NE 21Endress+Hauser1920Endress+HauserProcess conditionsMedium temperature rangeThe permissible medium temperature depends on the measuring-tube lining:•−40…+130 °C for PTFE (DN 15…600), for restrictions →refer to diagrams •−20…+180 °C for PFA (DN 25…200), for restrictions →refer to diagrams Compact version (PFA and PTFE lining)T A = ambient temperature, T F = fluid temperature HT = high-temperature version, with insulationRemote version (PFA and PTFE lining)T A = ambient temperature, T F = fluid temperature HT = high-temperature version, with insulationConductivityMinimum conductivity:≥ 5 µS/cm for fluids generally≥ 20 µS/cm for demineralised waterNote that in the case of the remote version, the minimum conductivity is also influenced by the length of the connecting cable → see “Length of connecting cable”Medium pressure range (nominal pressure)EN 1092-1 (DIN 2501): PN 10 (DN 200…600) PN 16 (DN 65…600) PN 25 (DN 200…600) PN 40 (DN 15…150) ANSI B16.5:Class 150 (1/2…24") Class 300 (1/2…6") JIS B2238:10K (DN 50…300)20K (DN 15…300)AS2129:Table E (DN25, 50)Pressure tightness (liner)NominaldiameterMeasuring tubeliningResistance to partial vacuum of measuring tube liningLimit values for abs. pressure [mbar] at various fluid temperatures [mm][inch]25 °C80 °C100 °C130 °C150 °C180 °C 151/2"PTFE000100−−251"PTFE / PFA0 / 00 / 00 / 0100 / 0− / 0− / 0 32−PTFE / PFA0 / 00 / 00 / 0100 / 0− / 0− / 0 40 1 1/2"PTFE / PFA0 / 00 / 00 / 0100 / 0− / 0− / 0 502"PTFE / PFA0 / 00 / 00 / 0100 / 0− / 0− / 0 65−PTFE / PFA0 / 0*40 / 0130 / 0− / 0− / 0 803"PTFE / PFA0 / 0*40 / 0130 / 0− / 0− / 0 1004"PTFE / PFA0 / 0*135 / 0170 / 0− / 0− / 0 125−PTFE / PFA135 / 0*240 / 0385 / 0− / 0− / 0 1506"PTFE / PFA135 / 0*240 / 0385 / 0− / 0− / 0 2008"PTFE / PFA200 / 0*290 / 0410 / 0− / 0− / 0 25010"PTFE330*400530−−30012"PTFE400*500630−−35014"PTFE470*600730−−40016"PTFE540*670800−−45018"PTFENo vacuum is permissible!50020"PTFE60024"PTFE* No value can be specified.Endress+Hauser21。

avlcruise2015自学教材

avlcruise2015自学教材

avlcruise2015自学教材AVL巡航系统2015版是一款适用于船舶和水下机器人的自主导航软件。

该系统通过使用先进的位置传感器、导航算法和人工智能技术,实现船舶和水下机器人的自主航行和定位。

AVL巡航系统2015版是一款自学教材,本文将为你介绍如何使用该软件。

首先,你需要了解AVL巡航系统2015版的基本功能。

该系统具备实时导航、路径规划、障碍物避免和航迹记录等功能。

通过使用该系统,你可以轻松实现船舶和水下机器人的自主巡航和航行。

在开始使用AVL巡航系统2015版之前,你需要准备相关的硬件设备。

船舶和水下机器人需要安装位置传感器,如GPS、固定轨迹传感器和IMU(惯性测量单元)。

这些传感器将为系统提供实时的位置和姿态信息。

安装完硬件设备后,你需要将AVL巡航系统2015版软件安装到你的计算机上。

软件安装程序通常会包含安装向导,你只需按照提示进行安装即可。

安装完成后,你可以在计算机的桌面或开始菜单中找到AVL巡航系统的图标。

启动AVL巡航系统后,你将看到主界面。

该界面通常包含地图、导航控制面板和设置选项。

在地图上,你可以看到船舶或水下机器人的实时位置。

通过导航控制面板,你可以设置巡航模式、速度和目标坐标等参数。

在设置选项中,你可以调整地图设置、传感器校准和导航算法等。

使用AVL巡航系统进行自学时,你可以按照以下步骤进行操作:1.设置巡航模式:根据你的需求,选择适当的巡航模式,如自由巡航、指定航线巡航或跟随航线巡航。

2.设置速度和方向:根据你的需求,设置巡航的速度和方向。

该系统通常支持多种速度和方向选项。

3.设置目标坐标:在地图上选择目标位置,系统将自动规划最优路径并导航到目标位置。

4.监控巡航过程:在巡航过程中,你可以实时监控船舶或水下机器人的位置和姿态信息。

该系统还可以提供可视化的路径记录和导航日志。

5.处理障碍物:如果在巡航过程中出现障碍物,AVL巡航系统能够自动识别和避免障碍物。

你还可以手动设置避障路径。

AVLFIRE基本操作

AVLFIRE基本操作

方法二,工程树中右键选择meshes→Import→同方法一。
Fire软件计算流体采用的是有限体积控制法。在求解运算前,先要形成体积网格单元。划分网格单元的好坏直接关系到计算的精度和计算能否收敛的问题。需要掌握流体力学的基本知识和对软件的熟练程度。
1.3.2 创建网格
Fire中在进行划分网格前,需要创建两种网格单元。一是表面网格单元(surface),同时也是作为边界条件,二是边界线网格(edge meshes)。Fire里面有cell,face,node三种形式的选择单元。
3、双击桌面图标“CFDWM v1.31”运行fire。
第二章 基本操作
1.1 鼠标操作:工作平面内,按住鼠标右键平移网格模型,按住鼠标左键可旋转模型,中键模型放大和缩小。
1.2 用户界面:Fire同多数应用软件相似,fire的界面由工作区、菜单栏、状态栏和应用工具栏组成。界面的左侧为工程树(project),工程树中包括所有创建的网格文件,可以在工程树中加载文件,复制和删除文件等。中间为工作区域,即模型显示区域。界面右侧为应用工具栏,包含了所有针对网格文件进行修改和编辑的命令。
AVL Fire 软件的使用方法
第一章 安装方法
avlfire.iso文件为镜像文件,如果计算机已安装虚拟光驱,可用虚拟光驱直接打开。如果没有安装虚拟光驱,也可直接解压到计算机。
1、运行“setup.exe”文件,自动安装。当提示安装的目录时,修改到想安装的目录。
2、安装完成后,将安装文件目录下的Crack文件夹下的patch文件复制到avlfire安装目录下,双击运行patch文件。
1.3 以intake port为例,介绍fire软件操作流程
Fire也自带pdf格式的用户帮助手册,算例的操作方法,各个应用模块的设计原理等,打开方法:开始→程序→AVL→Fire V8.31→Help Files PDF。

AVL_CRUISE_2014_整车经济性动力性分析操作指导书

AVL_CRUISE_2014_整车经济性动力性分析操作指导书

[科技改变生活,学习使人持续进步] AVL CRUISE纯电动汽车经济性动力性分析操作指导书张克鹏目录第一章 AVL Cruise 2014 简介 (2)1.1 动力性经济性仿真集成平台 (2)1.2 AVL Cruise建模分析流程 (3)1.3 主要模块功能 (4)1.4 A VL Cruise计算任务的设定 (9)第二章汽车零部件模型建立 (14)2.1.软件启动 (14)2.2.Project创建 (15)第三章整车动力经济性分析模型连接 (44)3.1.部件之间物理连接 (44)3.2.部件之间信号连接 (45)第四章整车动力经济性分析任务设置 (49)4.1 爬坡性能任务制定 (50)4.2 等速百公里油耗分析 (53)4.3 最大车速分析 (56)4.4 循环工况油耗分析 (59)4.5 加速性能任务制定 (62)第五章计算及分析处理 (65)5.1. 计算参数设置 (65)5.2. 分析处理 (65)第六章整车动力性/经济性计算理论 (71)6.1 动力性计算公式 (71)6.1.1 变速器各档的速度特性 (71)6.1.2 各档牵引力 (71)6.1.3 各档功率计算 (72)6.1.4 各档动力因子计算 (72)6.1.5 最高车速计算 (72)6.1.6 爬坡能力计算 (73)6.1.7 最大起步坡度 (74)6.1.8 加速性能计算 (74)6.1.9 比功率计算 (76)6.1.10 载质量利用系数计算 (76)6.2 经济性计算公式 (76)6.2.1 直接档(或超速档)等速百公里油耗计算 (76)6.2.2 最高档全油门加速500m的加速油耗(L/500m) (77)6.2.3 循环工况百公里燃油消耗量 (78)第一章 AVL Cruise 2014 简介1.1 动力性经济性仿真集成平台AVL Cruise是AVL公司开发的一款整车及动力总成仿真分析软件。

它可以研究整车的动力性、燃油经济性、排放性能及制动性能,是车辆系统的集成开发平台。

AVL Fire 软件的使用方法

AVL Fire 软件的使用方法

A VL Fire 软件的使用方法第一章安装方法avlfire.iso文件为镜像文件,如果计算机已安装虚拟光驱,可用虚拟光驱直接打开。

如果没有安装虚拟光驱,也可直接解压到计算机。

1、运行“setup.exe”文件,自动安装。

当提示安装的目录时,修改到想安装的目录。

2、安装完成后,将安装文件目录下的Crack文件夹下的patch文件复制到avlfire安装目录下,双击运行patch文件。

3、双击桌面图标“CFDWM v1.31”运行fire。

第二章基本操作1.1 鼠标操作:工作平面内,按住鼠标右键平移网格模型,按住鼠标左键可旋转模型,中键模型放大和缩小。

1.2 用户界面:Fire同多数应用软件相似,fire的界面由工作区、菜单栏、状态栏和应用工具栏组成。

界面的左侧为工程树(project),工程树中包括所有创建的网格文件,可以在工程树中加载文件,复制和删除文件等。

中间为工作区域,即模型显示区域。

界面右侧为应用工具栏,包含了所有针对网格文件进行修改和编辑的命令。

1.3 以intake port为例,介绍fire软件操作流程Fire也自带pdf格式的用户帮助手册,算例的操作方法,各个应用模块的设计原理等,打开方法:开始→程序→AVL→Fire V8.31→Help Files PDF。

打开源帮助文件Fire_v83_Examples中intake port例子,对软件的基本操作进行讲解。

1.3.1 文件导入Fire支持“.flm”,“.stl”的网格文件,.stl文件为CAD通用的表皮文件,fire虽然支持三维建模,但是应用较麻烦。

所以可在UG,Pro/E等软件中建模,以stl格式导出,再导入到fire中。

方法一,状态工具栏→(import)→AVL/FIRE/v8.31/exam/903_Intake_Port/Start_ Data目录下的IP_surf_smooth.flm→ok,文件显示在工作区内,工程树中也会显示文件名。

AVL Quick start guide

AVL Quick start guide

Quick Guide-AVL INDICOM目录一.执行预先定义的测量任务 (1)1.1 打开存在的参数文件 (1)1.2 执行并保存测量工作(连续测量模式) (2)二.建立新的测量项目 (5)2.1 创建参数文件 (5)2.1.1 设定发动机参数 (6)2.1.2 设置角码 (7)2.1.3 设置测量控制 (10)2.1.4 定义上止点 (11)2.1.5定义测量信号 (14)2.1.6 定义计算 (18)三.检查并保存参数 (19)3.1 执行并保存测量 (20)3.2 发动机监控 (20)四.举例 (20)4.1数据存取和数据管理 (20)4.1.1打开本地保存文件 (20)4.1.2通过数据管理器打开存储的文件 (22)4.1.3 在数据管理器中,使用数据源工作 (23)4.1.4 便捷的数据过滤方法 (25)4.1.5 同时打开多个文件 (26)4.2 显示例子 (27)4.2.1 图表窗口 (27)4.2.2 在存在的图表中加入数据集 (30)4.2.3 添加图表 (31)4.2.4 添加目标 (32)4.2.5 对于数据显示的拖放操作 (33)4.3 计算的例子 (34)4.3.1 显示数据的数学分析(曲线或图表形式) (34)4.3.2 使用计算器创建公式 (36)4.3.3 使用图形化公式编辑器创建公式(例子最大压力/最大压升率) (37)4.4 单位转换 (38)一.执行预先定义的测量任务1.1 打开存在的参数文件1. 点击菜单键的“打开”功能键,然后选择“打开参数文件”功能块。

2. 在对话框中出现默认文件夹中已保存的参数文件,以.xpa结尾。

选择文件petrol.xpa3. 点击打开,然后文件打开并显示在通道浏览器中。

1.2 执行并保存测量工作(连续测量模式)1. 在工作流程栏中点击开始采集功能键如果没有事先定义的显示窗口,那么Indicom将自动生成一个标准的图,在图中会包含所有的测量信号-在这个例子中包含了四条缸压曲线。

AVL MEDICAL INSTRUMENTS 9180 电解质分析仪 说明书

AVL MEDICAL INSTRUMENTS 9180 电解质分析仪 说明书

STNEMURTSNILACIDEM9180 电解质分析仪操作手册 第一版October 1997Copyright, 1997, AVL Scientific Corporation. 保留所有权力,除非另行通知.未经AVL Scientific Corporation同意,不得出版、传播、销售本书任何部分,或翻译成任何语言版本.欲知详情,请联系:AVL Scientific Corporation AVL MEDICAL INSTRUMENTS AG AVL LIST GmbH50 Mansell Court Stettemerstrasse 28Kleiststrasse 48P.O. Box 337CH-8207 Schaffhausen A-8020 GrazRoswell, Georgia USA 30077Switzerland Austria1-800-526-227241-848-800-88543-316-987-0翻译者:侯志强 2001.08.28二稿原版本PD5011 REV Aiiiii 操 作 安 全 信 息● 这个仪器属于安全标准I. 这个仪器属于B型仪器.本仪器符合FCC规则15。

操作必须符合以下二个条件:1。

该仪器不能引起有害的冲突,和 2。

必须能够兼容任何导致的冲突,包括非期望操作的冲突。

不赞成改变或修改本部分,其责任会降低用户操作仪器的权威性.本仪器测试是按照B级数字设备的阈值标准,依照FCC规则15部分.这些阈值参数设计是针对居室安装产生的干扰,提供合理的保护.如果没有按照规范程度安装使用可能产生的,以及仪器开机使用产生的音频辐射能量,会对音频通讯引起干扰.也不能绝对保证正常安装时不会产生干扰.通常开关仪器时会对音频或视频有干扰,为了避免之,用户可以试着采取以下一种或几种措施减少干扰:1.重新调整或部署天线.2.仪器和接收器间距离增大.3.将仪器的差分点连接到接收器的对应点.4.与销售商或有经验的相关技师联系.警告: * 该仪器时常规设计(非防水型). * 不要在爆炸性或附近有氧和硝石混合物的环境中操作. * 该仪器适合连续性使用. * 该仪器必须使用带地线的插头,使用外部电源时必须确定大小合适及地线良好. * 任何仪器内部或外部的对地泄漏,或未与地接触,会给操作仪器造成危险的结果. 任何潜在的接地不良都是不允许的.* 若替换保险丝必须确定是同样型号和大小.决不要用旧的或短路的保险丝.操 作 安 全 信 息iv方法正确使用9180电解质分析仪器是用来从样本中检测钠离子,钾离子,氯离子,离子钙和锂离子的仪器.样本可以是全血,血清, 血浆,尿液, 透析液,和水化液.临床意义钠钠是细胞外液中最主要的阳离子. 其对人体的主要功能是通过化学作用维护渗透压和酸碱平衡以及传递神经冲动. 钠离子的功能是调节细胞膜内外的电位差以维护神经元兴奋传导.钠还作为因子参与一些酶催化反应.人体一直维持基本平衡,即便病理情况下一些细微的变化也会察觉.钠值低即低钠症,通常反映了体液相对体内总钠量过剩.钠水平的减少与以下相关:低钠流入;由于呕吐或腹泻造成钠流失,并补充充足的水分和不充足的盐,每日使用不当,或缺盐型肾病;渗透多尿,代谢性酸毒症;肾上腺皮质不足; 先天性肾上腺增生; 因水肿,心功能不全,肝功能不全,甲状腺机能减退引起的稀释.高钠值是水分的流失超过盐分的流失,例如大量得出汗,呼吸过度,剧烈的呕吐或腹泻,糖尿病或糖尿病性酸毒症; 醛固酮症,CUSHING综合引起的肾脏钠存量增加;因昏迷或中枢疾病 造成水摄入不足; 脱水;或过度的碱治疗.获得钠值通常用来诊断或检测以下:所有的水平衡紊乱,临床注射,呕吐,腹泻,烧伤,心功能抯和肝功能不全,中枢或肾原来性糖尿病, 内分泌紊乱和原发性或继发性肾上腺皮质不足,或其它涉及电解质平衡的疾病.1 Tietz, Norbert W., Ed., Clinical Guide to Laboratory Tests, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p.98-99, 118-119, 456-459, 510-511, 720-721.2 Burtis C, Ashwood E (Eds.), Tietz Textbook of Clinical Chemistry, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1994) pp.1354-1370.v钾钾是细胞内液最主要的阳离子,在细胞间起最初的缓冲作用.90%的钾离子在细胞内,损坏的细胞会释放钾离子到血液中.钾在神经传导,肌肉功能,保持酸碱平衡和渗透压方面起着重要的作用.高钾值会出现在少尿症,贫血,排尿障碍,肾炎或休克引起的肾功能不全,代谢性或呼吸性算毒症,带H离子和K离子交换的肾管酸毒症,以及溶血症.低钾症往往是钾的过度流失,常见于:腹泻或呕吐,钾摄入不足, 吸收不良,严重的烧伤和醛固酮分泌的增加.钾值的高低会引起肌肉应激性变化,呼吸作用变化,以及心肌功能的变化.获得钾值常常用来在诊断和治疗以下情况时监测电解质的平衡,如临床注射,休克,心脏或循环功能不全,酸碱平衡,每日疗法,各种肾脏疾病,腹泻,肾上腺皮质功能过剩和不足,以及其它涉及电解质平衡的疾病.氯氯是存在于细胞外的最主要的阴离子.通过它影响了细胞的渗透压.在监测酸碱平衡和水平衡中也起重要作用.在代谢性酸毒症中,当碳酸氢盐浓度下降时氯离子浓度会反向上升.氯降低发生在严重的呕吐,严重的腹泻,溃疡性结肠炎,幽门阻塞,严重烧伤,中暑,糖尿病酸毒症.Addison氏病,发烧, 象肺炎那样的急性感染,等.氯上升发生在脱水,Cushing综合症,换气过度,惊厥,贫血,心功能不全,等.离子钙血液中钙作为自由钙离子(50%)在蛋白质,大部分清蛋白(40%)和10%局限于如碳酸化,磷酸盐 化和乳酸盐化阴离子.但是,仅离子钙能被在身体使用,如肌肉收缩,心脏的功能,传送神经冲动和血凝这样的重要过程.AVL 9180分析仪测量总钙的离子部分.诊断例如胰腺炎和甲状旁腺功能亢进,与总钙相比,离子钙是一更好的指标.vi高血钙可以有各种各样的不良表现,钙值测量可以被生化学家作标记用.通常,在检测恶性肿瘤时,离子钙或总钙都有同样的作用,离子钙可能更敏感一些.高钙血症常常发生在酸碱调节和蛋白\白蛋白流失异常的危急病人中,通过检测离子钙可以很清晰有效地监视钙的状况.患肾脏血管球疾病的肾病患者通常会引起钙, 磷酸盐, 白蛋白,镁离子和PH的浓度异常.因为这些情况会改变总钙中离子钙的独立性,因此监测离子钙成为精确监护肾病患者钙状态的首选方法.(见附注3)离子钙对以下的诊断或监护有着重要意义:高血压控制,甲状旁腺,肾脏疾病,钙摄入不足,维生素监护,透析病人,癌症, 胰腺疾病,利尿剂作用,营养失调,肾结石,多发粘液瘤病,糖尿病等.锂锂是一种人体稀有的单价的碱金属.通常用来治疗狂躁抑郁精神疾病.除了临床上的一些重要并发症外,已被证明是一种非常有效的专用药物.锂存在于血浆蛋白中不到10%,半衰期是7-35小时,主要通过尿液排出体外(95%).锂的治疗范围非常窄,起始剂量约0.80-1.20mmol/L,且长期维持在0.60 to 0.80 mmol/L.治疗期间血清中的锂浓度必须仔细监测,因为只要稍微高于治疗范围的剂量,就会危及生命.尿液电解质电解质存在于人体,也从每日的食物中摄取,通过肾脏系统排泄到尿液中,这是一自然循环.从排泄物尿液中检测电解质,可以了解肾脏的状况和其它的病理状况等重要信息.检测可以从任意尿液样本中,也可从24小时收集的尿液样本作定量检测. 每天排泄的电解质量可以通过检测一天尿液中排泄浓度的增加量(mmol/L)来获得.3 Burritt MF, Pierides AM, Offord KP: Comparative studies of total and ionized serum calcium values in normal subjects and in patients with renal disorders. Mayo Clinic Proc. 55:606, 1980.vii透析电解质在透析器中,动脉血和透析液在透析膜的两边进行透析.透析膜会防止蛋白质和红细胞的扩散.因为血液和透析液的成分不同,膜两边会产生压力梯度,小分子就可以通过膜进行弥漫.这种方法可以有效的滤除那些因肾功能低下而不能排泄的尿素,尿酸等物质.当血液和透析液中的电解质浓度有显著差异时,电解质就会从浓度高处理向低的弥散,(如从血液向透析液扩散,或相反.)透析中电解质的透析对临床医生有着非常重要的意义,例如:* 为了维持透析前,透析时,透析后的电解质平衡,及时识别偏差,也可以及早纠正.* 控制透析液中电解质的浓度.一般混合定量的蒸馏水和适当浓度的物质来用.工作原理AVL9180是采用离子选择电极测量法来实现精确检测的.AVL 9180电解质分析仪上有六种电极:钠,钾,氯,离子钙,锂和参比电极.每个电极都有一离子选择膜,会与被测样本中相应的离子产生反应,膜是一离子交换器,与离子电荷发生反应而改变了膜电势,就可检测液,样本和膜间的电势.膜两边被检测的两个电势差值会产生电流,样本,参考电极,参考电极液构成"回路"一边,膜,内部电极液,内部电极为另一边.内部电极液和样本间的离子浓度差会在工作电极的膜两边产生电化学电压,电压通过高传导性的内部电极引到到放大器,参考电极同样引到放大器的地点.通过检测一个精确的已知离子浓度的标准溶液获得定标曲线,从而检测样本中的离子浓度.viii样本的收集和处理安全性采集样本时必须遵守基本的防范规则.所有的血液样本都有潜在的传染性,可能包含人类免疫缺陷病毒(HIV),肝炎B病毒(HBV)或其它的可怕的病原.为减少实验室可能的危险,必须掌握正确的血液采集技术.处理血液和其它体液时戴手套是必不可少的,要获得处理样本安全方面的进一步信息,请参阅NCCLS论文,M29-T2,"通过血液,体液和组织传染疾病的实验室保护措施-第二版"样本要求有关样本的采集存储和处理的详细信息,请参阅NCCLS论文,H11-A2,实验室分析用动脉血的收集-第二版,出版于1992年5月.分析用血样必须要适当地注意采集的仔细性,包括样本装置,位置选择,样本处理和书面记录.特殊的过程参见NCCLS指导.抗凝和样本收集装置AVL9180分析仪器可直接从注射器,采集管,样本杯(需用适配器),毛细管或AVL微量采样器中吸入样本.对于全血和血浆,加入推荐使用的抗凝剂-平衡肝素不会影响电解质值.钠肝素也可接受,但是约束了离子钙,会引起测量值范围的下降.其它的抗凝剂如EDTA, 柠檬酸盐,草酸盐, 氟化物对血液电解质有重要影响,不可以使用.对血清样本,容器不需添加剂.ix样本的处理和存储由于离子钙值,所有的样本都要无氧条件.接触周围的空气会引起样本中CO2丢失,从而使PH上升,造成离子钙的减少.全血全血样本必须采集在肝素化的注射器,AVL微量采样器,毛细管中,并尽快分析.样本容器尽可能采满些,以减少空气驻留的空间.如果需要存储,不要急速将样本降温,否则红细胞会破裂,释放出细胞内的钾离子,影响钾离子测量值的精确性.血浆血浆样本是通过快速离心肝素化的全血,从红细胞中分离出获得的,封在样本试管中.如果需要存储,必须密封且冷藏在4到8摄氏度.冷藏的样本在使用前必须恢复到室温(15-30摄氏度).如果存储超过一小时,血浆样本必须再离心以除去纤维蛋白凝结.血清血清样本收集在一个血液收集杯中,30分钟就会凝结,需要离心了.离心后除去血清中的凝快,密封试管.如果需要存储,样本必须盖紧且冷藏在4-8度,分析前必须恢复到室温(15-30摄氏度).每个实验室应该有自己的血液收集注射器,毛细管,试管和血浆血清的分离产品.x试剂ISE SnapPakTM (BP5186) 包含以下试剂:Standard A用途: 钠,钾,氯,离子钙,锂定标Contents: 350 mLActive Ingredients:Na+150mmol/LK+ 5.0mmol/LCl-115mmol/LCa++0.9mmol/LLi+0.3mmol/L添加物: 杀菌剂Storage:Temperature: 5 - 30 °C (41 - 86 °F)有效期: 见每个包底标签上的出厂日期和序列号码.Standard B用途: 钠,钾,氯,离子钙,锂定标Contents:85 mLActive Ingredients:Na+100mmol/LK+ 1.8mmol/LCl-72mmol/LCa++ 1.5mmol/LLi+0.3mmol/L 添加物: 杀菌剂Storage:Temperature: 5 - 30 °C (41 - 86 °F) 有效期: 见每个包底标签上的出厂日期和序列号码.xiStandard C 用途: 钠,钾,氯,离子钙,锂定标Contents:85 mLActive Ingredients:Na+150mmol/LK+ 5.0mmol/LCl-115mmol/LCa++0.9mmol/LLi+ 1.4mmol/L 添加物: 杀菌剂Storage:Temperature: 5 - 30 °C (41 - 86 °F)有效期: 见每个包底标签上的出厂日期和序列号码.Reference Solution用途: 定标和测量用的盐桥.Contents:85 mLActive Ingredients:Potassium chloride 1.2mol/L添加物: 杀菌剂Storage:Temperature: 5 - 30 °C (41 - 86 °F) 有效期: 见每个包底标签上的出厂日期和序列号码.Separately Packaged Reagents:Cleaning Solution A (BP1025)用途: 清洁测量系统.Contents:Each dispensing bottle contains 100 mL of solution Active Ingredients:Neodisher MA (detergent) 3.5 g/L添加剂: 无Storage:Temperature: 5 - 30 °C (41 - 86 °F)有效期: 见每个包底标签上的出厂日期和序列号码.xii调整液 (BP0380)用途: 钠电极和样本传感器每天的调整,Contents:Each dispensing bottle contains 100 mL of solution (U.S. market)Active Ingredients:Ammonium bifluoride 100 mmol/L添加剂: 无Storage:Temperature: 5 - 30 °C (41 - 86 °F)有效期: 见每个包底标签上的出厂日期和序列号码.尿稀释剂 (BP0344)用途: 用尿液样本时稀释用.Contents:Each bottle contains 500 mL of solutionActive Ingredients:Sodium chloride 120 mmol/L添加物: 杀菌剂Storage:Temperature: 5 - 30 °C (41 - 86 °F)有效期: 见每个包底标签上的出厂日期和序列号码.警告:使用非AVL生产的定标液或电极,不负责保质.试剂包内带废液罐,回收各种可能接触到的,可能会传染的体液.FOR IN-VITRO DIAGNOSTIC USE.Procedure需要的物件产品名称 定购编号ISE SnapPaK试剂包 BP5186清洁液 A BP1025调整液 BP0380尿稀释剂 BP0344打印纸 (5 卷) HP5025xiiiAVL9180电解质分析仪允许操作者采用一种下列操作方法:全血,血清,尿液,质控物,醋酸盐,重碳酸盐.操作者设定后,仪器自动处理样本并打印和显示出结果.在全血,血清,和质控物模式中,钠,钾的报告结果已被换算成相当于火焰测定法值.氯,离子钙,锂的报告结果是电解质直接光测定值.尿液模式允许测量预稀释尿液的钠钾氯. 醋酸盐,重碳酸盐和标准模式中,允许测量水溶液并作为直接光测定值报告.详细的操作请参阅操作手册.测试条件样本量: 95微升样本类型: 全血,血清,血浆,尿液,醋酸盐,重碳酸盐,透析液.样本容器: 毛细管,AVL微量采血器,注射器,试管,样本杯周围温度: +15 -- +32 C ( 60 -- 90 F)周围湿度: 5% -- 85% (未浓缩)测量类型: 直接光测定法测量参数参数 测量范围 显示分辨率全血,血清,血浆,透析液和水溶液:钠 40-205 mmol/L 1 or 0.1 mmol/L钾 1.5-15 mmol/L 0.1 or 0.01 mmol/L(0.8 - 1 5mmol/L 透析液)氯 50-200 mmol/L 1 or 0.1 mmol/L离子钙 0.2-5.0 mmol/L 0.01 or 0.001 mmol/L锂 0.1-6.0 mmol/L 0.01 or 0.001 mmol/L(透析液样本中不能测锂)尿液钠 1 - 300 mmol/L 1 mmol/L钾 4.5 - 120 mmol/L 0.1 mmol/L(60-120 with additional dilution)氯 1 - 300 mmol/L 1 mmol/L(钙和锂在尿液样本中不能测量)xiv定标分析仪器的软件包括六个参数中的任一种配置:Na+/K+/Ca++,Na+/K+/Cl-,Na+/K+/Li+,Na+/K+, Na+/Li+, Li+.这些配置中的每一种都用同样的定标液.在"准备"状态下,每4小时自动进行一次2点定标,每次测量自动进行一次1点定标.开机或复位时也进行自动定标.当没有样本测量时,定标过程也可以随时中断.质控AVL建议每天一次或定期质控,已知Na+,K+,Cl-,Ca++和Li+ 数据的质控液至少作二个水平(中值和低值或高值),要做进一步的了解,参阅操作手册的质控章节.质控结果与已知数据对照是否在允许极限内,如果偏出允许的极限,参阅操作手册的故障一节.参考值样本 参考范围N a + K+ Ca++ Cl - (mmol/l)(mmol/L)(mmol/L)(mmol/L)(mmol/L)血清血浆全血136-1451 3.5-5.11 1.12-1.321 97-1114 0.6-1.201尿液(mmol/24hrs)40-220125-1251N/A110-2501N/A以上仅供参考,各实验室应该建立自己的参考范围(针对AVL9180) 4 Henry, R.J., Clinical Chemistry - Principles and Technics, (New York: Harper and Row, 1974)xv局限性许多因素会引起全血,血清,血浆分析浓度的病理改变,讨论这些影响全血血清血浆浓度的广泛的因素不明确,也不在本文范围内.溴化物,铵,碘化物对血清和尿液没有重要影响已被证明.结合临床反应,用户应适当的考虑可能影响结果的因素,因为药物的使用或内在物质有不确定的冲突影响.实验室和临床医生必须根据病人的临床表现对结果进行估算.使用止血带会导致钾水平升高10-20%,建议采血时不要用止血带,或者在针扎入且过二分钟,拔出针前释放止血.因为红细胞内钾浓度远高于细胞外的,所以必须避免溶血,采集后尽可能从细胞中分离出.锂电极响应与样本中实际的钠浓度有关,AVL 9180分析仪的锂范围为105-180mmol/L Na+.参考高水平的水杨酸盐会影响氯电极,导致氯测量值正向偏离.采用水杨酸盐治疗的,对氯会产生重大的临床影响.锂电极对样本中的离子钙不灵敏,会使锂结果发生负向偏离.正常生理状态的离子钙浓度有重要的临床意义. 5 Kost b.Med., Vol.117, Sep.1993, p.890-95xvi离子钙和总钙的关系健康人群中离子钙占总钙约0.50 或者50% 1,5.当血液中使用了柠檬酸盐,或酸碱代谢紊乱时,其比例会改变.特殊性能指标重复性典型的隔次间的精度(Swr),隔天间的精度(Sdd),总精度(ST)来源于二台AVL9180,分别三种配置,每天二次间的重复性,共20天.钠钾的值是相当于6台仪器的平均值,氯,离子钙,锂的值是二次测量的每次重复性,所有的值单位都是mmol/L.Material: ISE-trol Protein Based Aqueous Control Material - Level 1Parameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium114.60.480.42%0.760.66%0.890.78%Potassium 2.820.0250.87%0.035 1.24%0.041 1.44%Chloride76.70.290.38%0.520.67%0.720.94% ionized Calcium 2.070.0150.72%0.024 1.18%0.034 1.66% Lithium0.400.010 2.40%0.018 4.57%0.026 6.41% Material: ISE-trol Protein Based Aqueous Control Material - Level 2Parameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium141.20.400.28%0.300.21%0.460.33%Potassium 4.350.0240.55%0.0230.53%0.0360.82%Chloride102.40.180.18%0.200.20%0.320.31% ionized Calcium 1.350.016 1.21%0.021 1.55%0.042 3.10% Lithium 1.040.012 1.19%0.035 3.36%0.045 4.31%xviiMaterial: ISE-trol Protein Based Aqueous Control Material - Level 3Parameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium158.80.510.32%0.760.48%0.900.56%Potassium 5.740.0270.48%0.0260.45%0.0360.62%Chloride123.20.360.29%0.890.72% 1.170.95% ionized Calcium0.630.010 1.52%0.007 1.07%0.014 2.29% Lithium 2.590.0250.97%0.063 2.44%0.082 3.18% Material: RNA EQUIL Reduced Bovine Hemoglobin Solution - Level 2Parameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium134.80.530.40%0.450.33%0.630.47%Potassium 4.890.0390.79%0.0210.42%0.0430.88%Chloride100.40.430.43%0.420.41%0.580.57% ionized Calcium 1.100.0080.75%0.0040.40%0.0110.95% Lithium N/AMaterial: Aqueous Standard Solution - Level 1Parameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium150.00.550.37%0.340.23%0.570.38%Potassium 4.970.0220.44%0.0180.36%0.0290.57%Chloride115.00.110.09%0.080.07%0.160.14% ionized Calcium0.960.0040.41%0.0040.39%0.0070.76% Lithium0.300.004 1.27%0.005 1.60%0.008 2.48% Material: Aqueous Standard Solution - Level 2Parameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium113.20.510.45%0.960.85% 1.070.95%Potassium 1.820.033 1.88%0.043 2.36%0.053 2.92%Chloride82.90.270.33%0.670.80%0.87 1.05% ionized Calcium 2.430.0140.56%0.032 1.33%0.043 1.76% Lithium 5.420.0430.78%0.155 2.86%0.196 3.62% xviiiMaterial: Pooled Human SerumParameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium138.80.300.22%0.360.28%0.470.34%Potassium 4.490.0340.75%0.0410.92%0.051 1.13%Chloride106.80.180.17% 1.000.93% 1.24 1.16% ionized Calcium 1.190.0070.55%0.031 2.64%0.039 3.29% Lithium0.170.011 6.19%0.0158.40%0.02313.28% Material: Acetate Dialysate SolutionParameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium86.10.850.98% 1.81 2.10% 1.78 2.07%Potassium 2.090.029 1.41%0.041 1.94%0.049 2.32%Chloride107.80.250.24%0.230.21%0.400.37% ionized Calcium 1.770.020 1.13%0.092 5.20%0.115 6.50% Lithium N/AMaterial: Bicarbonate Dialysate SolutionParameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium135.20.450.33%0.590.44%0.720.54%Potassium 1.580.023 1.46%0.031 1.95%0.037 2.37%Chloride107.30.370.35%0.630.59%0.860.80% ionized Calcium 1.680.0120.72%0.0160.96%0.027 1.63% Lithium N/AMaterial: UrineParameter mean S wr(CV%)S dd(CV%)S T(CV%) Sodium51.5 1.98 3.84% 3.06 5.94% 3.657.08%Potassium48.40.65 1.34%0.97 2.00% 1.11 2.29%Chloride85.90.530.62%0.660.76%0.99 1.16% ionized Calcium N/ALithium N/Axix标准水溶液的线性水液线性标准是公制的加N.I.S.T.可追踪盐并测量于6台9180的每台,每台二次:Na/K/Cl, Na/K/iCa and Na/K/Li.CorrelationParameter Slope Intercept Coefficient Sy*x Range n Sodium0.999930.01280.999950.66651-196300Potassium0.998380.01190.999190.194 2.0-12.6300Chloride0.97556-0.17750.999940.67456-194100 ionized Calcium 1.01552-0.00780.999800.0370.4-3.3100 Lithium0.998500.00870.999850.0380.3-5.3100血清的线性度血清线性是用未临床测试的二个样本分析比较:商业上精制的血清钠/钾/氯线性标准和一组少量的病人血清样本.所有的样本在二台AVL9180的任一台上分析,而每一种配置:Na/K/Cl, Na/K/iCa 和Na/K/Li.下列不同方法仪器的各个比较:直接ISE,与火焰不相关 AVL 983 Na/K/Cl Analyzer(listed as 98X) AVL 984 Na/K/iCa Analyzer AVL 985 Na/K/Li Analyzer直接ISE,与火焰相关 AVL 9130 Na/K/Cl Analyzer(listed as 91XX) AVL 9140 Na/K/iCa Analyzer火焰吸收光谱学 IL 943 Flame Photometer氯计 Labconco Digital Chloridometerxx火焰的相关性IL 943 Flame PhotometerCorrelationParameter Slope Intercept Coefficient Sy*x Range n Sodium0.9617 5.830.9908 2.04104-17850normalized to Na = 1400.47Potassium 1.02490.0150.99910.075 1.8-11.550normalized to K = 4.00.11Lithium0.98030.0110.98220.0280.11-0.71150.97200.0160.99570.0190.23-1.1315直接ISE(与火焰不相关)的相关性AVL 98X Electrolyte AnalyzersCorrelationParameter Slope Intercept Coefficient Sy*x Range n Sodium0.9895-6.350.99920.61110-18650normalized to Na = 140-7.83Potassium 1.0223-0.250.99960.05 2.0-11.650normalized to K = 4.0-0.164Chloride0.9631-1.010.99950.5170-15250normalized to Cl = 105-4.88ionized Calcium0.88980.1070.99600.0210.67-1.6650 normalized to iCa = 1.1-0.014Lithium0.99230.0080.99850.0100.11-0.7115xxi直接ISE(与火焰相关)的相关性AVL 91XX Electrolyte AnalyzersCorrelationParameter Slope Intercept Coefficient Sy*x Range n Sodium0.9856-2.020.9856 1.21104-17950 normalized to Na = 1400.006Potassium0.99920.020.99940.05 1.9-11.850normalized to K = 4.00.02Chloride 1.0026-5.310.99890.7370-15250normalized to Cl = 105-5.04ionized Calcium 1.00230.0400.99540.0220.62-1.5450 normalized to iCa = 1.10.042氯计的相关性Labconco Digital ChloridometerCorrelationParameter Slope Intercept Coefficient Sy*x Range nChloride 1.0222 2.750.9923 2.0366-14550 normalized to Cl = 1050.00xxii 参考书目Bishop ML, Duben-Engelkirk JL, Fody EP. Clinical Chemistry Principles Procedures Correlations, 2nd Ed., (Philadelphia: J.B.Lippincott Co.),1992,p.281.Burritt MF, Pierides AM, Offord KP: Comparative studies of total and ionized serum calcium values in normal subjects and in patients with renal disorders. Mayo Clinic Proc. 55:606, 1980.Burtis C, Ashwood E (Eds.), Tietz Textbook of Clinical Chemistry, 2nd Ed., (Philadelphia: W.B. Saunders, Co.,1994) pp.1354-1360,2180-2206.Calbreath, Donald F., Clinical Chemistry A Fundamental Textbook, (Philadelphia: W.B. Saunders Co., 1992) pp.371, 376, 390-395.Henry, R.J., Clinical Chemistry - Principles and Technics, (New York, Harper and Row, 1974)Kost b.Med., Vol.117, Sep.1993, p.890-95National Committee for Clinical Laboratory Standards. Protection of Laboratory Workers from Infectious Disease Transmitted by Blood, Body Fluids and Tissue, Second Edition; Tentative Guideline. NCCLS Document M29-T2, (1992).National Committee for Clinical Laboratory Standards. Additives for Blood Collection Devices: Heparin; Tentative Standard; NCCLS Document H24-T, (1988).National Committee for Clinical Laboratory Standards. Evaluation of Precision Performance of Clinical Chemistry Devices, Second Edition; Tentative Guideline. NCCLS Document EP5-T2, (1992).Rose, Burton David, Clinical Physiology of Acid-Base and Electrolyte Disorders, 4th Ed., (New York: McGraw-Hill, Inc., 1993) pp. 346-348, 432, 797-798.Schoeff, Larry E & Williams, Robert H. (Eds.) Principles of Laboratory Instruments, (St. Louis: Mosby Year Book Inc., 1993) pp. 150-157, 161-164.Snyder John R., Senhauser Donald A, (Eds.), Administration and Supervision in Laboratory Medicine, 2nd Ed, (Philadelphia: J.B.Lippincott Co., 1989) pp.262-284.Tietz, Norbert W.,Ed.,Clinical Guide to Laboratory Tests, 2nd Ed., (Philadelphia: W.B. Saunders Co., 1990), pp.98-99, 118-119, 456-459, 510-511, 720-721Tietz, Norbert W.,Ed., Textbook of Clinical Chemistry, 2nd Ed., (Philadelphia: W.B. Saunders, Co.,1986), pp.1816, 1837, 1840-1842, 1845.Toffaletti J, Gitelman JH, Savory J: Separation and quantification of serum constituents associated with calcium by gel filtration. Clin Chem 22: 1968-72, 1976.xxiii绪言WelcomeAVL 电解质分析仪可以快速,精确,高效地进行电解质测量,是你的实验室强有力的助手.该手册会教你如何设置仪器,如何开始样本分析.熟悉操作后,你可以手工设置程序,维护仪器,并且排除一些故障.如何使用手册如果仪器还未安装,可按第一和第二章开始,按第三和第四章质控,操作和保养在第五和第六章,详细的维修和操作原则在第七/八章.xxiv内容Chapter 1: AVL电解质仪器 概况 ............................... 1Chapter 2: 安装 ............................... 8Chapter 3: 程序 ............................... 20Chapter 4: 质控 ............................... 32Chapter 5: 操作 ................................ 36Chapter 6: 保养和日常管理. ..................... 42Chapter 7: 故障及其排除......................... 60Chapter 8: 操作原理 ........................... 78Chapter 9: 备件维修及保质....................... 90附录 A: 技术指标 ................................. 93附录 B: 程序流程图 ............................... 95附录 C: 保养日志 ................................. 96附录 D: 相关因数................................... 97xxvChapter 1概况 重要的安全指标在安装AVL电解质仪器之前必须仔细阅读这章.必须防范的是操作者和仪器运行的安全性.● 必须远离如水池等液体.● 不要用含氨的或含酒精的东西清洁.●● 一定要小心处理血液样本和容器.● 一定要带手套以防接触到样本.● 清洁吸样针时间需要无菌操作以防污染.● 一定要按照当地的规定处理试剂包.121-1. 9180 电解质分析仪主要部分(外观) 吸样针部分 控制面板键 控制面板显示 试剂包 前盖3分析仪构件AVL 电解质分析仪是微电脑芯片控制的,全自动的医疗仪器,其测量: Na +:Sodium K +:Potassium 再加下列一个Cl ¯:Chloride Ca ++:Calcium Li +:Lithium分析仪是由几大部分组成的,以后你会对各部分会了解并熟悉的.参见图1-1.通过键盘上的YES和NO键进行人机对话,这些键完成所有功能:样本测量,数据输入菜单选择和质控.参见图1-2.显示屏幕有二行,每行可显16个字符,分别显示仪器状态,菜单和样本结果.参见图1-3.1-2. 控制面板键1-3. 控制面板显示41-4. 9181电解质分析仪主要部分(内部) 吸样针机构液体控制阀 蠕动泵 打印机 测量室5打开主前盖可看到其它一些内部部件参见图1-4和1-5.测量室中有:左边的可活动的锁装置,用来固定电极;右边的样本传感器,电极安放位置有标示.电极标示:Ref :Reference Na +:Sodium K +:Potassium Cl ¯:Chloride Ca ++:Calcium Li +:Lithium 参见图1-6.蠕动泵用来在仪器内传送各种液体.参见图1-7.1-5. 打开主前盖1-6. 测量室1-7. 蠕动泵6吸样针机构位于小门的后面.参见图1-9.试剂包内有废液罐,避免废液的散出.参见图1-10.1-8. 液体控制阀1-10. 试剂包1-9. 吸样针机构7热敏打印机是用16阵列输出打在热敏纸上.可打印的值有:测量值,定标值,电极电压,试剂包中试剂剩余量.更换纸很方便.参见图1-11.型号和序列号铭牌位于吸样机构上方.参见图1-12.后面板上有一铭牌,标有电源开关,保险丝更换以及RS232接口.参见图1-13.祝贺你已了解了仪器的基本构成,你可以准备安装了.1-11. 热敏打印机1-12. 型号和序列号1-13. 后面板82-1. 仪器周围的空间要求Chapter 2安装选择安装位置位置对以后的正常操作很重要,位置的选择要方便于样本的需要以及以下条件: ●接地良好的电源座. ●避免太阳的直接照射. ●室温控制在15 C-32 C(60F-90F) ●最大湿度85% ●仪器周围应有一定的自由空间. 参见图2-1. ●远离强电磁辐射,如马达,X射线设备等 ●远离爆炸性气体等.13"13 3/8"13 3/4"现在仔细打开AVL仪器包装,不要丢弃包装泡沫.装机前仔细检查仪器各种附件,没有缺损.检查:电源线电极打印纸试剂包清洁液电极调质控液还需要在仪器旁准备软绒布和随意用的样本杯.设置在正式运行前仔细阅读该章并理解是很必要的.910将仪器放在桌子上,桌子上应有足够的操作空间,并方便与电源连接.打开仪器前盖,从阀上轻轻移去五个红色的阀垫保留这些阀垫以备以后长期关机,运输等需要.参见图2-2.装上蠕动泵管架,确定没有过分拉伸.参见图2-3.电极和测量室下面可以安装电极到测量室中.将电极从保护合中取出,放在柔软清洁的桌面上,检查每个电极左面都应有一个O形密封圈.参见图2-4.2-2. 移去阀垫2-3. 安装泵管架2-4. 电极上的O形密封圈11从参比电极上移去红色的传输套,并检查电极上的密封圈是否完整,保留传输套,以备将来关机或维修之需.参见图2-5.仔细将参比电极旋进参比电极套.参见图2-6.朝前轻轻的尽量拉出测量室,放松左边的固定机构.参见图2-7和2-8.2-5. 移去传送套2-6. 安装参比电极2-7. 朝前拉出测量室2-8. 放松左边的固定机构红色传输套参比电极参比电极套12插上样本传感器电缆插头.检查O形密封圈,电极架.参见图2-9.现在安装电极到测量室上,从右往左依次装(参比电极最后装).注意:迄今为止,最右边电极一般是下列之一:氯,离子钙,锂,或假电极.如果选择了钠和锂,钾电极将被假电极替代.检查确定安装无误,且所有的电极安装平整.(斜看电极边缘为一直线,与测量室空隙均衡.)参见图2-10.锁紧电极左边的电极固定旋钮,从前向后即锁紧.察看电极放的是否合适.参见图2-11.2-9. 样本传感器电缆和密封圈2-10. 安装电极2-11. 锁紧电极固定旋钮。

AVL_CRUISE_2019_整车经济性动力性分析操作指导书

AVL_CRUISE_2019_整车经济性动力性分析操作指导书

A VL_CRUISE_2019_整车经济性动力性分析操作指导书AVL CRUISE纯电动汽车经济性动力性分析操作指导书目录第一章 AVL Cruise 2014 简介 (2)1.1 动力性经济性仿真集成平台 (2)1.2 A VL Cruise建模分析流程 (3)1.3 主要模块功能 (4)1.4 A VL Cruise计算任务的设定 (9)第二章汽车零部件模型建立 (14)2.1.软件启动 (14)2.2.Project创建 (15)第三章整车动力经济性分析模型连接 (44)3.1.部件之间物理连接 (44)3.2.部件之间信号连接 (45)第四章整车动力经济性分析任务设置 (49)4.1 爬坡性能任务制定 (50)4.2 等速百公里油耗分析 (53)4.3 最大车速分析 (56)4.4 循环工况油耗分析 (59)4.5 加速性能任务制定 (62)第五章计算及分析处理 (65)5.1. 计算参数设置 (65)5.2. 分析处理 (65)第六章整车动力性/经济性计算理论 (71)6.1 动力性计算公式 (71)6.1.1 变速器各档的速度特性 (71)6.1.2 各档牵引力 (71)6.1.3 各档功率计算 (72)6.1.4 各档动力因子计算 (72)6.1.5 最高车速计算 (72)6.1.6 爬坡能力计算 (73)6.1.7 最大起步坡度 (74)6.1.8 加速性能计算 (74)6.1.9 比功率计算 (76)6.1.10 载质量利用系数计算 (76)6.2 经济性计算公式 (76)6.2.1 直接档(或超速档)等速百公里油耗计算 (76)6.2.2 最高档全油门加速500m的加速油耗(L/500m) (77)6.2.3 循环工况百公里燃油消耗量 (78)第一章 AVL Cruise 2014 简介1.1 动力性经济性仿真集成平台AVL Cruise是AVL公司开发一款整车及动力总成仿真分析软件。

AVL仪器检定流程及说明

AVL仪器检定流程及说明

A VL仪器检定流程一、 三组份(CO2、CO、HC)检定1.进入仪器的测量界面,首先对仪器的三组份进行一次标定。

2.仪器提示标定完成后,按F6键,仪器会退回到主菜单。

3.重新进入标定界面(F5-F2-F2),此时光标会停留在第一个方框处,按标准气瓶上显示的各组份实际值依次输入三种气体的实际值,按F6键,使光标移到最后一个NO的数值输入框后,再按F6一次。

此时仪器提示输入值是否正确。

(出现提示后,不需要再按F6键)4.此时将标准气瓶打开,从仪器的标定孔处通入标准气,流量控制在0.5L/Min,待方框左边各测量值稳定后,记录下测量值后与标准气瓶上标注的各组份实际含量值进行对比。

5.CO2和CO的测量值直接与标准气瓶上标注的含量值进行对比较。

HC显示的是正已烷当量值,需要用标准气瓶上的丙烷乘以PEF系数后的值与之对比。

6.PEF系数可以从仪器上获得,也可以在仪器出厂时的检定证书上获得。

二、氮氧化物(NO)的检定1.仪器进入30分钟预热后,在标定界面对NO进入一次标定(如果是新的NO传感器需要标定二次)。

2.仪器提示标定完成后,按INIT键,对传感器进行初始化。

仪器会出现“初始化成功”的提示。

按F6键,仪器退回主菜单。

3.重新进入标定界面(F5-F2-F2),将停留在第一个方框内的光标移到NO的方框内,输入标准气瓶上的NO含量值,按F6键。

仪器提示输入值是否正确。

(出现提示后,不需要再按F6键)4.此时将NO标准气瓶打开,从仪器的标定孔处通入标准气,流量控制在0.5L/Min,待方框左边NO的测量值稳定后,记录下测量值后与标准气瓶上标注的实际含量值进行对比。

AVL台架使用 介绍PO CHN

AVL台架使用 介绍PO CHN

Puma o pen
2
–系统体系结构
–PUMA 软件应用程序
–PUMA 操作用户界面(POI)–PUMA 资源管理器
–试验程序编辑器(BSQ -SSQ)–参数管理器(PAM)–标准名编辑器(NED)
–Puma Concerto 数据处理软件(PUC)
重要信息
5
6
–数据采集–监视功能
–手动或自动输出设定值–子系统、子设备的控制–公式计算–数据后处理
PUMA 功能简介
8
测量部分
发动机&测功机控制部分
9
-图形显示-字母数字显示
–在同一时间可以激活5个记录仪
–针对通道的采样频率设置
–在线分析
–手动/ 自动操作
–在线更改记录仪设置
–自动(试验程序)–POI 手动
–操作面板
–控制窗口
PUMA Explorer:–易于使用
–易于学习
–用户向导
15
BSQ:
–拖放式编程
–参数库/ 工具条
–流程图式试验程序
16
SSQ:
–以图形方式编辑试验程序步骤
–试验步骤序列可视化
18
19
哪些通道被定义?哪些参数要被保存?
–系统参数
(SYS)–Test Field Param.
(TFP)哪一发动机在何种条件下被测试?
–被测试单元参数(UUT)–试验参数
(TST)
参数从何处装载?
–主机数据库或本地数据库
参数综述
–INIT 公式–记录仪触发–内含的–实时公式解释程序
–参数库功能
–根据需要
23
24。

AVL软件功能介绍

AVL软件功能介绍

对于发动机瞬态特性的预测有下列模型可供选择:
z
关于油耗的各种模型
z
发动机和进排气系统的热惯性模型
z
各种实际工况下预测放热率和 NOx 的燃烧模型
z
基于压气机和涡轮特性图基础上的增压器动力学计算模型
z
允许用户在稳态和瞬态条件下模拟作为发动机控制装置的发动机电子控制模
块 ECU,动态数据链接库 DLL 和 MATLABTM.
e. 发动机进排气系统 由于采用先进的网格生成技术,静态进气系统的建模过程可在一小时内完成。排气管内除 一般的流动传热分析外,FIRE 还有专门的尾气处理模块对三元催化转化器内的流动,传热 及排放物的转化进行模拟计算。国内也有 FIRE 用户成功进行催化器 CFD 模拟和试验研 究。
预设的应用模板
No. 327 Rongqiao Rd., Jinqiao Export and Processing Zone,Shanghai, 201206 P.R.China
Tel: 0086-21-58996900 (Switchboard)
Fax: 0086-21-58996822
李 斯 特 技 术 中 心( 上 海 )有 限 公 司
LIST Technical Center (Shanghai) Co., Ltd
为适应一般工程师(缺乏 CFD 应用经验)的需要,AVL 将几十年发动机流体分析的经验体现在一 些典型应用的计算参数设置中,在求解器里预设了以下模板以保证这些典型应用的专业性和计 算精度:
c. 参数化的燃烧室优化工具 带有多个参数化的燃烧室结构供用户选择, 自动进行移动网格的生成,缸内瞬态流动喷雾 燃烧的计算并自动生成对结果的分析报告。之后用户可直接在界面内改变燃烧室结构参数 重新计算, 以实现对燃烧室形状的优化.

AVL PUMA OPEN说明书

AVL PUMA OPEN说明书

HEAVY DUTY ENGINE EMISSIONS With dynamic testbeds for the engines of utility vehicles, the focus is on strict compliance with the legislation despite the flexible use of advanced functions and additional measurement methods for engine development. AVL‘s packages guarantee the correct test procedure and display the results in a legally compliant and clear manner after the test has been completed.
specialized interfaces like ASAM-ODS and ASAM-CEA • Graphical formula editor for crank-angle- and time-based
calculations • Full programming environment for user-specific formulas,
LIGHT DUTY ENGINE EMISSIONS Increases in efficiency in the engine development process can be achieved by making use of the benefits of dynamic engine testbeds. It is essential in this area to comply with the basic conditions for exhaust gas measurements specified in the corresponding guidelines. AVL‘s packages contain suitable methods for different measurement equipment (e.g. undiluted raw exhaust gas measurement or diluted CVS measurement).

AVL-300自动车辆跟踪设备用户手册说明书

AVL-300自动车辆跟踪设备用户手册说明书

AVL-300Automatic Vehicle Tracking DeviceUSER MANUALa c k i n g T h e W o r l d .c o mGeneral NotesTrackingTheWorld offers this information as a service to its customers, to support application and engineering efforts that use the products designed by TrackingTheWorld. The information provided is based upon requirements specifically provided to TrackingTheWorld by the customers. TrackingTheWorld has not undertaken any independent search for additional relevant information, including any information that may be in the customer’s possession. Furthermore, system validation of this product designed by TrackingTheWorld within a larger electronic system remains the responsibility of the customer or the customer’s system integrator. All specifications supplied herein are subject to change.CopyrightThis document contains proprietary technical information which is the property of TrackingTheWorld Limited., copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.Copyright © TrackingTheWorld 2016For More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USA Phone: +1.650.692.8100 – Email: *************************– Website: Contents1.Introduction (5)1.1.Reference (5)1.2.Terms and Abbreviations (5)2.Product Overview (6)2.1.Check Part List (6)2.2.Parts List (7)2.3.Interface Definition (7)3.Getting Started (9)3.1.Opening the Case (9)3.2.Closing the Case (9)3.3.Installing a SIM Card (10)3.4.Installing the Internal Backup Battery (10)3.5.Switch ON the Backup Battery (11)3.6.Installing the External GPS Antenna (Optional) (11)3.6.1.GPS Antenna Specification (12)3.7.Power Connection (12)3.8.Ignition Detection (13)3.9.Digital Inputs (13)3.10.Analog Inputs (14)3.11.Digital Outputs (15)3.12.Device Status LED (16)3.13.Audio Interface (17)3.13.1.Microphone Input Characteristics (18)3.14.Serial Port / UART Interface (19)Table IndexTABLE 1: AVL300 PROTOCOL REFERENCE (5)TABLE 2: TERMS AND ABBREVIATIONS (5)TABLE 3: PART LIST (7)TABLE 4: DESCRIPTION OF 16 PIN CONNECTIONS (8)TABLE 5: GPS ANTENNA SPECIFICATION (12)TABLE 6: ELECTRICAL CHARACTERISTICS OF IGNITION DETECTION (13)TABLE 7: ELECTRICAL CHARACTERISTICS OF THE DIGITAL INPUTS (13)TABLE 8: ELECTRICAL CHARACTERISTICS OF DIGITAL OUTPUTS (15)TABLE 9: DEFINITION OF DEVICE STATUS AND LED (17)TABLE 10: THE CHARACTERISTICS OF MICROPHONE (18)For More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USA Phone: +1.650.692.8100 – Email: *************************– Website: Figure IndexFIGURE 1.APPEARANCE OF AVL300 ................................................................................................................., 6 FIGURE 2.THE 16 PIN CONNECTOR ON THE AVL300 .....................................................................................,8 FIGURE 3.OPENING THE CASE . (9)FIGURE 4.CLOSING THE CASE (9)FIGURE 5.SIM CARD INSTALLATION (10)FIGURE 6.BACKUP BATTERY INSTALLATION (10)FIGURE 7.SWITCH AND ON/OFF POSITION (11)FIGURE 8.GPS ANTENNA OF AVL300 (11)FIGURE 9.TYPICAL POWER CONNECTION (12)FIGURE 10.TYPICAL IGNITION DETECTION (13)FIGURE 11.TYPICAL DIGITAL INPUT CONNECTION (14)FIGURE 12.TYPICAL ANALOG INPUT CONNECTION (14)FIGURE 13.DIGITAL OUTPUT INTERNAL DRIVE CIRCUIT (15)FIGURE 14.TYPICAL CONNECTION WITH RELAY (15)FIGURE 15.TYPICAL CONNECTION WITH LED (16)FIGURE 16.AVL300 LED ON THE CASE (16)FIGURE 17.TYPICAL AUDIO CONNECTION (18)FIGURE 18.TYPICAL CONNECTION WITH RS232 PORT (19)Revision HistoryFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USA Phone: +1.650.692.8100 – Email: *************************– Website: 1.IntroductionThe AVL300 is a powerful GPS locator designed for vehicle or asset tracking. It has superior receiver sensitivity, fast TTFF (Time to First Fix) and supports Quad-Band GSM frequencies 850/900/1800/1900, its location can be monitored in real time or be periodically tracked by a backend server or other specified terminals. The AVL300 has multiple input/output interfaces that can be used for monitoring or controlling external devices. Based on the integrated @Track protocol, the AVL300 can communicate with a backend server through the GPRS/GSM network to transfer reports of Emergency, geo-fence boundary crossings, low backup battery or scheduled GPS position as well as many other useful functions. Users can also use AVL300 to monitor the status of a vehicle and control the vehicle by its external relay output. System Integrators can easily setup their tracking systems based on the full-featured @Track protocol.This device complies with part 15B, part 22 and part 24 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference (2) this device must accept any interference, including interference that may cause undesired operation.1.1.Reference1.2.Terms and AbbreviationsTable 2: Terms and AbbreviationsFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USA Phone: +1.650.692.8100 – Email: *************************– Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and price2.Product Overview2.1.Parts ListBefore starting, check that the Device and Wiring harness have been included with your AVL300. The GPS antennae is optional and not included. If anything is missing, please contact your supplier.Figure 1. Appearance of AVL300For More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USA Phone: +1.650.692.8100 – Email: *************************– Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and priceFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USAPhone: +1.650.692.8100 – Email: ************************* – Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and price 2.2. Parts ListTable 3: Part List2.3. Interface DefinitionThe AVL300 has a 16 PIN interface connector. It contains the connections for power, I/O, RS232, microphone, speaker, etc. The sequence and definition of the 16PIN connector are shown in following figure:For More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USAPhone: +1.650.692.8100 – Email: ************************* – Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and price Figure 2. The 16 PIN connector on the AVL300Table 4: Description of 16 PIN Connections3.Getting Started3.1.Opening the CaseFigure 3. Opening the CaseInsert the triangular-pry-opener into the gap of the case as shown below, push the opener up until the case unsnapped.3.2.Closing the CaseFigure 4. Closing the CasePlace the cover on the bottom in the position as shown in the following figure. Slide the cover against the direction of the arrow until it snapped.For More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USA Phone: +1.650.692.8100 – Email: *************************– Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and priceFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USAPhone: +1.650.692.8100 – Email: ************************* – Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and price 3.3. Installing a SIM CardOpen the case and ensure the unit is not powered (unplug the 16Pin cable and switch the internal battery to off position). Slide the holder right to open the SIM card. Insert the SIM card into the holder as shown below with the gold-colored contact area facing down taking care to align the cut mark. Close the SIM card holder. Close the case.Figure 5.SIM Card Installation3.4. Installing the Internal Backup BatteryFigure 6.Backup Battery InstallationThere is an internal backup Li-ion battery,For More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USAPhone: +1.650.692.8100 – Email: ************************* – Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and price 3.5. Switch ON the Backup BatteryTo use the AVL300 backup battery, the switch must be at the ON position. Switch on the case and ON/OFF position are shown below.Figure 7. Switch and ON/OFF position Note:1-The switch must be on the “OFF” position when shipped on an aircraft .2-When the switch is on the “OFF” position, the battery cannot be charged or discharged.3.6. Installing the External GPS Antenna (Optional)There is a SMA GPS antenna connector on AVL300. The AVL300 will automatically detect and use an external antenna when connected.Figure 8. GPS Antenna of AVL3003.6.1.GPS Antenna SpecificationTable 5: GPS Antenna Specification3.7.Power ConnectionPWR (PIN12) / GND (PIN6) are the power input pins. The input voltage range for this device is from 8V to 32V. The device is designed to be installed in vehicles that operate on 12V or 24V systems without the need for external transformers.Figure 9. Typical Power ConnectionFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USA Phone: +1.650.692.8100 – Email: *************************– Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and priceFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USAPhone: +1.650.692.8100 – Email: ************************* – Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and price 3.8. Ignition DetectionTable 6: Electrical Characteristics of Ignition DetectionFigure 10.Typical Ignition DetectionIGN (Pin3) is used for ignition detection. It is strongly recommended to connect this pin to ignition key “RUN” position as shown. If you do not connect the ignition detection, not all functions of the device will be available.An alternative to connecting to the ignition switch is to find a non permanent power source that is only available when the vehicle is running. For example the power source for the FM radio.IGN signal can be configured to start transmitting information to backend server when ignition is on; and enter power saving mode when ignition is off.3.9. Digital InputsThere are three general purpose digital inputs on AVL300. They are all negative trigger.Table 7: Electrical Characteristics of the digital inputsFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USAPhone: +1.650.692.8100 – Email: ************************* – Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and price The following diagram shows the recommended connection of a digital input.Figure 11. Typical Digital Input Connection3.10. Analog InputsThere are two analog inputs on AVL300, the analog input voltage range is from 0 to 2.8V. The following diagram shows the recommended connection.Figure 12. Typical Analog Input ConnectionNote: PIN 15 is a multifunction pin: it can be configured as a digital input or an analog input.3.11.Digital OutputsThere are three digital outputs on AVL300. All are of open drain type and the maximum drain current is 150 mA. Each output has the built-in over current and recovery PTC fuseFigure 13. Digital Output Internal Drive CircuitTable 8: Electrical Characteristics of Digital OutputsFigure 14. Typical Connection with RelayFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USA Phone: +1.650.692.8100 – Email: *************************– Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and priceFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USAPhone: +1.650.692.8100 – Email: ************************* – Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and priceFigure 15. Typical Connection with LEDNote:1. OUT1 will latch the output state during reset.2. All outputs are internally pulled up to PWR pin by a diode. So no external flyback diode is needed whenthe output is connected to an inductive load.3.12. Device Status LEDFigure 16.AVL300 LED on the CaseFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USAPhone: +1.650.692.8100 – Email: ************************* – Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and price Table 9: Definition of Device status and LEDNote:1 - GSM LED cannot be configured.2 - GPS LED and PWR LED can be configured to turn off after a period of time using the configuration tool3 - Fast flashing is about 60ms ON/ 780ms OFF4 - Slow flashing is about 60ms ON/ 1940ms OFF3.13. Audio InterfaceThe AVL300 offers a pair of differential outputs for an audio speaker and a signal-end microphone input. The audio output can be directly connected to 32ohm 0.25 w speaker.To achieve higher power output, please use an external audio amplifier (not supplied)Figure 17. Typical Audio Connection3.13.1.Microphone Input CharacteristicsTable 10: The Characteristics of MicrophoneNotes:1. Using electret microphone, sensitivity of -42 ± 3 dB/Pa @ 2V, impedance2.2kΩ.2. 2 - For RF noise suppression, two capacitors that 10pF and 33pF are recommended to be includedwithin the microphone.For More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USA Phone: +1.650.692.8100 – Email: *************************– Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and priceFor More Information: Please contact TrackingTheWorld, 1633 Bayshore Highway, Suite 390, Burlingame, CA. 94010, USAPhone: +1.650.692.8100 – Email: ************************* – Website: Copyright © TrackingTheWorld. All rights reserved. Information in this publication supersedes that in all previously published material. Specification and price 3.14. Serial Port / UART InterfaceThere are two lines dedicated to the Serial Port / UART interface (TXD and RXD).TXD / RXD are standard RS232 signal.Figure 18. Typical Connection with RS232 Port。

AVL_Fire_软件的使用方法

AVL_Fire_软件的使用方法

A VL Fire 软件的使用方法第一章安装方法avlfire.iso文件为镜像文件,如果计算机已安装虚拟光驱,可用虚拟光驱直接打开。

如果没有安装虚拟光驱,也可直接解压到计算机。

1、运行“setup.exe”文件,自动安装。

当提示安装的目录时,修改到想安装的目录。

2、安装完成后,将安装文件目录下的Crack文件夹下的patch文件复制到avlfire安装目录下,双击运行patch文件。

3、双击桌面图标“CFDWM v1.31”运行fire。

第二章基本操作1.1 鼠标操作:工作平面内,按住鼠标右键平移网格模型,按住鼠标左键可旋转模型,中键模型放大和缩小。

1.2 用户界面:Fire同多数应用软件相似,fire的界面由工作区、菜单栏、状态栏和应用工具栏组成。

界面的左侧为工程树(project),工程树中包括所有创建的网格文件,可以在工程树中加载文件,复制和删除文件等。

中间为工作区域,即模型显示区域。

界面右侧为应用工具栏,包含了所有针对网格文件进行修改和编辑的命令。

1.3 以intake port为例,介绍fire软件操作流程Fire也自带pdf格式的用户帮助手册,算例的操作方法,各个应用模块的设计原理等,打开方法:开始→程序→AVL→Fire V8.31→Help Files PDF。

打开源帮助文件Fire_v83_Examples中intake port例子,对软件的基本操作进行讲解。

1.3.1 文件导入Fire支持“.flm”,“.stl”的网格文件,.stl文件为CAD通用的表皮文件,fire虽然支持三维建模,但是应用较麻烦。

所以可在UG,Pro/E等软件中建模,以stl格式导出,再导入到fire中。

方法一,状态工具栏→(import)→AVL/FIRE/v8.31/exam/903_Intake_Port/Start_ Data目录下的IP_surf_smooth.flm→ok,文件显示在工作区内,工程树中也会显示文件名。

AT2207C_KMA_4000

AT2207C_KMA_4000
2.7 测量原则和功能 .................................. 23
2.7.1 燃油流量 ...................................... 23 2.7.2 燃油调节 ...................................... 24 2.7.3 泄流 / 气泡探测 ................................ 24 2.7.4 连续的密度测量 ................................ 25
PUMA Open V1.3 手册
8
3 安装...................................................................... 27
3.1 确定安装位置 .................................... 27
3.1.1 安装测量系统 .................................. 27
3.3 水路和油路连接 .................................. 33
3.3.1 布置和连接油管和水管 .......................... 34
3.3.2 连接加热器 ( 备选件 ) .......................... 35
3.3.3 连接溢流油箱 / 火焰保护过滤器 ( 选件 ) .......... 35

5
重要事项 : 如果外来物体或液体进入设备,请断开设备电源并请专家在 再次使用之前进行检查。 确保为设备供给正确的电压。 必须仅使用随附的带保护性接地的电源电缆。 只能将电源电缆连接到带接地接点的插座。 当您更换熔断丝时,断开设备电源系统。 随着每个发动机换油,为了避免灰尘通过回油管进入 AVL KMA4000,那 么整个系统通过服务阀 8.1 冲洗。 所有冷水和热水管以及热交换器使用 „Armaflex “隔热。这样防止冷凝 水的形成。关于备选件,炎热和寒冷的气候下,所有管路和组件都是 耐温的。 操作 AVL KMA 4000 时使用保护性衣服和安全风镜。 所有操作装置必须任何时间可以自由使用。 当处理产品或者产品零件时,确保遵守使用设备的国家的现行法规 (例如:处理电子废料的法规 )。必须总是彻底排空设备中可能存在的 任何燃油。

AVL_CRUISE_2014_整车经济性动力性分析操作指导书

AVL_CRUISE_2014_整车经济性动力性分析操作指导书

AVL_CRUISE_2014_整车经济性动力性分析操作指导书[科技改变生活,学习使人持续进步] AVL CRUISE纯电动汽车经济性动力性分析操作指导书张克鹏目录第一章 AVL Cruise 2014 简介 (2)1.1 动力性经济性仿真集成平台 (2)1.2 AVL Cruise建模分析流程 (3)1.3 主要模块功能 (4)1.4 AVL Cruise计算任务的设定 (9)第二章汽车零部件模型建立 (14)2.1.软件启动 (14)2.2.Project创建 (15)第三章整车动力经济性分析模型连接 (44)3.1.部件之间物理连接 (44)3.2.部件之间信号连接 (45)第四章整车动力经济性分析任务设置 (49)4.1 爬坡性能任务制定 (50)4.2 等速百公里油耗分析 (53)4.3 最大车速分析 (56)4.4 循环工况油耗分析 (59)4.5 加速性能任务制定 (62)第五章计算及分析处理 (65)5.1. 计算参数设置 (65)5.2. 分析处理 (65)第六章整车动力性/经济性计算理论 (71)6.1 动力性计算公式 (71)6.1.1 变速器各档的速度特性 (71)6.1.2 各档牵引力 (71)6.1.3 各档功率计算 (72)6.1.4 各档动力因子计算 (72)6.1.5 最高车速计算 (72)6.1.6 爬坡能力计算 (73)6.1.7 最大起步坡度 (74)6.1.8 加速性能计算 (74)6.1.9 比功率计算 (76)6.1.10 载质量利用系数计算 (76)6.2 经济性计算公式 (76)6.2.1 直接档(或超速档)等速百公里油耗计算 (76)6.2.2 最高档全油门加速500m的加速油耗(L/500m) (77)6.2.3 循环工况百公里燃油消耗量 (78)第一章 AVL Cruise 2014 简介1.1 动力性经济性仿真集成平台AVL Cruise是AVL公司开发的一款整车及动力总成仿真分析软件。

Compact3简明操作手册

Compact3简明操作手册

AVL COMPACT 3 简明操作手册山东执信公司目录1仪器简述 (1)2检测项目 (2)3主要参数 (3)4仪器要求 (4)5仪器结构 (5)6安装、停机 (11)7操作规程 (16)8定标 (19)9保养 (20)10附录 (29)1仪器简述∙AVL Compact 3为微型全自动血气分析仪,并配有内置热敏打印机。

∙高度安全设计的进样口和废液液位控制消除了病毒感染的可能性。

∙一次测量只需55微升全血,对新生儿、产妇更为有利。

∙可视的人机对话屏幕更易掌握使用方法。

∙AVL免保养电极使保养变得非常简单。

∙从进样到出结果只需20秒钟,快速简便。

∙在所有同类产品中试剂和定标气消耗最少,保证了长期使用节省费用。

∙精心设计和AVL一贯的高品质相结合保证了仪器的经济、可靠、耐用。

∙具有AVL功能齐备的自诊断程序。

2检测项目AVL Compact 3血气分析仪可测量全血的pH, PCO2和PO2。

pH血清、血浆和全血的pH值是指示其酸碱平衡的重要参数,对血液,肾脏,肺功能的诊断是非常重要的参数,造成血液pH值不正常的原因通常分为:pH<7.4∙原发碳酸氢盐缺乏代谢性酸中毒∙原发肺换气不足呼吸性酸中毒pH>7.4∙原发碳酸氢盐过剩代谢性碱中毒∙原发肺换气过度呼吸性碱中毒血、血清或血浆pH增加(酸血症),可能是由于血浆碳酸氢盐的增加,也可能是CO2排出的增加(过度换气),而出现呼吸性碱中毒的特征。

血、血清或血浆pH降低(酸血症),可能是由于有机酸形成过多,或肾功能失调排出过多H+或过多摄入酸,如:水杨酸中毒或失掉碱性体液。

肺泡换气减少可造成呼吸酸中毒,肺水肿、气管梗阻或药物可使出现急性呼吸酸中毒,梗阻性或约束性的呼吸性疾病可造成慢性呼吸酸中毒。

PCO2动脉血PCO2值用来评价人体排出CO2的能力和CO2的代谢情况。

动脉PCO2低于正常范围表示碱中毒,即低酸血症,这是由于肺泡通气增加,过度换气,动脉PCO高于正常范围表明酸中毒,即高碳酸血,2是肺换气不足的信号,也是心动停止、慢性梗阻性肺部疾病、药物过量、慢性酸碱代谢失调的特征。

AVL用户手册(yingwen)

AVL用户手册(yingwen)

AVL 3.14 User Primerlast update 28 Aug 2004Mark Drela, MIT Aero & AstroHarold Youngren, Aerocraft, Inc.HistoryAVL (Athena Vortex Lattice) 1.0 was originally written by Harold Youngren circa 1988 for the MIT Athena TODOR aero software collection. A number of modifications have since been added by Mark Drela and Harold Youngren,to the point where only a trace of the original code remains.General DescriptionAVL 3.xx now has a large number of features intended for rapid aircraft configuration analysis. The major features are as follows:Aerodynamic componentsLifting surfacesSlender bodiesConfiguration descriptionKeyword-driven geometry input fileDefined sections with linear interpolationSection propertiescamberline is NACA xxxx, or from airfoil filecontrol deflectionsparabolic profile drag polar, Re-scalingScaling, translation, rotation of entire surface or bodyDuplication of entire surface or bodySingularitiesHorseshoe vortices (surfaces)Source+doublet lines (bodies)Finite-core optionDiscretizationUniformSineCosineBlendControl deflectionsVia normal-vector tiltingLeading edge flapsTrailing edge flapsHinge lines independent of discretizationGeneral freestream descriptionalpha,beta flow anglesp,q,r aircraft rotation componentsSubsonic Prandtl-Glauert compressibility treatmentAerodynamic outputsDirect forces and momentsTrefftz-planeDerivatives of forces and moments, w.r.t freestream, rotation, controlsIn body or stability axesTrim calculationOperating variablesalpha,betap,q,rcontrol deflectionsConstraintsdirect constraints on variablesindirect constraints via specified CL, momentsMultiple trim run cases can be definedSaving of trim run case setups for later recallOptional mass definition file (only for trim setup, eigenmode analysis)User-chosen unitsItemized component location, mass, inertiasTrim setup of constraintslevel or banked horizontal flightsteady pitch rate (looping) flightEigenmode analysisRigid-body analysis with quasi-steady aero modelDisplay of eigenvalue root progression with a parameterDisplay of eigenmode motion in real timeOutput of dynamic system matricesVortex-Lattice Modeling PrinciplesLike any computational method, AVL has limitations on what it can do.These must be kept in mind in any given application.ConfigurationsA vortex-lattice model like AVL is best suited for aerodynamic configurationswhich consist mainly of thin lifting surfaces at small angles of attack and sideslip. These surfaces and their trailing wakes are represented as single-layer vortex sheets, discretized into horseshoe vortex filaments, whose trailing legs are assumed to be parallel to the x-axis. AVL provides the capability to also model slender bodies such as fuselages and nacelles via source+doublet filaments. The resulting force and moment predictions are consistent with slender-body theory, but the experience with this model is relatively limited, and hence modeling of bodies should be done with caution. If a fuselage is expected to have little influence on the aerodynamic loads,it's simplest to just leave it out of the AVL model.Unsteady flowAVL assumes quasi-steady flow, meaning that unsteady vorticity sheddingis neglected. More precisely, it assumes the limit of small reduced frequency, which means that any oscillatory motion (e.g. in pitch) must be slow enough so that the period of oscillation is much longer than the time it takesthe flow to traverse an airfoil chord. This is true for virtually any expected flight maneuver. Also, the roll, pitch, and yaw rates usedin the computations must be slow enough so that the resulting relativeflow angles are small. This can be judged by the dimensionlessrotation rate parameters, which should fall within the followingpractical limits.-0.10 < pb/2V < 0.10-0.03 < qc/2V < 0.03-0.25 < rb/2V < 0.25These represent extremely violent aircraft motion, and are unlikelyto exceeded in any typical flight situation, except possibly duringlow-airspeed aerobatic maneuvers. In any case, if any of theseparameters falls outside of these limits, the results should beinterpreted with caution.Compressibility---------------Compressibility is treated using the Prandtl-Glauert (PG) transformation.Its relative importance can be judged by the PG factor 1/B = 1/sqrt(1 - M^2), where "M" is the freestream Mach number. A few values are given in the table, which shows the expected range of validity.M 1/B--- -----0.0 1.000 |0.1 1.005 |0.2 1.021 |0.3 1.048 |- PG expected valid0.4 1.091 |0.5 1.155 |0.6 1.250 |0.7 1.400 PG suspect (transonic flow likely)0.8 1.667 PG unreliable (transonic flow certain)0.9 2.294 PG hopelessFor swept-wing configurations, the validity of the PG modelis best judged using the wing-perpendicular Mach numberMperp = M cos(sweep)Since Mperp < M, swept-wing cases can be modeled up to higherM values than unswept cases. For example, a 45 degree swept wingoperating at freestream M = 0.8 hasMperp = 0.8 * cos(45) = 0.566which is still within the expected range of PG validityin the above table. So reasonable results can be expectedfrom AVL for this case.When doing velocity parameter sweeps at the lowest Mach numbers,say below M = 0.2, it is best to simply hold M = 0. This willgreatly speed up the calculations, since changing the Mach numberrequires recomputation and re-factorization of the VL influence matrix, which consumes most of the computational effort. If the Mach numberis held fixed, this computation needs to be done only once.Input Files===========AVL works with three input files, all in plain text format. Ideallythese all have a common arbitrary prefix "xxx", and the following extensions:xxx.avl required main input file defining the configuration geometry xxx.mass optional file giving masses and inertias, and dimensional units xxx.run optional file defining the parameter for some number of run casesThe user provides files xxx.avl and xxx.mass, which are typically created using any text editor. Sample files are provided for use as templates.The xxx.run file is written by AVL itself with a user command.It can be manually edited, although this is not really necessarysince it is more convenient to edit the contents in AVL and thenwrite out the file again.Geometry Input File -- xxx.avl==============================This file describes the vortex lattice geometry and aerodynamicsection properties. Sample input files are in the /runs subdirectory.Coordinate system-----------------The geometry is described in the following Cartesian system:注意坐标系和机体坐标系相同X downstreamY out the right wingZ upThe free stream must be at a reasonably small angle to the X axis(alpha and beta must be small), since the trailing vorticityis oriented parallel to the X axis. The length unit used inthis file is referred to as "Lunit". This is arbitrary,but must be the same throughout this file.File format-----------Header data- - - - - -The input file begins with the following information in the first 5 non-blank, non-comment lines:Abc... | case title# | comment line begins with "#" or "!"0.0 | Mach1 0 0.0 | iYsym iZsym Zsym4.0 0.4 0.1 | Sref Cref Bref0.1 0.0 0.0 | Xref Yref Zref0.020 | CDp (optional)Mach = default freestream Mach number for Prandtl-Glauert correctioniYsym = 1 case is symmetric about Y=0 , (X-Z plane is a solid wall)= -1 case is antisymmetric about Y=0, (X-Z plane is at const. Cp)= 0 no Y-symmetry is assumed是否存在纵向对称iZsym = 1 case is symmetric about Z=Zsym , (X-Y plane is a solid wall) = -1 case is antisymmetric about Z=Zsym, (X-Y plane is at const. Cp) = 0 no Z-symmetry is assumed (Zsym ignored)好像可以考虑地效Sref = reference area used to define all coefficients (CL, CD, Cm, etc) Cref = reference chord used to define pitching moment (Cm)Bref = reference span used to define roll,yaw moments (Cl,Cn)X,Y,Zref = default location about which moments and rotation rates are defined (if doing trim平衡calculations, XYZref must be the CG location, which can be imposed with the MSET command described later)CDp = default profile drag coefficient added to geometry, applied at XYZref (assumed zero if this line is absent, for previous-version compatibility)The default Mach, XYZref, and CDp values are superseded取代by the valuesin the .run file (described later), if it is present. They can alsobe changed at runtime.Only the half (non-image) geometry must be input if symmetry is specified. Ground effect is simulated with iZsym = 1, and Zsym = location of ground.(该程序可以计算地效)Forces are not calculated on the image/anti-image映像surfaces.Sref and Bref are assumed to correspond to the total geometry.In practice there is little reason to run Y-symmetric image cases,unless one is desperate不顾一切的for CPU savings.Surface and Body data- - - - - - - - - - -The remainder of the file consists of a set of keywords and associated data. Each keyword expects a certain number of lines of data to immediately followit, the exceptions being inline-coordinate keyword AIRFOIL which is followed by an arbitrary number of coordinate data lines. The keywords must also be nested嵌套的properly in the hierarchy层次shown below. Only the first four characters of each keyword are actually significant, the rest are just a mnemonic 帮助记忆的.SURFACEINDEXYDUPLICATESCALETRANSLATEANGLESECTIONSECTIONNACASECTIONAIRFOILCLAFCDCLSECTIONAFILECONTROLCONTROLBODYYDUPLICATESCALETRANSLATEBFILESURFACEYDUPLICATESECTIONSECTIONSURFACE..etc.The INDEX, YDUPLICATE, SCALE, TRANSLATE, and ANGLE keywordscan all be used together. If more than one of these appears fora surface, the last one will be used and the previous ones ignored.At least two SECTION keywords must be used for each surface.The NACA, AIRFOIL, AFILE, keywords are alternatives.If more than one of these appears after a SECTION keyword,the last one will be used and the previous ones ignored. i.e.SECTIONNACAAFILEis equivalent toSECTIONAFILEMultiple CONTROL keywords can appear after a SECTION keyword and dataSurface-definition keywords and data formats- - - - - - - - - - - - - - - - - - - - - - -*****SURFACE | (keyword)Main Wing | surface name string12 1.0 20 -1.5 | Nchord Cspace [ Nspan Sspace ]The SURFACE keyword declares that a surface is being defined until the next SURFACE or BODY keyword, or the end of file is reached.A surface does not really have any significance to the underlying AVL vortex lattice solver, which only recognizes the overall collection of all the individual horseshoe vortices. SURFACEis provided only as a configuration-defining device, and alsoas a means of defining individual surface forces. This is necessary for structural load calculations, for example.Nchord = number of chord wise horseshoe vortices placed on the surfaceCspace = chordwise vortex spacing parameter (described later)Nspan = number of spanwise horseshoe vortices placed on the surface [optional]Sspace = spanwise vortex spacing parameter (described later) [optional]If Nspan and Sspace are omitted (i.e. only Nchord and Cspace are present on line), then the Nspan and Sspace parameters will be expected for each section interval, as described later.*****INDEX | (keyword)3 | LsurfThis optional keyword allows declaring that multiple input SURFACEsactually constitute one physical surface, by giving them all thesame Lsurf value. This declaration is necessary for AVL to properly perform calculations using finite core radii for the horseshoe vortices (the default case). A finite core radius is normally used for each horseshoe vortex, except when computing the influence of that vortexon a control point lying on the same physical surface. Using afinite core radius within the same surface would seriously corruptthe calculation.If each physical surface is specified via only a single SURFACE block,then the INDEX declaration is unnecessary.*****YDUPLICATE | (keyword)0.0 | YduplThe YDUPLICATE keyword is a convenient shorthand device for creating 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AVL 3.14 User Primerlast update 28 Aug 2004Mark Drela, MIT Aero & AstroHarold Youngren, Aerocraft, Inc.HistoryAVL (Athena Vortex Lattice) 1.0 was originally written by Harold Youngren circa 1988 for the MIT Athena TODOR aero software collection. A number of modifications have since been added by Mark Drela and Harold Youngren,to the point where only a trace of the original code remains.General DescriptionAVL 3.xx now has a large number of features intended for rapid aircraft configuration analysis. The major features are as follows:Aerodynamic componentsLifting surfacesSlender bodiesConfiguration descriptionKeyword-driven geometry input fileDefined sections with linear interpolationSection propertiescamberline is NACA xxxx, or from airfoil filecontrol deflectionsparabolic profile drag polar, Re-scalingScaling, translation, rotation of entire surface or bodyDuplication of entire surface or bodySingularitiesHorseshoe vortices (surfaces)Source+doublet lines (bodies)Finite-core optionDiscretizationUniformSineCosineBlendControl deflectionsVia normal-vector tiltingLeading edge flapsTrailing edge flapsHinge lines independent of discretizationGeneral freestream descriptionalpha,beta flow anglesp,q,r aircraft rotation componentsSubsonic Prandtl-Glauert compressibility treatmentAerodynamic outputsDirect forces and momentsTrefftz-planeDerivatives of forces and moments, w.r.t freestream, rotation, controlsIn body or stability axesTrim calculationOperating variablesalpha,betap,q,rcontrol deflectionsConstraintsdirect constraints on variablesindirect constraints via specified CL, momentsMultiple trim run cases can be definedSaving of trim run case setups for later recallOptional mass definition file (only for trim setup, eigenmode analysis)User-chosen unitsItemized component location, mass, inertiasTrim setup of constraintslevel or banked horizontal flightsteady pitch rate (looping) flightEigenmode analysisRigid-body analysis with quasi-steady aero modelDisplay of eigenvalue root progression with a parameterDisplay of eigenmode motion in real timeOutput of dynamic system matricesVortex-Lattice Modeling PrinciplesLike any computational method, AVL has limitations on what it can do.These must be kept in mind in any given application.ConfigurationsA vortex-lattice model like AVL is best suited for aerodynamic configurationswhich consist mainly of thin lifting surfaces at small angles of attack and sideslip. These surfaces and their trailing wakes are represented as single-layer vortex sheets, discretized into horseshoe vortex filaments, whose trailing legs are assumed to be parallel to the x-axis. AVL provides the capability to also model slender bodies such as fuselages and nacelles via source+doublet filaments. The resulting force and moment predictions are consistent with slender-body theory, but the experience with this model is relatively limited, and hence modeling of bodies should be done with caution. If a fuselage is expected to have little influence on the aerodynamic loads,it's simplest to just leave it out of the AVL model.Unsteady flowAVL assumes quasi-steady flow, meaning that unsteady vorticity sheddingis neglected. More precisely, it assumes the limit of small reduced frequency, which means that any oscillatory motion (e.g. in pitch) must be slow enough so that the period of oscillation is much longer than the time it takesthe flow to traverse an airfoil chord. This is true for virtually any expected flight maneuver. Also, the roll, pitch, and yaw rates usedin the computations must be slow enough so that the resulting relativeflow angles are small. This can be judged by the dimensionlessrotation rate parameters, which should fall within the followingpractical limits.-0.10 < pb/2V < 0.10-0.03 < qc/2V < 0.03-0.25 < rb/2V < 0.25These represent extremely violent aircraft motion, and are unlikelyto exceeded in any typical flight situation, except possibly duringlow-airspeed aerobatic maneuvers. In any case, if any of theseparameters falls outside of these limits, the results should beinterpreted with caution.Compressibility---------------Compressibility is treated using the Prandtl-Glauert (PG) transformation.Its relative importance can be judged by the PG factor 1/B = 1/sqrt(1 - M^2), where "M" is the freestream Mach number. A few values are given in the table, which shows the expected range of validity.M 1/B--- -----0.0 1.000 |0.1 1.005 |0.2 1.021 |0.3 1.048 |- PG expected valid0.4 1.091 |0.5 1.155 |0.6 1.250 |0.7 1.400 PG suspect (transonic flow likely)0.8 1.667 PG unreliable (transonic flow certain)0.9 2.294 PG hopelessFor swept-wing configurations, the validity of the PG modelis best judged using the wing-perpendicular Mach numberMperp = M cos(sweep)Since Mperp < M, swept-wing cases can be modeled up to higherM values than unswept cases. For example, a 45 degree swept wingoperating at freestream M = 0.8 hasMperp = 0.8 * cos(45) = 0.566which is still within the expected range of PG validityin the above table. So reasonable results can be expectedfrom AVL for this case.When doing velocity parameter sweeps at the lowest Mach numbers,say below M = 0.2, it is best to simply hold M = 0. This willgreatly speed up the calculations, since changing the Mach numberrequires recomputation and re-factorization of the VL influence matrix, which consumes most of the computational effort. If the Mach numberis held fixed, this computation needs to be done only once.Input Files===========AVL works with three input files, all in plain text format. Ideallythese all have a common arbitrary prefix "xxx", and the following extensions:xxx.avl required main input file defining the configuration geometry xxx.mass optional file giving masses and inertias, and dimensional units xxx.run optional file defining the parameter for some number of run casesThe user provides files xxx.avl and xxx.mass, which are typically created using any text editor. Sample files are provided for use as templates.The xxx.run file is written by AVL itself with a user command.It can be manually edited, although this is not really necessarysince it is more convenient to edit the contents in AVL and thenwrite out the file again.Geometry Input File -- xxx.avl==============================This file describes the vortex lattice geometry and aerodynamicsection properties. Sample input files are in the /runs subdirectory.Coordinate system-----------------The geometry is described in the following Cartesian system:注意坐标系和机体坐标系相同X downstreamY out the right wingZ upThe free stream must be at a reasonably small angle to the X axis(alpha and beta must be small), since the trailing vorticityis oriented parallel to the X axis. The length unit used inthis file is referred to as "Lunit". This is arbitrary,but must be the same throughout this file.File format-----------Header data- - - - - -The input file begins with the following information in the first 5 non-blank, non-comment lines:Abc... | case title# | comment line begins with "#" or "!"0.0 | Mach1 0 0.0 | iYsym iZsym Zsym4.0 0.4 0.1 | Sref Cref Bref0.1 0.0 0.0 | Xref Yref Zref0.020 | CDp (optional)Mach = default freestream Mach number for Prandtl-Glauert correctioniYsym = 1 case is symmetric about Y=0 , (X-Z plane is a solid wall)= -1 case is antisymmetric about Y=0, (X-Z plane is at const. Cp)= 0 no Y-symmetry is assumed是否存在纵向对称iZsym = 1 case is symmetric about Z=Zsym , (X-Y plane is a solid wall) = -1 case is antisymmetric about Z=Zsym, (X-Y plane is at const. Cp) = 0 no Z-symmetry is assumed (Zsym ignored)好像可以考虑地效Sref = reference area used to define all coefficients (CL, CD, Cm, etc) Cref = reference chord used to define pitching moment (Cm)Bref = reference span used to define roll,yaw moments (Cl,Cn)X,Y,Zref = default location about which moments and rotation rates are defined (if doing trim平衡calculations, XYZref must be the CG location, which can be imposed with the MSET command described later)CDp = default profile drag coefficient added to geometry, applied at XYZref (assumed zero if this line is absent, for previous-version compatibility)The default Mach, XYZref, and CDp values are superseded取代by the valuesin the .run file (described later), if it is present. They can alsobe changed at runtime.Only the half (non-image) geometry must be input if symmetry is specified. Ground effect is simulated with iZsym = 1, and Zsym = location of ground.(该程序可以计算地效)Forces are not calculated on the image/anti-image映像surfaces.Sref and Bref are assumed to correspond to the total geometry.In practice there is little reason to run Y-symmetric image cases,unless one is desperate不顾一切的for CPU savings.Surface and Body data- - - - - - - - - - -The remainder of the file consists of a set of keywords and associated data. Each keyword expects a certain number of lines of data to immediately followit, the exceptions being inline-coordinate keyword AIRFOIL which is followed by an arbitrary number of coordinate data lines. The keywords must also be nested嵌套的properly in the hierarchy层次shown below. Only the first four characters of each keyword are actually significant, the rest are just a mnemonic 帮助记忆的.SURFACEINDEXYDUPLICATESCALETRANSLATEANGLESECTIONSECTIONNACASECTIONAIRFOILCLAFCDCLSECTIONAFILECONTROLCONTROLBODYYDUPLICATESCALETRANSLATEBFILESURFACEYDUPLICATESECTIONSECTIONSURFACE..etc.The INDEX, YDUPLICATE, SCALE, TRANSLATE, and ANGLE keywordscan all be used together. If more than one of these appears fora surface, the last one will be used and the previous ones ignored.At least two SECTION keywords must be used for each surface.The NACA, AIRFOIL, AFILE, keywords are alternatives.If more than one of these appears after a SECTION keyword,the last one will be used and the previous ones ignored. i.e.SECTIONNACAAFILEis equivalent toSECTIONAFILEMultiple CONTROL keywords can appear after a SECTION keyword and dataSurface-definition keywords and data formats- - - - - - - - - - - - - - - - - - - - - - -*****SURFACE | (keyword)Main Wing | surface name string12 1.0 20 -1.5 | Nchord Cspace [ Nspan Sspace ]The SURFACE keyword declares that a surface is being defined until the next SURFACE or BODY keyword, or the end of file is reached.A surface does not really have any significance to the underlying AVL vortex lattice solver, which only recognizes the overall collection of all the individual horseshoe vortices. SURFACEis provided only as a configuration-defining device, and alsoas a means of defining individual surface forces. This is necessary for structural load calculations, for example.Nchord = number of chord wise horseshoe vortices placed on the surfaceCspace = chordwise vortex spacing parameter (described later)Nspan = number of spanwise horseshoe vortices placed on the surface [optional]Sspace = spanwise vortex spacing parameter (described later) [optional]If Nspan and Sspace are omitted (i.e. only Nchord and Cspace are present on line), then the Nspan and Sspace parameters will be expected for each section interval, as described later.*****INDEX | (keyword)3 | LsurfThis optional keyword allows declaring that multiple input SURFACEsactually constitute one physical surface, by giving them all thesame Lsurf value. This declaration is necessary for AVL to properly perform calculations using finite core radii for the horseshoe vortices (the default case). A finite core radius is normally used for each horseshoe vortex, except when computing the influence of that vortexon a control point lying on the same physical surface. Using afinite core radius within the same surface would seriously corruptthe calculation.If each physical surface is specified via only a single SURFACE block,then the INDEX declaration is unnecessary.*****YDUPLICATE | (keyword)0.0 | YduplThe YDUPLICATE keyword is a convenient shorthand device for creating 。

相关文档
最新文档