导数中求参数的取值范围
利用导数求参数范围举例
利用导数求参数范围举例例1.已知时都取得极值与在132)(23=-=+++=x x c bx ax x x f (1) 求a、b的值及函数)(x f 的单调区间.(2) 若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. 解:(1)2,21-=-=b a 2122)2(]2,1[)(,2)2(,21)1(23)1(,2722)32(132023,23)().2(222'>-<+>+=-+=+=-+-=+=-=-==----=c c c ,c c f x f c f c f cf c f x x x x x x x f 或解得从而上的最大值为在所以且或得由例2.已知函数1,13)(23=-=-+=x x x bx ax x f 在处取得极值 (1) 求函数)(x f 的解析式.(2) 若过点)2)(,1(-≠m m A 可作曲线y=)(x f 的三条切线,求实数m 的取值范围. 解:(1)求得x x x f 3)(3-=(2)设切点为33)(),3,(2'0300-=-x x f x x x M 因为200'20300020300200302066)(332)(,0332)1)(33(3),1)(33(x x x g m x x x g x A m x x x x m x x M x x m y -=++-=**=++---=----=-则设有三个不同的实数根的方程所以关于可作曲线的三条切线因为过点即所以又切线过点所以切线方程为)2,3(230)1(0)0(1,0)(,)1,0(,),1(),0,()(100)(00000000'---<<-⎩⎨⎧<>*==+∞-∞===的取值范围是所求的实数解得条件是有三个不同实根的充要的方程所以关于的极值点为故函数上单调递减在上单调递增在所以或得由m m g g x x x x g x g x x x g 例3.已知,)(2c x x f +=且)1()]([2+=x f x f f 。
利用导数求参数的取值范围
利用导数求参数的取值范围在微积分中,导数是用来描述一个函数在其中一点上的变化率的工具。
通过求导,我们可以研究函数的增减性、最值、拐点等性质。
而利用导数求参数的取值范围,我们主要关注函数的单调性和极值点,对于包含参数的函数,我们可以利用导数来研究参数的取值范围。
设函数$f(x)$为包含参数$a$的函数,我们的目标是求出参数$a$的取值范围,使得函数$f(x)$满足其中一特定条件。
下面将分别讨论求函数单调性和极值点的情况。
一、函数的单调性:1.1单调递增:要求函数$f(x)$在其中一区间上单调递增,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)<f(x_2)$。
若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒大于零,则函数$f(x)$在该区间上是单调递增的。
因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递增。
具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。
2)解方程$f'(x)>0$,求出与参数$a$有关的不等式。
3)解不等式,得到参数$a$的取值范围。
1.2单调递减:要求函数$f(x)$在其中一区间上单调递减,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)>f(x_2)$。
若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒小于零,则函数$f(x)$在该区间上是单调递减的。
因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递减。
具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。
2)解方程$f'(x)<0$,求出与参数$a$有关的不等式。
3)解不等式,得到参数$a$的取值范围。
(完整版)导数含参数取值范围分类讨论题型总结与方法归纳
导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
例说高考题中的利用导数求参数范围
例说高考题中的利用导数求参数范围导数,作为解决与高次函数有关问题的一种工具,有着无可比拟的优越性。
一 与二次函数的性质、单调性、不等式等相联系 求解策略:利用“要使a x f >)(成立,只需使函数的最小值a x f >min)(恒成立即可;要使a x f <)(成立,只需使函数的最大值a x f <max)(恒成立即可”.这也是近两年高考考查和应用最多的一种.例1(05湖北理)已知向量a =(2x ,1+x ),a =(x -1,t ),若b a x f ∙=)(在区间(-1,1)上是增函数,求t 的取值范围.解析:由向量的数量积定义,)(x f =2x (x -1)+(1+x )t =3x-+2x +tx +t∴)(x f '=23x -+x 2+t .若)(x f 在区间(-1,1)上是增函数,则有)(x f '≥0⇔t ≥23x -x 2在 (-1,1)上恒成立.若令)(x g =23x -x 2=-3(31-x )2-31在区间[-1,1]上,max)(x g =)1(-g =5,故在区间(-1,1)上使t ≥)(x g 恒成立,只需t ≥)1(-g 即可,即t ≥5.即t 的取值范围是[5,∞).点评:本题除了用导数反映单调性,还借助了二次函数的性质求出最值,且要注意边界值的取舍。
例2使不等式4x -22x >a -2对任意的实数x 都成立,求实数a 的取值范围. 解析:注意到不等式的次数较高,应想到构造函数,求导.令)(x f =4x -22x ,则如果原不等式对任意的实数x 都成立等价于m in)(x f >a -2.又)(x f '=34x -x 4=42x (1-x ),令)(x f '=0,解得,x =0或x =1.)(x f '的符号及)(x f 的单调性如下:因为)(x f 在R 上的极值只有一个,故此极小值即为最小值,即m in)(x f =)1(f = -1,∴m in)(x f = -1>a -2,即a >3.点评:本题是利用导数求得函数的最值,进而求出参数范围的。
例说高考题中的使用导数求参数范围
∴在[ln(3a), ln(4a)]上,
(x)
max
=
(ln(4a))
故原不等式成立,当且仅当
=
12a ln(
5
)
min
,
(ln(4a))
g
(
x)
ex a ex a
<
min
m
8a = g (ln(3a)) = ln( ) ,
<
g
点评:问题(2)涉及的式子看似复杂,难以下手,一旦使不等式问题函数化,问题就变得 简单多了。再借用导数判断出新函数的单调性,即可求出在给定区间的最值,问题即迎刃 而解。 二 与极值点的个数有关
∴ f (x) = 3x2 + 2x +t .
若 f ( x) 在区间(-1,1)上是增函数,则有 f ( x) ≥0
t ≥ 3x2 - 2x 在 (-1,1)上恒成立.
若令 g ( x) = 3x2 - 2x =-3( x 1 ) 2 - 1
33
在区间[-1,1]上, g ( x) = g (1) =5,故在区间(-1,1)上使 t ≥ g ( x) 恒成立,
例说高考题中的利用导数求参数范围
河北 高亚平
导数,作为解决与高次函数有关问题的一种工具,有着无可比拟的优越性。也越来越 受到高考命题专家的“青睐”。其中,利用导数求参数的取值范围,更是成为近年来高考的 热点。在 04 年高考中,湖北、辽宁等地考查了这点;在 05 年的高考中,湖北、辽宁、湖 南、山东、重庆、天津等地更着重考查了这一点,甚至很多都安排在倒数第一、二题的位 置上!
2
24
② 若 a >1,则 g ( x) 在(- 1 ,0)上为增函数,须使 g ( x) = 3x 2 a >0 在(- 1 ,0)上恒成立,
利用导数求参数的取值范围方法归纳
利用导数求参数的取值范围方法归纳导数是微积分中的重要概念,可以用于求函数的变化率、极值、最值等问题。
利用导数求参数的取值范围可以帮助我们找到函数的关键点、拐点以及定义域的范围等信息。
下面是一些常见的方法归纳。
求函数在处的导数:1.首先,计算函数的导数表达式。
2.将参数值代入导数表达式,得到函数在该处的导数。
3.根据导数值的正负来判断函数在该处的增减性。
求函数的关键点:1.通过导数求出函数的导数表达式。
2.设置函数的导数等于零的方程,并求解得到参数的取值。
3.将参数的取值代入原函数,得到关键点的横坐标。
4.进一步求得关键点的纵坐标,得到函数的关键点。
求函数的拐点:1.首先,求出函数的二阶导数表达式。
2.解出二阶导数等于零的方程,得到参数的取值。
3.将参数的取值代入原函数,求出拐点的横坐标。
4.进一步求得拐点的纵坐标,得到函数的拐点。
求函数的定义域范围:1.首先,确定函数的定义区间,并计算函数在该区间的导数。
2.判断导数的正负情况,以确定函数的单调性。
3.判断函数在定义区间的端点处是否存在极值。
若存在,则考虑边界条件。
4.根据以上分析,确定函数在定义区间的取值范围。
举例说明:1. 求函数 f(x) = ax^2 + bx 的最值:首先,求出函数的导数 f'(x) = 2ax + b。
令导数等于零,得到 2ax + b = 0,解方程可得 x = -b/(2a)。
将x的值代入原函数,得到最值的纵坐标。
进一步分析函数的单调性和边界条件,得到函数的取值范围。
2. 求函数 g(x) = sin(ax) 的最值:首先,求出函数的导数 g'(x) = acos(ax)。
判断导数的正负情况,确定函数的单调性。
根据函数的周期性和边界条件,得出函数在定义区间的取值范围。
3. 求函数 h(x) = log(x + a) 的定义域范围:首先,确定函数的定义区间为x+a>0,即x>-a。
对函数求导,得到导数h'(x)=1/(x+a)。
例说高考题中的利用导数求参数范围
例说高考题中的利用导数求参数范围导数,作为解决与高次函数有关问题的一种工具,有着无可比拟的优越性。
也越来越受到高考命题专家的“青睐”。
其中,利用导数求参数的取值范围,更是成为近年来高考的热点。
在04年高考中,湖北、辽宁等地考查了这点;在05年的高考中,湖北、辽宁、湖南、山东、重庆、天津等地更着重考查了这一点,甚至很多都安排在倒数第一、二题的位置上!现以04和05年的几道高考题为例,探讨一下用导数求参数范围的几种常见题型及求解策略。
一 与二次函数的性质、单调性、不等式等相联系 求解策略:利用“要使a x f >)(成立,只需使函数的最小值a x f >m in)(恒成立即可;要使a x f <)(成立,只需使函数的最大值a x f <m ax)(恒成立即可”.这也是近两年高考考查和应用最多的一种.例1(05湖北理)已知向量a =(2x ,1+x ),a =(x -1,t ),若b a x f ∙=)(在区间(-1,1)上是增函数,求t 的取值范围.解析:由向量的数量积定义,)(x f =2x (x -1)+(1+x)t =3x-+2x +tx +t∴)(x f '=23x -+x 2+t .若)(x f 在区间(-1,1)上是增函数,则有)(x f '≥0⇔t ≥23x -x 2在 (-1,1)上恒成立.若令)(x g =23x -x 2=-3(31-x )2-31在区间[-1,1]上,max)(x g =)1(-g =5,故在区间(-1,1)上使t ≥)(x g 恒成立,只需t ≥)1(-g 即可,即t ≥5.即t 的取值范围是[5,∞).点评:本题除了用导数反映单调性,还借助了二次函数的性质求出最值,且要注意边界值的取舍。
例2使不等式4x -22x >a -2对任意的实数x 都成立,求实数a 的取值范围. 解析:注意到不等式的次数较高,应想到构造函数,求导.令)(x f =4x -22x ,则如果原不等式对任意的实数x 都成立等价于min)(x f >a -2.又)(x f '=34x -x 4=42x (1-x ),令)(x f '=0,解得,x =0或x =1.)(x f '的符号及)(x f 的单调性如下:x(-∞,0) 0 (0,1) 1 (1,+∞) )(x f ' - 0 - 0 + )(x f↘无极值↘极小值↗因为)(x f 在R 上的极值只有一个,故此极小值即为最小值,即min)(x f =)1(f = -1,∴min)(x f = -1>a -2,即a >3.点评:本题是利用导数求得函数的最值,进而求出参数范围的。
利用导数求参数范围 8
利用导数求参数范围导数,作为解决与高次函数有关问题的一种工具,有着无可比拟的优越性。
也越来越受到高考命题专家的“青睐”。
其中,利用导数求参数的取值范围,更是成为近年来高考的热点。
甚至很多都安排在倒数第一、二题的位置上!探讨一下用导数求参数范围的几种常见题型及求解策略。
一 与二次函数的性质、单调性、不等式等相联系求解策略:利用“要使a x f >)(成立,只需使函数的最小值a x f >min)(恒成立即可;要使a x f <)(成立,只需使函数的最大值a x f <max)(恒成立即可”.这也是近两年高考考查和应用最多的一种.例1(湖北理)已知向量a =(2x ,1+x ),a =(x -1,t ),若b a x f •=)(在区间(-1,1)上是增函数,求t 的取值范围. 解析:由向量的数量积定义,)(x f =2x(x -1)+(1+x )t =3x -+2x +tx +t∴)(x f '=23x -+x 2+t .若)(x f 在区间(-1,1)上是增函数,则有)(x f '≥0⇔t ≥23x-x 2在 (-1,1)上恒成立.若令)(x g =23x -x 2=-3(31-x )2-31在区间[-1,1]上,max)(x g =)1(-g =5,故在区间(-1,1)上使t ≥)(x g 恒成立,只需t ≥)1(-g 即可,即t ≥5. 即t 的取值范围是[5,∞).点评:本题除了用导数反映单调性,还借助了二次函数的性质求出最值,且要注意边界值的取舍。
例2使不等式4x -22x >a -2对任意的实数x 都成立,求实数a 的取值范围.解析:注意到不等式的次数较高,应想到构造函数,求导. 令)(x f =4x-22x ,则如果原不等式对任意的实数x 都成立等价于m in)(x f >a -2.又)(x f '=34x -x 4=42x (1-x ),令)(x f '=0,解得,x =0或x =1.)(x f '的符号及)(x f 的单调性如下:因为)(x f 在R 上的极值只有一个,故此极小值即为最小值,即m in)(x f =)1(f = -1,∴m in)(x f = -1>a -2,即a >3.点评:本题是利用导数求得函数的最值,进而求出参数范围的。
利用导数求参数的取值范围方法归纳
利用导数求参数的取值范围一•已知函数单调性,求参数的取值范围类型1 •参数放在函数表达式上例1. 设函数f(x) 2x3 3(a 1)x2 6ax 8其中a R •⑴若f (x)在x 3处得极值,求常数a的值.⑵若f(x)在(,0)上为增函数,求a的取值范围二.已知不等式在某区间上恒成立,求参数的取值范围类型1.参数放在不等式上2例3•已知f(x) x3ax2bx c在x 与x 1时都取得极值3(1)求a、b的值及函数f (x)的单调区间.(2)若对x [ 1,2],不等式f(x) C2恒成立,求c的取值范围.23. 已知函数f (x) x3— 2x 5,若对任意x [ 1,21都有f (x) m则实数m的取值范围是2类型2 .参数放在区间上例4 .已知三次函数f(x) ax3 5x2 cx d图象上点(1,8)处的切线经过点(3,0),并且f (x)在x=3处有极值.(1) 求f (x)的解析式•( 2)当x (0,m)时,f (x) >0恒成立,求实数m的取值范围.分析:(1) f (x) x3 5x2 3x 9' 2(2) .f (x) 3x 10x 3 (3x 1)(x 3)由f (x) 0得X1丄必 3当x (0,1)时f (x) 0, f(x)单调递增,所以f (x) f (0) 93 3当x 』,3)时f '(x) 0, f (x)单调递减,所以f (x) f(3) 03所以当m 3时f(x) 0在(0,m)内不恒成立,当且仅当m (0,3]时f (x) 0在(0,m)内恒成立所以m的取值范围为(0,3]基础训练:4. 若不等式x4 4x3 ________________________________________ 2 a对任意实数x 都成立,则实数a的取值范围是___________________________________________________ .三.知函数图象的交点情况,求参数的取值范围.例5•已知函数f(x) ax3 bx2 3x在x 1, x 1处取得极值(1)求函数f(x)的解析式.⑵若过点A(1,m)(m 2)可作曲线y= f (x)的三条切线,求实数m的取值范围略解⑴求得f (x) x3 3x⑵设切点为M(x0,x3 3x0),因为f (x) 3x2 3所以切线方程为y m (3x2 3)(x 1),又切线过点M所以x3 3x0 m (3x2 3)(x01)即2x3 3x(2 m 3 0因为过点A可作曲线的三条切线,所以关于X。
利用导数求参数的取值范围
利用导数求参数的取值范围导数是微积分中的重要概念之一,它可以用于求解函数的变化率、极值以及函数的图像性质等。
在求参数的取值范围时,通过导数可以帮助我们确定参数的有效取值范围。
首先,让我们回顾一下导数的定义。
对于函数f(x),它在点x0处的导数可以通过以下公式计算:f'(x0) = limit(h->0) [f(x0+h) - f(x0)] / h这个公式表示了函数在x0处的切线的斜率。
如果导数大于0,则函数在该点处递增;如果导数小于0,则函数在该点处递减。
在解决参数的取值范围时,一种常见的方法是通过导数的正负性来确定。
具体而言,我们可以通过以下步骤来求解参数的取值范围:1.确定函数表达式:首先,我们需要确定待求参数所在的函数表达式。
这通常是一个关于自变量x和参数p的函数,如f(x;p)。
2.求导:接下来,我们对函数f(x;p)关于自变量x求导。
这将给出函数在每个点处的导数表达式,如f'(x;p)。
3.确定导数的正负性:根据导数的正负性,我们可以确定函数在每个点处的增减情况。
4.设置约束条件:根据问题的要求,我们可以确定一定的约束条件来限制参数p的取值范围。
这些约束条件可以是函数在一些点处递增或递减,或函数在一些区间内具有特定性质等。
5.解方程或不等式:最后,我们将约束条件与导数的正负性结合起来,解方程或不等式来确定参数p的取值范围。
实际问题中,求参数的取值范围也可能涉及到其他数学方法和定理,如最值问题、平均值定理等。
这些方法将在下面的具体例子中进行讨论。
例子1:确定函数f(x;p) = px^2 + 2x + 1的参数p的取值范围,使得函数在整个定义域上递增。
1. 求导:对函数f(x;p)关于自变量x求导,得到f'(x;p) = 2px +22. 导数的正负性:由于希望函数在整个定义域上递增,所以导数f'(x;p)应当大于0。
解不等式2px + 2 > 0,得到p > -1所以参数p的取值范围为p>-1例子2:确定函数f(x;p) = px^3 + x^2 + 1的参数p的取值范围,使得函数在整个定义域上的平均增加率大于0。
利用导数求参数取值范围的若干策略
利用导数求参数取值范围的若干策略贺凤梅(新疆伊犁巩留县高级中学ꎬ新疆伊利835400)摘㊀要:在含参不等式恒成立问题中ꎬ经常需要借助导数求解参数的取值范围.解决这类问题通常需要用到函数与方程㊁转化与化归㊁数形结合以及分类讨论等数学思想.文章通过具体问题的研究ꎬ切实提升学生的解题能力和学科核心素养.关键词:导数ꎻ参数范围ꎻ策略中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)34-0007-03收稿日期:2023-09-05作者简介:贺凤梅(1979-)ꎬ女ꎬ湖北省随州人ꎬ本科ꎬ中学一级教师ꎬ从事中学数学教学研究.㊀㊀题目呈现㊀(2022年山东数学模拟试题)已知函数f(x)=aex-1-lnx+lnaꎬ(1)当a=e时ꎬ求曲线y=f(x)在点(1ꎬf(1))处的切线与两坐标轴围成的三角形的面积ꎻ(2)若f(x)ȡ1ꎬ求a的取值范围.1总体分析本题第(1)问考查导数的几何意义ꎬ属于常规题.第(2)问则是利用导数研究不等式恒成立问题ꎬ求参数的范围.此问可以多视角解答ꎬ涉及隐零点㊁同构法㊁切线放缩㊁分类讨论㊁反函数法等多种策略.2试题解答第(1)问略解:易求得切点(1ꎬe+1)ꎬ斜率k=fᶄ(1)=e-1ꎬ切线方程y=(e-1)x+2ꎬ与两坐标轴交点(0ꎬ2)ꎬ(-2e-1ꎬ0)ꎬ所求面积s=2e-1.以下重点探讨第(2)问.视角1㊀隐零点.解法1㊀令g(x)=aex-1-lnx+lna-1ꎬxɪ(0ꎬ+ɕ)ꎬa>0ꎬ则gᶄ(x)=aex-1-1x.令gᶄ(x0)=aex0-1-1x0=0ꎬ得aex0-1=1x0.①两边取自然对数ꎬ整理ꎬ得lna+x0-1=-lnx0.②因为gᵡ(x)=aex-1+1x2>0ꎬ所以gᶄ(x)在(0ꎬ+ɕ)上单调递增ꎬ且xң0+时ꎬgᶄ(x)ң-ɕꎻxң+ɕ时ꎬgᶄ(x)ң+ɕ.所以xɪ(0ꎬx0)时ꎬgᶄ(x)<0ꎻxɪ(x0ꎬ+ɕ)时ꎬgᶄ(x)>0.因此g(x)在x=x0处取得极小值ꎬ也为最小7值ꎬ即g(x)min=aex0-1-lnx0+lna-1.将①②代入整理得g(x)min=x0+1x0+2lna-2.显然ꎬ要使原不等式恒成立ꎬ必有g(x)min=x0+1x0+2lna-2ȡ2lnaȡ0ꎬ解得aȡ1ꎬ即aɪ[1ꎬ+ɕ).评注㊀此解法通过构造函数g(x)ꎬ利用隐零点x0表示出g(x)的最小值ꎬ借助基本不等式得出关于a的不等式ꎬ求解即得[1].视角2㊀同构.条件f(x)ȡ1ꎬ即aex-1-lnx+lna-1ȡ0(∗)在xɪ(0ꎬ+ɕ)上恒成立.解法2㊀将(∗)式变形得ex-1+lna+x-1+lnaȡx+lnx=elnx+lnx.构造函数g(t)=et+tꎬ求导得gᶄ(t)=et+1>0.所以函数g(t)=et+t在R上单调递增.由g(x-1+lna)ȡg(lnx)ꎬ得x-1+lnaȡlnx.即lnaȡlnx-x+1在xɪ(0ꎬ+ɕ)上恒成立.令h(x)=lnx-x+1ꎬx>0ꎬ求导ꎬ得hᶄ(x)=1x-1=1-xxꎬh(x)在(0ꎬ1)上单调递增ꎬ在(1ꎬ+ɕ)上单调递减ꎬ所以h(x)ȡh(1)=0ꎬ故lnaȡ0即可ꎬ解得aȡ1ꎬ即aɪ[1ꎬ+ɕ).视角3㊀同构+切线放缩.解法3㊀将(∗)式变形ꎬ得ex-1+lna+lnex-1+lnaȡx+lnx.构造函数g(x)=x+lnxꎬx>0ꎬgᶄ(x)=1+1x>0ꎬg(x)单调递增.由g(ex-1+lna)ȡg(x)ꎬ得ex-1+lnaȡx.结合exȡx+1ꎬ得x-1+lnaȡx-1.所以lnaȡ0ꎬ解得aȡ1ꎬ即aɪ[1ꎬ+ɕ).解法4㊀将(∗)式变形ꎬ得aex-1-lnxaȡ1(a>0).所以ex-1ȡ1alnexaꎬ即exȡealnexa.亦即xexȡexalnexa(x>0).构造函数H(x)=xexꎬx>0ꎬHᶄ(x)=(x+1)ex>0ꎬ所以H(x)在xɪ(0ꎬ+ɕ)上单调递增.由H(x)ȡH(lnexa)得xȡlnexa=1+lnx-lnaꎬ易证xȡ1+lnxꎬ所以lnaȡ0即可ꎬ解得aȡ1ꎬ即aɪ[1ꎬ+ɕ).评注㊀视角2中的三种解法均属于同构法ꎬ从解答过程可以知晓ꎬ根据不同的变形形式ꎬ得到有一定差异的同构函数ꎬ借助于函数的单调性ꎬ得出变量间的关系ꎬ进一步变形求解ꎬ问题也就迎刃而解了.当然ꎬ在解答的过程中ꎬ用到了exȡx+1与xȡ1+lnx这两个有关切线放缩的不等式ꎬ作为解答题ꎬ需要简单证明方可使用[2].视角4㊀放缩+极值.解法5㊀由已知条件ꎬ得aex-1+lnaȡ1+lnx.易证x-1ȡlnxꎬ即xȡ1+lnx.所以只需aex-1+lnaȡx.构造函数φ(x)=aex-1+lna-xꎬ求导得φᶄ(x)=aex-1-1.以下对a分情况讨论:(Ⅰ)当aȡe时ꎬφᶄ(x)=aex-1-1ȡe ex-1-1=ex-1>0在(0ꎬ+ɕ)上恒成立ꎬφ(x)=aex-1+lna-xȡe ex-1+lne-x=ex-x+1>0(x>0)ꎬ满足题意.(Ⅱ)当0<a<e时ꎬ令φᶄ(x)=aex-1-1=0得x-1=-lnaꎬ即x=1-lnaꎬ显然φ(x)在(0ꎬ1-lna)上单调递减ꎬ在(1-lnaꎬ+ɕ)上单调递增.所以φ(x)ȡφ(1-lna)=ae-lna+2lna-1ȡ0.所以lnaȡ0即可ꎬ解得1ɤa<e.综上可得aɪ[1ꎬ+ɕ).评注㊀此解法通过不等式放缩ꎬ介入中间量ꎬ借助于极值求解也可以成功突破.但因为定义域的限8定ꎬ需对a进行分类讨论ꎬ再取两种情况的并集ꎬ此处易出现纰漏ꎬ值得大家重视.再给一例ꎬ感兴趣的读者可以自行求解或查阅.已知函数f(x)=ex-2-lnx.若g(x)=f(x)+lnx-axꎬ讨论g(x)的单调性.(提示:此题需分aɤ1e2与a>1e2进行求解ꎬ你发现了吗?)视角5㊀分类讨论.解法6㊀由f(x)=aex-1-lnx+lnaꎬxɪ(0ꎬ+ɕ)ꎬa>0ꎬ对a进行分类讨论:(Ⅰ)当0<a<1时ꎬ易得f(1)=a+lna<1ꎬ不满足f(x)ȡ1.(Ⅱ)当a=1时ꎬf(x)=ex-1-lnxꎬ则fᶄ(x)=ex-1-1xꎬxɪ(0ꎬ1)时ꎬfᶄ(x)<0ꎬf(x)单调递减ꎻxɪ(1ꎬ+ɕ)时ꎬfᶄ(x)>0ꎬf(x)单调递增.所以f(x)ȡf(1)=1ꎬ满足题意. (Ⅲ)当a>1时ꎬf(x)=aex-1-lnx+lnaȡex-1-lnxꎬ易证ex-1ȡ(x-1)+1=xꎬxȡ1+lnxꎬ所以f(x)ȡf(1)=1ꎬ满足题意.综上可得aɪ[1ꎬ+ɕ).评注㊀此解法属于对a进行分类讨论求解ꎬ通过推理和论证ꎬ符合就要ꎬ不符合则舍去.难点在于找参数a的分类界限ꎬ这需要通过日积月累的训练方能达成.视角6㊀反函数.解法7㊀由已知ꎬ得aex-1-lnx+lnaȡ1.所以aex-1ȡlnx-lna+1.令y=aex-1ꎬ则x=lnya+1=lny-lna+1.所以y=aex-1与y=lnx-lna+1互为反函数ꎬ只需aex-1ȡx即可ꎬ整理得aȡxex-1.令G(x)=xex-1=exexꎬ求导ꎬ得Gᶄ(x)=e(1-x)ex.所以G(x)在(0ꎬ1)单调递增ꎬ在(1ꎬ+ɕ)单调递减.㊀则G(x)ɤG(1)=1ꎬ故aȡ1.即aɪ[1ꎬ+ɕ).评注㊀此法确实很巧妙ꎬ能通过变形㊁观察和求解得出不等式两边对应函数恰好互为反函数ꎬ利用凸凹反转ꎬ借助于临界的切线得出大小关系ꎬ化繁为简.3试题链接题1㊀(2010年高考新课标卷理科)设函数f(x)=ex-1-x-ax2ꎬaɪR.若当xȡ0时ꎬf(x)ȡ0恒成立ꎬ求a的取值范围.题2㊀若不等式ax-lnxȡa(2x-x2)对∀xɪ[1ꎬ+ɕ)恒成立ꎬ求a的取值范围.导数问题博大精深ꎬ对于学生而言ꎬ基础知识和基本理论易于学懂ꎬ但是ꎬ受众多关联知识和高数背景的限制ꎬ很多导数问题难以突破.对于高校来讲ꎬ导数是学生深造学习的重要基础.基于此种原因ꎬ高考一直重点考查导数ꎬ因此我们有必要多花时间和精力研究导数ꎬ总结规律ꎬ提炼解法ꎬ积累经验ꎬ创新思路ꎬ在比较和不断尝试中增长技能.这类参数问题入口宽ꎬ结果唯一ꎬ研究它就是对导数的全面理解和应用ꎬ这对我们的学习大有裨益.参考文献:[1]李文东.利用导数解决含参不等式取值范围问题的策略[J].中学数学研究ꎬ2020(4):12-16. [2]余铁青.从一道导数大题谈参数分类讨论的依据[J].数理化学习ꎬ2022(03):7ꎬ21.[责任编辑:李㊀璟]9。
利用导数求参数的取值范围
利用导数求参数的取值范围在数学中,导数是一个非常重要的概念,用于刻画函数在其中一点的变化率。
利用导数求参数的取值范围,常常用于优化问题、最值问题等等。
下面我将从几个典型的例子入手,详细介绍如何利用导数求参数的取值范围。
首先,我们考虑一个简单的一元函数的例子。
假设有一个函数f(x),它的导数f'(x)在一些区间内恒大于0。
那么我们可以推知,在这个区间内,f(x)是递增的。
反过来,如果f'(x)在一些区间内恒小于0,那么f(x)在该区间是递减的。
利用这一点,我们可以通过求导数的方式来确定参数的取值范围。
举个例子来说明。
假设我们要求函数f(x) = ax^2 + bx + c(x > 0)在0到正无穷的取值范围。
我们可以先计算导函数f'(x) = 2ax + b。
由于题目中没有给定a的取值范围,我们要通过导数f'(x)来确定a的取值范围。
首先,我们要求f'(x)大于0。
这意味着2ax + b大于0。
当a大于0时,方程2ax + b = 0没有实数解,所以我们要求a小于0。
然后,我们要求f'(x)在x > 0时恒大于0,即对所有的x > 0,2ax + b > 0。
这表明a也必须小于0才能满足这个条件。
因此,我们可以得出结论,a小于0。
至于b和c,没有给出取值范围的要求,所以可以是任意实数。
接下来,我们考虑一个多元函数的情况。
同样地,我们希望通过求导数来确定参数的取值范围。
假设有一个二元函数f(x, y) = x^2 + y^2 + ax + by + c。
我们可以分别计算f对x和y的偏导数f_x和f_y。
如果f_x和f_y的取值范围有限,那么我们可以据此确定a和b的取值范围。
举个例子来说明。
假设我们要求函数f(x, y) = x^2 + y^2 + ax +by + c在整个二维平面的取值范围。
我们计算f对x和y的偏导数,得到f_x = 2x + a和f_y = 2y + b。
导数中参数范围的求法
导数中的参数范围的求法一、 与单调性有关的参数问题此时参数可以位于函数中也可以位于区间内,常见的提问方式是函数在某个区间单调递减、单调递增、单调、不单调,研究这类问题的关键是把握原函数和导函数的关系,这里需要注意的一个问题:若函数单调,则恒为非正或非负,函数()f x '()f x 的极值点并不等同于导函数的零点,极值点的个数和导函数的根的个数也不能直接划等号。
例1.已知函数在区间上单调递减,求的取值范围。
32()39f x x x x =--(,21)a a -a 解析:先根据函数单调性作出函数的趋势图像,再安排存在参数的区间位置即可。
'2()3693(1)(3)f x x x x x =--=+-令,则或;令,则,作出趋势图像如下:'()0f x >3x >1x <-'()0f x <13x -<<函数在区间上单调递减,需满足(,21)a a -12131221a a a a a ≥-⎧⎪-≤⇒<≤⎨⎪->⎩例2.已知函数在上是减函数,求实数的取值范围。
22()ln f x x a x x=++[1,4]a 解析:转化为函数单调性与导函数的正负性的关系即可, '22()2a f x x x x=+-在上是减函数,即在上恒成立 [1,4]'22()02f x a x x≤⇒≤-+[1,4]令,因为在上递减,则 22()2g x x x =-+()g x [1,4]min 63()(4)2g x g ==-所以 632a ≤-例3.已知函数,若函数在区间(),()ln ,f x ax g x x a R ==∈()2()()xf x G x ag x a x=++上为单调函数,求的取值范围。
[1,)+∞a 解析:题目只是说明函数是单调函数,并未说明是单增还是单减,因此需要分两种情况讨论,将单调性转化为参数恒成立问题即可。
导数中求参数的取值范围
导数中求参数的取值范围导数是微积分中的一个重要概念,用于描述函数在其中一点的变化率。
在实际应用中,经常需要根据导数的特性来求解参数的取值范围。
下面我们将讨论几种常见的求解参数取值范围的方法。
一、导数的符号在其中一点的导数的符号能够告诉我们函数在该点的增减性。
具体地,如果导数大于零,则函数在该点是增函数;如果导数小于零,则函数在该点是减函数;如果导数等于零,则函数在该点取得极值(可能是极大值或极小值)。
1.寻找函数的增减区间要求解参数的取值范围,首先需要找到函数的增减区间。
具体步骤如下:(1)找到函数的导数;(2)将导数求零,即找到导数为零的点,这些点可能是函数的极值点;(3)根据导数的符号可知道函数增减的情况。
2.判断函数的极值是否为最值找到函数的极值点并不一定能够得到最值。
我们可以使用二阶导数的符号来判断函数的极值是否为最值。
具体来说,如果二阶导数大于零,说明该极值点为函数的极小值;如果二阶导数小于零,说明该极值点为函数的极大值;如果二阶导数等于零,无法判断该极值点的大小。
3.列出函数的不等式当我们已经找到了函数的增减区间和极值点以后,可以通过列出函数的不等式来求解参数的取值范围。
比如,如果我们需要找到函数在一些区间上的最大值,可以列出函数在该区间上的不等式,并且将该区间的端点带入函数进行比较,最终求解出参数的取值范围。
二、导数的连续性导数的连续性是求解参数取值范围的另一个重要条件。
在一些点处,如果函数的导数存在且连续,则函数在该点处具有可导性。
如果函数在一些点处不可导,那么该点就是一个临界点。
1.求解临界点为了找到可能的临界点,我们需要计算函数的一阶导数和二阶导数,并求解出导数为零或不存在的点。
通过这些点,我们可以判断参数的取值范围。
2.判断导数的连续性对于一般的函数而言,一阶导数存在且连续的点称为可导点。
如果函数在一些点的导数不连续,那么该点为不可导点。
针对不可导点,我们需要观察其特点,并结合其他条件来进行求解。
含参导数求参数范围的几种方法
含参导数求参数范围的几种方法
含参导数求参数范围那可真是高中数学里的一道硬菜啊!咱先说说分离参数法吧。
嘿,这就好比把一个大麻烦拆分成小问题来解决。
如果能把参数分离出来,那就变成了求函数最值的问题。
先求导,判断函数单调性,找到最值。
这过程可得仔细喽,一步错步步错呀!要是不认真,那可就惨啦,就像在黑暗中摸索却找不到方向。
那分离参数法有啥好处呢?它能把复杂的问题简单化呀!比如一些不等式恒成立问题,用这方法就很妙。
就像有了一把神奇的钥匙,能打开难题的大门。
再说说分类讨论法。
哎呀呀,这就像是走在一条充满岔路的小道上,得根据不同情况来选择走哪条路。
先分析参数对导数的影响,然后分类讨论函数的单调性和极值。
这可不能马虎,得考虑周全。
要是漏了一种情况,那可就糟糕啦,就像建房子少了一块砖。
分类讨论法虽然有点麻烦,但它很靠谱啊!能把各种情况都考虑到,确保答案的准确性。
咱来个实际案例瞧瞧。
比如有个函数,让求参数范围使得函数在某个区间上单调递增。
用分离参数法,把参数分离出来,求另一边函数的最值。
或者用分类讨论法,讨论参数不同取值下函数的单调性。
哇塞,通过这些方法,难题不就迎刃而解了嘛!
含参导数求参数范围的方法在高考和各种考试中那可太重要啦!掌握了这些方法,就像有了强大的武器,能在数学战场上冲锋陷阵。
所以呀,大家一定要好好掌握这些方法,让自己在数学的海洋里畅游无阻。
我的观点结论就是:含参导数求参数范围的方法很实用,大家一定要认真学习掌握,它们可是数学学习中的好帮手。
利用导数求参数的取值范围方法归纳
利用导数求参数的取值范围方法归纳导数在数学中广泛应用,它可以表示函数的变化率。
在求取参数的取值范围时,可以利用导数的性质来推导出函数与参数之间的关系。
下面将介绍利用导数求参数取值范围的一些常见方法。
一、利用导数判断函数的单调性:考虑函数$f(x)$的单调性,可以使用导数来帮助我们判断。
如果函数$f(x)$在其中一区间上的导数恒大于零,那么函数在该区间上是递增的;如果导数恒小于零,那么函数递减。
1.对于一元函数$f(x)$,可以计算其导数$f'(x)$,然后解方程$f'(x)=0$,将问题转化为求解函数的极值点。
如果求解出的极值点满足题目给定的参数范围条件,则参数的取值范围就是极值点的区间。
2.对于二元函数$f(x,y)$,可以将其看作一个以参数$y$为变量的函数$g(x)=f(x,y)$。
然后计算$g'(x)$,利用一元函数的方法来判断参数的取值范围。
3.对于多元函数$f(x_1,x_2,...,x_n)$,我们可以对其中的一个变量求导,将其它变量视为常数,从而转化为一元函数的问题。
二、利用导数判断函数的极值:考虑函数$f(x)$的极值情况,可以求取其导数$f'(x)$,然后判断导数的正负性。
1.对于一元函数$f(x)$,如果导数$f'(x)$在特定点$x_0$处为零,并且$x_0$处的导数的左右性质相异,那么函数在$x_0$处取得极值。
2.对于二元函数$f(x,y)$,可以将其看作一个以参数$y$为变量的函数$g(x)=f(x,y)$。
然后计算$g'(x)$,判断导数的正负性来确定参数的取值范围。
3.对于多元函数$f(x_1,x_2,...,x_n)$,我们可以对其中的一个变量求导,将其它变量视为常数。
然后再对求得的一元函数进行求导判断极值。
三、利用导数判断函数的凸凹性:考虑函数$f(x)$的凸凹性质,可以使用导数$f''(x)$来判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数中求参数的取值范围求参数取值范围的方法1.分离参数,恒成立转化为最值问题2.分离参数,结合零点和单调性解不等式3.将参数分成若干个区间讨论是否满足题意 1已知函数()-x f x e ax=(a R ∈,e 为自然对数的底数).(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若1a =,函数()()()2x g x x m f x e x x =--++在()2,+∞上为增函数,求实数m 的取值范围. 解:(Ⅰ)函数()f x 的定义域为R ,()x f x e a'=-.当0a ≤时,()0f x '>,∴()f x 在R 上为增函数;当0a >时,由()0f x '=得ln x a =,当(),ln x a ∈-∞时,()0f x '<,∴函数()f x 在(),ln a -∞上为减函数, 当()ln ,x a ∈+∞时,()0f x '>,∴函数()f x 在()ln ,a +∞上为增函数……4分(Ⅱ)当1a =时,()()()2x x g x x m e x e x x=---++,∵()g x 在()2,+∞上为增函数;∴()10x x g x xe me m '=-++≥在()2,+∞上恒成立,即11x xxe m e +≤-在()2,+∞上恒成立, …………………………6分令()11x xxe h x e +=-,()2,x ∈+∞,则()()()2221x x xxe xe e h x e --'==-()()221x x xe e x e---,令()2x L x e x =--,()10x L x e '=->在()2,+∞上恒成立,即()2x L x e x =--在()2,+∞上为增函数,即()()2240L x L e >=->,∴()0h x '>,即()11x x xe h x e +=-在()2,+∞上为增函数,∴()()222121e h x h e +>=-, ∴22211e m e +≤-,所以实数m 的取值范围是2221,1e e ⎛⎤+-∞ ⎥-⎝⎦. ………………12分2.(2016·全国甲卷)已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.解:(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)ln x-4(x-1),f(1)=0,f′(x)=ln x+1x-3,f′(1)=-2.故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x-a(x-1)x+1>0.设g(x)=ln x-a(x-1) x+1,则g′(x)=1x -2a(x+1)2=x2+2(1-a)x+1x(x+1)2,g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;②当a>2时,令g′(x)=0得x1=a-1-(a-1)2-1,x2=a-1+(a-1)2-1.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<0.综上,a的取值范围是(-∞,2].3.(2016·全国乙卷)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.解:(1)f′(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).①设a=0,则f(x)=(x-2)e x,f(x)只有一个零点.②设a>0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0,所以f(x)在(-∞,1)内单调递减,在(1,+∞)内单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln a2,则f(b)>a2(b-2)+a(b-1)2=a⎝ ⎛⎭⎪⎫b2-32b>0,故f(x)存在两个零点.③设a<0,由f′(x)=0得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,故当x∈(1,+∞)时,f′(x)>0,因此f(x)在(1,+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.若a<-e2,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f′(x)<0;当x∈(ln(-2a),+∞)时,f′(x)>0.因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明:不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),又f(x)在(-∞,1)内单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g ′(x )=(x -1)(e 2-x -e x ).所以当x >1时,g ′(x )<0,而g (1)=0, 故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.4.已知函数f (x )=ax -1-ln x (a ∈R). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)由已知得f ′(x )=a -1x =ax -1x (x >0).当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点. 当a >0时,由f ′(x )<0,得0<x <1a , 由f ′(x )>0,得x >1a ,∴f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,即f (x )在x =1a 处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值,∴f ′(1)=0,解得a =1,∴f (x )≥bx -2⇒1+1x -ln xx ≥b , 令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2,故实数b 的取值范围为⎝ ⎛⎦⎥⎤-∞,1-1e 2.5.(2015·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为 f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).6.(2016·全国甲卷)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x -3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0.设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a(x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减,因此g (x )<0.综上,a 的取值范围是(-∞,2].7.(2016·山东高考)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x .当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增, 所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a>1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a=1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a<1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝⎛⎭⎫12,+∞. 8..(2016·海口调研)已知函数f (x )=mx -mx ,g (x )=3ln x . (1)当m =4时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)若x ∈(1,e](e 是自然对数的底数)时,不等式f (x )-g (x )<3恒成立,求实数m 的取值范围.解:(1)当m =4时,f (x )=4x -4x ,f ′(x )=4+4x 2,f ′(2)=5, 又f (2)=6,∴所求切线方程为y -6=5(x -2), 即y =5x -4.(2)由题意知,x ∈(1,e]时, mx -mx -3ln x <3恒成立, 即m (x 2-1)<3x +3x ln x 恒成立, ∵x ∈(1,e],∴x 2-1>0, 则m <3x +3x ln xx 2-1恒成立. 令h (x )=3x +3x ln x x 2-1,x ∈(1,e], 则m <h (x )min .h ′(x )=-3(x 2+1)·ln x -6(x 2-1)2=-3(x 2+1)·ln x +6(x 2-1)2, ∵x ∈(1,e], ∴h ′(x )<0,即h (x )在(1,e]上是减函数. ∴当x ∈(1,e]时,h (x )min =h (e)=9e2(e -1).∴m 的取值范围是⎝⎛⎭⎪⎫-∞,9e 2e -2. 9..(2017·福建省质检)已知函数f (x )=ax -ln(x +1),g (x )=e x -x -1.曲线y =f (x )与y =g (x )在原点处的切线相同.(1)求f (x )的单调区间;(2)若x≥0时,g(x)≥kf(x),求k的取值范围.解:(1)因为f′(x)=a-1x+1(x>-1),g′(x)=e x-1,依题意,f′(0)=g′(0),即a-1=0,解得a=1,所以f′(x)=1-1x+1=xx+1,当-1<x<0时,f′(x)<0;当x>0时,f′(x)>0.故f(x)的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)由(1)知,当x=0时,f(x)取得最小值0,所以f(x)≥0,即x≥ln(x+1),从而e x≥x+1.设F(x)=g(x)-kf(x)=e x+k ln(x+1)-(k+1)x-1,则F′(x)=e x+kx+1-(k+1)≥x+1+kx+1-(k+1),(ⅰ)当k=1时,因为x≥0,所以F′(x)≥x+1+1x+1-2≥0(当且仅当x=0时等号成立),此时F(x)在[0,+∞)上单调递增,从而F(x)≥F(0)=0,即g(x)≥kf(x).(ⅱ)当k<1时,因为f(x)≥0,所以f(x)≥kf(x).由(ⅰ)知g(x)-f(x)≥0,所以g(x)≥f(x)≥kf(x),故g(x)≥kf(x).(ⅲ)当k>1时,令h(x)=e x+kx+1-(k+1),则h′(x)=e x-k(x+1)2,显然h′(x)在[0,+∞)上单调递增,又h′(0)=1-k<0,h′(k-1)=e k-1-1>0,所以h′(x)在(0,k-1)上存在唯一零点x0,当x∈(0,x0)时,h′(x)<0,所以h(x)在[0,x0)上单调递减,从而h(x)<h(0)=0,即F′(x)<0,所以F(x)在[0,x0)上单调递减,从而当x∈(0,x0)时,F(x)<F(0)=0,即g(x)<kf(x),不合题意.综上,实数k的取值范围为(-∞,1].。