23二元一次方程组的相关概念(基础)知识讲解

合集下载

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。

《二元一次方程组》知识讲解(1)

《二元一次方程组》知识讲解(1)

+1)
+
m

3
=
0
,解得
m
=
3
.
答:m 的值为 3.
例 3.写出二元一次方程 4x + y = 20 的所有正整数解.
【答案与解析】
由原方程得 y = 20 − 4x ,因为 x、y 都是正整数, 所以当 x =1, 2, 3, 4时, y =16,1 2, 8, 4 .
所以方程
4x
+
y
=
20
的所有正整数解为:
要点二、代入消元法 通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元
法,简称代入法. 要点诠释: (1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未 知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是:
①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解; ②若方程组中有未知数的系数为 1(或-1)的方程.则选择系数为 1(或-1)的方程进行变形 比较简便; (3)若方程组中所有方程里的未知数的系数都不是 1 或-1,选系数的绝对值较小的方程变形 比较简便.

又联立方程组
ax bx
− +
by ay
= =
−4 −8
,则有
2a + 2b = −4 −2a + 2b = −8

解得
a b
= =
1 −3

所以(2a+b)2011=-1.
【变式】小明和小文解一个二元一次组
小明正确解得
小文因抄错了
c,解得
已知小文除抄错了 c 外没有发生其他错误,求 a+b+c 的值.

(word完整版)二元一次方程组的概念和解法-教师版

(word完整版)二元一次方程组的概念和解法-教师版

(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。

含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。

判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。

2。

二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。

二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般情况下,一个二元一次方程有无数个解。

【例1】 下列各式是二元一次方程的是( )A 。

30x y z -+=B 。

30xy y x -+=C 。

12023x y -= D 。

210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。

2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。

【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。

【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。

【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。

完整版)二元一次方程组知识点及典型例题

完整版)二元一次方程组知识点及典型例题

完整版)二元一次方程组知识点及典型例题二元一次方程组小结与复一、知识梳理一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。

2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。

任何一个二元一次方程都有无数个解。

3.方程组和方程组的解1) 方程组:由几个方程组成的一组方程叫作方程组。

2) 方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。

4.二元一次方程组和二元一次方程组的解1) 二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。

2) 二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。

二)二元一次方程组的解法:1.代入消元法2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。

二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成ax+by+c=(a,b,c为已知数,且a≠0,b≠0)的形式,这种形式叫二元一次方程的一般形式。

练1:下列方程,哪些是二元一次方程,哪些不是?A) 6x-2=5z+6xB) m/11+yx=7C) x-yD) xy+2x+y=1练2:若方程(m-1)x+3y5n-9=4是关于x、y的二元一次方程,求mn的值。

练3:若方程(2m-6)x|n|-1+(n+2)ym-8=1是二元一次方程,则m=_______,n=__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。

一)代入消元法:1.直接代入例1:解方程组y=2x-3。

4x-3y=1.2.变形代入例2:解方程组x+y=90y=3x-75x+2y=8x=15-2y5x-y=9。

3x+4y=10.3.跟踪训练:1) {2x-y=-4。

4x-5y=-23.2) {3x+5y=13。

3x-2y=5.3) {3x+5y=20。

二元一次方程基本概念及基本解法讲解(最新整理)

二元一次方程基本概念及基本解法讲解(最新整理)

2
2x y 3
4.
方程组
x
y
3
的解是(

x 1
A.
y
2
x 2
B.
y
1
x 1
C.
y
1
x 2
D.
y
3
6x 5y 11, ①
5.已知二元一次方程组
3
y
2x
7,

,下列说法正确的是()
A.适合②的 x, y的值 是方程组的解①②
B.适合①的 x, y的值 是方程组的解
C.同时适合①和②的 x, y的值 不一定是方程组的解
8.在二元一次方程组
x 2x
y m
4 3
y
中,有
x
6
,则
y
_____,
m
______ .
9.若 x 2 (3y 2x)2 0 ,则 x 的值是

y
10.若
是二元一次方程
的一个解,则
的值是__________.
11.已知
,且
,则 ___________.
x 2
12.若方程
ax-2y=4
的一个解是
x
y
2 ,
8
x
y
4 ,
6
x y
1 9
等等
练习 2:二元一次方程 x-2y=1 有无数多个解,下列四组值中不是该方程解的是( )
x 0
A.
y
1 2
x 1
B.
y
1
x 1
C.
y
0
x 1
D.
y
1
【变式
2】若方程
ax

(完整)二元一次方程组的定义解析

(完整)二元一次方程组的定义解析

考点名称:二元一次方程组的定义•(一)二元一次方程组:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

把两个含有相同未知数的一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。

二元一次方程组的解:一般的,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解.一般形式为:(其中a1,a2,b1,b2不同时为零).••(二)二元一次方程组的特点:1.组成二元一次方程组的两个一次方程不一定都是二元一次方程,但这两个方程必须一共含有两个未知数,如也是二元一次方程组。

2。

在方程组的每个方程中,相同字母必须代表同一未知量,否则不能将两个方程合在一起。

3。

二元一次方程组中的各个方程应是整式方程。

4。

二元一次方程组有时也由两个以上的方程组成。

••(三)二元一次方程与二元一次方程组的区别:•二元一次方程二元一次方程组条件①含有两个未知数;②含未知数的项的次数都是1;③整式方程。

①含有两个未知数;②含未知数的项的次数都是1;③整式方程组(可任意话说你有两个以上的方程)一般形式ax+by=c(a、b、c都是常数,且a≠0,b≠0)(a1,a2,b1,b2不同时为零).解的情况无数组解或无数组解或有唯一解或无解解的定义适合二元一次方程的每一对未知数的值,叫做这个二元一次方程的一组解二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解••(四)二元一次方程组的判定:①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起.②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解.••(五)二元一次方程:如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

《二元一次方程组》知识讲解及例题解析

《二元一次方程组》知识讲解及例题解析

《二元一次方程组》知识讲解及例题解析◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.【分析】由方程组的解的定义可知21xy=⎧⎨=⎩,同时满足方程组中的两个方程,将21xy=⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩ 解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩ 故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得: 30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩答:每辆A型汽车每次运土石10t,每辆B型汽车每次运土石15t.【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.。

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。

二元一次方程组的相关概念(基础)知识讲解

二元一次方程组的相关概念(基础)知识讲解

二元一次方程(组)的相关概念(基础)知识讲解【学习目标】1.理解二元一次方程、二元一次方程组及它们的解的含义;2.会检验一组数是不是某个二元一次方程(组)的解.【要点梳理】要点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x a y b =⎧⎨=⎩的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个. 【典型例题】类型一、二元一次方程1.已知下列方程,其中是二元一次方程的有________.(1)2x -5=y ; (2)x -1=4; (3)xy =3; (4)x+y =6; (5)2x -4y =7;(6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y +=. 【思路点拨】按二元一次方程满足的三个条件一一检验.【答案】(1)(4)(5)(8)(10)【解析】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x 的次数为2.【总结升华】判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.举一反三:【变式】下列方程中,属于二元一次方程的有( )A .71xy -=B .2131x y -=+C .4535x y x y -=-D . 231x y-= 【答案】B类型二、二元一次方程的解2.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程解的是( ) A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩ 【答案】B【解析】解:当x =0,y =12-时,x -2y =1,故A 是原方程的解. 当x =1,y =1时,x -2y =-1,故B 不是原方程的解.当x =1,y =0时,x -2y =1,故C 是原方程的解.当x =-1,y =-1时,x -2y =1,故D 是原方程的解.【总结升华】判断一组数值是否是原方程的解,只需要将这组数值代入原方程,能使方程左右两边相等的未知数的值是原方程的解,否则,不是.举一反三:【变式】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= . 【答案】33.已知二元一次方程3142x y +=. (1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ;(3)用适当的数填空,使2_______x y =-⎧⎨=⎩是方程的解.【思路点拨】用含一个未知数的代数式表示另一个未知数,就是把要表示的未知数当未知数,把其他的未知数当已知数,然后再将方程变形.【答案与解析】解:(1)将方程变形为3y =22x -,化y 的系数为1,得236x y =-. (2)将方程变形为232x y =-,化x 的系数为1,得46x y =-. (3)把x =-2代入236x y =-得, y =1. 【总结升华】用含x 的代数式表示y ,其实质表示为“y =含x 的代数式”的形式.在进行方程的变形过程中,有效地利用解一元一次方程的方法技巧很重要.举一反三:【变式】已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .【答案】解:(1)2x =7-3y , 732y x -=;(2)3y =7-2x ,723x y -= 类型三、二元一次方程组及方程组的解 4. 下列方程组中,是二元一次方程组的是( )A. 22375(9)1x y x y ⎧+=⎨+=-⎩B. 2138237y x x y ⎧-=⎪⎨⎪-=⎩C. 135()237x z x y x z y =+-⎧⎨-=⎩D. 5()()82317x y x y x y -++=⎧⎨=-+⎩() 【答案】D【解析】A ,B 中未知数的次数高于或低于一次,而C 中出现三个未知数,只有D 选项满足题意,故正确答案为D.【总结升华】是否是二元一次方程组要满足“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.5.判断下列各组数是否是二元一次方程组4221x y x y +=⎧⎨+=-⎩①②的解.(1)35x y =⎧⎨=-⎩ (2)21x y =-⎧⎨=⎩ 【答案与解析】解:(1)把35x y =⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35x y =⎧⎨=-⎩是方程①的解.把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35x y =⎧⎨=-⎩不是方程②的解. 所以35x y =⎧⎨=-⎩不是方程组的解. (2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21x y =-⎧⎨=⎩不是方程①的解,再把21x y =-⎧⎨=⎩代入方程②中,左边=x+y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【总结升华】检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.举一反三:【变式】写出解为12x y =⎧⎨=-⎩的二元一次方程组. 【答案】解:此题答案不唯一,可先任构造两个以12x y =⎧⎨=-⎩为解的二元一次方程,然后将它们用“{”联立即可,现举一例:∵ x =1,y =-2,∴ x+y =1-2=-1.2x -5y =2×1-5×(-2)=12.∴ 12512x y x y +=-⎧⎨-=⎩就是所求的一个二元一次方程组.注:任选的两个方程,只要其对应系数不成比例,联立起来即为所求.。

2024年湘教版七年级数学上册 3.5 认识二元一次方程组(课件)

2024年湘教版七年级数学上册 3.5 认识二元一次方程组(课件)
3. 关于 x, y 的二元一次方程的一般形式: ax+by=c(a ≠ 0, b ≠ 0) .
知1-讲
感悟新知
特别解读
知1-讲
“含有未知数的项的次数 都 是 1”不可理
解为两个未知数的次数都是 1,例如2xy+1=0,
含有两个未知数,且未知数的次数都是 1,但
含未知数的项 2xy的次数是 2,所以它不是二元
第三章 一次方程(组)
3.5 认识二元一次方程组
学习目标
1 课时讲解 2 课时流程
二元一次方程的概念 二元一次方程组的概念 二元一次方程(组)的解
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 二元一次方程的概念
知1-讲
1. 定义:含有两个未知数,并且含未知数的项的次数都是 1, 这样的方程叫作二元一次方程.
感悟新知
知2-练
解题秘方:紧扣二元一次方程组的定义进行识别 . 解:方程组①中第一个方程含有未知数的项 xy 的 次数不是1;方程组②中第二个方程不是整式方程; 方程组③中共有 3 个未知数 . 只有方程组④⑤满 足,其中方程组⑤中的 π 是常数 .
答案:B
感悟新知
2-1.观察所给的 4 个方程组:
一次方程.
感悟新知
例1 [期中·常德武陵区] 下列方程:① x+y=1;
知1-练

2x-
y 2
=1;③
x2+y2=1;④
5(x+y)
=7(x-y);⑤
x2=1;

x+
1 2
=4.
其中是二元一次方程的是(
)
A. ①⑤
B. ①③

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。

有几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。

二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:代入消元法例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7 ∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

加减消元法例:解方程组x+y=9①x-y=5②解:①+②2x=14 即 x=7 把x=7带入①得7+y=9 解得y=-2 ∴x=7 y=-2 为方程组的解像这种解二元一次方程组的方法叫做加减消元法,简称加减法。

二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。

注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。

完整版)二元一次方程组知识点归纳

完整版)二元一次方程组知识点归纳

完整版)二元一次方程组知识点归纳二元一次方程组是数学中的基本概念,它包含了两个未知数,且未知数的项次数都是1.这样的方程被称为二元一次方程。

当两个二元一次方程具有相同的未知数时,它们可以被合并成一个二元一次方程组。

需要注意的是,一个或多个二元一次方程也可以单独组成一个方程组。

二元一次方程组的解是指使方程组中两个未知数相等的值。

一个二元一次方程有无数个解。

二元一次方程组的解是指满足方程组中两个方程的公共解。

例如,方程组x+y=5和6x+13y=89有解x=-24/7,y=59/7.有些方程组没有解,例如x+y=4和2x+2y=10.这是因为方程②化简后为x+y=5,这与方程①相矛盾。

消元是解决方程组的一种常用方法,它可以将方程组中的未知数个数由多化少。

代入消元法是一种常见的消元方法,它可以将一个方程中的未知数用另一个未知数的式子表示出来,然后代入另一个方程中,消元求解。

加减消元法是另一种解二元一次方程组的方法,它可以将两个方程相加或相减,消去其中一个未知数,从而得到一个关于另一个未知数的一元一次方程。

最后解出这个方程,求出未知数的值。

1.理解问题,明确未知量和已知量之间的关系;2.根据问题中的条件,列出方程(组);3.解方程(组),求出未知量的值;4.检验解是否符合实际情况;5.给出问题的答案,并附上解题过程。

七、注意事项1.在解题过程中,要注意符号的运用,避免出现计算错误;2.在列方程(组)时,要注意把问题中的信息全部转化为数学语言,避免遗漏;3.在解方程(组)时,要注意检查解的合理性,避免出现无解或多解的情况;4.在解应用题时,要注意理解问题的实际意义,避免出现解出的答案与实际情况不符的情况。

解二元一次方程组的方法主要有加减消元法和代入法。

在同一个方程中,如果同一未知数的系数不相等或不互为相反数,就可以用适当的数乘方程两边,使同一未知数的系数相等或互为相反数,即“乘”。

将两个方程的两边相加或相减,可消去一个未知数,得到一个一元一次方程,即“加减”。

二元一次方程的知识点总结

二元一次方程的知识点总结

二元一次方程的知识点总结一、二元一次方程的定义1. 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

-例如:\(x + y=5\),\(2x - 3y = 8\)等都是二元一次方程。

这里\(x\)和\(y\)是两个未知数,且方程中含\(x\)、\(y\)项的次数都是1。

二、二元一次方程的解1. 定义-使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

-例如对于方程\(x + y = 3\),\(x = 1\),\(y = 2\)就是它的一组解,因为当\(x = 1\),\(y = 2\)时,\(1+2 = 3\),方程左右两边相等。

2. 二元一次方程有无数组解-以\(x + y = 3\)为例,当\(x = 0\)时,\(y = 3\);当\(x = 2\)时,\(y = 1\)等等,所以二元一次方程的解有无数个。

三、二元一次方程组1. 定义-把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

-例如\(\begin{cases}x + y = 5\\2x - y = 1\end{cases}\)就是一个二元一次方程组。

2. 二元一次方程组的解-二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

-对于上面的方程组\(\begin{cases}x + y = 5\\2x - y = 1\end{cases}\),\(x = 2\),\(y = 3\)是它的解,因为\(x = 2\),\(y = 3\)既满足\(x + y = 5\)(\(2+3 = 5\)),又满足\(2x - y = 1\)(\(2×2 - 3 = 1\))。

四、二元一次方程组的解法1. 代入消元法-步骤:-从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来。

例如对于方程组\(\begin{cases}x + y = 5\\2x - y = 1\end{cases}\),由\(x + y = 5\)可得\(y = 5 - x\)。

二元一次方程组知识点归纳及解题技巧汇总

二元一次方程组知识点归纳及解题技巧汇总

二元一次方程组知识点归纳及解题技巧汇总二元一次方程组知识点归纳及解题技巧汇总1、二元一次方程:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组:把具有相同未知数的两个二元一次方程合在一起。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

5、消元法解二元一次方程组:(1) 基本思路:未知数又多变少。

(2) 消元法的基本方法:将二元一次方程组转化为一元一次方程。

6.解法:通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。

例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y ③把③带入②,得6(5-y)+13y=89y=59/7把y=59/7带入③,得x=5-59/7即x=-24/7&there4;x=-24/7y=59/7 为方程组的解加减消元法:例:解方程组x+y=9①x-y=5②解:①+② 2x=14即 x=7把x=7带入①得7+y=9解得y=-2&there4;x=7y=-2 为方程组的解7. 二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6① 2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4① 2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。

注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。

教科书中没有的几种解法(一)加减-代入混合使用的方法.例1, 13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2, (x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。

(完整版)二元一次方程组的概念及解法

(完整版)二元一次方程组的概念及解法

二元一次方程组的概念及解法知识点梳理知识点一二元一次方程组的概念含有两个未知数,并且含有未知数的相的次数都是1,像这样的方程叫做二元一次方程。

把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

典例分析例1、在方程组、、、、、中,是二元一次方程组的有个;例2、已知二元一次方程2x-y=1,若x=2,则y=;若y=0,则x=.变式1:方程x+y=2的正整数解是__________.变式2、在方程3x-ay=8中,如果是它的一个解,那么a的值为⎩⎨⎧==13 yx例3 方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、 ⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。

例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。

问鸡兔各几何。

”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。

知识点二 解二元一次方程 消元解二元一次方程⎧⎨⎩代入消元法加减消元法典例分析例1、 把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = .化成含x 的代数式表示y 的形式:y = .例2、用代入消元法解下列方程 (1)、⎩⎨⎧-=-=+54032y x y x (2)、⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩(4)25342x y x y -=⎧⎨+=⎩例3、用加减消元法解下列方程 (1)、⎩⎨⎧-=-=+54032y x y x (2)、⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩ (4)25342x y x y -=⎧⎨+=⎩例4、解下列方程(1)⎩⎨⎧-=-+=-85)1(21)2(3y x x y (2)⎪⎩⎪⎨⎧=+=184332y x yx(3)⎩⎨⎧=--=--023256017154y x y x (4)⎪⎩⎪⎨⎧=-=+234321332yx y x(5)⎪⎩⎪⎨⎧=-+=+1323241y x x y (6)⎩⎨⎧=+=+24121232432321y x y x例5 、若,则= ,= 。

二元一次方程组知识点整理

二元一次方程组知识点整理

二元一次方程组知识点整理第五章:二元一次方程组知识点整理知识点1:二元一次方程(组)的定义1.二元一次方程的概念:二元一次方程是指含有两个未知数,且所含未知数的项的次数都是1的方程。

注意:1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数。

2)含有未知数的项的次数都是1.3)二元一次方程的左右两边都必须是等式。

(三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1.即若ax+by=c是二元一次方程,则a≠0,b≠0且m=1,n=1.例1:已知(a-2)x-by|a|-1/mn=5是关于x、y的二元一次方程,则a=______,b=_____.例2:下列方程为二元一次方程的有:①2x-5=y,②x-4=1,③xy=2,④x+y=3,⑤x-y=2,⑥xy+2x-y=2,⑦3x+2y,⑧a+b+c=1巩固练】下列方程中是二元一次方程的是()A.3x-y2=0.B.(1+y)/(7x+21/5)=1.C.-y=6.D.4xy=3/23.二元一次方程组的概念:由两个二元一次方程所组成的方程组叫做二元一次方程组。

注意:①方程组中有且只有两个未知数。

②方程组中含有未知数的项的次数为1.③方程组中每个方程均为整式方程。

例:下列方程组中,是二元一次方程组的是()A。

{x+y=4,2x+3y=7}B。

{2a-3b=11,5b-4c=6}C。

{x^2=9,y=2x}D。

{x+y=8,2x-y=4}巩固练】已知下列方程组:(1){y=-2,(2){y-z=4,x-y=1/2},(3){x-y=1/3,x+y=2},(4){x+y=3/2,3x+y=2}其中属于二元一次方程组的个数为()A.1B.2C.3D.4知识点2:二元一次方程组的解定义一般地,使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。

1.类型题1:根据定义判断例:方程组{ x-y=2.y=4}的解是()A。

二元一次方程组知识点整理、典型例题练习总结

二元一次方程组知识点整理、典型例题练习总结

二元一次方程组 (拓展与提优)1、二元一次方程:含有两个未知数( x 和 y ),并且含有未知数の项の次数都是 1,像这样の整式方程叫做二元一次方程, 它の一般形式是 ax by c(a 0,b 0).例 1、若方程( 2m-6)x|n|-1+(n+2)ym2-8=1是关于x 、yの二元一次方程,求 m 、n の值.2、二元一次方程の解: 一般地,能够使二元一次方程の左右两边相等の两个未知数の值,叫做二元一次方程の解.【二元一次方程有 无数组 解】3、二元一次方程组: 含有两个未知数( x 和 y ),并且含有未知数の项の次数都是 1,将这样の两个或几个一次方 程合起来组成の方程组叫做二元一次方程 组 .4、二元一次方程组の解: 二元一次方程组中の几个方程の公共解,叫做二元一次方程组の解 . 【二元一次方程组解x y 1 x y 1x y 1 x y 1の情况:①无解,例如: x y 6,2x 2y 6;②有且只有一组解, 例如: 2x y 2 ;③有无数组解,例如: 2x 2y 2】例 2、已知2x +(m -1)y =2nx+ y =1の解,试求 (m+n ) 2016の值例 3、 方程 x 3y 10 在正整数范围内有哪几组解?5、二元一次方程组の解法: 代入消元法和加减消元法。

例 4、 将方程 10 2(3 y ) 3(2 x ) 变形,用含有 x の代数式表示 y .例 5、用适当の方法解 二元一次方程组ax y 1例 6、若方程组有无数组解,则 a 、 b の值分别为()6x by 2B. a 2,b 1C.a=3,b=-2D. a 2 b, 2x2x 2是关于 x 、 y の二元一次方程组A. a=6,b=-1例 7、已知关于 x, y の方程组 3x 5y m 2の解满足 x y 10,求式子 m 2 2m 1の值. 2x 3y m6、三元一次方程组及其解法: 方程组中一共含有三个未知数,含未知数の项の次数都是1,并且方程组中一共有两个或两个以上の方程,这样の方程组叫做三元一次方程组。

七年级数学下册第1章二元一次方程组知识点梳理新版湘教版

七年级数学下册第1章二元一次方程组知识点梳理新版湘教版

第一章 二元一次方程组一、二元一次方程组1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。

②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。

2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。

使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。

注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。

二元一次方程组的解的讨论:已知二元一次方程组①、 当a1/a2 ≠ b1/b2 时,有唯一解;②、 当a1/a2 = b1/b2 ≠ c1/c2时,无解;③、 当a1/a2 = b1/b2 = c1/c2时,有无数解。

例如:对应方程组:①、 ②、 ③、例:判断下列方程组是否为二元一次方程组:①、②、 ③、 ④、3、用含一个未知数的代数式表示另一个未知数:用含X 的代数式表示Y ,就是先把X 看成已知数,把Y 看成未知数;用含Y 的代数式表示X ,则相当于把Y 看成已知数,把X 看成未知数。

例:在方程 2x + 3y = 18 中,用含x 的代数式表示y 为:___________,用含y 的代数式表示x为:____________。

4、根据二元一次方程的定义求字母系数的值:a1x + b1y = c1 a2x + b2y = c2 x + y = 4 3x - 5y = 9 x + y = 3 2x + 2y = 5 x + y = 4 2x + 2y = 8 a + b = 2 b + c = 3 x = 4 y = 5 3t + 2s = 5 ts + 6 = 0 x = 11 2x + 3y = 0要抓住两个方面:①、未知数的指数为1,②、未知数前的系数不能为0例:已知方程 (a-2)x^(/a/-1) – (b+5)y^(b^2-24) = 3 是关于x 、y 的二元一次方程,求a 、b 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程(组)的相关概念(基础)知识讲解
【学习目标】
1.理解二元一次方程、二元一次方程组及它们的解的含义;
2.会检验一组数是不是某个二元一次方程(组)的解.
【要点梳理】
要点一、二元一次方程
含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:
(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.
(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.
(3)二元一次方程的左边和右边都必须是整式.
要点二、二元一次方程的解
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:
(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.
x y =⎧⎨=⎩.
(2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.
要点三、二元一次方程组
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩
⎨⎧=-=+52013y x x 也是二元一次方程组.
要点四、二元一次方程组的解
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
要点诠释:
(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x a y b =⎧⎨=⎩
的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526
x y x y +=⎧⎨+=⎩无解,
而方程组1222x y x y +=-⎧⎨+=-⎩
的解有无数个. 【典型例题】
类型一、二元一次方程
1.已知下列方程,其中是二元一次方程的有________.
(1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7;
(6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462
x y +=. 【思路点拨】按二元一次方程满足的三个条件一一检验.
【答案】(1)(4)(5)(8)(10)
【解析】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x 的次数为2.
【总结升华】判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.
举一反三:
【变式】(2015春•桃园县校级期末)下列各方程中,是二元一次方程的是( )
A .=y+5x
B .3x+2y=2x+2y
C .x=y 2+1
D .
【答案】D .
类型二、二元一次方程的解
2.(2016春•吴兴区期末)下列数组中,是二元一次方程x+y=7的解的是( )
A .
B .
C .
D .
【思路点拨】二元一次方程x+y=7的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.
【答案】B
【解析】
解:A 、把x=﹣2,y=5代入方程,左边=﹣2+5≠右边,所以不是方程的解;故本选项错误;
B 、把x=3,y=4代入方程,左边=右边=7,所以是方程的解;故本选项正确;
C 、把x=﹣1,y=7代入方程,左边=6≠右边,所以不是方程的解;故本选项错误;
D 、把x=﹣2,y=﹣5代入方程,左边=﹣7≠右边,所以不是方程的解.故本选项错误. 故选B .
【总结升华】考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.
举一反三:
【变式】若方程24ax y -=的一个解是21x y =⎧⎨
=⎩,则a= . 【答案】3
3.已知二元一次方程3142
x y +=. (1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ;
(3)用适当的数填空,使2_______
x y =-⎧⎨=⎩是方程的解.
【思路点拨】用含一个未知数的代数式表示另一个未知数,就是把要表示的未知数当未知数,把其他的未知数当已知数,然后再将方程变形.
【答案与解析】
解:(1)将方程变形为3y =22x -,化y 的系数为1,得236x y =-. (2)将方程变形为232
x y =-,化x 的系数为1,得46x y =-. (3)把x =-2代入236
x y =-得, y =1. 【总结升华】用含x 的代数式表示y ,其实质表示为“y =含x 的代数式”的形式.在进行方程的变形过程中,有效地利用解一元一次方程的方法技巧很重要.
举一反三:
【变式】已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .
【答案】
解:(1)2x =7-3y , 732y x -=;(2)3y =7-2x ,723
x y -= 类型三、二元一次方程组及方程组的解
4.(2015春•道外区期末)下列各方程组中,属于二元一次方程组的是( )
A .
B .
C .
D .
【答案】C .
【解析】解:A 是二元二次方程组,故A 不是二元一次方程组;
B 是三元一次方程组,故B 不是二元一次方程组;
C 是二元一次方程组,故C 是二元一次方程组;
D 不是整式方程,故D 不是二元一次方程组;
【总结升华】本题考查了二元一次方程组,含有两个未知数,且每个未知数的次数都是1的方程式二元一次方程,两个二元一次方程组成的方程组.
5.判断下列各组数是否是二元一次方程组4221x y x y +=⎧⎨+=-⎩
①②的解. (1)35x y =⎧⎨=-⎩ (2)21
x y =-⎧⎨=⎩
【答案与解析】
解:(1)把35x y =⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35x y =⎧⎨=-⎩
是方程①的解.
把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35
x y =⎧⎨=-⎩不是方程②的解. 所以35x y =⎧⎨=-⎩
不是方程组的解. (2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21
x y =-⎧⎨=⎩不
是方程①的解,
再把21x y =-⎧⎨=⎩代入方程②中,左边=x+y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩
是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.
【总结升华】检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.
举一反三:
【变式】写出解为12x y =⎧⎨=-⎩
的二元一次方程组. 【答案】
解:此题答案不唯一,可先任构造两个以12x y =⎧⎨
=-⎩为解的二元一次方程,然后将它们用“{”联立即可,现举一例:
∵ x =1,y =-2,
∴ x+y =1-2=-1.
2x-5y =2×1-5×(-2)=12.
∴ 12512
x y x y +=-⎧⎨-=⎩就是所求的一个二元一次方程组.
注:任选的两个方程,只要其对应系数不成比例,联立起来即为所求.。

相关文档
最新文档